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Abstract 36 

Little is known about the species and strain-level diversity of the airway microbiome, 37 

and its implication in chronic obstructive pulmonary disease (COPD). 38 

 39 

Here we report the first comprehensive analysis of the COPD airway microbiome at 40 

species and strain-levels. The full-length 16S rRNA gene was sequenced from 41 

sputum in 98 stable COPD patients and 27 age-matched healthy controls, using the 42 

‘third-generation’ Pacific Biosciences sequencing platform.  43 

 44 

Individual species within the same genus exhibited reciprocal relationships with 45 

COPD and disease severity. Species dominant in health can be taken over by another 46 

species within the same genus in GOLD IV patients. Such turnover was also related 47 

to enhanced symptoms and exacerbation frequency. Ralstonia mannitolilytica, an 48 

opportunistic pathogen, was significantly increased in COPD frequent exacerbators. 49 

There were inflammatory phenotype-specific associations of microbiome at the 50 

species-level. One group of four pathogens including Haemophilus influenzae and 51 

Moraxella catarrhalis, were specifically associated with sputum mediators for 52 

neutrophilic inflammation. Another group of seven species, including Tropheryma 53 

whipplei, showed specific associations with mediators for eosinophilic inflammation. 54 

Strain-level detection uncovered three non-typeable H. influenzae strains PittEE, 55 

PittGG and 86-028NP in the airway microbiome, where PittGG and 86-028NP 56 

abundances may inversely predict eosinophilic inflammation. The full-length 16S data 57 

augmented the power of functional inference and led to the unique identification of 58 

butyrate-producing and nitrate reduction pathways as significantly depleted in COPD. 59 

 60 

Our analysis uncovered substantial intra-genus heterogeneity in the airway 61 

microbiome associated with inflammatory phenotypes and could be of clinical 62 

importance, thus enabled a refined view of the airway microbiome in COPD. 63 

 64 

 65 

  66 
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Introduction 67 

The airway microbiome in chronic obstructive pulmonary disease (COPD) has been 68 

well studied in the last decade. The airway microbiome differs between health and 69 

COPD[1-3], shifts during exacerbations[4-6], associates with airway inflammation[5, 7] 70 

and predicts 1-year mortality of hospitalized exacerbation patients[8], all suggesting 71 

the implication of airway microbiome in COPD pathogenesis. Despite advances, the 72 

precise role of airway microbiome in COPD remains incompletely understood. An 73 

important knowledge gap is that our current view of airway microbiome is limited at 74 

most to its composition at the genus-level, due to insufficient resolution of one or few 75 

hypervariable regions of 16S rRNA gene being sequenced in essentially all previous 76 

studies. In these studies, certain bacterial genera were often reported to be altered as 77 

a whole in disease and in relation to airway inflammation[5, 6]. However, from an 78 

ecological perspective, members of microbial community do not necessarily function 79 

according to their taxonomic groups, instead diversified species can act in ecological 80 

“guilds” that co-adapt to altered environment[9, 10]. Therefore, the aggregated 81 

genus-level associations can be spurious or even misleading due to violation of basic 82 

ecological concepts. The inadequate depth of taxonomic profiling limits not only the 83 

accuracy of ecological inferences but also the ability to identify key bacterial species 84 

to use in follow-up experimental studies. 85 

 86 

The recently advanced ‘third-generation’ sequencing technologies such as Pacific 87 

Biosciences (PacBio) and Nanopore is increasingly applied to microbiome studies[11, 88 

12]. By generating long reads that extend tens of thousands of nucleotides, they offer 89 

the promise of increased taxonomic resolution by sequencing the full-length of 16S 90 

rRNA gene[13]. In these applications, the 16S amplicon is circularized and read 91 

through multiple passes before circular consensus sequences (CCS) is reported, 92 

which greatly reduced the initial high error rate (~10%) of the long-read sequencing to 93 

that comparable to short-read sequencing (~0.5%)[14, 15]. Recent development of 94 

sophisticated denoising algorithms further enable accurate bacterial species 95 

identification at single-nucleotide resolution with near-zero error rate[16]. In some 96 

situations, strain-level identity can be further resolved utilizing information on the full 97 

complement of 16S rRNA gene alleles in bacterial genomes[16, 17]. 98 

 99 

Here we report the first comprehensive analysis of airway microbiome in COPD at 100 

species-level using PacBio sequencing. We also attempted to resolve strain-level 101 

identity when possible. Our results showed that there was substantial intra-genus 102 

diversity and heterogeneity in the airway microbiome that was previously 103 

underappreciated, which was associated with patient clinical features and airway 104 
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inflammatory phenotypes. 105 

