1	Studies of human twins reveal genetic variation that affects dietary fat perception
2	Cailu Lin ¹ , Lauren Colquitt ¹ , Paul Wise ¹ , Paul A. S. Breslin ¹ , Nancy E. Rawson ¹ , Federica
3	Genovese¹, Ivy Maina¹, Paule Joseph², Lydia Fomuso³, Louise Slade⁴, Dennis Brooks⁵,
4	Aurélie Miclo ¹ , John E. Hayes ⁶ , Antonio Sullo ⁵ , and Danielle R. Reed ¹
5	¹ Monell Chemical Senses Center, Philadelphia, PA 19104, USA
6	² Sensory Science and Metabolism Unit, Biobehavioral Branch, Division of Intramural
7	Research, National Institutes of Health, Department of Health and Human Services,
8	Bethesda, MD 20892 USA
9	³ PepsiCo, Inc., Plano, TX 75024, USA
10	⁴ Food Polymer Science Consultancy, Morris Plains, NJ 07950, USA
11	⁵ Diageo, Park Royal, London NW10 7HQ, England
12	⁶ Sensory Evaluation Center, and Department of Food Science, College of Agricultural
13	Sciences, Pennsylvania State University, University Park, PA 16802, USA
14	
15	Correspondence to be sent to:
16	Danielle R. Reed
17	3500 Market St
18	Monell Chemical Senses Center
19	Philadelphia PA 19104

21

22 Author Contributions

- 23 DRR designed the study. LC, FG, IM, and PJ collected data. PW, PASB, NER, LS, DB,
- 24 and JEH contributed to data interpretation. LF contributed reagents and also
- 25 contributed to data interpretation, and AS and AM assisted in stimuli preparation and
- 26 data collection. All authors were involved in drafting the article or revising it for
- 27 intellectual content, and have read and approved the final version of the manuscript.

29 Abstract

30	To learn more about the mechanisms of human dietary fat perception, 398 human twins
31	rated fattiness and liking for six types of potato chips that differed in triglyceride
32	content (2.5, 5, 10, and 15% corn oil); reliability estimates were obtained from a subset (n
33	= 50) who did the task twice. Some chips also had a saturated long-chain fatty acid
34	(hexadecanoic acid, 16:0) added (0.2%) to evaluate its effect on fattiness and liking. We
35	computed the heritability of these measures and conducted a genome-wide association
36	study (GWAS) to identify regions of the genome that co-segregate with fattiness and
37	liking. Perceived fattiness and liking for the potato chips were reliable ($r = 0.31-0.62$, $p < 0.31-0.62$)
38	0.05) and heritable (up to $h^2 = 0.29$, $p < 0.001$, for liking). Adding hexadecanoic acid to
39	the potato chips significantly increased ratings of fattiness but decreased liking. Twins
40	with the G allele of <i>rs263429</i> near <i>GATA3-AS1</i> or the G allele of <i>rs8103990</i> within
41	ZNF729 reported more liking for potato chips than did twins with the other allele
42	(multivariate GWAS, $p < 1 \times 10^{-5}$), with results reaching genome-wide suggestive but not
43	significance criteria. Person-to-person variation in the perception and liking of dietary
44	fat was (a) negatively affected by the addition of a saturated fatty acid and (b) related to
45	inborn genetic variants. These data suggest liking for dietary fat is not due solely to
46	fatty acid content and highlight new candidate genes and proteins within this sensory
47	pathway.

48 Keywords: taste, genetics, sensory, fat perception, oleogustus, taste receptors

49 Introduction

50 Sensory nutrition is a research area that investigates how the taste, smell, and flavor of 51 food and drink affect food intake and diet quality, and how food choice in turn affects 52 human health and disease (Forde 2018; Hayes 2015). While food is essential to our 53 survival, and eating may be pleasant, it can also be dangerous, especially for those who 54 "dig their grave with a spoon" (Card 2013) and die from heart disease or diabetes, 55 health conditions that arise in whole or in part from dietary choices (Reed and Knaapila 56 2010). Some of the pleasure of food arises from its dietary fat and sugar content. The 57 sweetness of sugar is well understood from a sensory perspective (Nelson *et al.* 2001), 58 with direct links between taste cells and brain areas of reward (e.g., (Veldhuizen et al. 59 2017)). In contrast, the initial sensory steps responsible for the perception of dietary fat 60 are less well understood, and what is known is contentious: whether there is a distinct 61 taste quality for fat or fatty acids, and which of the chemical and texture components of 62 fat are responsible for the sensations it evokes (Reed and Xia 2015; Running et al. 2015; 63 Running and Mattes 2016).

One unresolved conundrum is mounting evidence that, while triglycerides and fatty acids both impart fatty sensations in foods, triglycerides tend to have a positive hedonic valance, e.g., (Bakke *et al.* 2016) whereas fatty acids typically have a negative hedonic valence, e.g., scratchy (Voigt *et al.* 2014) or otherwise "bad" (Running and Mattes 2016). These data suggest multiple sensory pathways are involved in the

69	perception of fats in foods (Drewnowski 1992). One method to learn more about these
70	multiple pathways is to evaluate origins of person-to-person or animal-to-animal
71	differences — this type of genetics-driven approach helped identify the bitter and sweet
72	receptors (Reed and Knaapila 2010; Reed et al. 2006). Here, we reasoned that people
73	differ in their response to fat in food, that these differences are heritable, and that
74	genome-wide methods are likely useful to identify the relevant genes.
75	To establish heritability, we selected a classic twin design, comparing
76	monozygotic (MZ) and dizygotic (DZ) twins for their response to fat in foods. We also
77	had to choose appropriate test stimuli that would generalize to real foods (vs. model
78	systems) and appropriate behavioral methods. No one standard method has been
79	adopted, with investigators in this area using many different stimuli to measure fat
80	perception, including oil-and-water mixtures (Heinze et al. 2017); oil in salad dressing
81	(Keller et al. 2012); fat in puddings (Mennella et al. 2012), in scrambled eggs or mashed
82	potatoes (Mela and Sacchetti 1991), or in ice cream (Rolon et al. 2017) or added fatty
83	acids in chocolate (Running et al. 2017). Here we used potato chips that varied in
84	amounts of corn oil and an added fatty acid, capitalizing on our technical expertise in
85	their production and practical constraints of our testing environment (an annual
86	convention of twins; see below). We also tested the twins' ability to discriminate high-
87	and low-fat milk samples.

Materials and Methods

89	Participants. We tested adult MZ and DZ twins who attended an annual convention of
90	twins, the Twin Days Festival in Twinsburg, OH. This event is held each August, and
91	all data reported here were collected during the 2018 convention. The exclusion criteria
92	for participation were age less than 18 years, pregnancy, or an allergy or sensitivity to
93	milk. All data were collected under protocols approved by the University of
94	Pennsylvania Institutional Review Board (#701426).
95	Stimuli. Three types of stimuli were used: potato chips that differed in triglyceride and
96	fatty acid content, multiple prototypical tastants, and milk that was either high (18.00%)
97	or low (2.35%) in fat. Six types of potato chips were prepared, following standard
98	methods at Pepsico research laboratories: chips that contained 2.5, 5.0, 10, or 15% corn
99	oil and chips with 2.5% or 5.0% corn oil with added 0.2% (w/w) hexadecanoic acid, a
100	saturated long-chain fatty acid (16:0). Time constraints prevented us from testing all
101	combinations of triglycerides and fatty acids. Ascending amounts of corn oil were
102	chosen to minimize carryover effects across samples; the fatty acid was added to gauge
103	its impact on ratings of fattiness and liking.
104	The second type of stimuli comprised standard solutions (5 mL) used in taste
105	psychophysics: plain deionized water, sucrose (12% w/v, 350 mM), sodium chloride
106	(1.5% w/v, 256 mM), and the bitter compound phenylthiocarbamide (PTC; 1.8 $\times 10^{\text{-4}}$ M),
107	all purchased from Sigma (St. Louis, MO). (We also tested menthol [1 mM] and

108 capsaicin [3 µM] for an unrelated project; those results are not reported here.) The third

109	stimuli comprised milk with 18.00% or 2.35% fat mixed at the Monell Chemical Senses
110	Center using Shop Rite brand instant nonfat dry milk (SKU/UPC 041190010189)
111	purchased at a local grocery store and anhydrous dairy fat (Table 1). All ingredients
112	were combined in a homogenizer (GEA, Düsseldorf, Germany) and processed with five
113	passes at 250 bars of pressure; resulting particle sizes were within the expected range.
114	Sample presentation. Single potato chips of roughly equivalent size and weight were
115	placed in clear 3-5 oz plastic souffle cups with plastic lids (Universal Product Code
116	[UPC] #742010492467). Participants were given potato chips in a predetermined order
117	and asked to rate the potato chips for "fattiness" and "liking" on visual analog scales
118	presented on an Apple iPad Air (9.7-inch display; Apple Inc., Cupertino, CA). Liking
119	scales were anchored with "do not like at all" on the left and "like extremely" on the
120	right. Similarly, the fattiness scale was anchored on the left with "not fatty at all" and on
121	the right with "extremely fatty." We also asked about "crispiness" and "saltiness," to
122	prevent a halo-dumping effect, a bias in sensory ratings which can occur when subjects
123	are provided too few salient rating options (Clark and Lawless 1994). Participants were
124	instructed to rinse their mouth with water (Nestle Pure Life, UPC 068274934711) after
125	each sample. For logistical reasons and enhanced ecological validity, participants did
126	not wear nose clips and chewed and swallowed all potato chip samples.
127	For the taste solutions, participants rated each for the qualities of "liking,"
128	"saltiness," "sweetness," "sourness," "bitterness," and "burn" on visual analog scales,

