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ABSTRACT

Cells have evolved specialized protein disaggregases to reverse toxic protein aggregation and
restore protein functionality. In nonmetazoan eukaryotes, the AAA+ disaggregase Hsp78
resolubilizes and reactivates proteins in mitochondria. Curiously, metazoa lack Hsp78. Hence,
whether metazoan mitochondria reactivate aggregated proteins is unknown. Here, we establish
that a mitochondrial AAA+ protein, Skd3 (human CLPB), couples ATP hydrolysis to protein
disaggregation and reactivation. The Skd3 ankyrin-repeat domain combines with conserved
AAA+ elements to enable stand-alone disaggregase activity. A mitochondrial inner-membrane
protease, PARL, removes an autoinhibitory peptide from Skd3 to greatly enhance disaggregase
activity. Indeed, PARL-activated Skd3 dissolves a-synuclein fibrils connected to Parkinson’s
disease. Human cells lacking Skd3 exhibit reduced solubility of various mitochondrial proteins,
including anti-apoptotic Hax1. Importantly, Skd3 variants linked to 3-methylglutaconic aciduria,
a severe mitochondrial disorder, display diminished disaggregase activity (but not always
reduced ATPase activity), which predicts disease severity. Thus, Skd3 is a potent protein

disaggregase critical for human health.
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INTRODUCTION

Protein aggregation and aberrant phase transitions arise from a variety of cellular stressors and
can be highly toxic (Chuang et al., 2018; Eisele et al., 2015; Guo et al., 2019). To counter this
challenge, cells have evolved specialized protein disaggregases to reverse aggregation and
restore resolubilized proteins to native structure and function (Shorter, 2017; Shorter and
Southworth, 2019). Indeed, protein disaggregases are conserved across all domains of life, with
orthologues of Hsp104, a ring-shaped hexameric AAA+ protein, powering protein
disaggregation and reactivation (as opposed to degradation) in eubacteria and nonmetazoan
eukaryotes (Glover and Lindquist, 1998; Goloubinoff et al., 1999; Queitsch et al., 2000; Shorter,
2008). In nonmetazoan eukaryotes, Hsp104 functions in the cytoplasm and nucleus (Parsell et
al., 1994; Tkach and Glover, 2008; Wallace et al., 2015), whereas the closely-related AAA+
disaggregase, Hsp78, resolubilizes and reactivates proteins in mitochondria (Krzewska et al.,
2001; Schmitt et al., 1996). Curiously, at the evolutionary transition from protozoa to metazoa
both Hsp104 and Hsp78 are lost and are subsequently absent from all animal species (Erives and
Fassler, 2015). This loss off Hsp104 and Hsp78 is perplexing given that toxic protein
aggregation remains a major challenge in metazoa (Eisele et al., 2015). Indeed, it is even more
baffling since ectopic expression of Hsp104 is well tolerated by animal cells and can be
neuroprotective in animal models of neurodegenerative disease (Cushman-Nick et al., 2013;
Dandoy-Dron et al., 2006; Jackrel et al., 2014; Lo Bianco et al., 2008; Perrin et al., 2007; Satyal

et al., 2000; Vacher et al., 2005).

Metazoa may partially compensate for the absence of Hsp104 activity in the cytoplasm and

nucleus with alternative general protein-disaggregase systems, such as Hsp110, Hsp70, Hsp40,
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and small heat-shock proteins (Mattoo et al., 2013; Nillegoda et al., 2015; Shorter, 2011) as well
as client-specific disaggregases in the cytoplasm such as nuclear-import receptors (Guo et al.,
2019; Guo et al., 2018; Niaki et al., 2020; Yoshizawa et al., 2018). However, Hsp110 is not
found in mitochondria (Voos and Rottgers, 2002). Thus, it continues to remain uncertain
whether, in the absence of Hsp78, metazoan mitochondria harbor a disaggregase that solubilizes

and reactivates aggregated proteins.

Here, we investigate if Skd3 (human CLPB) might act as a mitochondrial protein disaggregase in
metazoa (Fig. 1a). Skd3 is a ubiquitously expressed, mitochondrial AAA+ protein of poorly-
defined function, which is related to Hsp104 and Hsp78 via its HCLR clade AAA+ domain (Fig.
la, S1) (Erzberger and Berger, 2006; Perier et al., 1995). Skd3 appears to play an important role
in maintaining mitochondrial structure and function (Chen et al., 2019). Curiously, Skd3 first
appears in evolution alongside Hsp104 and Hsp78 in choanoflagellates, a group of free-living
unicellular and colonial flagellate eukaryotes that are the closest extant protozoan relatives of
animals (Fig. 1b and S2) (Brunet and King, 2017; Erives and Fassler, 2015). During the complex
evolutionary transition from protozoa to metazoa, Skd3 is retained, whereas Hsp104 and Hsp78
are lost (Erives and Fassler, 2015). Indeed, Skd3 is conserved in many metazoan lineages (Fig.

la,b, S1, and S2) (Erives and Fassler, 2015).

