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Abstract 29 

To learn more about the mechanisms of human dietary fat perception, 398 human twins 30 

rated fattiness and liking for six types of potato chips that differed in triglyceride 31 

content (2.5, 5, 10, and 15% corn oil); reliability estimates were obtained from a subset (n 32 

= 50) who did the task twice. Some chips also had a saturated long-chain fatty acid 33 

(hexadecanoic acid, 16:0) added (0.2%) to evaluate its effect on fattiness and liking. We 34 

computed the heritability of these measures and conducted a genome-wide association 35 

study (GWAS) to identify regions of the genome that co-segregate with fattiness and 36 

liking. Perceived fattiness and liking for the potato chips were reliable (r = 0.31-0.62, p < 37 

0.05) and heritable (up to h2 = 0.29, p < 0.001, for liking). Adding hexadecanoic acid to 38 

the potato chips significantly increased ratings of fattiness but decreased liking. Twins 39 

with the G allele of rs263429 near GATA3-AS1 or the G allele of rs8103990 within 40 

ZNF729 reported more liking for potato chips than did twins with the other allele 41 

(multivariate GWAS, p < 1×10-5), with results reaching genome-wide suggestive but not 42 

significance criteria. Person-to-person variation in the perception and liking of dietary 43 

fat was (a) negatively affected by the addition of a saturated fatty acid and (b) related to 44 

inborn genetic variants. These data suggest liking for dietary fat is not due solely to 45 

fatty acid content and highlight new candidate genes and proteins within this sensory 46 

pathway. 47 

Keywords: taste, genetics, sensory, fat perception, oleogustus, taste receptors 48 
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Introduction 49 

Sensory nutrition is a research area that investigates how the taste, smell, and flavor of 50 

food and drink affect food intake and diet quality, and how food choice in turn affects 51 

human health and disease (Forde 2018; Hayes 2015). While food is essential to our 52 

survival, and eating may be pleasant, it can also be dangerous, especially for those who 53 

“dig their grave with a spoon” (Card 2013) and die from heart disease or diabetes, 54 

health conditions that arise in whole or in part from dietary choices (Reed and Knaapila 55 

2010). Some of the pleasure of food arises from its dietary fat and sugar content. The 56 

sweetness of sugar is well understood from a sensory perspective (Nelson et al. 2001), 57 

with direct links between taste cells and brain areas of reward (e.g., (Veldhuizen et al. 58 

2017)). In contrast, the initial sensory steps responsible for the perception of dietary fat 59 

are less well understood, and what is known is contentious: whether there is a distinct 60 

taste quality for fat or fatty acids, and which of the chemical and texture components of 61 

fat are responsible for the sensations it evokes (Reed and Xia 2015; Running et al. 2015; 62 

Running and Mattes 2016).  63 

One unresolved conundrum is mounting evidence that, while triglycerides and 64 

fatty acids both impart fatty sensations in foods, triglycerides tend to have a positive 65 

hedonic valance, e.g.,(Bakke et al. 2016) whereas fatty acids typically have a negative 66 

hedonic valence, e.g., scratchy (Voigt et al. 2014) or otherwise “bad” (Running and 67 

Mattes 2016). These data suggest multiple sensory pathways are involved in the 68 
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perception of fats in foods (Drewnowski 1992). One method to learn more about these 69 

multiple pathways is to evaluate origins of person-to-person or animal-to-animal 70 

differences—this type of genetics-driven approach helped identify the bitter and sweet 71 

receptors (Reed and Knaapila 2010; Reed et al. 2006). Here, we reasoned that people 72 

differ in their response to fat in food, that these differences are heritable, and that 73 

genome-wide methods are likely useful to identify the relevant genes.  74 

To establish heritability, we selected a classic twin design, comparing 75 

monozygotic (MZ) and dizygotic (DZ) twins for their response to fat in foods. We also 76 

had to choose appropriate test stimuli that would generalize to real foods (vs. model 77 

systems) and appropriate behavioral methods. No one standard method has been 78 

adopted, with investigators in this area using many different stimuli to measure fat 79 

perception, including oil-and-water mixtures (Heinze et al. 2017); oil in salad dressing 80 

(Keller et al. 2012); fat in puddings (Mennella et al. 2012), in scrambled eggs or mashed 81 

potatoes (Mela and Sacchetti 1991), or in ice cream (Rolon et al. 2017) or added fatty 82 

acids in chocolate (Running et al. 2017). Here we used potato chips that varied in 83 

amounts of corn oil and an added fatty acid, capitalizing on our technical expertise in 84 

their production and practical constraints of our testing environment (an annual 85 

convention of twins; see below). We also tested the twins’ ability to discriminate high- 86 

and low-fat milk samples.  87 

Materials and Methods 88 
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Participants. We tested adult MZ and DZ twins who attended an annual convention of 89 

twins, the Twin Days Festival in Twinsburg, OH. This event is held each August, and 90 

all data reported here were collected during the 2018 convention. The exclusion criteria 91 

for participation were age less than 18 years, pregnancy, or an allergy or sensitivity to 92 

milk. All data were collected under protocols approved by the University of 93 

Pennsylvania Institutional Review Board (#701426).  94 

Stimuli. Three types of stimuli were used: potato chips that differed in triglyceride and 95 

fatty acid content, multiple prototypical tastants, and milk that was either high (18.00%) 96 

or low (2.35%) in fat. Six types of potato chips were prepared, following standard 97 

methods at Pepsico research laboratories: chips that contained 2.5, 5.0, 10, or 15% corn 98 

oil and chips with 2.5% or 5.0% corn oil with added 0.2% (w/w) hexadecanoic acid, a 99 

saturated long-chain fatty acid (16:0). Time constraints prevented us from testing all 100 

combinations of triglycerides and fatty acids. Ascending amounts of corn oil were 101 

chosen to minimize carryover effects across samples; the fatty acid was added to gauge 102 

its impact on ratings of fattiness and liking.  103 

The second type of stimuli comprised standard solutions (5 mL) used in taste 104 

psychophysics: plain deionized water, sucrose (12% w/v, 350 mM), sodium chloride 105 

(1.5% w/v, 256 mM), and the bitter compound phenylthiocarbamide (PTC; 1.8 ×10-4 M), 106 

all purchased from Sigma (St. Louis, MO). (We also tested menthol [1 mM] and 107 

capsaicin [3 μM] for an unrelated project; those results are not reported here.) The third 108 
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stimuli comprised milk with 18.00% or 2.35% fat mixed at the Monell Chemical Senses 109 