129	with the left side anchored with "no [quality] at all" and the right side anchored with
130	"extreme [quality]," as previously described (Knaapila <i>et al.</i> 2012). To focus on taste and
131	reduce odor cues, participants wore nose clips (GENEXA LLC, UPC 708981350007).
132	Participants were asked to hold each solution in their mouth for 5 s, rate it on the scale
133	provided, spit out the solution, and rinse their mouth with water afterward.
134	For the milk fat discrimination test, a two-alternative forced choice task was
135	used. Before testing began, each participant was given two references as warm-up
136	samples; these were verbally identified to participants as "low-fat" and "high-fat"
137	samples, respectively. Participants were then given 10 pairs of opaque bottles (EP-
138	34434, Berry Global Group, Inc.). Each pair contained one low-fat and one high-fat
139	sample (each 5 mL) presented in a fixed order. Participants wore nose clips; they were
140	instructed to hold each sample in their mouth for 5 s, spit out the sample, and rinse
141	their mouth with water afterward. For each pair, participants were asked, "Which
142	solution tastes fattier?" If they were unsure, they were instructed to guess.
143	Discrimination ability was defined as the number correct across all 10 trials (i.e., perfect
144	discrimination would be 10 out of 10 trials correct).
145	Saliva collection and DNA extraction. We obtained saliva samples from all participants
145	Saliva collection and DNA extraction. We obtained saliva samples from all participants
146	by asking them to expectorate into collection tubes; DNA was extracted from the saliva
147	using procedures recommended by Oragene (DNA Genotek, Kanata, Canada). We

148	measured and recorded DNA concentration and quality scores using a Nanodrop 1000
149	Spectrophotometer (Thermo Fisher Scientific, Waltham, MA).
150	Genotyping. We conducted both single-marker and high-throughput based
151	genotyping. Using the single-marker method, we typed three variant sites in the
152	TAS2R38 gene in all twins, as a quality-control step (a) to ensure that the DNA extracted
153	from saliva could be genotyped, (b) to confirm that the genotype matched the
154	psychophysical ratings of PTC bitterness, and (c) to get preliminary confirmation of
155	twin zygosity (each pair of MZ twins is expected to have the same genotype). For these
156	assays, DNA samples were diluted to a concentration of 10 ng/ μ L and used as
157	templates in Taqman assays (<i>rs713598</i> , C8876467_10; <i>rs1726866</i> , C9506827_10;
158	and <i>rs1</i> 0246939, C9506826_10; Applied Biosystems, Foster City, CA) using
159	previously established methods.
160	For the DNA high-throughput genotyping, we sent the DNA samples to the
161	Center for Inherited Disease Research (CIDR; Baltimore, MD), which typed them for the
162	Illumina OmniExpress panel (Infinium OmniExpressExome-8, v1.6; Illumina, San
163	Diego, CA) following the manufacturer's procedures and the CIDR's standard quality-
164	control methods. For 176 MZ twin pairs, we used high-throughput genotyping for only
165	one twin of each pair and imputed the genotype of the other member of the pair
166	because of their presumed identical genomes.

167	Twin zygosity. Twin zygosity was measured in three ways. Twins self-reported their
168	zygosity status as (a) monozygotic (MZ; identical), (b) dizygotic (DZ; fraternal), or (c)
169	uncertain; photographs were taken of each twin and rated for physical similarity by a
170	research assistant blind to self-reported zygosity, and all twins were genotyped for the
171	three markers described above. In rare cases were zygosity status was still uncertain,
172	both members of the pair were genotyped using the high-throughput-based genotyping
173	method (see above).
174	Data analysis. We conducted four types of statistical analysis: (a) descriptive statistics
175	of the psychophysical data, (b) calculation of heritability, (c) tests of genome-wide
176	association between genetic variants and the measures of fat perception, and (d) gene
177	expression (RNASeq) and bioinformatics (enrichment) analyses. All descriptive
178	statistics, such as means, standard deviations (SDs), and correlations among variables,
179	were computed using R (v. 3.53) and R-Studio (v. 1.1.456).
180	Sensory analyses. For descriptive analyses, we plotted the probability density of
181	the data (smoothed by a kernel density estimator) by a violin plot, calculated mean and
182	SD, and checked for sex, race, and age effects on the sensory measures in a general
183	linear model (GLM) using race and sex as fixed effects and age as a covariate. For all
184	GLM analyses, individual group means were evaluated for difference using Tukey post
185	hoc tests (honestly significant difference [HSD]). If race and sex had a significant effect

186	in the GLM analysis, to better understand their effects on psychophysical outcomes we
187	grouped participants by these factors and compared the mean ratings. For age and its
188	relationship to the psychophysical measures, we computed Pearson correlations.
189	To evaluate whether there were consistent person-to-person differences in the
190	rating of the potato chips overall, Pearson correlations of intensity and liking measures
191	among the six types of potato chip were calculated. In addition, we calculated
192	Cronbach's alpha for psychophysical measures across all six types of potato chips. To
193	understand the reliability of the measures, we assessed test-retest correlations among
194	the same measures taken twice in a subset of participants ($n = 50$).
195	To gauge the effect of corn oil concentrations and hexadecanoic acid on the
196	sensory measures, we reconducted a linear mixed-model analysis with corn oil
197	concentration (2.5% and 5.0%) and hexadecanoic acid (added or not) as two separate
198	factors and treated the psychophysical data as repeated measurements, with race and
199	age as covariates in the model. (We did not include sex in this model because results
200	indicated that male and females were similar in their ratings.) In a complementary
201	analysis, we reconducted the analysis using potato chip type as a single factor (with six
202	levels, one for each type of potato chip). These complementary analyses were included
203	because of the unbalanced design: not all concentrations of corn oil were presented with
204	and without the added 0.2% hexadecanoic acid.

205	Heritability. For the heritability analysis, the Cholesky model was used to
206	evaluate the magnitude of genetic and environmental influences on the traits, and the
207	phenotypic variance was decomposed into additive genetic component (a ²), shared
208	environmental factors (c ²), and nonshared environmental or individual-specific factors
209	(e ²), as described previously (Wise <i>et al.</i> 2007). Variance accounted for by each of these
210	components was calculated by comparing MZ twin correlations to DZ twin correlations.
211	The computation of the heritability was conducted using R package OpenMx (v. 2.13)
212	(Boker <i>et al.</i> 2011).
213	<i>Genome-wide association studies.</i> For GWAS we expanded variants from ~720,000
214	to 11,315,231 by imputation using the Michigan Imputation Server (Das et al. 2016) with
215	the reference genome HRCr1.1 (McCarthy et al. 2016). We filtered out markers with a
216	low minor allele frequency (<5%) and removed markers that had p -values associated
217	with Hardy-Weinberg disequilibrium < 1e-6, genotype call rate < 0.9, and imputation
218	score < 0.3. The remaining 4,234,798 variants on the 22 autosomes were used for GWAS
219	for each trait (univariate GWAS [uvGWAS]), with genetic relatedness matrix (20
220	eigenvalues) calculated by principal components analysis, and sex and age used as
221	covariates (Hwang et al. 2019; Liu et al. 2018; Wu et al. 2018). The genome-wide
222	significance threshold was $p = 5.0e-8$, and for suggestive associations it was $p = 1e-5$
223	(International HapMap 2005; Pe'er <i>et al.</i> 2008).

224	We reasoned that there would be more statistical power to detect associations if
225	we considered the liking and fattiness ratings from all potato chips simultaneously,
226	especially because, as the results indicated, these measures were correlated (e.g., people
227	with high liking ratings for the 5% corn oil chip also liked the 10% chip more). Thus, we
228	conducted multivariate GWAS (mvGWAS) using the correlated ratings for all the
229	potato chips. The covariates are the same as uvGWAS procedure; the computation was
230	done using GEMMA (Zhou and Stephens 2012), and regional associational plots were
231	created using LocusZoom (Pruim et al. 2010). For the mvGWAS, GEMMA adjusted for
232	testing multiple phenotypes and applied a correction for multiple phenotypes (Fatumo
233	et al. 2019). For the milk discrimination task, the trait was not heritable (see Results), so
234	we did not conduct GWAS.

235 *Candidate gene analyses.* We extracted variants from the candidate genes that were 236 previously implicated in the sensory signaling of fat taste from either animal models 237 (mouse and rat) or human studies: CD36 (Abumrad 2005; Gaillard et al. 2007; Keller et 238 al. 2012; Laugerette et al. 2005; Pepino et al. 2012; Sclafani et al. 2007a), GNAT3 (Sclafani 239 et al. 2007b), GPR120 (Cartoni et al. 2010; Matsumura et al. 2007; Tsuzuki 2007), GPR40 240 (Cartoni et al. 2007; Cartoni et al. 2010; Matsumura et al. 2007), TRPM5 (Liu et al. 2011; 241 Sclafani et al. 2007b), GPR41 and GPR43 (Brown et al. 2003), GPR84 (Wang et al. 2006), 242 and KCNA2 (Gilbertson et al. 1998; Liu et al. 2005). In addition, we looked at genes for 243 salivary enzymes (lipase, lysozyme, and amylase) and protein (lipocalin, mucin, and

244 protein rich in proline) because these proteins change in response to dietary fat

consumption (Feron G 2013; Mounayar *et al.* 2014).

246 To extract the results of genotype-phenotype association for these candidate 247 genes, we conducted analyses using two methods. In method 1 we identified the most 248 significant variant within each candidate genes for each trait and extracted the relevant 249 *p*-value and other test statistics. In method 2 we chose the most significant variant for 250 traits of the potato chip with 5% corn oil (with no added fatty acid) and examined all 251 the sensory measures for the same variant; that is, we chose the 5% corn oil chip as the 252 baseline from which to compare the other associations. These methods are 253 complementary because method 1 detects associations that are specific to a particular 254 concentration of triglyceride and fatty acid combination, while method 2 detects 255 common variants affecting the intensity and liking measures across the potato chip 256 types. We also examined the effect of the variant *rs*1761667 within CD36 because it was 257 previously associated with fat sensory perception in humans (Keller et al. 2012; Mrizak 258 et al. 2015; Pepino et al. 2012; Sayed et al. 2015).