Skd3 is comprised of a mitochondrial-targeting signal (MTS), followed by a short hydrophobic
stretch, an ankyrin-repeat domain (ANK), an AAA+ nucleotide-binding domain (NBD), and a
small C-terminal domain (CTD) (Fig. 1a). The Skd3 NBD closely resembles NBD2 of Hsp104

and Hsp78 (Fig. la, S1). Aside from this similarity, Skd3 is highly divergent from Hsp104 and
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Hsp78 (Fig. 1a, S1). For example, Skd3, Hsp104, and Hsp78 all have short CTDs, but these are
divergent with the Skd3 CTD being basic compared to the more acidic Hsp104 and Hsp78 CTDs
(Fig. S1). Moreover, the other domains in Hsp104 (N-terminal domain [NTD], NBDI, and
middle domain [MD]) and Hsp78 (NBD1 and MD) are not found in Skd3 (Fig. 1a, S1). In their
place, is an ankyrin-repeat domain (Fig. 1a), which interestingly is an important substrate-
binding domain of another protein disaggregase, chloroplast signal recognition particle 43
(cpSRP43) (Jaru-Ampornpan et al., 2013; Jaru-Ampornpan et al., 2010; McAvoy et al., 2018;

Nguyen et al., 2013).

Importantly, mutations in the Skd3 ankyrin-repeat domain and NBD are linked to the rare, but
severe mitochondrial disorder, 3-methylglutaconic aciduria, type VII (MGCA?7) (Capo-Chichi et
al., 2015; Kanabus et al., 2015; Kiykim et al., 2016; Pronicka et al., 2017; Saunders et al., 2015;
Wortmann et al., 2016; Wortmann et al., 2015). MGCA7 is an autosomal recessive metabolic
disorder that presents with increased levels of 3-methylglutaconic acid (3-MGA), neurologic
deterioration, and neutropenia (Wortmann et al., 2016). Typically, patients present with infantile
onset of a progressive encephalopathy with movement abnormalities and delayed psychomotor
development (Wortmann et al., 2016). Other common, but variable, phenotypes include
cataracts, seizures, and recurrent infections (Wortmann et al., 2016). These issues can be severe
with afflicted infants typically only living for a few weeks or months (Wortmann et al., 2016).
Patients may also present with more moderate phenotypes, including neutropenia, hypotonia,
spasticity, movement abnormalities, epilepsy, and intellectual disability (Wortmann et al., 2016).
Mildly affected individuals have no neurological problems, normal life expectancy, but present

with neutropenia (Wortmann et al., 2016). There is no cure and no effective therapeutics for
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severe or moderate forms of MGCA7. Moreover, little is known about how Skd3 mutations

might cause disease.

Collectively, these various observations concerning Skd3 led us to hypothesize that Skd3 is a
metazoan mitochondrial protein disaggregase of key importance for mitochondrial proteostasis.
We further hypothesized that MGCA7-associated Skd3 mutations would disrupt disaggregase
activity. Our investigation of these hypotheses is detailed below. Briefly, we find that Skd3 is an
ATP-dependent mitochondrial protein disaggregase that is activated by the rhomboid protease

PARL and inactivated by MGCA7-linked mutations.
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RESULTS

Skd3 couples ATP hydrolysis to protein disaggregation and reactivation

To biochemically dissect the activity of Skd3, we purified full-length Skd3 (see Materials and
methods), lacking the mitochondrial targeting signal, which is cleaved by the mitochondrial-
processing peptidase (MPP) upon import into mitochondria (termed mppSkd3) (Fig. 2a, S3a-d)
(Claros and Vincens, 1996; Wortmann et al., 2015). We first assessed that ATPase activity of
mppSkd3 and found that it is active (Fig. 2b, S4a). Indeed, mppSkd3 displayed robust ATPase

activity that was comparable to Hsp104 (Fig. 2b, S4a).

To determine if mppSkd3 is a disaggregase we used a classic aggregated substrate, urea-denatured
firefly luciferase aggregates, which form aggregated structures of ~500-2,000 kDa and greater
in size that are devoid of luciferase activity (DeSantis et al., 2012; Glover and Lindquist, 1998).
mppSkd3 displayed robust disaggregase activity in the presence of ATP (Fig. 2c, S4b,c). Indeed,
mppSkd3 displayed ~40% of the disaggregase activity of Hsp104 plus Hsp70 and Hsp40 under
these conditions (Fig. 2¢). While Hsp104 required the presence of Hsp70 and Hsp40
disaggregate luciferase (Fig. 2c, S4b,c) (DeSantis et al., 2012; Glover and Lindquist, 1998),
mppSkd3 had no requirement for Hsp70 and Hsp40 (Fig. 2¢, S4b,c). This finding indicates that

mppSkd3 is a stand-alone disaggregase.

Next, we assessed the nucleotide requirements for mppSkd3 disaggregase activity. mppSkd3
disaggregase activity was supported by ATP but not by the absence of nucleotide or the presence

of ADP (Fig. 2¢c, S4b, d). Likewise, neither the non-hydrolyzable ATP analogue, AMP-PNP, nor

the slowly hydrolyzable ATP analogue, ATPYS, could support mppSkd3 disaggregase activity
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(Fig. S4b, d). Collectively, these data suggest that mppSkd3 disaggregase activity requires
multiple rounds of rapid ATP binding and hydrolysis, which is mechanistically similar to

Hsp104 (Shorter and Lindquist, 2004, 2006).