Center using Shop Rite brand instant nonfat dry milk (SKU/UPC 041190010189) 110 

purchased at a local grocery store and anhydrous dairy fat (Table 1). All ingredients 111 

were combined in a homogenizer (GEA, Düsseldorf, Germany) and processed with five 112 

passes at 250 bars of pressure; resulting particle sizes were within the expected range. 113 

Sample presentation. Single potato chips of roughly equivalent size and weight were 114 

placed in clear 3-5 oz plastic souffle cups with plastic lids (Universal Product Code 115 

[UPC] #742010492467). Participants were given potato chips in a predetermined order 116 

and asked to rate the potato chips for “fattiness” and “liking” on visual analog scales 117 

presented on an Apple iPad Air (9.7-inch display; Apple Inc., Cupertino, CA). Liking 118 

scales were anchored with “do not like at all” on the left and “like extremely” on the 119 

right. Similarly, the fattiness scale was anchored on the left with “not fatty at all” and on 120 

the right with “extremely fatty.” We also asked about “crispiness” and “saltiness,” to 121 

prevent a halo-dumping effect, a bias in sensory ratings which can occur when subjects 122 

are provided too few salient rating options (Clark and Lawless 1994). Participants were 123 

instructed to rinse their mouth with water (Nestle Pure Life, UPC 068274934711) after 124 

each sample. For logistical reasons and enhanced ecological validity, participants did 125 

not wear nose clips and chewed and swallowed all potato chip samples. 126 

For the taste solutions, participants rated each for the qualities of “liking,” 127 

“saltiness,” “sweetness,” “sourness,” “bitterness,” and “burn” on visual analog scales, 128 
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with the left side anchored with “no [quality] at all” and the right side anchored with 129 

“extreme [quality],” as previously described (Knaapila et al. 2012). To focus on taste and 130 

reduce odor cues, participants wore nose clips (GENEXA LLC, UPC 708981350007). 131 

Participants were asked to hold each solution in their mouth for 5 s, rate it on the scale 132 

provided, spit out the solution, and rinse their mouth with water afterward.  133 

For the milk fat discrimination test, a two-alternative forced choice task was 134 

used. Before testing began, each participant was given two references as warm-up 135 

samples; these were verbally identified to participants as “low-fat” and “high-fat” 136 

samples, respectively. Participants were then given 10 pairs of opaque bottles (EP-137 

34434, Berry Global Group, Inc.). Each pair contained one low-fat and one high-fat 138 

sample (each 5 mL) presented in a fixed order. Participants wore nose clips; they were 139 

instructed to hold each sample in their mouth for 5 s, spit out the sample, and rinse 140 

their mouth with water afterward. For each pair, participants were asked, “Which 141 

solution tastes fattier?” If they were unsure, they were instructed to guess. 142 

Discrimination ability was defined as the number correct across all 10 trials (i.e., perfect 143 

discrimination would be 10 out of 10 trials correct). 144 

Saliva collection and DNA extraction. We obtained saliva samples from all participants 145 

by asking them to expectorate into collection tubes; DNA was extracted from the saliva 146 

using procedures recommended by Oragene (DNA Genotek, Kanata, Canada). We 147 
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measured and recorded DNA concentration and quality scores using a Nanodrop 1000 148 

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA).  149 

Genotyping. We conducted both single-marker and high-throughput based 150 

genotyping. Using the single-marker method, we typed three variant sites in the 151 

TAS2R38 gene in all twins, as a quality-control step (a) to ensure that the DNA extracted 152 

from saliva could be genotyped, (b) to confirm that the genotype matched the 153 

psychophysical ratings of PTC bitterness, and (c) to get preliminary confirmation of 154 

twin zygosity (each pair of MZ twins is expected to have the same genotype). For these 155 

assays, DNA samples were diluted to a concentration of 10 ng/μL and used as 156 

templates in Taqman assays (rs713598, C___8876467_10; rs1726866, C___9506827_10; 157 

and rs10246939, C___9506826_10; Applied Biosystems, Foster City, CA) using 158 

previously established methods. 159 

For the DNA high-throughput genotyping, we sent the DNA samples to the 160 

Center for Inherited Disease Research (CIDR; Baltimore, MD), which typed them for the 161 

Illumina OmniExpress panel (Infinium OmniExpressExome-8, v1.6; Illumina, San 162 

Diego, CA) following the manufacturer’s procedures and the CIDR’s standard quality-163 

control methods. For 176 MZ twin pairs, we used high-throughput genotyping for only 164 

one twin of each pair and imputed the genotype of the other member of the pair 165 

because of their presumed identical genomes.  166 
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Twin zygosity. Twin zygosity was measured in three ways. Twins self-reported their 167 

zygosity status as (a) monozygotic (MZ; identical), (b) dizygotic (DZ; fraternal), or (c) 168 

uncertain; photographs were taken of each twin and rated for physical similarity by a 169 

research assistant blind to self-reported zygosity, and all twins were genotyped for the 170 

three markers described above. In rare cases were zygosity status was still uncertain, 171 

both members of the pair were genotyped using the high-throughput-based genotyping 172 

method (see above).  173 

Data analysis. We conducted four types of statistical analysis: (a) descriptive statistics 174 

of the psychophysical data, (b) calculation of heritability, (c) tests of genome-wide 175 

association between genetic variants and the measures of fat perception, and (d) gene 176 

expression (RNASeq) and bioinformatics (enrichment) analyses. All descriptive 177 

statistics, such as means, standard deviations (SDs), and correlations among variables, 178 

were computed using R (v. 3.53) and R-Studio (v. 1.1.456).  179 

Sensory analyses. For descriptive analyses, we plotted the probability density of 180 

the data (smoothed by a kernel density estimator) by a violin plot, calculated mean and 181 

SD, and checked for sex, race, and age effects on the sensory measures in a general 182 

linear model (GLM) using race and sex as fixed effects and age as a covariate. For all 183 

GLM analyses, individual group means were evaluated for difference using Tukey post 184 

hoc tests (honestly significant difference [HSD]). If race and sex had a significant effect 185 
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in the GLM analysis, to better understand their effects on psychophysical outcomes we 186 

grouped participants by these factors and compared the mean ratings. For age and its 187 

relationship to the psychophysical measures, we computed Pearson correlations. 188 