 106 

Methods 107 

Subjects and samples 108 

Sputum samples of 98 stable COPD patients and 27 age-matched healthy controls 109 

were collected in the First Affiliated Hospital of Guangzhou Medical University. The 110 

study was approved by the ethics committee of the First Affiliated Hospital of 111 

Guangzhou Medical University (No. 2017-22) and was registered in 112 

www.clinicaltrials.gov (NCT 03240315). All COPD patients met the diagnostic criteria 113 

according to GOLD guideline and were assessed for symptoms and exacerbation 114 

frequency (Table 1). Patients with antibiotic usage within 4 weeks were excluded. 115 

Induced sputum were obtained for all subjects and quality-controlled. A panel of 47 116 

sputum mediators were measured in a subset of 59 patients using custom antibody 117 

microarray[18]. Additional information on sequencing, reagent controls, qPCR, and 118 

statistical analyses are provided in the supplementary document. 119 

 120 

PacBio sequencing and analysis 121 

Bacterial genomic DNA was extracted from selected sputum plugs using Qiagen DNA 122 

Mini kit. Negative controls for extraction and PCR were sequenced with all samples. 123 

The full-length 16S rRNA gene was amplified using barcoded 27F and 1492R primers 124 

and sequenced using PacBio Sequel. Circular consensus sequences (CCS) were 125 

generated using the ccs application in SMRTLink 5.1 with minPasses=5 and 126 

minPredictedAccuracy=0.90. The demultiplexed CCS were analyzed using DADA2 127 

v1.12.1 recently customized for the PacBio full-length 16S sequencing data[16, 19]. 128 

Amplicon sequence variants (ASVs) were assigned to species only if they had unique, 129 

100% identity match to a single species. Sequences were rarefied to 3,119 reads 130 

(Figure S1). 131 

 132 

Strain-level identification 133 

Callahan et al. described a method for strain-level identification using full-length 16S 134 

data leveraging the full complement of 16S rRNA alleles in bacterial genomes[16]. In 135 

principle, a strain can be confidently assigned if all intra-genomic 16S sequence 136 

variants of that strain are recovered in integral ratios according to its genuine allelic 137 

variants. In extension to this approach, we designed a pipeline to assign strain-level 138 

bins in three steps. 1) All species-level ASVs were BLASTn-searched against NCBI-nt 139 

database. ASVs with 100% identity to the same bacterial genome were assigned to 140 

the same initial bins. 2) The ASVs within each initial bin were subject to pairwise 141 

Pearson correlation, to generate refined bins by identifying ASVs with co-occurrence 142 
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pattern (Pearson’s R>0.7). 3) For each refined bins, the copy number ratio of ASVs 143 

were determined based on linear regression coefficient, and reconciled with the 144 

genuine copy number ratio of the 16S alleles in the corresponding bacterial genomes. 145 

The ASVs in integral copy number ratio with the genuine ratio were retained in the 146 

final bins and assigned with strain-level taxonomy. 147 

 148 

Statistical analysis 149 

Differential microbiome features between COPD and controls were identified using 150 

linear discriminant analysis (LDA) effect size (LEfSe) method with LDA>2.0[20]. 151 

Random forest analysis was performed using Weka with 7-fold cross-validation[21]. 152 

To identify microbiome-mediator associations independent of patient demographic 153 

factors, all microbiome features and the 47 sputum mediators were first residualized 154 

using a general linear model adjusting for covariates such as age, gender and 155 

smoking history. An all-against-all correlation analysis was performed on the residues 156 

of microbiome features and mediators using HAllA[22], and was subject to 157 

unsupervised clustering. Co-occurrence analysis of microbiome was performed using 158 