We next investigated the role of conserved AAA+ elements in Skd3 activity. Thus, we mutated:
(1) a critical lysine in the Walker A motif to alanine (K387A), which is predicted to disrupt ATP
binding and hydrolysis (Hanson and Whiteheart, 2005); (2) a critical glutamate in the Walker B
motif to glutamine (E455Q), which is predicted to disrupt ATP hydrolysis but not ATP binding
(Hanson and Whiteheart, 2005); and (3) a highly-conserved tyrosine in the predicted -GY VG-
substrate-binding loop to alanine that is predicted to disrupt substrate binding (Y430A) (Gates et
al., 2017; Hanson and Whiteheart, 2005). The equivalent Walker A, Walker B, and substrate-
binding loop mutations in NBD1 and NBD2 of Hsp104 severely disrupt disaggregase activity
(DeSantis et al., 2012; Lum et al., 2004; Torrente et al., 2016). Likewise, mppSkd3*%3%74 (Walker
A mutant) and mppSkd35433Q (Walker B mutant) displayed greatly reduced ATPase and
disaggregase activity (Fig. 2d, e). Thus, mppSkd3 couples ATP binding and hydrolysis to protein
disaggregation.

Interestingly, the pore-loop variant, pppSkd3 Y4304

, exhibited reduced ATPase activity compared
to mppSkd3, but much higher ATPase activity than mppSkd3%387A and mppSkd3E4°Q (Fig. 2d). This
reduction in ATPase activity was unexpected as equivalent mutations in Hsp104 do not affect
ATPase activity (DeSantis et al., 2012; Lum et al., 2008; Lum et al., 2004; Torrente et al., 2016).

mppSkd3 Y4304 was also devoid of disaggregase activity (Fig. 2¢). The inhibition of disaggregase

activity by Y430A was much more severe than the inhibition of ATPase activity (Fig. 2d, e),


https://doi.org/10.1101/2020.01.17.911016

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.17.911016; this version posted January 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

which suggests that the pore-loop Y430 might make direct contact with substrate to drive protein
disaggregation as in Hsp104 (DeSantis et al., 2012; Gates et al., 2017). Thus, the conserved

substrate-binding tyrosine of the -GY VG- pore-loop is critical for mppSkd3 disaggregase activity.

Skd3 disaggregase activity is enhanced by PARL cleavage

We noticed that Skd3 contains an undefined, 35-amino acid, hydrophobic stretch between the N-
terminal MTS and the ankyrin-repeat domain (Fig. 1a, S5a). Intriguingly, Skd3 is cleaved by the
inner-membrane rhomboid protease, PARL, at amino acid 127, between the 35-amino acid,
hydrophobic stretch and the ankyrin-repeat domain (Fig. S5a) (Saita et al., 2017; Spinazzi et al.,
2019). Sequence analysis shows that the Skd3 35-amino acid, hydrophobic stretch and the
PARL-cleavage motif are both highly conserved among mammalian species (Fig. S6a). Thus, we
hypothesized that this 35-amino acid, hydrophobic stretch might be auto-inhibitory for Skd3

activity.

To determine whether PARL cleavage of this 35-amino acid, hydrophobic stretch regulates Skd3
activity, we purified Skd3 without this region (parLSkd3) (Fig. 3a). We found that PARL
cleavage slightly decreased Skd3 ATPase activity compared to mppSkd3 (Fig. 3b, S6b).
Moreover, we find that mppSkd3 ATPase activity is not stimulated by the model substrate, casein,
a classic peptide-stimulator of Hsp104 ATPase activity (Fig. S7a) (Cashikar et al., 2002; Gates et
al., 2017). By contrast, par.Skd3 ATPase activity is mildly stimulated by casein (Fig. S7a). This
finding indicates that parL.Skd3 may interact more effectively with substrates than mppSkd3 due

to the removal of the 35-amino acid, hydrophobic stretch.
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Remarkably, PARL cleavage unleashes Skd3 disaggregase activity (Fig. 3¢, S6c,d). Indeed,
parLSkd3 exhibited over 10-fold higher disaggregase activity compared to mppSkd3 and over
five-fold higher disaggregation activity than Hsp104 plus Hsp70 and Hsp40, despite par.Skd3
having lower ATPase activity when compared to mppSkd3 (Fig. 3b,c, S6b,c,d). These results
demonstrate that Skd3 disaggregase activity is regulated by PARL and that PARL-activated
Skd3 is a powerful, stand-alone protein disaggregase with comparable activity to potentiated
Hsp104 variants (Jackrel et al., 2014; Jackrel and Shorter, 2014; Jackrel et al., 2015; Tariq et al.,

2019; Tariq et al., 2018).