To evaluate whether there were consistent person-to-person differences in the 189 

rating of the potato chips overall, Pearson correlations of intensity and liking measures 190 

among the six types of potato chip were calculated. In addition, we calculated 191 

Cronbach’s alpha for psychophysical measures across all six types of potato chips. To 192 

understand the reliability of the measures, we assessed test-retest correlations among 193 

the same measures taken twice in a subset of participants (n = 50). 194 

To gauge the effect of corn oil concentrations and hexadecanoic acid on the 195 

sensory measures, we reconducted a linear mixed-model analysis with corn oil 196 

concentration (2.5% and 5.0%) and hexadecanoic acid (added or not) as two separate 197 

factors and treated the psychophysical data as repeated measurements, with race and 198 

age as covariates in the model. (We did not include sex in this model because results 199 

indicated that male and females were similar in their ratings.) In a complementary 200 

analysis, we reconducted the analysis using potato chip type as a single factor (with six 201 

levels, one for each type of potato chip). These complementary analyses were included 202 

because of the unbalanced design: not all concentrations of corn oil were presented with 203 

and without the added 0.2% hexadecanoic acid.  204 
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Heritability. For the heritability analysis, the Cholesky model was used to 205 

evaluate the magnitude of genetic and environmental influences on the traits, and the 206 

phenotypic variance was decomposed into additive genetic component (a2), shared 207 

environmental factors (c2), and nonshared environmental or individual-specific factors 208 

(e2), as described previously (Wise et al. 2007). Variance accounted for by each of these 209 

components was calculated by comparing MZ twin correlations to DZ twin correlations. 210 

The computation of the heritability was conducted using R package OpenMx (v. 2.13) 211 

(Boker et al. 2011).  212 

Genome-wide association studies. For GWAS we expanded variants from ~720,000 213 

to 11,315,231 by imputation using the Michigan Imputation Server (Das et al. 2016) with 214 

the reference genome HRCr1.1 (McCarthy et al. 2016). We filtered out markers with a 215 

low minor allele frequency (<5%) and removed markers that had p-values associated 216 

with Hardy-Weinberg disequilibrium < 1e-6, genotype call rate < 0.9, and imputation 217 

score < 0.3. The remaining 4,234,798 variants on the 22 autosomes were used for GWAS 218 

for each trait (univariate GWAS [uvGWAS]), with genetic relatedness matrix (20 219 

eigenvalues) calculated by principal components analysis, and sex and age used as 220 

covariates (Hwang et al. 2019; Liu et al. 2018; Wu et al. 2018). The genome-wide 221 

significance threshold was p = 5.0e-8, and for suggestive associations it was p = 1e-5 222 

(International HapMap 2005; Pe'er et al. 2008).  223 
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We reasoned that there would be more statistical power to detect associations if 224 

we considered the liking and fattiness ratings from all potato chips simultaneously, 225 

especially because, as the results indicated, these measures were correlated (e.g., people 226 

with high liking ratings for the 5% corn oil chip also liked the 10% chip more). Thus, we 227 

conducted multivariate GWAS (mvGWAS) using the correlated ratings for all the 228 

potato chips. The covariates are the same as uvGWAS procedure; the computation was 229 

done using GEMMA (Zhou and Stephens 2012), and regional associational plots were 230 

created using LocusZoom (Pruim et al. 2010). For the mvGWAS, GEMMA adjusted for 231 

testing multiple phenotypes and applied a correction for multiple phenotypes (Fatumo 232 

et al. 2019). For the milk discrimination task, the trait was not heritable (see Results), so 233 

we did not conduct GWAS. 234 

Candidate gene analyses. We extracted variants from the candidate genes that were 235 

previously implicated in the sensory signaling of fat taste from either animal models 236 

(mouse and rat) or human studies: CD36 (Abumrad 2005; Gaillard et al. 2007; Keller et 237 

al. 2012; Laugerette et al. 2005; Pepino et al. 2012; Sclafani et al. 2007a), GNAT3 (Sclafani 238 

et al. 2007b), GPR120 (Cartoni et al. 2010; Matsumura et al. 2007; Tsuzuki 2007), GPR40 239 

(Cartoni et al. 2007; Cartoni et al. 2010; Matsumura et al. 2007), TRPM5 (Liu et al. 2011; 240 

Sclafani et al. 2007b), GPR41 and GPR43 (Brown et al. 2003), GPR84 (Wang et al. 2006), 241 

and KCNA2 (Gilbertson et al. 1998; Liu et al. 2005). In addition, we looked at genes for 242 

salivary enzymes (lipase, lysozyme, and amylase) and protein (lipocalin, mucin, and 243 
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protein rich in proline) because these proteins change in response to dietary fat 244 

consumption (Feron G 2013; Mounayar et al. 2014). 245 

To extract the results of genotype-phenotype association for these candidate 246 

genes, we conducted analyses using two methods. In method 1 we identified the most 247 

significant variant within each candidate genes for each trait and extracted the relevant 248 

p-value and other test statistics. In method 2 we chose the most significant variant for 249 

traits of the potato chip with 5% corn oil (with no added fatty acid) and examined all 250 

the sensory measures for the same variant; that is, we chose the 5% corn oil chip as the 251 

baseline from which to compare the other associations. These methods are 252 

complementary because method 1 detects associations that are specific to a particular 253 

concentration of triglyceride and fatty acid combination, while method 2 detects 254 

common variants affecting the intensity and liking measures across the potato chip 255 

types. We also examined the effect of the variant rs1761667 within CD36 because it was 256 

previously associated with fat sensory perception in humans (Keller et al. 2012; Mrizak 257 

et al. 2015; Pepino et al. 2012; Sayed et al. 2015).  258 

Gene expression in human taste tissue using the RNASeq method. To understand 259 

whether the genes identified by GWAS might be acting at the level of the receptors in 260 

taste tissue (as opposed to in the brain or in other tongue tissue, e.g., the filiform 261 

papillae), we compared the mRNA expression of these genes to those previously 262 

implicated in the peripheral aspects of fat taste perception (e.g., the candidate gene 263 
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CD36) in human taste tissue. To do so, we collected fungiform papillae from subjects 264 

recruited for our previous study (Douglas et al. 2019) using published procedures 265 

(Spielman et al. 2010) and isolated the RNA following the manufacturer's directions, 266 

processing the taste tissue with Quick-RNA MiniPrep R1054 (Zymo Research, Irvine, 267 