SparCC[23]. Functional inference of microbiome was performed using PICRUSt2[24]. 159 

The false discovery rate (FDR) method was used to adjust P-values. 160 

 161 

Results 162 

Overview of the species-level airway microbiome profile 163 

A total of 2,635,140 high-quality CCS reads were obtained for 98 stable COPD 164 

patients and 27 controls (Table 1). The average number of passes on the 16S gene 165 

was 34.9 for all CCS, equivalent to a low error rate of ~0.48% based on previous 166 

sequencing runs on a mock community[17]. A total of 2,868 non-singleton ASVs were 167 

identified, of which 795 ASVs (27.7%) were putatively assigned to 228 bacterial 168 

species from 92 genera. Twenty species had an average relative abundance greater 169 

than 0.005 (Table 2). The number of species capable of being detected increased by 170 

3.26 folds compared to a re-analysis of all previous COPD airway microbiome studies 171 

using the same pipeline (Table S1). Streptococcus, Prevotella and Neisseria had the 172 

highest number species identified (Figure S2a). There was significant community shift 173 

in COPD versus controls (Figure 1a-b, Adonis, P=0.004). LEfSe analysis identified 11 174 

discriminatory species between COPD and controls (Figure 1c, LDA>2.0). Random 175 

forest analysis using these 11 species yielded significantly increased precision in 176 

classifying patients, compared to that using 9 discriminatory genera with the same 177 

criteria (LDA>2.0) (Figure 1d, Figure S2b, AUC: 0.787 versus 0.706, P=0.026). Figure 178 

1e showed an overview of species-level airway microbiome profile. 179 

 180 
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Overall there were no significant microbial community shifts between smokers and 181 

non-smokers within COPD patients or healthy controls, between patients with and 182 

without inhaled corticosteroid usage, and between frequent and non-frequent 183 

exacerbators (defined as exacerbation events>=2/last year, Figure S3a-b). Among 184 

species with relative abundance>0.001, Haemophilus parahaemolyticus was 185 

significantly increased in COPD smokers (Fold-change=6.40, FDR P=0.02, Figure 186 

S3c). Ralstonia mannitolilytica, an opportunistic pathogen, was significantly increased 187 

in frequent exacerbators (Fold-change=4.94, FDR P=0.005, Figure S3c). The 188 

increase of R. mannitolilytica was further confirmed by qPCR (Figure S3d). 189 

 190 

Substantial intra-genus heterogeneity in the airway microbiome 191 

Inspection of individual species revealed substantial intra-genus heterogeneity in their 192 

relationships with COPD. For example, while Neisseria mucosa was increased in 193 

COPD versus controls, its counterpart Neisseria subflava was significantly depleted 194 

(Figure 1a). The reciprocal relationships with COPD were also observed between 195 

Haemophilus influenzae and Haemophilus parainfluenzae, and between Prevotella 196 

oris and other Prevotella species (Figure S4). The species also altered differently with 197 

enhanced disease severity. For example, H. parainfluenzae and N. subflava were the 198 

most predominant species within the respective genera in healthy subjects, while H. 199 

influenzae and N. meningtidis took over and became over-dominant in GOLD IV 200 

patients (Figure 2a). Within Streptococcus, Streptococcus salivarius and 201 

Streptococcus thermophilus were most highly abundant in GOLD I patients, whereas 202 

Streptococcus pseudopneumoniae and Streptococcus pneumoniae became 203 

dominant in GOLD II and IV patients respectively (Figure 2a). Similar turnovers were 204 

also observed in patients classified using new GOLD classification scheme based on 205 

mMRC, CAT score and exacerbation frequency[25] (Figure S5). Opposite 206 

relationships with patient sputum neutrophilic levels were further observed between H. 207 

influenzae and H. parainfluenzae (Figure 2b), and between Prevotella 208 

melaninogenica and Prevotella denticola (Figure S6a). Individual species within the 209 

same genus exhibited disproportionately more co-exclusive than co-occurrence 210 

relationships (Figure 2c, Figure S6b), indicating ecological competition. qPCR using 211 

primers designed on species-specific genes showed concordance between the 212 

absolute count and relative abundance of H. influenzae and H. parainfluenzae (Figure 213 