As with mppSkd3, we found that pariSkd3 disaggregase activity was supported by ATP, but not
in the absence of nucleotide or in the presence of ADP, non-hydrolyzable AMP-PNP, or slowly
hydrolyzable ATPyS (Fig. Fig. 3¢, S6e¢). Likewise, part Skd3¥3874 (Walker A mutant) and
parRLSkd3F433Q (Walker B mutant) lacked ATPase and disaggregase activity (Fig. 3d, e),
indicating that pari.Skd3 couples ATP binding and hydrolysis to protein disaggregation.
Curiously, par.Skd3Y#3%A (pore-loop mutant) exhibited a larger reduction in ATPase activity than
mppSkd3 Y4304 (Fig. 2d, 3d), indicating that the conserved tyrosine in the conserved substrate-
binding -GY VG- pore loop impacts ATPase activity in Skd3, whereas it has no effect in Hsp104
(DeSantis et al., 2012; Torrente et al., 2016). par.Skd3Y#%4 was devoid of disaggregase activity

(Fig. 3e), which could be due to reduced ATPase activity, reduced substrate binding, or both.

PARL-activated Skd3 dissolves a-synuclein fibrils

Next, we assessed whether parLSkd3 could disassemble a stable amyloid substrate, which makes

more stringent demands on a disaggregase (DeSantis et al., 2012). Thus, we turned to a-
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synuclein fibrils, which are connected to Parkinson’s disease and various synucleinopathies
(Henderson et al., 2019). We utilized a strain of synthetic a-synuclein fibrils capable of eliciting
Parkinson’s disease-like symptoms in mice (Luk et al., 2012). Using a sedimentation assay
combined with a dot-blot, we found that parLSkd3 disaggregated these disease-causing fibrils in
the presence, but not absence of ATP (Fig. 4a, b). Thus, parLSkd3 is a powerful protein
disaggregase, which could be harnessed as a therapeutic agent to eliminate disease-causing o-

synuclein fibrils that underlie Parkinson’s disease and other synucleinopathies.

Skd3 disaggregase activity requires the ankyrin-repeat domain and NBD

To further investigate the mechanism of Skd3 disaggregase activity, we purified the isolated
ankyrin-repeat domain and NBD as separate proteins (Fig. 5a). Neither the isolated ankyrin-
repeat domain nor the isolated NBD exhibited ATPase activity or disaggregase activity (Fig. 5b,
c). The lack of ATPase activity and disaggregase activity of the isolated NBD is consistent with
a similar lack of activity of isolated NBD2 from Hsp104 or bacterial ClpB (Beinker et al., 2005;
Hattendorf and Lindquist, 2002; Mogk et al., 2003). Thus, the ankyrin-repeat domain and NBD
combine in cis to enable Skd3 ATPase activity and disaggregase activity. We also tested whether
the two domains could combine in trans as two separate proteins to yield an ATPase or
disaggregase. However, we found that equimolar amounts of the ankyrin-repeat domain and
NBD were also inactive (Fig. 5b, ¢). Thus, Skd3 is unlike bacterial ClpB, which can be
reconstituted in trans by separate NTD-NBD1-MD and NBD2 proteins (Beinker et al., 2005).
These findings suggest that the covalent linkage of the ankyrin-repeat domain and NBD is
critical for forming a functional ATPase and disaggregase. Importantly, these findings predict

that truncated MGCA7-linked Skd3 variants, such as R250* and K321* (where * indicates a stop
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codon), which lack the NBD would be inactive for protein disaggregation and indeed any

ATPase-dependent activities.

Skd3 disaggregase activity is not stimulated by Hsp70 and Hsp40

Hsp104 and Hsp78 collaborate with Hsp70 and Hsp40 to disaggregate many substrates (DeSantis
et al., 2012; Glover and Lindquist, 1998; Krzewska et al., 2001). By contrast, Skd3 does not
require Hsp70 and Hsp40 for protein disaggregation (Fig. 2b, e, 3c, e, 4a, b). This finding is
consistent with Skd3 lacking the NTD, NBD1, and MD of Hsp104, which interact with Hsp70
(DeSantis et al., 2014; Lee et al., 2013; Sweeny et al., 2015; Sweeny et al., 2019). Nonetheless,
Hsp70 and Hsp40 might still augment Skd3 disaggregase activity. Thus, we tested if Hsp70 and
Hsp40 could stimulate Skd3 disaggregase activity. However, neither mppSkd3 nor parr.Skd3,
disaggregase activity was stimulated by Hsp70 and Hsp40 (Fig. 6a, b). Thus, Skd3 is a stand-

alone disaggregase that works independently of the Hsp70 chaperone system.

Human cells lacking Skd3 exhibit reduced solubility of mitochondrial proteins

Given the potent disaggregase activity of Skd3, we predicted that deletion of Skd3 in human
cells would result in decreased protein solubility in mitochondria. To determine the effect of
Skd3 on protein solubility in mitochondria, we compared the relative solubility of the
mitochondrial proteome in wild-type and Skd3 knockout human HAP1 cells (Fig. S8a) using
mass spectrometry as described in Fig. 7a. Overall, we observed decreased protein solubility in
mitochondria from the Skd3 knockout cells when compared to their wild-type counterparts (Fig.
7b, S9a). Using Gene Ontology (GO) analysis for cellular component, we found that proteins in

the inner mitochondrial membrane and intermembrane space were enriched in the insoluble
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fraction in the absence of Skd3 (Fig. S9a) (Ashburner et al., 2000; Mi et al., 2019; The Gene
Ontology, 2019). Using GO analysis for biological process, we found that proteins involved in
calcium import into mitochondria, chaperone-mediated protein transport, protein insertion into
the mitochondrial inner membrane, mitochondrial electron transport, mitochondrial respiratory-
chain complex assembly, and cellular response to hypoxia are more insoluble in Skd3 knockout
cells compared to wild-type cells (Fig. 7c, S9b) (Ashburner et al., 2000; Mi et al., 2019; The

Gene Ontology, 2019).