CA). We evaluated RNA quality expressed as an RNA integrity number (RIN) using the 268 

Agilent 2200 TapeStation system (Agilent Technologies, Santa Clara, CA). The six 269 

samples with sufficient RNA quality as determined by the Next-Generation Sequencing 270 

Core of the University of Pennsylvania (RIN > 7; 5 males and 1 female) were used to 271 

perform library preparation and sequencing (100 bp single-end) on the HiSeq 4000 272 

sequencer (Illumina, San Diego, CA) following the manufacturer's sequencing 273 

protocols. We mapped reads to the reference genome (GRCh38.p10) after the raw 274 

sequence data in fastq format passed standard quality filters equipped in Trimmomatic 275 

(Bolger et al. 2014), and then normalized the counts using the R package Ballgown 276 

(Frazee et al. 2014). The expression level in RPKM (reads per kilobase per million 277 

mapped reads) of each gene for each sample was used to compare their expression 278 

level. 279 

Pathway and gene set enrichment analysis. We reasoned that genes identified 280 

through GWAS may be partners with other genes that code for proteins in related 281 

sensory pathways. Thus, we conducted pathway analyses of the genes identified by 282 

uvGWAS and mvGWAS. Using the background of the genes from the database of Gene 283 
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Ontology annotations (Thomas et al. 2003) and Reactome annotations (Fabregat et al. 284 

2018; Fabregat et al. 2017), we used Fisher’s exact test to examine whether there was 285 

enrichment of these pathways versus all annotated human genes using 286 

GENEVESTIGATOR (Hruz et al. 2008).  287 

Results 288 

Participant characteristics. The twins (N = 398) were predominantly female (72%, n 289 

=285; and 28% male, n = 113), middle-aged (38.6 ± 16.7, mean ± SD), and members of MZ 290 

twin pairs (n = 360 twins, 90.4%). Most were of European descent (n = 331, 83.2%), but 291 

some participants were of African descent (n = 50, 12.6%). The remaining racial groups 292 

(e.g., Asian) were grouped into an “other” category for the analyses described below (n 293 

= 19, 4.8%). A total of 213 individual subjects were genotyped using the chip-based 294 

platform (MZ, n = 184; DZ, n = 29), and 176 MZ twins had their genotypes imputed. 295 

Liking and intensity measures 296 

Liking and fattiness ratings differed across potato chips with variable fat content. 297 

Overall, participants liked the potato chips and were able to accurately rate them for 298 

fattiness. Adding 0.2% hexadecanoic acid to the potato chips increased fattiness at both 299 

corn oil concentrations tested (Figure 1A). The effect of added hexadecanoic acid on 300 

liking was less straightforward: for the 5% corn oil chips, adding a 16:0 fatty acid did 301 

not alter liking, while for the 2.5% corn oil chips, adding the fatty acid decreased liking 302 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.18.910448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.910448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

(Figure 1A). For chips with no added fatty acid, there was a mostly linear increase in 303 

ratings of fattiness as corn oil concentration increased, although a plateau was reached 304 

above 10% oil (Figure 1B). For liking, there was a J-shaped curve: participants liked the 305 

2.5% and 15% corn oil potato chips best (Figure 1B). See Supplemental Figures 1 and 2 306 

and Supplemental Table 1 for additional details. 307 

Relationship between liking and fattiness relative to benchmarks. Within each type of 308 

potato chip, the ratings of liking and fattiness were only slightly or not at all related 309 

(Figure 2A). This relationship between liking and sensory quality differed from those 310 

for the benchmark taste solutions; for example, participants liked sucrose better if they 311 

rated it as sweeter (Figure 2B).  312 

Reliability of liking and fattiness relative to benchmarks. The ratings of both fattiness 313 

and liking for the potato chips were reliable (r = 0.31-0.62, p < 0.05; Supplemental 314 

Figure 3), slightly lower than (but mostly similar to) those for the benchmark taste 315 

solutions (sucrose, NaCl, and PTC; r = 0.54-0.74, p < 0.0001, except for NaCl saltiness; 316 

Supplemental Figure 3).  317 

Age, race, and sex effects on fattiness and liking. Men and women were similar in 318 

their ratings of all sensory stimuli (Supplemental Table 2). Race and age had significant 319 

effects on some sensory ratings (p < 0.01; Supplemental Table 2). Younger participants 320 

liked some of the potato chip types more than older participants (r = -0.17 to -0.14, p < 321 

0.001; Supplemental Figure 4). People of European ancestry rated some potato chips as 322 
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less fatty than did people of African ancestry (5.0% corn oil without added fatty acid; p 323 

< 0.05, GLM analysis followed by post hoc Tukey HSD tests; Supplemental Figure 5). 324 

There were also race effects for the other sensory stimuli, for example, for the liking of 325 

sucrose and PTC. Supplemental Figure 5 summarizes all sensory results that differed 326 

by race.  327 

Relationships of ratings across potato chip type. Each participant tasted and rated six 328 

potato chips, and there were correlations among each participant’s ratings of fattiness 329 

(Cronbach's alpha = 0.75, 95% confidence boundaries = 0.72-0.79) and liking (Cronbach's 330 

alpha = 0.77, 95% confidence boundaries = 0.74-0.81). Fattiness correlations tended to be 331 

higher among the chips without added FA than with the chips with added FA. A scatter 332 

matrix of pairwise correlations between potato chips types is shown in Figure 3.  333 

Discrimination of milk fattiness. On average, participants could discriminate the 334 

high- and low-fat milk samples (exact binomial test, one-tailed, p < 0.0001), but only 335 

slightly above chance (probability of success = 0.53; Supplemental Figure 6A). This 336 

ability to discriminate was only somewhat reliable when testing the same participant 337 

twice (retest correlation, r = 0.36; p > 0.05; Supplemental Figure 3). We had expected 338 

based on our pilot data collected in our sensory laboratory that about 30% of 339 

participants would perform this discrimination perfectly every time, with 10 out of 10 340 

samples correctly identified, but our results showed that only 3% of subjects could do 341 

so.  342 
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Heritability. Between about 10% and 30% of the variation in potato chip liking arose 343 

from genetics (h2), but only about 5-15% for ratings of fattiness (Table 2). For 344 

comparison, for the bitter compound PTC, the most heritable taste trait currently 345 

known, liking heritability was 53%, and for sucrose, which has a midrange heritability, 346 

it was 46%. The pattern of heritability for NaCl was similar to that for potato chips, as 347 

rating of NaCl liking has more genetic variation than does rating of NaCl saltiness. We 348 

did not calculate heritability for the milk fat discrimination because there was no 349 

similarity in milk discrimination scores between the twins (Supplemental Figure 6B). 350 