2d), as well as two other paired species within Streptococcus and Prevotella (Figure 214 

S6c), indicating accuracy of our approach in species quantification. These results 215 

suggested that there were substantial intra-genus heterogeneity resulting from 216 

interspecific competition in the airways. 217 

 218 
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Specific bacterial species were associated with neutrophilic or eosinophilic 219 

inflammation 220 

To investigate how the intra-genus heterogeneity was related to airway inflammation, 221 

we performed an all-against-all correlation analysis between the species-level 222 

microbiome features and a panel of 47 sputum inflammatory mediators measured in a 223 

subset of 59 COPD patients. We used residualized correlation to identify 224 

microbiome-mediator correlations independent of patient demographic co-factors[22]. 225 

Unsupervised clustering based on the correlation profile revealed four clusters of 226 

bacterial species that each had distinct association patterns with three groups of 227 

mediators (Group 1-3, Figure 3). Four pathogens, Moraxella catarrhalis, 228 

Pseudomonas aeruginosa, N. meningtidis and H. influenzae, exhibited negative 229 

associations with a group of 11 mediators mostly Th2-related (i.e. IL-5, IL-13, CCL17), 230 

while they were positively correlated with a group of 21 mediators mostly Th1, 231 

Th17-related or pro-inflammatory (i.e. IL-8, IL-17, MMP-8), and had mixed 232 

relationships with the remaining mediators. By contrast, another seven species, 233 

Prevotella aurantiaca, Fusobacterium nucleatum, Leptotrichia buccalis, Prevotella 234 

histicola, Porphyromonas gingivalis, N. mucosa and Tropheryma whipplei, were 235 

specifically associated with increased Th2 mediators. Members of the two groups of 236 

mediators further showed specific correlations with increased sputum neutrophil or 237 

eosinophil percentages respectively (FDR P<0.05), in agreement with their roles in 238 

neutrophilic or eosinophilic inflammation. Correspondingly, all seven species were 239 

increased in the eosinophilic COPD patients (eosinophil>3%, Figure S7a). The 240 

increase of T. whipplei was further confirmed by qPCR (Figure S7b). Such clustering 241 

patterns were however not observed at the genus-level (Figure S8), indicating 242 

microbiome associates with airway inflammatory phenotypes in a species-specific 243 

manner. 244 

 245 

Strain-level identification of the airway microbiome 246 

We further explored possible strain-level diversity in the airway microbiome. Recent 247 

studies showed that it is possible to resolve strain-level identity using full-length 16S 248 

sequences by leveraging the power of the full complement of 16S rRNA alleles within 249 

bacterial genomes[16, 17]. Using a set of stringent criteria (see methods, Figure S9), 250 

we were able to identify ASV bins corresponding to 10 bacterial strains (Table S2). For 251 

the first time, we identified three non-typeable H. influenzae (NTHi) strains PittEE, 252 

PittGG and 86-028NP in the airway microbiome, although the major allele of 253 

86-028NP was not detected (Figure 4a-b). All three strains increased in COPD versus 254 

controls, and were associated with distinct groups of mediators (Figure 4c). Notably, 255 

86-028NP and PittGG exhibited inverse associations with Th2 chemokines such as 256 
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CCL17 and CCL13 related to eosinophilic inflammation. qPCR using strain-specific 257 

primers validated our results in PittEE and PittGG (Figure 4d), although the strain 258 

detection rate by sequencing was lower than that using qPCR. qPCR for 86-028NP 259 

yield positive but non-significant correlation (Figure 4d). 260 

 261 

A systematic evaluation of 16S sub-regions for airway microbiome profiling 262 

The full-length 16S sequences can serve as a benchmark for a systematic evaluation 263 

on the performance of individual hypervariable regions for airway microbiome studies. 264 