Specifically, we find that HAX1, OPA1, PARL, SMAC/DIABLO, and HTRA2 are more
insoluble, which implicates a key role for Skd3 in regulating apoptotic and proteolytic pathways
(Baumann et al., 2014; Chai et al., 2000; Chao et al., 2008; Cipolat et al., 2006; Frezza et al.,
2006; Klein et al., 2007; Saita et al., 2017). Additionally, the regulators of the mitochondrial
calcium uniporter (MCU), MICU1 and MICU2 were found to be more insoluble in the knockout
compared to the wild type, implicating Skd3 in the regulation of mitochondrial calcium transport
(Csordas et al., 2013; Patron et al., 2014; Perocchi et al., 2010; Plovanich et al., 2013). We also
observed an enrichment of translocase of the inner membrane (TIM) components, TIMMSA,
TIMMSB, TIMM13, TIMM21, TIMM22, TIMM23, and TIMMS50 in the insoluble fraction of
Skd3 knockouts (Chacinska et al., 2005; Donzeau et al., 2000; Geissler et al., 2002; Meinecke et
al., 2006; Mokranjac et al., 2003; Paschen et al., 2000; Sirrenberg et al., 1996; Yamamoto et al.,
2002). Finally, we observed an enrichment in respiratory complex I and III proteins and their
assembly factors such as NDUFAS8, NDUFA11, NDUFA13, NDUFB7, NDUFB10, TTC19,
COX11, and CYC1 (Fig. 6b and Table S1) (Angebault et al., 2015; Ghezzi et al., 2011; Spinazzi

et al., 2019; Szklarczyk et al., 2011; Tzagoloff et al., 1990). Overall, these results suggest the
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importance of Skd3 in maintaining the solubility of proteins of the inner mitochondrial
membrane and intermembrane space, including key regulators in apoptosis, mitochondrial
calcium regulation, protein import, and respiration. Thus, in cells Skd3 appears critical for

protein solubility in the intermembrane space and mitochondrial inner membrane.

Skd3 promotes HAX1 solubility in human cells

HAX1 is a highly-disordered protein that has been previously identified as a Skd3 substrate both
in cells and in silico (Fig. S10a) (Chen et al., 2019; Wortmann et al., 2015). HAX1 is an anti-
apoptotic BCL-2 family protein that enables efficient cleavage of HTRA2 by PARL to promote
cell survival (Chao et al., 2008; Klein et al., 2007). To test if Skd3 regulates HAX1 solubility in
human cells, we compared the solubility of HAX1 in wild-type and Skd3-knockout HAP1 cells
via sedimentation analysis and western blot. In wild-type cells, HAX1 remained predominantly
soluble (Fig. 7d,e). However, when Skd3 was deleted HAX1 became predominantly insoluble
(Fig. 7d,e). Thus, Skd3 is essential for HAX1 solubility in cells. Curiously, loss of Skd3 has been
previously shown to promote apoptosis in specific contexts (Chen et al., 2019). Furthermore,
HAX1 stability has been implicated as a regulator of apoptotic signaling (Baumann et al., 2014).
Our data support a model whereby Skd3 exerts its anti-apoptotic effect by maintaining HAX1

solubility and contingent functionality.

MGCAT7-linked Skd3 variants display diminished disaggregase activity
Skd3 has been implicated in a severe mitochondrial disorder, MGCA?7, yet little is known about
its contribution or function in this disease (Capo-Chichi et al., 2015; Kanabus et al., 2015;

Kiykim et al., 2016; Pronicka et al., 2017; Saunders et al., 2015; Wortmann et al., 2016;
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Wortmann et al., 2015). Indeed, many mutations in Skd3 are connected with MGCA7 (Fig. 8a).
Most of these are clustered in the NBD, but several are also in the ankyrin-repeat domain, and
one frameshift is found in the mitochondrial targeting signal (Fig. 8a). Some MGCA7-linked
Skd3 variants, such as R250* and K321* (where * indicates a stop codon), lack the NBD and
would be predicted in light of our findings to be incapable protein disaggregation and indeed any
ATPase-dependent activities (Fig. 5b, ¢). We hypothesized that MGCA7-linked missense
mutations also directly affect Skd3 disaggregase activity. To test this hypothesis, we purified
MGCAT7-linked variants of Skd3 from cases where both patient alleles bear the mutation,
specifically: T268M, R475Q, A591V, and R650P (Pronicka et al., 2017). These Skd3 variants
cause MGCA7 on a spectrum of clinical severity (Pronicka et al., 2017). The ankyrin-repeat
variant, T268M, is linked to moderate MGCA7, whereas the NBD variants (R475Q, A591V, and

R650P) are linked to severe MGCA7 (Pronicka et al., 2017).