Genome-wide association. No associations met the commonly accepted genome-wide 351 

significance threshold, but we did identify suggestive variants using the univariate and 352 

multivariate methods. uvGWAS identified nine associations for fattiness and eight for 353 

liking (Table 3). All these associations were specific for potato chip type. The mvGWAS 354 

detected two variants for chip fattiness and five variants for chip liking (Table 4). We 355 

reasoned that associations detected with both uvGWAS and mvGWAS would be most 356 

valid. Of the seven genotype associations detected by mvGWAS, two (GATA3-AS1 and 357 

ZNF729) were also detected by uvGWAS (Figure 4): twins with the G allele of rs263429 358 

(10:8085050, near GATA3-AS1) reported more liking for the potato chips than did twins 359 

with the other allele and the same was true for the G allele of rs8103990 (19:22476027, 360 

within ZNF729) (mvGWAS, p < 1×10-5; Table 4). We show the allelic effects for these two 361 
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variants in Figure 5. The effects of the novel variants were larger than those for CD36, 362 

the candidate gene previously associated with fat perception (Supplemental Figure 7). 363 

Candidate genes. None of the candidate genes consistently met a genome-wide 364 

statistical threshold, but some candidate genes were more often associated with potato 365 

chip fattiness or liking than others at a nominal significance threshold (p < 0.05; Figure 366 

6A). The most notable results were significant variants within CD36 and TRPM5 367 

associated with potato chop liking and fattiness (Figure 6B, C; Supplemental Figure 8, 368 

Supplemental Tables 3 and 4). For CD36, the variant rs1761667 (which was associated 369 

with fat perception in previous studies) did not pass the quality-control filters, but we 370 

examined a nearby variant, rs1722501, that was in nearly perfect linkage disequilibrium 371 

(R2 > 0.99) with rs1761667. However, participants did not differ in ratings of potato chip 372 

fattiness or liking for this proxy marker (Supplemental Table 5), although there were 373 

many associations for other variants within CD36, as noted above (see Figure 6).  374 

Gene expression, pathway, and gene enrichment analysis. We reasoned that 375 

expression of fat candidate genes (those that have a proposed role in peripheral fat or 376 

fatty acid signaling) would be a benchmark to compare the taste-tissue expression of the 377 

novel genes identified from the GWAS results. Compared with receptor and other 378 

signaling candidate genes (GPR40, GPR41, GRP43, GPR84, GPR120, TRPM5, CD36, 379 

KCNA2, and GNAT3), the novel genes have relatively higher expression levels in 380 
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fungiform papillae, especially for RAPGEF2, GLI3, MCTP1, and MLLT3 (Figure 7). 381 

ZNF729 and GATA3-AS1 had a similar expression abundance as the candidate genes 382 

GPR40, GPR41, GPR84, GPR120, KCNA2, and TRPM5 but much lower than the 383 

candidate genes GRP43, CD36, and GNAT3. The presence of many of the novel genes in 384 

taste tissue is consistent with a role in peripheral perception, but some candidate genes 385 

had a very low abundance. This subset of low-abundance novel genes may be nearly 386 

undetectable in the taste tissue sampled because only a few of the relevant cells may 387 

have been present in the tissue sample or because the genes may act at different times 388 

(e.g., early development) or in different tissues (e.g., the filiform papillae or the brain).  389 

We conducted pathway analysis to understand the function of as many of the 390 

novel genes identified as possible. In the GENEVESTIGATOR analysis, 21 of the 22 391 

associated genes identified by GWAS (RP11-575F12.1 is not found in the database) were 392 

tested against the 74,727 background genes. Three gene sets were enriched using the 393 

associated genes as bait (p < 0.001, Fisher's exact test; Supplemental Figure 9, 394 

Supplemental Table 6), from the Gene Ontology categories synapse GO:0045202, cell-395 

cell signaling GO:0007267, and positive regulation of neurogenesis GO:0050769. Overall, 396 

these results point to a role of these genes and their protein products in sensory 397 

signaling and perhaps regulation of sensory cell types.  398 

Discussion 399 
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Dietary fat is added to food to increase its flavor and palatability, but whether fat is 400 

sensed by chemical cues (e.g., from fatty acids), textural cues, or both is contentious. 401 

The data from this study support previous observations that fatty acids provide a 402 

chemical cue for fattiness but that this component of fattiness is not desirable (Running 403 

et al. 2017). When hexadecanoic acid (a saturated 16-carbon fatty acid) was added to the 404 

potato chip lowest in fat, it was rated as fattier but was less liked than a potato chip 405 

with a comparable amount of fat but without the added fatty acid. Thus, presumably, 406 

taking a broader view and generalizing, this result suggests that increasing “fattiness” 407 

by adding fatty acids to foods would not make them better liked, and raises the 408 

possibility that recently discovered antagonists to the fatty acid receptors (Milligan et al. 409 

2017) might improve fat flavor. These data support the hypothesis that there are at least 410 

two sensory inputs for fat perception, a chemical cue and presumably a textural cue, 411 

with the texture conveying perhaps the pleasant aspects of fattiness.  412 

In addition to studying the relationship between fattiness and liking, we also 413 

attempted to study fat discrimination, asking participants to choose the fattier milk 414 

solution from a pair of high- and low-fat samples. This task was difficult for the 415 

participants, and almost no one correctly identified the high-fat sample 10 times out of 416 

the 10 trials. This result came as a surprise because our preliminary testing suggested 417 

this task was easy; however, most preliminary testing was conducted with 418 

commercially available low- and high-fat milk samples and in a quiety sensory 419 
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laboratory, making discrimination easier. The prepared milk samples used for testing 420 

here were the same in all aspects except the amount dietary fat added, and for many 421 

people the oral cues alone (as opposed to visual or olfactory cues) are insufficient to 422 

discriminate low-fat from high-fat samples. One additional concern about data was the 423 

effect of transportation on the stimuli: the milk was prepared and then driven by truck 424 

several hundred miles to the test location – conceivably, vibration may have caused 425 

coalescence of the fat globules that altered the ability to discriminate between samples.  426 