We created partitions of 16S sequences from the full-length data according to nine 265 

hypervariable regions used in previous COPD microbiome studies, and analyzed 266 

each partition separately. Among all sub-regions, V1V3 and V3V4 were the highest in 267 

the number of species assigned as well as the proportion of sequences assigned to 268 

species (Figure S10a). In addition, the V1V3 and V3V4 regions captured the greatest 269 

microbial beta diversity measured using pairwise Bray-Curtis dissimilarity, whereas 270 

the diversity was the lowest for V4 (Figure S10a). The V4 region was particularly poor 271 

in classifying Proteobacteria and Actinobacteria, with 79.8% and 90.9% of sequences 272 

from these two phyla unable to be assigned to species (Figure S10b). The V1V3 273 

region also bear the highest similarity with the full-length data in microbial community 274 

composition (Mantel test, Figure S10c).  275 

 276 

Full-length 16S sequences enhanced the power of functional inference 277 

PICRUSt is a useful tool to infer functional capacity of microbiome based on 16S 278 

sequences[26]. PICRUSt analysis using the full-length 16S data enhanced the power 279 

of functional inference by increasing the predicted pathway abundances by an 280 

average 1.83 fold compared to individual sub-regions. Again, V1V3 were next best in 281 

terms of the predicted pathway abundances (Figure S10a). 282 

 283 

The augmented power of functional prediction led to the unique identification of 9 284 

pathways as disease-associated using the full-length 16S data (Table S3). Of interest 285 

are two pathways ‘acetyl-CoA fermentation to butyrate’ and ‘nitrate reduction’, both 286 

inferred as significantly depleted in COPD (FDR P<0.05, Figure 4e, Figure S11). 287 

qPCR using validated broad-spectrum primers on 288 

butyryl-CoA:acetate-CoA-transferase gene[27] in the butyrate pathway confirmed our 289 

findings by showing 4.32 fold decrease of the gene in COPD versus controls (Table 290 

S4). Furthermore, the two pathways showed inverse correlations with IL-17, which 291 

were more pronounced when inferred from full-length 16S data than from sub-regions 292 

(Figure 4f).  293 

 294 
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Discussion 295 

Here we provided the first comprehensive insights on the COPD airway microbiome at 296 

the species and strain-levels. By applying the ‘third-generation’ sequencing to the 297 

full-length 16S rRNA gene, we uncovered diversity and complexity in the airway 298 

microbiome at in-depth taxonomic levels that were previously underappreciated. In 299 

light of our results, many aspects of our understanding of the COPD airway 300 

microbiome need to be refined.  301 

 302 

Our results showed that there were substantial intra-genus heterogeneity in the 303 

airway microbiome in relation to patient clinical outcomes. Individual species within 304 

the same genus often altered differentially in COPD and with enhanced clinical 305 

severity and exacerbation frequency. The species predominant in healthy state can be 306 

taken over by another species within the same genus in severe COPD patients. 307 

Therefore, the genus-level associations reported in all previous airway microbiome 308 

studies likely represent a weakened signal confounded by the mixed effects of 309 

individual species within and should therefore be interpreted with caution. 310 

Unsupervised cluster analysis identified two groups of bacterial species showing 311 

specific associations with mediators related to neutrophilic or eosinophilic 312 

inflammation respectively. The neutrophil-associated species included respiratory 313 

pathogens like H. influenzae and Moraxella catarrhalis[28]. The eosinophil-associated 314 

species included T. whipplei, a clinically important species reported to be implicated in 315 

pneumonia[29], HIV infection[30] and eosinophilic, corticosteroid-resistant asthma[31, 316 

32]. Such clustering pattern was non-existent at the genus-level. Hence the 317 

species-level delineation enabled a more ecologically coherent view of airway 318 

microbiome according to inflammatory phenotypes. 319 

 320 

In extension to a previous approach[16], we detected three NTHi clinical strains 321 

PittEE, PittGG and 86-028NP in the airway microbiome with reasonably high 322 

confidence, based on which the strain-level heterogeneity was also observed in the 323 

airways. All three strains were initially isolated from otitis media patients[33-35]. It has 324 

been shown that the PittGG strain, by possessing an extra cluster of 339 genes and a 325 