Surprisingly, the ATPase activity varied for each MGCA7-linked variant. T268M had
significantly increased ATPase activity, R475Q and A591V had marked decreased ATPase
activity, and R650P ATPase was indistinguishable from wild type (Fig. 8b). These ATPase
activities did not correlate with clinical severity (Fig. 8d) (Pronicka et al., 2017). Thus, Skd3
variant ATPase activity does not accurately predict MGCA7 severity, as the mutation associated
with mild MGCA7 had elevated ATPase relative to wild type, whereas different mutations

capable of causing severe MGCA7 could exhibit impaired or nearly wild-type ATPase activity

To address the disconnect between ATPase activity and MGCA7 disease severity, we next tested

the disaggregase activity of these MGCA7-linked variants. Strikingly, and in contrast to ATPase
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activity, we found disaggregase activity tracks closely with disease severity. T268M, the only
moderate phenotype variant tested, had ~27% disaggregase activity compared to wild type. By
contrast, the three severe MGCA7 variants, R475Q, A591V, and R650P abolish or diminish
disaggregation activity with 0%, 0%, and ~4% disaggregation activity compared to wild type,
respectively (Fig. 8c). Thus, disaggregase activity but not ATPase activity, is tightly correlated
with clinical severity of MGCA7-linked mutations (Fig. 8d) (Pronicka et al., 2017). Taken
together, our findings suggest that defects in Skd3 protein-disaggregase activity (and not other

ATPase-related functions) are the driving factor in MGCA7 and pivotal to human health.
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DISCUSSION

At the evolutionary transition from protozoa to metazoa, the potent mitochondrial AAA+ protein
disaggregase, Hsp78, was lost. Thus, it has long remained unknown whether metazoan
mitochondria disaggregate and reactivate aggregated proteins. Here, we establish that another
AAA+ protein, Skd3, is a potent metazoan mitochondrial protein disaggregase. Skd3 is activated
by a mitochondrial inner-membrane rhomboid protease, PARL (Fig. 9). PARL removes a
hydrophobic auto-inhibitory sequence from the N-terminal region of Skd3, which prior to
cleavage may limit Skd3 interactions with substrate (Fig. 9). In this way, Skd3 only becomes

fully activated as a disaggregase once it reaches its final cellular destination.

Skd3 couples ATP binding and hydrolysis to protein disaggregation. To do so, Skd3 utilizes
conserved AAA+ motifs in its NBD, including the Walker A and B motifs to bind and hydrolyze
ATP, as well as a conserved pore-loop tyrosine, which likely engages substrate directly.
However, the isolated NBD is insufficient for disaggregase activity, which indicates an important
role for the ankyrin-repeat domain. Intriguingly, an ankyrin-repeat domain is also important for
the activity of an unrelated ATP-independent protein disaggregase, cpSRP43, where it makes
critical contacts with substrate (Jaru-Ampornpan et al., 2013; Jaru-Ampornpan et al., 2010;
McAvoy et al., 2018; Nguyen et al., 2013). Thus, ankyrin-repeat domains appear to be a

recurring feature of diverse protein disaggregases.

Importantly, Skd3 is a stand-alone disaggregase and does not require Hsp70 and Hsp40 for

maximal activity. This finding is consistent with the absence of Hsp70-interacting domains

(NTD, NBD1, and MD) found in Hsp104, which enable collaboration with Hsp70 (DeSantis et
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al., 2014; Lee et al., 2013; Sweeny et al., 2015; Sweeny et al., 2019). Future structural and
biochemical studies will further inform our mechanistic understanding of Skd3 disaggregase

activity.

We establish that Skd3 can disaggregate disease-causing a-synuclein fibrils in vitro,
demonstrating its robust activity as a disaggregase and identifying it as a novel target for
synucleinopathies. The realization that human cells harbor a AAA+ protein disaggregase of
greater potency than Hsp104 opens several therapeutic opportunities. Indeed, Skd3 is expressed
in neurons and shifting localization of activated Skd3 to the cytoplasm could help combat
cytoplasmic aggregates. Likewise, the expression of the parLSkd3 enhanced variant in the
cytoplasm of dopaminergic neurons may elicit therapeutic benefit similar to Hsp104 and
engineered variants in Parkinson’s disease models (Jackrel et al., 2014; Lo Bianco et al., 2008;
Tariq et al., 2019). Future studies will further inform our understanding of how to harness Skd3
disaggregase activity therapeutically in synucleinopathies such as Parkinson’s disease and other

neurodegenerative diseases connected with aberrant protein aggregation.