The main focus of this study was to examine whether person-to-person 427 

differences in the liking or perception of fattiness are due in part to individual genetic 428 

variation. To establish the heritability of a trait, it is essential to have a reliable 429 

measurement, that is, a trait that can be measured reproducibly; accordingly, 430 

demonstrating that the measures used were reliable was an essential precondition for 431 

the heritability calculations. We learned from the reliability and heritability analyses 432 

that liking for this solid food matrix, potato chips, with differing fat concentrations was 433 

more similar among genetically identical (MZ) twins than among nonidentical (DZ) 434 

twins. Ratings of fattiness were also heritable, but less so, aligning with results from our 435 

studies of other taste modalities, which, for example, demonstrated that liking for a 436 

concentrated salt solution is more heritable than are salty intensity ratings (Knaapila et 437 

al. 2012). Our results are in contrast to a recent study of the effect of diet on fatty acid 438 

perception in twins, which reported few or no genetic effects (Costanzo et al. 2018); 439 
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however, these two studies differed in methods, as did the number of twins 440 

investigated, 88 in (Costanzo et al. 2018) vs. 398 here.  441 

Thus, despite the logistical challenges posed by measuring percepts from dietary 442 

fat, there is evidence for a genetic determinant on par with other traits that have been 443 

studied using GWAS methods (Clarke et al. 2017). Building on the heritability analysis, 444 

we also performed two types of GWAS, which are agnostic to prior information about 445 

which genes and variants might be previously known or suspected to contribute to the 446 

perception of dietary fat. This part of the study was underpowered and returned no 447 

results that met the classic statistical threshold for GWAS results but did provide, in 448 

tandem with the bioinformatic analysis, clues about which genes and pathways might 449 

be worth pursuing in future work, specifically in the realm of cell-to-cell 450 

communication and perhaps cell type.  451 

Of particular interest is the association between fat liking and variants in the 452 

transcription factors that contribute to the development of taste cells (Ermilov et al. 453 

2016; Qin et al. 2018). The transcriptome was not helpful in interpreting the novel genes 454 

in part because taste tissue from fungiform papillae is unlikely to be involved in the 455 

textural aspects of fat perception, and in part because the abundance of even the known 456 

genes is very low to undetectable in fungiform taste tissue. Single-cell studies from all 457 

regions of the oral cavity would be a step forward, which is increasingly more feasible 458 

as methods improve, although the most complete experimental paradigm would also 459 
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include the sensory pathways, including brain regions that process the sensory 460 

properties of dietary fat information (Grabenhorst and Rolls 2014).  461 

The results of the candidate gene analyses were more compelling in the sense 462 

that, although none of the results were individually very striking, multiple methods of 463 

analysis have repeatedly indicated a role for CD36 and TRPM5 in the perception of 464 

dietary fat, in both human and animal studies (Chamoun et al. 2018), especially gene 465 

knockout studies. Parenthetically, we did not see associations with the proxy marker we 466 

used to try to replicate the previous studies exactly (Keller et al. 2012; Mrizak et al. 2015; 467 

Pepino et al. 2012; Sayed et al. 2015), but CD36 is a large gene with many potentially 468 

functional variants, and therefore a fine-mapping study in multiple populations is 469 

warranted. There may be multiple variants that cause a spectrum of effects that differ 470 

by ancestral population, e.g., (Gurdasani et al. 2019). 471 

We speculate that sensory nutrition and taste perception offer a way to reduce 472 

nutrition-related human diseases, by studying the nuanced and often misunderstood 473 

relationship between liking and intake (Hayes in press). GWAS allows us to screen and 474 

identify common genetic variants associated with fat consumption (Tanaka et al. 2013), 475 

and our findings, combined with future functional genomic analyses, especial single-476 

cell profiling, will delineate the causal genetic variants and biological mechanisms 477 

underlying the observed statistical associations with fat perception (Gallagher and 478 

Chen-Plotkin 2018).  479 
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Figure 1. Corn oil and corn oil spiked with 0.2% hexadecanoic acid (FA) modify ratings 723 

of fattiness and liking of potato chips. (A) Potato chips with more corn oil plus added 724 

FA increased fattiness and decreased liking. (B) As corn oil concentration (2.5%, 5.0%, 725 

10%, and 15%, without added FA) increased, fattiness ratings increased linearly but 726 

liking changed in a J-curve: participants liked potato chips more with corn oil at the 727 

lowest and highest concentrations (2.5% and 15%). The points and bars show least 728 

square mean (LSM) and standard error of rating scores, and different letters (a, b, and c) 729 

indicate a significant LSM difference between groups.  730 

Figure 2. Pearson correlations between sensory measures indicate multiple mechanisms 731 

underlying dietary fat perception (N = 398). (A) No or weak correlations between 732 

ratings of liking and fattiness depending on the type of potato chip. FA=fatty acid 733 

(hexadecanoic acid). (B) Strong correlations between liking and other taste ratings 734 

(sweetness, saltiness, and bitterness) for the standard taste solutions sucrose, NaCl, and 735 

phenylthiocarbamide (PTC).  736 

Figure 3. Strong and positive interrelated correlations of ratings of fattiness (A) and 737 

liking (B) across the six types of potato chips: scatter plots (lower left), density 738 

distributions (diagonal line), and correlations (upper right). FA=fatty acid 739 

(hexadecanoic acid).  740 
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Figure 4. Venn diagram comparing loci identified by uvGWAS and mvGWAS (see 741 

Methods for details). Two variants were detected by both methods: 10:8085050 near the 742 

gene GATA3-AS1 and 19:22476027 within ZNF729. 743 

Figure 5. Allele effect of variants 10:8085050 near gene GATA3-AS1 (A) and 19:22476027 744 

within the gene ZNF729 (B) on ratings of liking across types of potato chips. For both 745 

variants, participants with G allele rated higher liking for all potato chip types than did 746 

those with other allele. The standard residual scores for liking were calculated in the 747 

general linear model with covariates of sex, age, and 20 eigenvalues. 748 

Figure 6. Candidate gene effect on fat perception for potato chips. (A) Total counts of 749 

nominal p < 0.05 out of 28 tests for each candidate gene for the two methods of 750 

candidate gene analysis (method 1 and method 2; see Materials and Methods) in the 751 

outputs from uvGWAS and mvGWAS. (B, C) Associations of top variants within 752 

candidate genes CD36 and TRPM5 with ratings of liking (B) and fattiness (C) for each 753 

type of potato chip. x-Axes show effect size (β±SE), obtained from uvGWAS, and y-axes 754 

show –log(p-value), obtained from uvGWAS and mvGWAS, for the top variants within 755 