Hif-type pili structure, conveyed greater virulence than PittEE[34]. qPCR assays 326 

based on alpA gene on this extra locus confirmed our results in PittGG quantification. 327 

While all three strains were related to increased Th1/Th17 mediators, 86-028NP and 328 

PittGG were further associated with decreased Th2-related CCL13 and CCL17, 329 

indicating their abundances may negatively predict eosinophilic inflammation. We 330 

realize that the strain-level diversity and detection rate remained relatively low, which 331 

is a caveat due to inherently limited power of 16S sequences in strain-level resolution 332 
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and its sensitivity to potential sequencing errors. 333 

 334 

We identified Ralstonia mannitolilytica as significantly increased in COPD patients 335 

with frequent exacerbator phenotype. R. mannitolilytica is an opportunistic pathogen 336 

that has been recovered from cystic fibrosis airways[36]. In a previous report, the 337 

same species was isolated from one COPD exacerbation patient in western China 338 

with extreme symptoms and acute respiratory failure[37]. Ralstonia spp. rarely cause 339 

infection in healthy individuals but can be a severe pathogen especially in 340 

immunosuppressed patients[38]. Therefore, the presence of R. mannitolilytica in 341 

stable COPD patients may be an important contributing factor in predisposing patients 342 

to recurrent infection and exacerbations. 343 

 344 

The systematic comparison of 16S sub-regions indicated that V1V3 performed the 345 

best in terms of microbial diversity and the power of functional inference. Our results 346 

are consistent with the analysis by Johnston et al.[17], and should guide future studies 347 

that sequencing V1V3 region may be a surrogate for the full-length 16S data. 348 

Conversely, sequencing V4 alone, despite its wide usage in airway microbiome 349 

studies, might not provide sufficient resolution for in-depth taxonomic profiling. 350 

 351 

With augmented power in functional inference, we identified butyrate-producing and 352 

nitrate reduction pathways as uniquely depleted in COPD using full-length 16S data. 353 

Butyrate is a well-characterized microbial metabolite with anti-inflammatory effects[39], 354 

and nitric oxide, the end product of nitrate reduction, may also have 355 

disease-ameliorating role via suppressing NLRP3 inflammasome activation[40]. 356 

Functional validations are warranted to explore these microbial metabolites as novel 357 

therapies for COPD. 358 

 359 

The limitations of this study include its single-centered, cross-sectional design, the 360 

relatively small group of healthy subjects, and the absence of sufficient data to explore 361 

species-specific relationships with other etiological factors such as viral infections. 362 

The species-level characterization on larger, longitudinal cohorts is necessary to 363 

understand how species alter differentially during exacerbations and to treatment, the 364 

temporal dynamics of ecological heterogeneity, and its underlying relationships with 365 

airway inflammation and disease progression. 366 

 367 

In summary, we reported the comprehensive landscape of COPD airway microbiome 368 

at species and strain-levels. We showed there was substantial intra-genus 369 

heterogeneity associated with patient clinical outcome and inflammatory phenotypes. 370 
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Sequencing the full-length 16S rRNA gene enabled a refined, ecologically coherent 371 

view on the composition and function of the COPD airway microbiome, and should 372 

see a wider applicability in airway microbiome studies in future. 373 

 374 
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Figure legends 379 

Figure 1. The overview of species-level profile of the airway microbiome in 380 

COPD patients and healthy controls. a) Principal coordinate analysis based on 381 

weighted UniFrac distance on sputum samples from 98 COPD patients and 27 382 

healthy controls. b) The Shannon diversity and relative abundances of major genera 383 

(relative abundance>0.005) in COPD patients and healthy controls. c) The 11 top 384 

discriminatory species-level taxa between COPD and controls as identified from 385 

LEfSe analysis (LDA>2.0). d) The receiver operating characteristic curves for the 386 