We demonstrate that Skd3 is essential for maintaining the solubility of mitochondrial inner-
membrane and intermembrane space protein complexes and specifically disaggregates the anti-
apoptotic protein HAX1 in human cells (Fig. 9). We suggest that HAX1 solubility is important
for its anti-apoptotic effect. The precise mechanism of regulation between Skd3 and HAXI,

PARL, OPA1, HTRA2, and SMAC/DIABLO warrants future study (Fig. 9).
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In addition to finding that many human mitochondrial proteins are more insoluble in the absence
of Skd3, a small fraction of proteins are more insoluble in the presence of Skd3. Closer analysis
of these enriched proteins suggest many are mitochondrial matrix-associated, especially
mitoribosome proteins (Fig. 7b, Table S2). The mitoribosome is a large, megadalton, sized
protein complex that is much more proteinaceous than its cytoplasmic counterpart and assembles
into larger polysomes during active translation (Couvillion et al., 2016; Greber and Ban, 2016;
Saurer et al., 2019). Thus, changes in solubility of the mitoribosome components could be due to

increased mitoribosome or polysome assembly in the presence of Skd3.

It is surprising that Skd3 solubilizes proteins of the mitochondrial intermembrane space and
inner membrane, as Hsp78 is found in the mitochondrial matrix (Bateman et al., 2002;
Germaniuk et al., 2002; Moczko et al., 1995; Rottgers et al., 2002; Schmitt et al., 1995; von
Janowsky et al., 2006). Since Skd3 appears in evolution alongside Hsp78 in choanoflagellates it
may have initially arisen to serve a subtly distinct function. We hypothesize that the increasing
number and complexity of mitochondrial inner membrane protein assemblies (such as
MICU1/MICU2/MCU and respiratory complex I) in choanoflagellates and metazoa might
necessitate the requirement of Skd3 activity in the inner mitochondrial membrane and

intermembrane space to maintain proteostasis in these compartments.

Mutations in Skd3 are connected to MGCA7, which can be a devastating disorder connected
with severe neurologic deterioration, neutropenia, and death in infants (Wortmann et al., 2016).
Importantly, we establish that diverse MGCA7-linked mutations in Skd3 impair disaggregase

activity, but not necessarily ATPase activity (Fig. 9). The degree of impaired disaggregase
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activity predicts the clinical severity of the disease, which suggests that disaggregase activity is a
critical factor in disease. However, it is yet unclear which Skd3 substrate or substrates contribute
to the MGCAY7 etiology. Our mass-spectrometry data suggest that MGCA7 arises due to severely
compromised proteostasis in the mitochondrial inner-membrane and intermembrane space (Fig.
9). Hence, small-molecule drugs that restore wild-type levels of disaggregase activity to

MGCA7-linked Skd3 variants could be valuable therapeutics.

Finally, Skd3 has also emerged as a factor in Venetoclax resistance, a FDA-approved drug for
the treatment of acute myeloid leukemia (AML), which exerts its mechanism via BCL-2
inhibition (Chen et al., 2019). These studies suggest that inhibition of Skd3 may be of critical
therapeutic importance for treating Venetoclax-resistant cancers (Chen et al., 2019). Small-
molecule screens targeted at finding inhibitors of Skd3 disaggregase activity may yield important
drugs for Venetoclax-resistant AML patients. Thus, the Skd3 disaggregase assays established in
this study could provide a powerful platform for isolating therapeutic compounds for MGCA7

and AML.
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MATERIALS AND METHODS

Multiple Sequence Alignments

Sequences were acquired via SMART protein domain annotation resource (Letunic and Bork,
2018). Sequences from Anolis carolinensis, Bos taurus, Callithrix jacchus, Canis lupus, Capra
hircus, Danio rerio, Equus caballus, Geospiza fortis, Gorilla gorilla, Homo sapiens, Monosigia
brevicollis, Mus musculus, Nothobranchius rachovii, Rattus norvegicus, Sus scrofa,
Trachymyrmex septentrionalis, Trichinella papuae, and Xenopus laevis were used to generate
alignment for Fig. 1 and Extended Data Fig. 2. Compiled sequences were aligned and made into
a guide tree via Clustal Omega (Madeira et al., 2019). Alignment image was generated via
BoxShade tool (Hofmann, 1996). Guide tree image was built using FigTree (Rambaut, 2012).
Species images were used under license via PhyloPic. Sequence logo was created using
WebLogo and 42 mammalian Skd3 protein sequences (4iluropoda melanoleuca, Callorhinus
ursinus, Canis lupus, Carlito syrichta, Cebus capucinus, Ceratotherium simum, Cercocebus atys,
Chlorocebus sabaeus, Colobus angolensis, Equus asinus, Equus caballus, Equus przewalskii,
Felis catus, Gorilla gorilla, Gulo gulo, Grammomys surdaster, Homo sapiens, Macaca
fascicularis, Macaca mulatta, Macaca nemestrina, Mandrillus leucophaeus, Microcebus
murinus, Microtus ochrogaster, Mustela putorius, Nomascus leucogenys, Odobenus rosmarus,
Orycteropus afer, Pan paniscus, Pan troglodyte, Panthera tigris, Papio anubis, Piliocolobus
tephrosceles, Pongo abelii, Propithecus coquereli, Puma concolor, Rhinopithecus bieti,
Rhinopithecus roxellana, Rousettus aegyptiacus, Theropithecus gelada, Ursus arctos, Ursus

maritimus, and Zalophus californianus) (Crooks et al., 2004; Schneider and Stephens, 1990).