CD36 and TRPM5 (no β±SE data were available from mvGWAS; i.e., β±SE=0 is not 756 

true). Red dashed lines indicate p = 0.05; the points above this line indicate a nominal 757 

significant effect on the trait. FA=fatty acid (hexadecanoic acid). For other details of the 758 

data, see Supplemental Tables 3 and 4. 759 
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Figure 7. Box plots of taste tissue expression abundance of genes near the peak 760 

statistical associations from the GWAS (novel hits) and for candidate genes (shown in 761 

blue) known from prior studies to contribute to fat perception. Two genes, ZNF729 and 762 

GATA3-AS1 (shown in red), were commonly detected by both uvGWAS and mvGWAS 763 

in the present study. RPKM=reads per kilo base per million mapped reads. RNU6-356P 764 

had no expression in any sample. Outliers are not shown. Red asterisks indicate genes 765 

with statistically higher expression level compared with other genes in taste tissue (p < 766 

0.05/351 = 0.000142, Bonferroni corrections for multiple tests).  767 

  768 
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Supplemental Figure 1. Changes in ratings of fattiness and liking by corn oil 769 

concentration across the six types of potato chips. FA=fatty acid (hexadecanoic acid). 770 

For other details, see Figure 1.  771 

Supplemental Figure 2. Violin plots for ratings of the sensory traits. The violin area 772 

shows the estimated density of each rating score point. The dots and bars show means 773 

and SDs. 774 

Supplemental Figure 3. Pearson correlations between test and retest of each rating (n = 775 

50). 776 

Supplemental Figure 4. Pearson correlations between age and sensory measures for 777 

potato chips and other taste stimuli. Young participants were more sensitive to taste 778 

stimuli than were older participants.  779 

Supplemental Figure 5. Least square mean (LSM) and standard error of sensory 780 

measures by race. EA=European Americans, AA=African Americans, Oth=others 781 

(Asian, Hispanic, Native American, mixed). Different letters (a, b) show a significant 782 

LSM difference.  783 

Supplemental Figure 6. Most participants had difficultly discriminating milk fat 784 

content, with near chance levels overall. (A) Histogram of milk fat discrimination 785 

scores. The dashed white line shows probability of success, which is near the chance 786 
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level of 5, but it is significantly different from the chance level, p < 0.001. (B) No 787 

significant correlations were observed between twin 1 and twin 2 for milk 788 

discrimination for either DZ or MZ twins; thus, no heritability for milk fat 789 

discrimination scores was calculated. 790 

Supplemental Figure 7. Regional associational plots, based on mvGWAS results, for 791 

single-nucleotide polymorphisms in linkage disequilibrium (r2) with the peak variants 792 

10:8085050 near the gene GATA3-AS1 (A) and 19:22476027 within the gene ZNF729 (B) 793 

for ratings of liking, and for the fat perception candidate gene CD36 for ratings of liking 794 

(C) and fattiness (D) for potato chips. The highlighted chromosome regions show the 795 

target genes. 796 

Supplemental Figure 8. Associations of top variants within each candidate gene with 797 

ratings of liking (A) and fattiness (B) for each type of potato chip. For details see Figure 798 

6. 799 

Supplemental Figure 9. Gene set enrichment analyses. Venn diagram visualizes 800 

overlapping genes among the top three gene sets and the target genes (21 out of 22 801 

GWAS hits; RP11-575F12.1 is not found the database). All genes (n = 74,727 total genes) 802 

were selected from Reactome annotations and Gene Ontology annotations as 803 

background collection. The top three gene sets identified are synapse GO:0045202, cell-804 
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cell signaling GO:0007267, and positive regulation of neurogenesis GO:0050769 (see 805 

Supplemental Table 6). 806 

  807 
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Table 1. High- and low-fat milk ingredients  808 

Milk Type Fat Content 

(%) 

Water 

(mL) 

Dry Milk 

(g)  

Dairy Fat 

(g) 

Casein 

(g) 

Low fat 2.35 890 90.7  23.7 10.09 

High fat 18.00 890 90.7 216.8 12.04 

 809 

 810 

811 
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 Table 2. Heritability (h2) of fat sensory traits, with NaCl, sucrose, and PTC as a 812 

benchmarks (n = 199 twin pairs)  813 

Stimulus h2 CI 

Liking (chips)   

2.5% corn oil 0.21* 0.07 – 0.34 

5.0% corn oil 0.10 0.00 – 0.24 

10% corn oil 0.10 0.00 – 0.24 

15% corn oil  0.29* 0.15 – 0.41 

2.5% corn oil with 0.2% hexadecanoic acid 0.10 0.00 – 0.24 

5.0% corn oil with 0.2% hexadecanoic acid 0.10 0.00 – 0.24 

   

Fattiness   

2.5% corn oil  0.05 0.00 – 0.20 

5.0% corn oil  0.11 0.00 – 0.25 

10% corn oil  0.12 0.00 – 0.27 

15% corn oil  0.07 0.00 – 0.22 

2.5% corn oil with 0.2% hexadecanoic acid 0.03 0.00 – 0.17 

5.0% corn oil with 0.2% hexadecanoic acid 0.15 0.00 – 0.29 

   

Other solutions   

Sucrose sweetness 0.11 0.00 – 0.25 

Sucrose liking 0.46* 0.33 – 0.56 

NaCl saltiness 0.19* 0.05 – 0.32 

NaCl liking 0.38* 0.25 – 0.49 

PTC bitterness 0.49* 0.38 – 0.59 

PTC liking 0.53* 0.42 – 0.62 

CI=confidence interval. 814 

*Different from zero. 815 

 816 

 817 

 818 
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 819 

Table 3. Suggestive associations for ratings of potato chip fattiness and liking identified by uvGWAS. 