Random Forest analyses using the 11 species-level and 9 genus-level discriminatory 387 

taxa (LDA>2.0) to segregate COPD patients from controls. e) The heatmap for the 388 

species-level microbiome profile. The major species-level taxa (relative 389 

abundance>0.001) within each genus in panel b) were shown. The fold change of 390 

each species (Sp) and its corresponding genus (Gn) in COPD patients versus 391 

controls were shown beside the taxonomy.  392 

 393 

Figure 2. The intra-genus heterogeneity of the airway microbiome. a) The 394 

alternation of major species in Haemophilus, Neisseria, Streptococcus and Prevotella 395 

between healthy controls and COPD patients with increasing disease severity based 396 

on GOLD classification (spirometry-based). The number of subjects in each subgroup 397 

was indicated in the parenthesis. b) The reciprocal relationship between H. influenzae 398 

and H. parainfluenzae with sputum neutrophilic percentage. c) More pervasive 399 

co-exclusive than co-occurrence relationships between major species in Prevotella, 400 

Streptococcus, Neisseria and Haemophilus. Only significant correlations were shown 401 

in the networks (SparCC, P<0.05). Co-exclusion relationships were in red, whereas 402 

co-occurrence relationships were in grey. d) qPCR assays using species-specific 403 

primers showed concordance between absolute counts and relative abundances of H. 404 

influenzae and H. parainfluenzae.  405 

 406 

Figure 3. Species-specific association of airway microbiome with inflammatory 407 

phenotypes. Unsupervised hierarchical cluster analysis on an all-against-all 408 

correlation profile between species-level microbiome features and 47 sputum 409 

mediators from a subset of 59 COPD patients (Ward’s method). The species were 410 

shown if they had relative abundance>0.001 and were significantly associated with at 411 

least one of the 47 sputum mediators (HAllA, FDR P<0.05). The mediators were 412 

clustered into three groups and termed based on their classes and associations with 413 

airway eosinophils or neutrophils (Group 1: Th2-related, Group 2: 414 

Th1/Th17/Pro-inflammatory-related, Group 3: Others). The microbiome features were 415 

clustered into four groups based on their association patterns with the three groups of 416 
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mediators (termed “Pro-inflammatory”, “Neutrophilic”, “Eosinophilic” and 417 

“Anti-inflammatory”). The significant associations were indicated in asterisks. 418 

Significant positive and negative associations between sputum mediators and 419 

neutrophilic and eosinophilic percentages were shown on bottom of the heatmap 420 

(FDR P<0.05). 421 

 422 

Figure 4. Strain-level identification and functional inference of the airway 423 

microbiome. a) The strong correlation pattern between pairs of ASVs assigned to the 424 

strains PittEE, PittGG and 86-028NP (Pearson’s R>0.93). b) The copy number of the 425 

highly-correlated ASVs are in integral ratio with the genuine allelic frequency of the 426 

16S rRNA genes within the genome (PittEE 3:3, PittGG 5:1, 86-028NP 4:1:1), 427 

supporting the assignment of the ASVs to the corresponding strains. The major 16S 428 

allele of the 86-028NP strain was not detected. c) Significant associations between 429 

the three H. influenzae strains with sputum mediators (Spearman, FDR P<0.05). d) 430 

qPCR results using strain-specific primers for the three H. influenzae strains in 431 

relation to their relative abundances in the sequencing data. e) The abundances of 432 

the two pathways ‘PWY-5676: acetyl-CoA fermentation to butyrate’ and ‘PWY-490-3: 433 

nitrate reduction’ in COPD and healthy subjects as inferred from the full-length (V1V9) 434 

and V1V3 data using PICRUSt2 (** FDR P<0.01, * FDR P<0.05). f) The two pathways 435 

showed negative correlations with IL-17, which was more pronounced when inferred 436 

from full-length 16S sequences than V1V3 sequences. 437 

  438 
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Table 1. Major demographic and clinical characteristics of subjects. 439 

Demographic and clinical features 
Healthy  

(n=27) 

COPD  

(n=98) 