Gene expression in human taste tissue using the RNASeq method. To understand whether the genes identified by GWAS might be acting at the level of the receptors in taste tissue (as opposed to in the brain or in other tongue tissue, e.g., the filiform papillae), we compared the mRNA expression of these genes to those previously implicated in the peripheral aspects of fat taste perception (e.g., the candidate gene

264	CD36) in human taste tissue. To do so, we collected fungiform papillae from subjects
265	recruited for our previous study (Douglas et al. 2019) using published procedures
266	(Spielman et al. 2010) and isolated the RNA following the manufacturer's directions,
267	processing the taste tissue with Quick-RNA MiniPrep R1054 (Zymo Research, Irvine,
268	CA). We evaluated RNA quality expressed as an RNA integrity number (RIN) using the
269	Agilent 2200 TapeStation system (Agilent Technologies, Santa Clara, CA). The six
270	samples with sufficient RNA quality as determined by the Next-Generation Sequencing
271	Core of the University of Pennsylvania (RIN > 7; 5 males and 1 female) were used to
272	perform library preparation and sequencing (100 bp single-end) on the HiSeq 4000
273	sequencer (Illumina, San Diego, CA) following the manufacturer's sequencing
274	protocols. We mapped reads to the reference genome (GRCh38.p10) after the raw
275	sequence data in fastq format passed standard quality filters equipped in Trimmomatic
276	(Bolger et al. 2014), and then normalized the counts using the R package Ballgown
277	(Frazee et al. 2014). The expression level in RPKM (reads per kilobase per million
278	mapped reads) of each gene for each sample was used to compare their expression
279	level.

Pathway and gene set enrichment analysis. We reasoned that genes identified
through GWAS may be partners with other genes that code for proteins in related
sensory pathways. Thus, we conducted pathway analyses of the genes identified by
uvGWAS and mvGWAS. Using the background of the genes from the database of Gene

Ontology annotations (Thomas *et al.* 2003) and Reactome annotations (Fabregat *et al.*2018; Fabregat *et al.* 2017), we used Fisher's exact test to examine whether there was
enrichment of these pathways versus all annotated human genes using
GENEVESTIGATOR (Hruz *et al.* 2008).

Results

288

Participant characteristics. The twins (N = 398) were predominantly female (72%, n =285; and 28% male, n = 113), middle-aged (38.6 ± 16.7, mean ± SD), and members of MZ twin pairs (n = 360 twins, 90.4%). Most were of European descent (n = 331, 83.2%), but some participants were of African descent (n = 50, 12.6%). The remaining racial groups (e.g., Asian) were grouped into an "other" category for the analyses described below (n= 19, 4.8%). A total of 213 individual subjects were genotyped using the chip-based platform (MZ, n = 184; DZ, n = 29), and 176 MZ twins had their genotypes imputed.

296 Liking and intensity measures

*Liking and fattiness ratings differed across potato chips with variable fat content.*Overall, participants liked the potato chips and were able to accurately rate them for
fattiness. Adding 0.2% hexadecanoic acid to the potato chips increased fattiness at both
corn oil concentrations tested (Figure 1A). The effect of added hexadecanoic acid on
liking was less straightforward: for the 5% corn oil chips, adding a 16:0 fatty acid did
not alter liking, while for the 2.5% corn oil chips, adding the fatty acid decreased liking

303	(Figure 1A). For chips with no added fatty acid, there was a mostly linear increase in
304	ratings of fattiness as corn oil concentration increased, although a plateau was reached
305	above 10% oil (Figure 1B). For liking, there was a J-shaped curve: participants liked the
306	2.5% and 15% corn oil potato chips best (Figure 1B). See Supplemental Figures 1 and 2
307	and Supplemental Table 1 for additional details.
308	Relationship between liking and fattiness relative to benchmarks. Within each type of
309	potato chip, the ratings of liking and fattiness were only slightly or not at all related
310	(Figure 2A). This relationship between liking and sensory quality differed from those
311	for the benchmark taste solutions; for example, participants liked sucrose better if they
312	rated it as sweeter (Figure 2B).
313	<i>Reliability of liking and fattiness relative to benchmarks</i> . The ratings of both fattiness
314	and liking for the potato chips were reliable ($r = 0.31-0.62$, $p < 0.05$; Supplemental
315	Figure 3), slightly lower than (but mostly similar to) those for the benchmark taste
316	solutions (sucrose, NaCl, and PTC; $r = 0.54-0.74$, $p < 0.0001$, except for NaCl saltiness;
317	Supplemental Figure 3).
318	Age, race, and sex effects on fattiness and liking. Men and women were similar in
319	their ratings of all sensory stimuli (Supplemental Table 2). Race and age had significant
320	effects on some sensory ratings ($p < 0.01$; Supplemental Table 2). Younger participants
321	liked some of the potato chip types more than older participants (r = -0.17 to -0.14, p <
322	0.001; Supplemental Figure 4). People of European ancestry rated some potato chips as

323	less fatty than did people of African ancestry (5.0% corn oil without added fatty acid; p
324	< 0.05, GLM analysis followed by post hoc Tukey HSD tests; Supplemental Figure 5).
325	There were also race effects for the other sensory stimuli, for example, for the liking of
326	sucrose and PTC. Supplemental Figure 5 summarizes all sensory results that differed
327	by race.

328	Relationships of ratings across potato chip type. Each participant tasted and rated six
329	potato chips, and there were correlations among each participant's ratings of fattiness
330	(Cronbach's alpha = 0.75, 95% confidence boundaries = 0.72-0.79) and liking (Cronbach's
331	alpha = 0.77 , 95% confidence boundaries = 0.74 - 0.81). Fattiness correlations tended to be
332	higher among the chips without added FA than with the chips with added FA. A scatter
333	matrix of pairwise correlations between potato chips types is shown in Figure 3 .
334	Discrimination of milk fattiness. On average, participants could discriminate the
335	high- and low-fat milk samples (exact binomial test, one-tailed, $p < 0.0001$), but only
336	slightly above chance (probability of success = 0.53; Supplemental Figure 6A). This
337	ability to discriminate was only somewhat reliable when testing the same participant
338	twice (retest correlation, $r = 0.36$; $p > 0.05$; Supplemental Figure 3). We had expected
339	based on our pilot data collected in our sensory laboratory that about 30% of
340	participants would perform this discrimination perfectly every time, with 10 out of 10
341	samples correctly identified, but our results showed that only 3% of subjects could do
342	SO.

343	Heritability. Between about 10% and 30% of the variation in potato chip liking arose
344	from genetics (h^2), but only about 5-15% for ratings of fattiness (Table 2). For
345	comparison, for the bitter compound PTC, the most heritable taste trait currently
346	known, liking heritability was 53%, and for sucrose, which has a midrange heritability,
347	it was 46%. The pattern of heritability for NaCl was similar to that for potato chips, as
348	rating of NaCl liking has more genetic variation than does rating of NaCl saltiness. We
349	did not calculate heritability for the milk fat discrimination because there was no
350	similarity in milk discrimination scores between the twins (Supplemental Figure 6B).
351	Genome-wide association. No associations met the commonly accepted genome-wide
352	significance threshold, but we did identify suggestive variants using the univariate and
353	multivariate methods. uvGWAS identified nine associations for fattiness and eight for
354	liking (Table 3). All these associations were specific for potato chip type. The mvGWAS
355	detected two variants for chip fattiness and five variants for chip liking (Table 4). We
356	reasoned that associations detected with both uvGWAS and mvGWAS would be most
357	valid. Of the seven genotype associations detected by mvGWAS, two (GATA3-AS1 and
358	ZNF729) were also detected by uvGWAS (Figure 4): twins with the G allele of <i>rs</i> 263429
359	(10:8085050, near GATA3-AS1) reported more liking for the potato chips than did twins
360	with the other allele and the same was true for the G allele of <i>rs8103990 (19:22476027,</i>
361	within <i>ZNF</i> 729) (mvGWAS, $p < 1 \times 10^{-5}$; Table 4). We show the allelic effects for these two

362	variants in Figure 5 . The effects of the novel variants were larger than those for <i>CD</i> 36,
363	the candidate gene previously associated with fat perception (Supplemental Figure 7).
364	Candidate genes. None of the candidate genes consistently met a genome-wide
365	statistical threshold, but some candidate genes were more often associated with potato
366	chip fattiness or liking than others at a nominal significance threshold ($p < 0.05$; Figure
367	6A). The most notable results were significant variants within $CD36$ and $TRPM5$
368	associated with potato chop liking and fattiness (Figure 6B, C; Supplemental Figure 8,
369	Supplemental Tables 3 and 4). For CD36, the variant rs1761667 (which was associated
370	with fat perception in previous studies) did not pass the quality-control filters, but we
371	examined a nearby variant, rs1722501, that was in nearly perfect linkage disequilibrium
372	($R^2 > 0.99$) with <i>rs1761667</i> . However, participants did not differ in ratings of potato chip
373	fattiness or liking for this proxy marker (Supplemental Table 5), although there were
374	many associations for other variants within <i>CD36</i> , as noted above (see Figure 6).
375	Gene expression, pathway, and gene enrichment analysis. We reasoned that
376	expression of fat candidate genes (those that have a proposed role in peripheral fat or
377	fatty acid signaling) would be a benchmark to compare the taste-tissue expression of the
378	novel genes identified from the GWAS results. Compared with receptor and other
379	signaling candidate genes (GPR40, GPR41, GRP43, GPR84, GPR120, TRPM5, CD36,
380	KCNA2, and GNAT3), the novel genes have relatively higher expression levels in

381	fungiform papillae, especially for RAPGEF2, GLI3, MCTP1, and MLLT3 (Figure 7).
382	ZNF729 and GATA3-AS1 had a similar expression abundance as the candidate genes
383	GPR40, GPR41, GPR84, GPR120, KCNA2, and TRPM5 but much lower than the
384	candidate genes GRP43, CD36, and GNAT3. The presence of many of the novel genes in
385	taste tissue is consistent with a role in peripheral perception, but some candidate genes
386	had a very low abundance. This subset of low-abundance novel genes may be nearly
387	undetectable in the taste tissue sampled because only a few of the relevant cells may
388	have been present in the tissue sample or because the genes may act at different times
389	(e.g., early development) or in different tissues (e.g., the filiform papillae or the brain).
390	We conducted pathway analysis to understand the function of as many of the
391	novel genes identified as possible. In the GENEVESTIGATOR analysis, 21 of the 22
392	associated genes identified by GWAS (RP11-575F12.1 is not found in the database) were
393	tested against the 74,727 background genes. Three gene sets were enriched using the
394	associated genes as bait (<i>p</i> < 0.001, Fisher's exact test; Supplemental Figure 9 ,
395	Supplemental Table 6), from the Gene Ontology categories synapse GO:0045202, cell-
396	cell signaling GO:0007267, and positive regulation of neurogenesis GO:0050769. Overall,
397	these results point to a role of these genes and their protein products in sensory
398	signaling and perhaps regulation of sensory cell types.