Stimuli  CHR SNP (CHR:BP) ALT REF MAF Beta SE P Gene HIT_TYPE SNP_TYPE 

Fattiness                       

5.0% NoFA 4 4:45361270 G C 0.12 0.92 0.20 6.14E-06 PRKRIRP9 nearest Imputed 

5.0% NoFA 7 7:42032565 T C 0.26 0.62 0.14 8.25E-06 GLI3 within  Genotyped 

5.0% NoFA 8 8:105135473 A T 0.15 0.86 0.18 1.92E-06 RIMS2 within  Imputed 

5.0% NoFA 11 11:7476601 A G 0.21 0.74 0.15 9.51E-07 SYT9 within  Imputed 

10% NoFA 7 7:25514020 C G 0.18 0.74 0.16 4.91E-06 AC091705.1 nearest Imputed 

15% NoFA 5 5:94138997 C T 0.17 0.76 0.17 4.37E-06 MCTP1 within  Genotyped 

15% NoFA 6 6:77345798 C T 0.10 0.87 0.20 9.64E-06 RP11-354K4.1 nearest Imputed 

15% NoFA 11 11:86707909 G C 0.09 0.88 0.20 9.45E-06 RP11-736K20.6 within  Imputed 

15% NoFA 19 19:51226244 T C 0.38 0.59 0.13 9.19E-06 CLEC11A nearest Imputed 

Liking                       

5.0% NoFA 2 2:215358759 C T 0.06 -1.12 0.25 8.47E-06 VWC2L within  Imputed 

5.0% NoFA 20 20:50443885 T C 0.25 0.63 0.13 1.84E-06 RP5-1112F19.2 nearest Imputed 

10% NoFA 10 10:8085050 A G 0.08 -0.92 0.20 5.27E-06 GATA3-AS1 nearest Imputed 

10% NoFA 12 12:127482374 C G 0.07 -0.95 0.21 9.08E-06 RP11-575F12.1 within  Imputed 

2.5% with 0.2% FA 4 4:160267304 A G 0.06 -1.32 0.30 8.02E-06 RAPGEF2 within  Imputed 

2.5% with 0.2% FA 12 12:13948270 A G 0.10 -1.13 0.24 3.58E-06 GRIN2B within  Imputed 

2.5% with 0.2% FA 19 19:22476027 A G 0.11 -1.07 0.23 4.92E-06 ZNF729 within  Imputed 

5.0% with 0.2% FA 13 13:95498608 T C 0.09 -0.98 0.22 5.94E-06 RPL21P112 nearest Imputed 

NoFA=no added hexadecanoic acid; CHR=chromosome; SNP=single-nucleotide polymorphism; BP=base pair; 

ALT=alternative allele; REF=reference allele; MAF=minor allele frequency; SNP TYPE=individual’s genotype was 

genotyped or imputed. Two genes (PRKRIRP9 and RP11-270L13.1) on chr 4 for ratings of potato chip fattiness reached 

genome-wide suggestive threshold (1e-5), but only one with a relatively lower p-value is reported in this table. Variants for 

potato chip liking shown in boldface were also detected by the mvGWAS across all corn oil concentrations; see Table 4. 
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 820 

  821 

  822 

Table 4. Suggestive genes for ratings of potato chip fattiness and liking identified by mvGWAS  

Trait CHR SNP 
(CHR:BP) ALT REF MAF P Gene HIT_TYPE SNP_TYPE 

Fattiness 2 2:141755773 A T 0.32 2.96E-06 LRP1B within Imputed 

  10 10:116662107 C T 0.05 8.97E-06 RP11-106M7.4 nearest Imputed 

Liking 7 7:34676953 T A 0.06 3.05E-07 NPSR1-AS1 within Imputed 

  8 8:40998854 A T 0.04 5.14E-07 RNU6-356P nearest Imputed 

  9 9:20636973 T C 0.48 1.15E-06 MLLT3 nearest Genotyped 
  10 10:8085050 G A 0.08 8.19E-07 GATA3-AS1 nearest Imputed 

  19 19:22476027 A G 0.11 4.71E-06 ZNF729 within Imputed 

See Table 3 for abbreviations and other details. Two genes on chr 2 (LINC00486 and LRP1B) and two 

genes on chr 10 (FAM160B1 and BP11-106M7.4) for potato chip fattiness, and two genes on chr 7 

(EEPD1 and NPSR1-AS1) and two genes on chr 8 (RNU6-356P and SULf1) for potato chip liking 

reached genome-wide suggestive threshold (1e-5), but only one gene with a relatively lower p-value 

on each chromosome is reported in this table. Variants for potato chip liking shown in boldface were 

also detected by the uvGWAS across all corn oil concentrations.  For abbreviations, see the caption of 

Table 3. 
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Supplemental Table 1. Summary statistics for linear mixed model analyses 823 

 824 

FA, fatty acid; ICC, intraclass correlation. Boldface indicates the test statistic meets a 825 

significance threshold of p < 0.01. 826 

  827 
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 828 

 829 

Supplemental Table 2. The effect of sex, race, and age on sensory measures for potato 830 

chips, taste stimuli, and milk discrimination 831 

 832 

PTC, phenylthiocarbamide. Highlighting indicates suggestive effects with a p-value < 833 

0.05.  834 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.18.910448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.910448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 52

 835 

Supplemental Table 3. The effect of the top variant within each candidate gene on 836 

ratings of potato chip fattiness and liking. 837 

 838 

 839 

 840 

 841 

 842 

FA, fatty acid; mvGWAS, multivariate genome-wide association study. Highlighting 843 

indicates suggestive effects with a p-value < 0.05. 844 

*For GPR41 and GPR84, no variant within the genes was available from the association 845 

data, so we expanded the region to 500 bp up- and downstream for each site when 846 

extracting the variant to examine for association. For other details see Supplementary 847 

Tables 5 and 6.   848 
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Supplemental Table 4. The top variant within each candidate gene with effects on 849 

ratings of potato chips with 5% corn oil (without added fatty acid) had effects on 850 

fattiness and liking for other types of potato chips. For details, see Supplemental Table 851 

3. 852 

 853 

  854 
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Supplemental Table 5. The variant rs1722501 (chr7:80244694) as proxy for rs1761667 855 

within CD36 has no significant effect on ratings of potato chip fattiness and liking.  856 

 857 

 858 

 859 

  860 

 

 

 

 

 

 

 

 

 

 

 

FA, fatty acid; mvGWAS, multivariate genome-wide association study. rs1761667 

(7:80244939) was not in Hardy-Weinberg disequilibrium (p=8.5e-15) and thus did not pass 

the filter test statistics (p>1e-6); therefore, we extracted the variant rs1722501, which had an 

R2>0.99 and linkage disequilibrium>0.99 with rs1761667. For this marker, there was no 

significant effect on fatty and liking for any of the six potato chip types tested. For 

abbreviations, e.g., MAF, see Tables 3. 
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Supplemental Table 6. Gene set enrichment analysis 861 

 862 
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