P-value 

Age 65.4 (10.8) 66.2 (8.9) 0.67 

Gender, n(M/F) 23/4 89/9 0.48 

Current smoking, n(Y/N) 9/18 85/13 1.0e-4*** 

GOLD (1/2/3/4) NA 24/33/32/9 NA 

New GOLD (a/b/c/d)$ NA 39/38/4/17 NA 

Frequent exacerbator (Y/N) $$ NA 20/78 NA 

ICS usage (Y/N) NA 58/40 NA 

pre-FEV1 (L) 2.8±0.1 1.5±0.1 5.1e-10*** 

pre-FVC (L) 3.4±0.2 2.9±0.1 0.01** 

pre-FEV1 (%) 100.0±2.6 56.1±2.7 1.0e-10*** 

pre-FEV1/FVC 0.81±0.01 0.49±0.02 2.5e-13*** 

post-FEV1 (L) NA 1.6±0.7 NA 

post-FVC (L) NA 3.1±0.8 NA 

post-FEV1 (%) NA 59.6±2.6 NA 

post-FEV1/FVC NA 0.5±0.1 NA 

CAT score NA 4.0±0.6 NA 

mMRC NA 0.4±0.1 NA 

Total sputum cells (cells×109/L) NA 20.4±2.8 NA 

Sputum neutrophils (%) NA 86.2±1.2 NA 

Sputum eosinophils (%) NA 5.3±0.7 NA 

Sputum lymphocyte (%) NA 0.7±0.1 NA 

Sputum monocyte (%) NA 7.9±1.1 NA 

Continuous data are present as mean (range) or mean±SEM. 440 

P-value was calculated using Fisher exact test for categorical variables and using Wilcoxon 441 

rank-sum test for continuous variables. *** P<0.001; ** P<0.01; * P<0.05 442 

ICS: inhaled corticosteroids; FEV1: forced expiratory volume in one second; FVC: forced vital 443 

capacity, CAT: COPD Assessment Test, mMRC: modified Medical Research Council. 444 

$ The new GOLD classification based on mMRC, CAT and exacerbation frequency[25]. 445 

$$ The frequent exacerbator was defined as exacerbation event >=2/last year. 446 

 447 

  448 
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Table 2. The major species-level taxa identified in this study (average relative 449 

abundance>0.005). 450 

Species All 
average 

COPD 
average 

Healthy 
average 

Fold 
change 

FDR 
P-value 

Prevotella intermedia 0.005  0.006  0.005  1.191  0.319  

Prevotella melaninogenica 0.060  0.057  0.071  0.801  0.342  

Prevotella pallens 0.013  0.012  0.017  0.700  0.0140*  

Streptococcus 

pseudopneumoniae 
0.017  0.020  0.004  5.667  0.222  

Streptococcus salivarius 0.013  0.015  0.004  3.664  0.277  

Streptococcus thermophilus 0.027  0.030  0.014  2.228  0.809  

Haemophilus influenzae 0.043  0.052  0.008  6.779  0.617  

Haemophilus 

parahaemolyticus 
0.009  0.010  0.004  2.564  0.204  

Haemophilus parainfluenzae 0.012  0.009  0.020  0.474  0.0074** 

Neisseria meningitidis 0.009  0.009  0.008  1.044  0.128  

Neisseria mucosa 0.007  0.008  0.002  4.452  0.785  

Neisseria perflava 0.011  0.012  0.005  2.391  0.742  

Neisseria subflava 0.017  0.012  0.036  0.330  0.0415* 

Fusobacterium nucleatum 0.016  0.013  0.027  0.495  0.139  

Fusobacterium 

periodonticum 
0.014  0.012  0.022  0.531  0.0199*  

Pseudomonas aeruginosa 0.016  0.020  0.000  NA 0.105  

Moraxella catarrhalis 0.030  0.038  0.001  28.947  0.275  

Veillonella parvula 0.005  0.004  0.010  0.439  0.208  

Porphyromonas gingivalis 0.010  0.009  0.015  0.570  0.282  

Campylobacter concisus 0.006  0.006  0.007  0.902  0.233  

P-value was calculated using Wilcoxon rank-sum test. *** FDR P<0.001; ** P<0.01; * P<0.05 451 

 452 

  453 
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