399

Discussion

400 Dietary fat is added to food to increase its flavor and palatability, but whether fat is 401 sensed by chemical cues (e.g., from fatty acids), textural cues, or both is contentious. 402 The data from this study support previous observations that fatty acids provide a 403 chemical cue for fattiness but that this component of fattiness is not desirable (Running 404 et al. 2017). When hexadecanoic acid (a saturated 16-carbon fatty acid) was added to the 405 potato chip lowest in fat, it was rated as fattier but was less liked than a potato chip 406 with a comparable amount of fat but without the added fatty acid. Thus, presumably, 407 taking a broader view and generalizing, this result suggests that increasing "fattiness" 408 by adding fatty acids to foods would not make them better liked, and raises the 409 possibility that recently discovered antagonists to the fatty acid receptors (Milligan *et al.* 410 2017) might improve fat flavor. These data support the hypothesis that there are at least two sensory inputs for fat perception, a chemical cue and presumably a textural cue, 411 412 with the texture conveying perhaps the pleasant aspects of fattiness. 413 In addition to studying the relationship between fattiness and liking, we also 414 attempted to study fat discrimination, asking participants to choose the fattier milk 415 solution from a pair of high- and low-fat samples. This task was difficult for the 416 participants, and almost no one correctly identified the high-fat sample 10 times out of 417 the 10 trials. This result came as a surprise because our preliminary testing suggested 418 this task was easy; however, most preliminary testing was conducted with 419 commercially available low- and high-fat milk samples and in a quiety sensory

420	laboratory, making discrimination easier. The prepared milk samples used for testing
421	here were the same in all aspects except the amount dietary fat added, and for many
422	people the oral cues alone (as opposed to visual or olfactory cues) are insufficient to
423	discriminate low-fat from high-fat samples. One additional concern about data was the
424	effect of transportation on the stimuli: the milk was prepared and then driven by truck
425	several hundred miles to the test location – conceivably, vibration may have caused
426	coalescence of the fat globules that altered the ability to discriminate between samples.
427	The main focus of this study was to examine whether person-to-person
428	differences in the liking or perception of fattiness are due in part to individual genetic
429	variation. To establish the heritability of a trait, it is essential to have a reliable
430	measurement, that is, a trait that can be measured reproducibly; accordingly,
431	demonstrating that the measures used were reliable was an essential precondition for
432	the heritability calculations. We learned from the reliability and heritability analyses
433	that liking for this solid food matrix, potato chips, with differing fat concentrations was
434	more similar among genetically identical (MZ) twins than among nonidentical (DZ)
435	twins. Ratings of fattiness were also heritable, but less so, aligning with results from our
436	studies of other taste modalities, which, for example, demonstrated that liking for a
437	concentrated salt solution is more heritable than are salty intensity ratings (Knaapila <i>et</i>
438	al. 2012). Our results are in contrast to a recent study of the effect of diet on fatty acid
439	perception in twins, which reported few or no genetic effects (Costanzo et al. 2018);

440 however, these two studies differed in methods, as did the number of twins

441 investigated, 88 in (Costanzo *et al.* 2018) vs. 398 here.

442	Thus, despite the logistical challenges posed by measuring percepts from dietary
443	fat, there is evidence for a genetic determinant on par with other traits that have been
444	studied using GWAS methods (Clarke et al. 2017). Building on the heritability analysis,
445	we also performed two types of GWAS, which are agnostic to prior information about
446	which genes and variants might be previously known or suspected to contribute to the
447	perception of dietary fat. This part of the study was underpowered and returned no
448	results that met the classic statistical threshold for GWAS results but did provide, in
449	tandem with the bioinformatic analysis, clues about which genes and pathways might
450	be worth pursuing in future work, specifically in the realm of cell-to-cell
451	communication and perhaps cell type.
451 452	communication and perhaps cell type. Of particular interest is the association between fat liking and variants in the
452	Of particular interest is the association between fat liking and variants in the
452 453	Of particular interest is the association between fat liking and variants in the transcription factors that contribute to the development of taste cells (Ermilov <i>et al.</i>
452 453 454	Of particular interest is the association between fat liking and variants in the transcription factors that contribute to the development of taste cells (Ermilov <i>et al.</i> 2016; Qin <i>et al.</i> 2018). The transcriptome was not helpful in interpreting the novel genes
452 453 454 455	Of particular interest is the association between fat liking and variants in the transcription factors that contribute to the development of taste cells (Ermilov <i>et al.</i> 2016; Qin <i>et al.</i> 2018). The transcriptome was not helpful in interpreting the novel genes in part because taste tissue from fungiform papillae is unlikely to be involved in the
452 453 454 455 456	Of particular interest is the association between fat liking and variants in the transcription factors that contribute to the development of taste cells (Ermilov <i>et al.</i> 2016; Qin <i>et al.</i> 2018). The transcriptome was not helpful in interpreting the novel genes in part because taste tissue from fungiform papillae is unlikely to be involved in the textural aspects of fat perception, and in part because the abundance of even the known

460	include the sensory p	pathways, i	including bra	ain regions t	that process the sensor	у
-----	-----------------------	-------------	---------------	---------------	-------------------------	---

461 properties of dietary fat information (Grabenhorst and Rolls 2014).

462	The results of the candidate gene analyses were more compelling in the sense
463	that, although none of the results were individually very striking, multiple methods of
464	analysis have repeatedly indicated a role for <i>CD36</i> and <i>TRPM5</i> in the perception of
465	dietary fat, in both human and animal studies (Chamoun et al. 2018), especially gene
466	knockout studies. Parenthetically, we did not see associations with the proxy marker we
467	used to try to replicate the previous studies exactly (Keller et al. 2012; Mrizak et al. 2015;
468	Pepino et al. 2012; Sayed et al. 2015), but CD36 is a large gene with many potentially
469	functional variants, and therefore a fine-mapping study in multiple populations is
470	warranted. There may be multiple variants that cause a spectrum of effects that differ
471	by ancestral population, e.g., (Gurdasani et al. 2019).
471 472	by ancestral population, e.g., (Gurdasani <i>et al.</i> 2019). We speculate that sensory nutrition and taste perception offer a way to reduce
472	We speculate that sensory nutrition and taste perception offer a way to reduce
472 473	We speculate that sensory nutrition and taste perception offer a way to reduce nutrition-related human diseases, by studying the nuanced and often misunderstood
472 473 474	We speculate that sensory nutrition and taste perception offer a way to reduce nutrition-related human diseases, by studying the nuanced and often misunderstood relationship between liking and intake (Hayes in press). GWAS allows us to screen and
472 473 474 475	We speculate that sensory nutrition and taste perception offer a way to reduce nutrition-related human diseases, by studying the nuanced and often misunderstood relationship between liking and intake (Hayes in press). GWAS allows us to screen and identify common genetic variants associated with fat consumption (Tanaka <i>et al.</i> 2013),
472 473 474 475 476	We speculate that sensory nutrition and taste perception offer a way to reduce nutrition-related human diseases, by studying the nuanced and often misunderstood relationship between liking and intake (Hayes in press). GWAS allows us to screen and identify common genetic variants associated with fat consumption (Tanaka <i>et al.</i> 2013), and our findings, combined with future functional genomic analyses, especial single-

480 **Conflict of Interest**

481 The authors declare no conflicts of interest.

482

483 Funding

484 This work was supported in part by PepsiCo R&D, Diageo and Monell Institutional

- 485 Funds. The views expressed in this article are those of the authors and do not
- 486 necessarily reflect the position or policy of PepsiCo, Inc or Diageo. Some genotyping
- 487 was performed at the Monell DNA and RNA Analysis Core, which is supported, in

488 part, by funding from the NIH-NIDCD Core Grant 1P30DC011735 using an instrument

489 purchased using NIH funds (S10 OD018125).

490

491 Acknowledgments

492 We thank the following people for assistance with data collection, listed in alphabetical 493 order: Charles J. Arayata, Nuala Bobowski, Fujiko Duke, Hillary Ellis, Brad Fesi, Nicole 494 Greenbaum, Aurora Hannikainen, Desmond Johnson, Katherine Leung, Durpri Lin, Alex Mangroo, Corrine Mansfield, Michael Marquis, Elliott McDowell, Tiffany Murray, 495 496 Lauren Shaw, Lindsey Snyder, Molly Spencer, Amber Suk, Alyssa Treff, and Casey 497 Trimmer. We thank the twins for their participation and the administration of 498 TwinsDays including Sandy Miller and Janine Bregitzer for their assistance during data 499 collection.

5	Δ	1
J	υ	т

References

- Abumrad NA. 2005. CD36 may determine our desire for dietary fats. J Clin Invest 115:2965-2967.
- 504 Bakke AJ, Shehan CV, Hayes JE. 2016. Type of milk typically consumed, and stated
- 505 preference, but not health consciousness affect revealed preferences for fat in milk. Food
- 506 Qual Prefer 49: 92-99.
- 507 Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S,
- 508 Bates T, Mehta P, Fox J. 2011. OpenMx: An Open Source Extended Structural Equation
- 509 Modeling Framework. Psychometrika 76: 306-317.
- 510 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
- 511 sequence data. Bioinformatics 30: 2114-2120.
- 512 Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI,
- 513 Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock
- 514 PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A,
- 515 Dowell SJ. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are
- 516 activated by propionate and other short chain carboxylic acids. J Biol Chem 278: 11312-
- **517** 11319.
- 518 Card MM. 2013. America, you are digging your grave with your spoon--should the
- 519 FDA tell you that on food labels? Food Drug Law J 68: 309-327, ii-iii.

- 520 Cartoni C, Yasumatsu K, le Coutre J, Ninomiya Y, Damak S. 2007. Diminished taste
- 521 responses to fatty acids and oils in GPR40 knockout mice. The fifth international
- 522 symposium on molecular and neural mechanisms of taste and olfactory perception.
- 523 Fukuoka.
- 524 Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J,
- 525 Ninomiya Y, Damak S. 2010. Taste preference for fatty acids is mediated by GPR40 and
- 526 GPR120. J. Neurosci. 30: 8376-8382.
- 527 Chamoun E, Mutch DM, Allen-Vercoe E, Buchholz AC, Duncan AM, Spriet LL, Haines
- 528 J, Ma DWL, Guelph Family Health S. 2018. A review of the associations between single
- 529 nucleotide polymorphisms in taste receptors, eating behaviors, and health. Critical
- reviews in food science and nutrition 58: 194-207.
- 531 Clark CC, Lawless HT. 1994. Limiting response alternatives in time-intensity scaling: an
- examination of the halo-dumping effect. Chem Senses 19: 583-594.
- 533 Clarke TK, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, Murray AD,
- 534 Smith BH, Campbell A, Hayward C, Porteous DJ, Deary IJ, McIntosh AM. 2017.
- 535 Genome-wide association study of alcohol consumption and genetic overlap with other
- health-related traits in UK Biobank (N=112 117). Mol Psychiatry 22: 1376-1384.
- 537 Costanzo A, Nowson C, Orellana L, Bolhuis D, Duesing K, Keast R. 2018. Effect of
- 538 dietary fat intake and genetics on fat taste sensitivity: a co-twin randomized controlled
- 539 trial. Am J Clin Nutr 107: 683-694.

- 540 Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S,
- 541 McGue M, Schlessinger D, Stambolian D, Loh PR, Iacono WG, Swaroop A, Scott LJ,
- 542 Cucca F, Kronenberg F, Boehnke M, Abecasis GR, Fuchsberger C. 2016. Next-generation
- 543 genotype imputation service and methods. Nat. Genet. 48: 1284-1287.
- 544 Douglas JE, Lin C, Mansfield CJ, Arayata CJ, Cowart BJ, Spielman AI, Adappa ND,
- 545 Palmer JN, Cohen NA, Reed DR. 2019. Tissue-Dependent Expression of Bitter Receptor
- 546 TAS2R38 mRNA. Chem Senses 44: 33-40.
- 547 Drewnowski A. 1992. Sensory properties of fats and fat replacements. Nutr Rev 50: 17-

548 20.

- 549 Ermilov AN, Kumari A, Li L, Joiner AM, Grachtchouk MA, Allen BL, Dlugosz AA,
- 550 Mistretta CM. 2016. Maintenance of Taste Organs Is Strictly Dependent on Epithelial
- 551 Hedgehog/GLI Signaling. PLoS Genet 12: e1006442.
- 552 Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal
- 553 B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V,
- 554 Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D'Eustachio P.
- 555 2018. The Reactome Pathway Knowledgebase. Nucleic Acids Res 46: D649-D655.
- 556 Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, D'Eustachio
- 557 P, Stein L, Hermjakob H. 2017. Reactome pathway analysis: a high-performance in-
- memory approach. BMC Bioinformatics 18: 142.

559	Fatumo S,	Carstensen T	, Nashiru O	. Gurdasani D	, Sandhu M	, Kaleebu P. 2019

- 560 Complimentary Methods for Multivariate Genome-Wide Association Study Identify
- 561 New Susceptibility Genes for Blood Cell Traits. Front Genet 10: 334.
- 562 Feron G PJ. 2013. In-mouth mechanism leading to the perception of fat in humans: from
- 563 detection to preferences. The particular role of saliva. OCL 20: 102-107.
- 564 Forde CG. 2018. From perception to ingestion; the role of sensory properties in energy
- selection, eating behaviour and food intake. Food Quality and Preference 66: 171-177.
- 566 Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. 2014. Flexible analysis
- 567 of transcriptome assemblies with Ballgown. bioRxiv.
- 568 Gaillard D, Laugerette F, Darcel N, El-Yassimi A, Passilly-Degrace P, Hichami A,
- 569 Akhtar Khan N, Montmayeur JP, Besnard P. 2007. The gustatory pathway is involved in
- 570 CD36-mediated orosensory perception of long-chain fatty acids in the mouse. Faseb J.
- 571 Gallagher MD, Chen-Plotkin AS. 2018. The Post-GWAS Era: From Association to
- 572 Function. Am J Hum Genet 102: 717-730.
- 573 Gilbertson TA, Liu L, York DA, Bray GA. 1998. Dietary fat preferences are inversely
- 574 correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci 855: 165-
- **575** 168.
- 576 Grabenhorst F, Rolls ET. 2014. The representation of oral fat texture in the human
- 577 somatosensory cortex. Hum Brain Mapp 35: 2521-2530.

- 578 Gurdasani D, Barroso I, Zeggini E, Sandhu MS. 2019. Author Correction: Genomics of
- 579 disease risk in globally diverse populations. Nat Rev Genet 20: 562.
- 580 Hayes J. 2015. Measuring sensory perception in relation to consumer behavior. In:
- 581 Delarue J, Lawlor J, Rogeaux M, (eds.), Rapid Sensory Profiling Techniques. Woodhead
- 582 Publishing. p. 53-69.
- 583 Hayes JE. in press. Influence of sensation and liking on eating and drinking. In:
- 584 Meiselman HL, (ed.), Handbook of Eating and Drinking.
- 585 Heinze JM, Costanzo A, Baselier I, Fritsche A, Lidolt M, Hinrichs J, Frank-Podlech S,
- 586 Keast R. 2017. Oil perception-detection thresholds for varying fatty stimuli and inter-
- individual differences. Chem Senses 42: 585-592.
- 588 Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem
- 589 W, Zimmermann P. 2008. Genevestigator v3: a reference expression database for the
- 590 meta-analysis of transcriptomes. Adv Bioinformatics 2008: 420747.
- 591 Hwang LD, Lin C, Gharahkhani P, Cuellar-Partida G, Ong JS, An J, Gordon SD, Zhu G,
- 592 MacGregor S, Lawlor DA, Breslin PAS, Wright MJ, Martin NG, Reed DR. 2019. New
- insight into human sweet taste: a genome-wide association study of the perception and
- intake of sweet substances. Am J Clin Nutr 109: 1724-1737.
- 595 International HapMap C. 2005. A haplotype map of the human genome. Nature 437:
- **596** 1299-1320.

597	Keller KL,	Liang	LC, Sakimura J	, May D,	van Belle C, B	Breen C,	Driggin	Е, Тер	per BJ,
-----	------------	-------	----------------	----------	----------------	----------	---------	--------	---------

- 598 Lanzano PC, Deng L, Chung WK. 2012. Common variants in the CD36 gene are
- associated with oral fat perception, fat preferences, and obesity in African Americans.
- 600 Obesity (Silver Spring) 20: 1066-1073.
- 601 Knaapila A, Hwang LD, Lysenko A, Duke FF, Fesi B, Khoshnevisan A, James RS,
- 602 Wysocki CJ, Rhyu M, Tordoff MG, Bachmanov AA, Mura E, Nagai H, Reed DR. 2012.
- 603 Genetic analysis of chemosensory traits in human twins. Chem Senses 37: 869-881.
- 604 Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard
- 605 P. 2005. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat
- 606 preference, and digestive secretions. J Clin Invest 115: 3177-3184.
- 607 Liu H, Wang W, Zhang C, Xu C, Duan H, Tian X, Zhang D. 2018. Heritability and
- 608 Genome-Wide Association Study of Plasma Cholesterol in Chinese Adult Twins. Front
- 609 Endocrinol (Lausanne) 9: 677.
- 610 Liu L, Hansen DR, Kim I, Gilbertson TA. 2005. Expression and characterization of
- 611 delayed rectifying K+ channels in anterior rat taste buds. Am J Physiol Cell Physiol 289:
- 612 C868-880.
- 613 Liu P, Shah BP, Croasdell S, Gilbertson TA. 2011. Transient receptor potential channel
- 614 type M5 is essential for fat taste. J Neurosci 31: 8634-8642.
- 615 Matsumura S, Mizushige T, Yoneda T, Iwanaga T, Tsuzuki S, Inoue K, Fushiki T. 2007.
- 616 GPR expression in the rat taste bud relating to fatty acid sensing. Biomed Res 28: 49-55.

617	McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM,
618	Fuchsberger C, Danecek P, Sharp K, Luo Y, Sidore C, Kwong A, Timpson N, Koskinen
619	S, Vrieze S, Scott LJ, Zhang H, Mahajan A, Veldink J, Peters U, Pato C, van Duijn CM,
620	Gillies CE, Gandin I, Mezzavilla M, Gilly A, Cocca M, Traglia M, Angius A, Barrett JC,
621	Boomsma D, Branham K, Breen G, Brummett CM, Busonero F, Campbell H, Chan A,
622	Chen S, Chew E, Collins FS, Corbin LJ, Smith GD, Dedoussis G, Dorr M, Farmaki AE,
623	Ferrucci L, Forer L, Fraser RM, Gabriel S, Levy S, Groop L, Harrison T, Hattersley A,
624	Holmen OL, Hveem K, Kretzler M, Lee JC, McGue M, Meitinger T, Melzer D, Min JL,
625	Mohlke KL, Vincent JB, Nauck M, Nickerson D, Palotie A, Pato M, Pirastu N, McInnis
626	M, Richards JB, Sala C, Salomaa V, Schlessinger D, Schoenherr S, Slagboom PE, Small K,
627	Spector T, Stambolian D, Tuke M, Tuomilehto J, Van den Berg LH, Van Rheenen W,
628	Volker U, Wijmenga C, Toniolo D, Zeggini E, Gasparini P, Sampson MG, Wilson JF,
629	Frayling T, de Bakker PI, Swertz MA, McCarroll S, Kooperberg C, Dekker A, Altshuler
630	D, Willer C, Iacono W, Ripatti S, Soranzo N, Walter K, Swaroop A, Cucca F, Anderson
631	CA, Myers RM, Boehnke M, McCarthy MI, Durbin R, Haplotype Reference C. 2016. A
632	reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48: 1279-
633	1283.
634	Mela DJ, Sacchetti DA. 1991. Sensory preferences for fats: relationships with diet and

635 body composition. Am J Clin Nutr 53: 908-915.

- 636 Mennella JA, Finkbeiner S, Reed DR. 2012. The proof is in the pudding: children prefer
- 637 lower fat but higher sugar than do mothers. Int. J. Obesity 36: 1285-1291.
- 638 Milligan G, Alvarez-Curto E, Hudson BD, Prihandoko R, Tobin AB. 2017.
- 639 FFA4/GPR120: Pharmacology and Therapeutic Opportunities. Trends Pharmacol Sci 38:

640 809-821.

- 641 Mounayar R, Morzel M, Brignot H, Tremblay-Franco M, Canlet C, Lucchi G, Ducoroy P,
- 642 Feron G, Neyraud E. 2014. Nutri-metabolomics applied to taste perception phenotype:
- 643 human subjects with high and low sensitivity to taste of fat differ in salivary response to
- 644 oleic acid. OMICS 18: 666-672.
- 645 Mrizak I, Sery O, Plesnik J, Arfa A, Fekih M, Bouslema A, Zaouali M, Tabka Z, Khan
- 646 NA. 2015. The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates
- 647 with decreased lipid taste perception in obese Tunisian women. Br J Nutr 113: 1330-

648 1337.

- 649 Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. 2001. Mammalian
- 650 sweet taste receptors. Cell 106: 381-390.
- 651 Pe'er I, Yelensky R, Altshuler D, Daly MJ. 2008. Estimation of the multiple testing
- 652 burden for genomewide association studies of nearly all common variants. Genet
- 653 Epidemiol 32: 381-385.

- 654 Pepino MY, Love-Gregory L, Klein S, Abumrad NA. 2012. The fatty acid translocase
- 655 gene, CD36, and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid
- 656 Res 53: 561-566.
- 657 Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis
- 658 GR, Willer CJ. 2010. LocusZoom: regional visualization of genome-wide association
- 659 scan results. Bioinformatics 26: 2336-2337.
- 660 Qin Y, Sukumaran SK, Jyotaki M, Redding K, Jiang P, Margolskee RF. 2018. Gli3 is a
- 661 negative regulator of Tas1r3-expressing taste cells. PLoS Genet 14: e1007058.
- 662 Reed DR, Knaapila A. 2010. Genetics of taste and smell: poisons and pleasures. Prog
- 663 Mol Biol Transl Sci 94: 213-240.
- 664 Reed DR, Tanaka T, McDaniel AH. 2006. Diverse tastes: Genetics of sweet and bitter
- 665 perception. Physiol Behav 88: 215-226.
- 666 Reed DR, Xia MB. 2015. Recent advances in fatty acid perception and genetics. Adv
- 667 Nutr 6: 353S-360S.
- 668 Rolon ML, Bakke AJ, Coupland JN, Hayes JE, Roberts RF. 2017. Effect of fat content on
- the physical properties and consumer acceptability of vanilla ice cream. J Dairy Sci 100:
- **670** 5217-5227.
- 671 Running CA, Craig BA, Mattes RD. 2015. Oleogustus: The Unique Taste of Fat. Chem
- 672 Senses 40: 507-516.

- 673 Running CA, Hayes JE, Ziegler GR. 2017. Degree of free fatty acid saturation influences
- 674 chocolate rejection in human assessors. Chem Senses 42: 161-166.
- 675 Running CA, Mattes RD. 2016. A Review of the Evidence Supporting the Taste of Non-
- esterified Fatty Acids in Humans. Journal of the American Oil Chemists' Society 93:

677 1325-1336.

- 678 Sayed A, Sery O, Plesnik J, Daoudi H, Rouabah A, Rouabah L, Khan NA. 2015. CD36
- 679 AA genotype is associated with decreased lipid taste perception in young obese, but not
- 680 lean, children. Int J Obes (Lond) 39: 920-924.
- 681 Sclafani A, Ackroff K, Abumrad NA. 2007a. CD36 gene deletion reduces fat preference
- and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr Comp
- 683 Physiol 293: R1823-1832.
- 684 Sclafani A, Zukerman S, Glendinning JI, Margolskee RF. 2007b. Fat and carbohydrate
- 685 preferences in mice: the contribution of alpha-gustducin and Trpm5 taste-signaling
- 686 proteins. Am J Physiol Regul Integr Comp Physiol 293: R1504-1513.
- 687 Spielman AI, Pepino MY, Feldman R, Brand JG. 2010. Technique to collect fungiform
- 688 (taste) papillae from human tongue. J Vis Exp.
- 689 Tanaka T, Ngwa JS, van Rooij FJ, Zillikens MC, Wojczynski MK, Frazier-Wood AC,
- 690 Houston DK, Kanoni S, Lemaitre RN, Luan J, Mikkila V, Renstrom F, Sonestedt E, Zhao
- 691 JH, Chu AY, Qi L, Chasman DI, de Oliveira Otto MC, Dhurandhar EJ, Feitosa MF,
- 692 Johansson I, Khaw KT, Lohman KK, Manichaikul A, McKeown NM, Mozaffarian D,

693	Singleton A, S	tirrups K, '	Viikari J, `	Ye Z, Bar	ıdinelli S, E	Barroso I, I	Deloukas P,	, Forouhi NG,
-----	----------------	--------------	--------------	-----------	---------------	--------------	-------------	---------------

- 694 Hofman A, Liu Y, Lyytikainen LP, North KE, Dimitriou M, Hallmans G, Kahonen M,
- 695 Langenberg C, Ordovas JM, Uitterlinden AG, Hu FB, Kalafati IP, Raitakari O, Franco
- 696 OH, Johnson A, Emilsson V, Schrack JA, Semba RD, Siscovick DS, Arnett DK, Borecki
- 697 IB, Franks PW, Kritchevsky SB, Lehtimaki T, Loos RJ, Orho-Melander M, Rotter JI,
- 698 Wareham NJ, Witteman JC, Ferrucci L, Dedoussis G, Cupples LA, Nettleton JA. 2013.
- 699 Genome-wide meta-analysis of observational studies shows common genetic variants
- associated with macronutrient intake. Am J Clin Nutr 97: 1395-1402.
- 701 Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K,
- 702 Muruganujan A, Narechania A. 2003. PANTHER: a library of protein families and
- subfamilies indexed by function. Genome Res 13: 2129-2141.
- 704 Tsuzuki S. 2007. Mechanisms on the oral chemoreception of fats: the possible
- 705 participation of FAT/CD36 and GPR120. 5th International Symposium on Molecular
- and Neural Mechanisms of Taste and Olfactory Perception. Fukuoka.
- 707 Veldhuizen MG, Babbs RK, Patel B, Fobbs W, Kroemer NB, Garcia E, Yeomans MR,
- 708 Small DM. 2017. Integration of sweet taste and metabolism determines carbohydrate
- 709 reward. Curr Biol 27: 2476-2485 e2476.
- 710 Voigt N, Stein J, Galindo MM, Dunkel A, Raguse JD, Meyerhof W, Hofmann T, Behrens
- 711 M. 2014. The role of lipolysis in human orosensory fat perception. The Journal of Lipid
- 712 Research 55: 870-882.

- 713 Wang J, Wu X, Simonavicius N, Tian H, Ling L. 2006. Medium-chain fatty acids as
- 714 ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281: 34457-34464.
- 715 Wise PM, Hansen JL, Reed DR, Breslin PA. 2007. Twin study of the heritability of
- recognition thresholds for sour and salty taste. Chem Senses 32: 749-754.
- 717 Wu Y, Duan H, Tian X, Xu C, Wang W, Jiang W, Pang Z, Zhang D, Tan Q. 2018.
- 718 Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis. Front Genet
- **719** 9: 179.
- 720 Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association
- 721 studies. Nat Genet 44: 821-824.
- 722

723	Figure 1. Corn oil and corn oil spiked with 0.2% hexadecanoic acid (FA) modify ratings
724	of fattiness and liking of potato chips. (A) Potato chips with more corn oil plus added
725	FA increased fattiness and decreased liking. (B) As corn oil concentration (2.5%, 5.0%,
726	10%, and 15%, without added FA) increased, fattiness ratings increased linearly but
727	liking changed in a J-curve: participants liked potato chips more with corn oil at the
728	lowest and highest concentrations (2.5% and 15%). The points and bars show least
729	square mean (LSM) and standard error of rating scores, and different letters (a, b, and c)
730	indicate a significant LSM difference between groups.
731	Figure 2. Pearson correlations between sensory measures indicate multiple mechanisms
732	underlying dietary fat perception (N = 398). (A) No or weak correlations between
733	ratings of liking and fattiness depending on the type of potato chip. FA=fatty acid
734	(hexadecanoic acid). (B) Strong correlations between liking and other taste ratings
735	(sweetness, saltiness, and bitterness) for the standard taste solutions sucrose, NaCl, and
736	phenylthiocarbamide (PTC).
737	Figure 3. Strong and positive interrelated correlations of ratings of fattiness (A) and
738	liking (B) across the six types of potato chips: scatter plots (lower left), density

740 (hexadecanoic acid).

741	Figure 4. Venn diagram comparing loci identified by uvGWAS and mvGWAS (see
742	Methods for details). Two variants were detected by both methods: 10:8085050 near the
743	gene GATA3-AS1 and 19:22476027 within ZNF729.
744	Figure 5. Allele effect of variants 10:8085050 near gene GATA3-AS1 (A) and 19:22476027
745	within the gene ZNF729 (B) on ratings of liking across types of potato chips. For both
746	variants, participants with G allele rated higher liking for all potato chip types than did
747	those with other allele. The standard residual scores for liking were calculated in the
748	general linear model with covariates of sex, age, and 20 eigenvalues.
749	Figure 6. Candidate gene effect on fat perception for potato chips. (A) Total counts of
750	nominal $p < 0.05$ out of 28 tests for each candidate gene for the two methods of
751	candidate gene analysis (method 1 and method 2; see Materials and Methods) in the
752	outputs from uvGWAS and mvGWAS. (B , C) Associations of top variants within
753	candidate genes CD36 and TRPM5 with ratings of liking (B) and fattiness (C) for each
754	type of potato chip. x-Axes show effect size (β ±SE), obtained from uvGWAS, and y-axes
755	show –log(<i>p</i> -value), obtained from uvGWAS and mvGWAS, for the top variants within
756	<i>CD36</i> and <i>TRPM5</i> (no β ±SE data were available from mvGWAS; i.e., β ±SE=0 is not
757	true). Red dashed lines indicate $p = 0.05$; the points above this line indicate a nominal
758	significant effect on the trait. FA=fatty acid (hexadecanoic acid). For other details of the
759	data, see Supplemental Tables 3 and 4.

- **Figure 7.** Box plots of taste tissue expression abundance of genes near the peak
- real statistical associations from the GWAS (novel hits) and for candidate genes (shown in
- 762 blue) known from prior studies to contribute to fat perception. Two genes, ZNF729 and
- 763 *GATA3-AS1* (shown in red), were commonly detected by both uvGWAS and mvGWAS
- in the present study. RPKM=reads per kilo base per million mapped reads. *RNU6-356P*
- had no expression in any sample. Outliers are not shown. Red asterisks indicate genes
- with statistically higher expression level compared with other genes in taste tissue (p < p
- 767 0.05/351 = 0.000142, Bonferroni corrections for multiple tests).

769	Supplemental Figure 1. Changes in ratings of fattiness and liking by corn oil
770	concentration across the six types of potato chips. FA=fatty acid (hexadecanoic acid).
771	For other details, see Figure 1 .
772	Supplemental Figure 2. Violin plots for ratings of the sensory traits. The violin area
773	shows the estimated density of each rating score point. The dots and bars show means
774	and SDs.
775	Supplemental Figure 3 . Pearson correlations between test and retest of each rating (<i>n</i> =
776	50).
777	Supplemental Figure 4. Pearson correlations between age and sensory measures for
778	potato chips and other taste stimuli. Young participants were more sensitive to taste
779	stimuli than were older participants.
780	Supplemental Figure 5. Least square mean (LSM) and standard error of sensory
781	measures by race. EA=European Americans, AA=African Americans, Oth=others
782	(Asian, Hispanic, Native American, mixed). Different letters (a, b) show a significant
783	LSM difference.
784	Supplemental Figure 6. Most participants had difficultly discriminating milk fat
785	content, with near chance levels overall. (A) Histogram of milk fat discrimination
786	scores. The dashed white line shows probability of success, which is near the chance

787	level of 5, but it is significantly different from the chance level, $p < 0.001$. (B) No
788	significant correlations were observed between twin 1 and twin 2 for milk
789	discrimination for either DZ or MZ twins; thus, no heritability for milk fat
790	discrimination scores was calculated.
701	Sumlamental Figure 7 Decional acceptional plate based on myCWAS regults for
791	Supplemental Figure 7. Regional associational plots, based on mvGWAS results, for
792	single-nucleotide polymorphisms in linkage disequilibrium (r^2) with the peak variants
793	10:8085050 near the gene GATA3-AS1 (A) and 19:22476027 within the gene ZNF729 (B)
794	for ratings of liking, and for the fat perception candidate gene CD36 for ratings of liking
795	(\mathbf{C}) and fattiness (\mathbf{D}) for potato chips. The highlighted chromosome regions show the
796	target genes.
797	Supplemental Figure 8. Associations of top variants within each candidate gene with
798	ratings of liking (A) and fattiness (B) for each type of potato chip. For details see Figure

799 6.

Supplemental Figure 9. Gene set enrichment analyses. Venn diagram visualizes
overlapping genes among the top three gene sets and the target genes (21 out of 22
GWAS hits; *RP11-575F12.1* is not found the database). All genes (*n* = 74,727 total genes)
were selected from Reactome annotations and Gene Ontology annotations as
background collection. The top three gene sets identified are synapse GO:0045202, cell-

cell signaling GO:0007267, and positive regulation of neurogenesis GO:0050769 (see

806 Supplemental Table 6).

Milk Type	Fat Content	Water	Dry Milk	Dairy Fat	Casein
	(%)	(mL)	(g)	(g)	(g)
Low fat	2.35	890	90.7	23.7	10.09
High fat	18.00	890	90.7	216.8	12.04

808 Table 1. High- and low-fat milk ingredients

Stimulus	h^2	CI
Liking (chips)		
2.5% corn oil	0.21*	0.07 – 0.34
5.0% corn oil	0.10	0.00 - 0.24
10% corn oil	0.10	0.00 - 0.24
15% corn oil	0.29*	0.15 - 0.41
2.5% com oil with 0.2% hexadecanoic acid	0.10	0.00 - 0.24
5.0% corn oil with 0.2% hexadecanoic acid	0.10	0.00 – 0.24
Fattiness		
2.5% corn oil	0.05	0.00 - 0.20
5.0% com oil	0.11	0.00 - 0.25
10% corn oil	0.12	0.00 - 0.27
15% corn oil	0.07	0.00 - 0.22
2.5% com oil with 0.2% hexadecanoic acid	0.03	0.00 - 0.17
5.0% corn oil with 0.2% hexadecanoic acid	0.15	0.00 – 0.29
Other solutions		
Sucrose sweetness	0.11	0.00 - 0.25
Sucrose liking	0.46*	0.33 – 0.56
NaCl saltiness	0.19*	0.05 - 0.32
NaCl liking	0.38*	0.25 - 0.49
PTC bitterness	0.49*	0.38 – 0.59
PTC liking	0.53*	0.42 - 0.62

Table 2. Heritability (h^2) of fat sensory traits, with NaCl, sucrose, and PTC as a

benchmarks (n = 199 twin pairs)

*Different from zero.

Stimuli	CHR	SNP (CHR:BP)	ALT	REF	MAF	Beta	SE	Р	Gene	HIT_TYPE	SNP_TYPE
Fattiness											
5.0% NoFA	4	4:45361270	G	С	0.12	0.92	0.20	6.14E-06	PRKRIRP9	nearest	Imputed
5.0% NoFA	7	7:42032565	Т	С	0.26	0.62	0.14	8.25E-06	GLI3	within	Genotyped
5.0% NoFA	8	8:105135473	А	Т	0.15	0.86	0.18	1.92E-06	RIMS2	within	Imputed
5.0% NoFA	11	11:7476601	А	G	0.21	0.74	0.15	9.51E-07	SYT9	within	Imputed
10% NoFA	7	7:25514020	С	G	0.18	0.74	0.16	4.91E-06	AC091705.1	nearest	Imputed
15% NoFA	5	5:94138997	С	Т	0.17	0.76	0.17	4.37E-06	MCTP1	within	Genotyped
15% NoFA	6	6:77345798	С	Т	0.10	0.87	0.20	9.64E-06	RP11-354K4.1	nearest	Imputed
15% NoFA	11	11:86707909	G	С	0.09	0.88	0.20	9.45E-06	RP11-736K20.6	within	Imputed
15% NoFA	19	19:51226244	т	С	0.38	0.59	0.13	9.19E-06	CLEC11A	nearest	Imputed
Liking											
5.0% NoFA	2	2:215358759	С	Т	0.06	-1.12	0.25	8.47E-06	VWC2L	within	Imputed
5.0% NoFA	20	20:50443885	Т	С	0.25	0.63	0.13	1.84E-06	RP5-1112F19.2	nearest	Imputed
10% NoFA	10	10:8085050	Α	G	0.08	-0.92	0.20	5.27E-06	GATA3-AS1	nearest	Imputed
10% NoFA	12	12:127482374	С	G	0.07	-0.95	0.21	9.08E-06	RP11-575F12.1	within	Imputed
2.5% with 0.2% FA	4	4:160267304	А	G	0.06	-1.32	0.30	8.02E-06	RAPGEF2	within	Imputed
2.5% with 0.2% FA	12	12:13948270	А	G	0.10	-1.13	0.24	3.58E-06	GRIN2B	within	Imputed
2.5% with 0.2% FA	19	19:22476027	Α	G	0.11	-1.07	0.23	4.92E-06	ZNF729	within	Imputed
5.0% with 0.2% FA	13	13:95498608	т	С	0.09	-0.98	0.22	5.94E-06	RPL21P112	nearest	Imputed

Table 3. Suggestive associations for ratings of potato chip fattiness and liking identified by uvGWAS.

NoFA=no added hexadecanoic acid; CHR=chromosome; SNP=single-nucleotide polymorphism; BP=base pair; ALT=alternative allele; REF=reference allele; MAF=minor allele frequency; SNP TYPE=individual's genotype was genotyped or imputed. Two genes (*PRKRIRP9* and *RP11-270L13.1*) on chr 4 for ratings of potato chip fattiness reached genome-wide suggestive threshold (1e-5), but only one with a relatively lower *p*-value is reported in this table. Variants for potato chip liking shown in boldface were also detected by the mvGWAS across all corn oil concentrations; see **Table 4**.

	00	0	0	1	1		0		
Trait	CHR	SNP (CHR:BP)	ALT	REF	MAF	Р	Gene	HIT_TYPE	SNP_TYPE
Fattiness	2	2:141755773	А	Т	0.32	2.96E-06	LRP1B	within	Imputed
	10	10:116662107	С	Т	0.05	8.97E-06	RP11-106M7.4	nearest	Imputed
Liking	7	7:34676953	Т	А	0.06	3.05E-07	NPSR1-AS1	within	Imputed
	8	8:40998854	А	т	0.04	5.14E-07	RNU6-356P	nearest	Imputed
	9	9:20636973	Т	С	0.48	1.15E-06	MLLT3	nearest	Genotyped
	10	10:8085050	G	Α	0.08	8.19E-07	GATA3-AS1	nearest	Imputed
	19	19:22476027	Α	G	0.11	4.71E-06	ZNF729	within	Imputed

Table 4. Suggestive genes for ratings of potato chip fattiness and liking identified by mvGWAS

See **Table 3** for abbreviations and other details. Two genes on chr 2 (*LINC00486* and *LRP1B*) and two genes on chr 10 (*FAM160B1* and *BP11-106M7.4*) for potato chip fattiness, and two genes on chr 7 (*EEPD1* and *NPSR1-AS1*) and two genes on chr 8 (*RNU6-356P* and *SULf1*) for potato chip liking reached genome-wide suggestive threshold (1e-5), but only one gene with a relatively lower *p*-value on each chromosome is reported in this table. Variants for potato chip liking shown in boldface were also detected by the uvGWAS across all corn oil concentrations. For abbreviations, see the caption of Table 3.

823 Supplemental Table 1. Summary statistics for linear mixed model analyses

824

- 825 FA, fatty acid; ICC, intraclass correlation. Boldface indicates the test statistic meets a
- 826 significance threshold of p < 0.01.

- 828
- 829
- 830 Supplemental Table 2. The effect of sex, race, and age on sensory measures for potato831 chips, taste stimuli, and milk discrimination
- 832
- 833 PTC, phenylthiocarbamide. Highlighting indicates suggestive effects with a *p*-value <
- **834** 0.05.

835

- 836 **Supplemental Table 3**. The effect of the top variant within each candidate gene on
- 837 ratings of potato chip fattiness and liking.

838

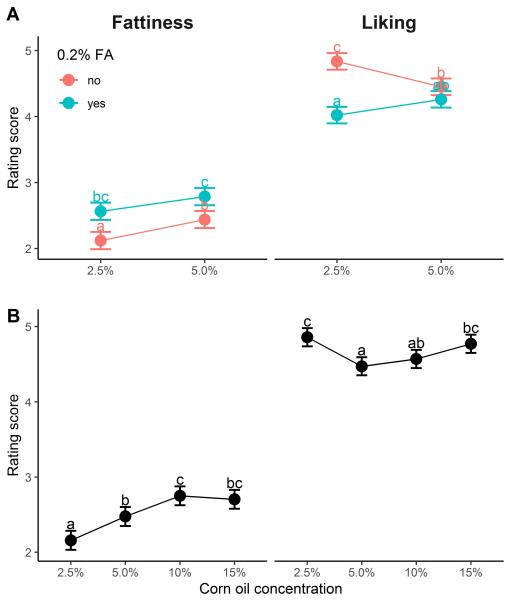
839

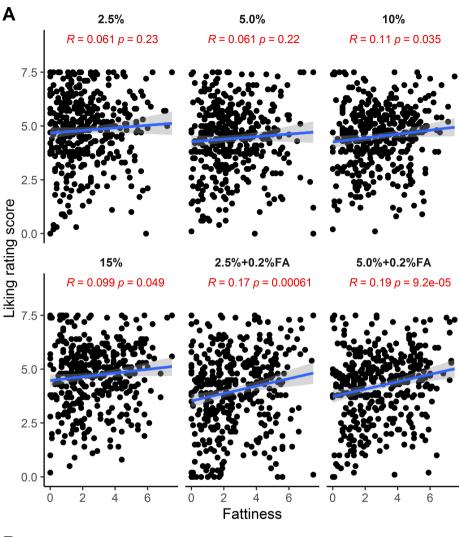
840

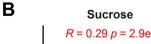
841

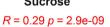
- 843 FA, fatty acid; mvGWAS, multivariate genome-wide association study. Highlighting
- 844 indicates suggestive effects with a *p*-value < 0.05.
- 845 *For *GPR41* and *GPR84*, no variant within the genes was available from the association
- 846 data, so we expanded the region to 500 bp up- and downstream for each site when
- 847 extracting the variant to examine for association. For other details see **Supplementary**
- 848 Tables 5 and 6.

- 849 Supplemental Table 4. The top variant within each candidate gene with effects on
- 850 ratings of potato chips with 5% corn oil (without added fatty acid) had effects on
- 851 fattiness and liking for other types of potato chips. For details, see **Supplemental Table**
- 852 3.
- 853
- 854

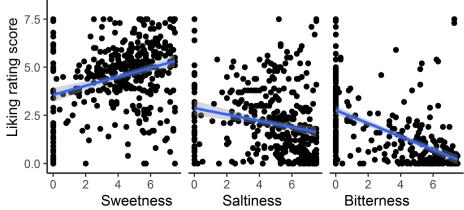

855 Supplemental Table 5. The variant *rs1722501* (chr7:80244694) as proxy for *rs1761667*856 within *CD36* has no significant effect on ratings of potato chip fattiness and liking.


FA, fatty acid; mvGWAS, multivariate genome-wide association study. *rs1761667* (7:80244939) was not in Hardy-Weinberg disequilibrium (p=8.5e-15) and thus did not pass the filter test statistics (p>1e-6); therefore, we extracted the variant *rs1722501*, which had an R^2 >0.99 and linkage disequilibrium>0.99 with *rs1761667*. For this marker, there was no significant effect on fatty and liking for any of the six potato chip types tested. For abbreviations, e.g., MAF, see **Tables 3**.


857 858

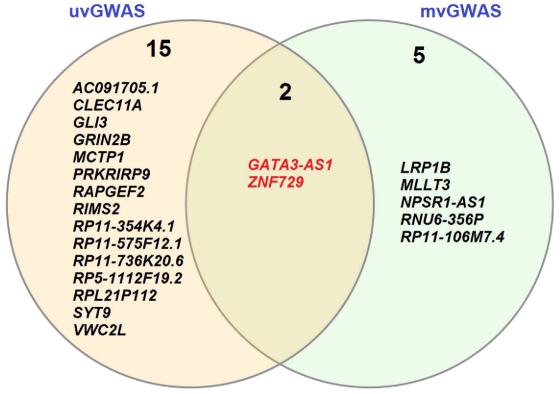

859

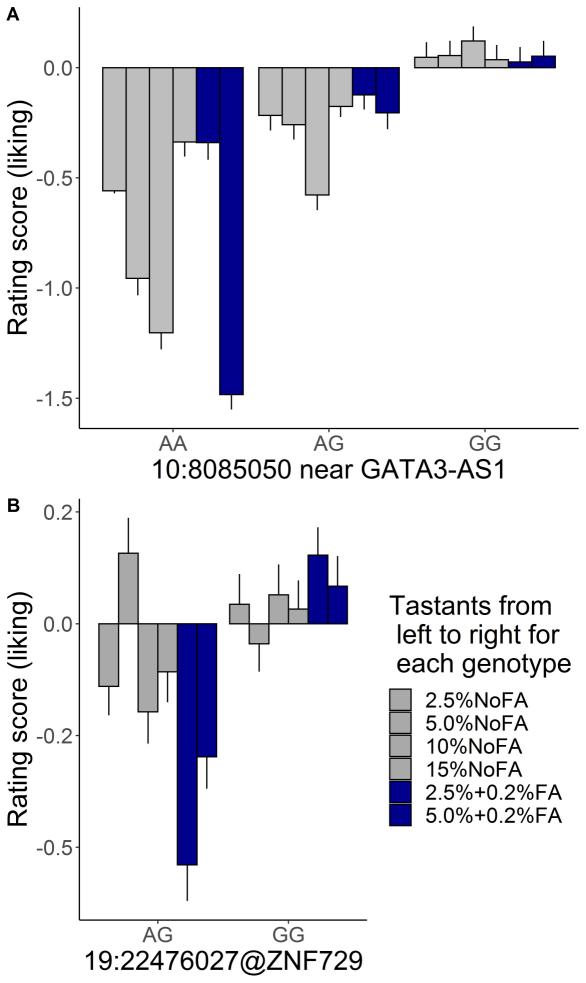
861 **Supplemental Table 6**. Gene set enrichment analysis

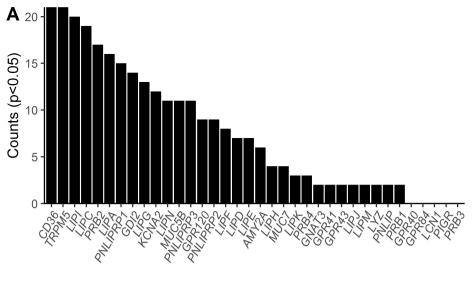


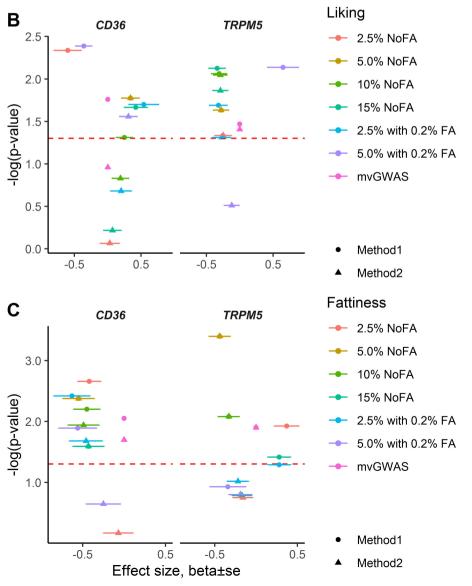
NaCl *R* = -0.22 *p* = 1.2e-05

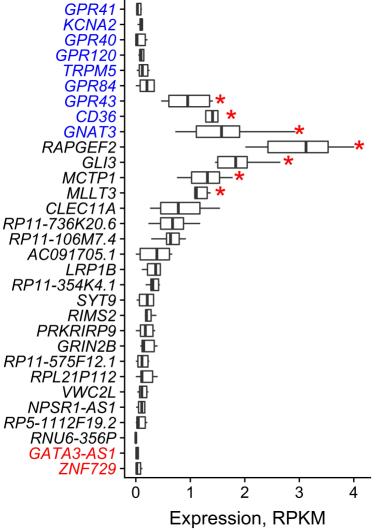
PTC *R* = -0.56 *p* < 2.2e-16


Fattiness


	2.5%	5.0%	10%	15%	2.5%+0.2%FA	5.0%+0.2%FA	
	0.2-	Corr: 0.378	Corr: 0.31	Corr: 0.535	Corr: 0.258	Corr: 0.187	2.5%
	0.0 - 6 - 2 - (it): viencin 0 -	nt doi: bt/ps://doi.org/10 certified by peer review	Corr: 0.11010/2625.701.18.91 w) is the author/funde available under a	Corr: 10448; this version pc r, who has granted bi acc-BY-NC-ND 4.0 Ir	Corr: osted Jahuary 8, 202 ioRxiv a license to disp ternational license.	Corr: 0. The လည်းကြောt hold play the preprint in p	ാ റ്റ്റ് leP for t erpetuit
score	6 - 4 - 2 -			Corr: 0.424	Corr: 0.375	Corr: 0.399	10%
Rating score	6 - 4 - 2 -			\square	Corr: 0.315	Corr: 0.317	15%
	6 - 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2					Corr: 0.414	2.5%+0.2%FA
							5.0%+0.2%FA
в			Rating				


Α


	2.5%	5.0%	10%	15%	2.5%+0.2%FA	5.0%+0.2%FA	
	0.2-	Corr: 0.305	Corr: 0.198	Corr: 0.387	Corr: 0.233	Corr: 0.21	2.5%
	6 - 4 - 2 - 0 -		Corr: 0.394	Corr: 0.293	Corr: 0.361	Corr: 0.338	5.0%
Rating score	6 - 4 - 2 - 0 -		\bigwedge	Corr: 0.355	Corr: 0.403	Corr: 0.438	10%
Rating	6 - 4 - 2 - 0 -			\bigwedge	Corr: 0.338	Corr: 0.347	15%
	6 - 4 - 2 - 0 -				\bigwedge	Corr: 0.472	2.5%+0.2%FA
							5.0%+0.2%FA
			Rating				


Rating score