Cloning MBP-Skd3 Plasmids
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mppSkd3, parcSkd3, ankSkd3, and nep2Skd3 were cloned into the pMAL C2 plasmid with TEV
site (Yoshizawa et al., 2018) using Gibson assembly (Gibson et al., 2009). Site-directed
mutagenesis was performed using QuikChange site-directed mutagenesis (Agilent) and

confirmed by DNA sequencing.

Purification of Skd3

Skd3 variants were expressed as an N-terminally MBP-tagged protein in BL21 (DE3) RIL cells
(Agilent). Cells were lysed via sonication in 40mM HEPES-KOH pH=7.4, 500mM KCI, 20%
(w/v) glycerol, SmM ATP, 10mM MgClz, 2mM B-mercaptoethanol, 2.5uM PepstatinA, and
cOmplete Protease Inhibitor Cocktail (1 tablet/250mL, Millipore Sigma). Lysates were
centrifuged at 30,597xg and 4°C for 20min and the supernatant was applied to amylose resin
(NEB). The column was washed with 10 column volumes (CV) of wash buffer (WB: 40mM
HEPES-KOH pH=7.4, 500mM KCI, 20% (w/v) glycerol, 5SmM ATP, 10mM MgCl>, 2mM -
mercaptoethanol, 2.5uM PepstatinA, and cOmplete Protease Inhibitor Cocktail) at 4°C, 3 CV of
WB supplemented with 20mM ATP at 25°C for 30min, and 10 CV of WB at 4°C. The protein
was then exchanged into elution buffer (EB: 50mM Tris-HCI pH=8.0, 300mM KCI, 10%
glycerol, 5SmM ATP, 10 mM MgCl,, and 2mM B-mercaptoethanol) with 4 CV and eluted via
TEV cleavage at 34°C. The protein was then run over a size exclusion column (GE Healthcare
HiPrep™ 26/60 Sephacryl S-300 HR) in sizing buffer (50mM Tris-HCI pH=8.0, 500mM KClI,
10% glycerol, ImM ATP, 10mM MgClo, and ImM DTT). Peak fractions were collected,
concentrated to >5mg/mL, supplemented with SmM ATP, and snap frozen. Protein purity was

determined to be > 95% by SDS-PAGE and Coomassie staining.
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Purification of Hsp104

Hsp104 was purified as previously described (DeSantis et al., 2014). In brief, Hsp104 was
expressed in BL21(DE3) RIL cells, lysed via sonication in lysis buffer [SOmM Tris-HCI pH=8.0,
10mM MgCly, 2.5% glycerol, 2mM B-mercaptoethanol, 2.5uM PepstatinA, and cOmplete
Protease Inhibitor Cocktail (1 mini EDTA-free tablet/50mL, Millipore Sigma)], clarified via
centrifugation at 30,597xg and 4°C for 20min, and purified on Affi-Gel Blue Gel (Bio-Rad).
Hsp104 was eluted in elution buffer (50mM Tris-HCI pH=8.0, 1M KCI, 10mM MgCl, 2.5%
glycerol, and 2mM B-mercaptoethanol) and then exchanged into storage buffer (40mM HEPES-
KOH pH=7.4, 500mM KCI, 20mM MgClz, 10% glycerol, ImM DTT). The protein was diluted
to 10% in buffer Q (20mM Tris-HCI pH=8.0, 50mM NaCl, 5mM MgCl,, and 0.5 mM EDTA)
and loaded onto a SmL RESOURCE Q anion exchange chromatography (GE Healthcare).
Hsp104 was eluted via linear gradient of buffer Q+ (20mM Tris pH=8.0, 1M NaCl, 5SmM MgCl,,
and 0.5mM EDTA). The protein was then exchanged into storage buffer and snap frozen. Protein

purity was determined to be > 95% by SDS-PAGE and Coomassie staining.

Purification of Hsc70 and Hdj1

Hsc70 and Hdj1 were purified as previously described (Michalska et al., 2019). Hsc70 and Hdj1
were expressed in BL21 (DE3) RIL cells with an N-terminal His-SUMO tag. Cells were lysed
via sonication into lysis buffer [SO mM HEPES-KOH pH=7.5, 750 mM KCIl, 5 mM MgCl,, 10%
glycerol, 20 mM imidazole, 2 mM B-mercaptoethanol, 5 uM pepstatin A, and cOmplete Protease
Inhibitor Cocktail (1 mini EDTA-free tablet/50mL)]. Lysates were centrifuged at 30,597xg and
4°C for 20min and the supernatant was bound to Ni-NTA Agarose resin (Qiagen), washed with

10 CV of wash buffer (50 mM HEPES-KOH pH=7.5, 750 mM KCI, 10 mM MgCl,, 10%
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glycerol, 20 mM imidazole, 1 mM ATP, and 2 mM [B-mercaptoethanol), and then eluted with 2
CV of elution buffer (wash buffer supplemented with 300 mM imidazole). The tag was removed
via Ulp1 (1:100 Ulp1:Protein molar ratio) cleavage during dialysis into wash buffer. The protein
was further purified via loading onto a SmL HisTrap HP column (GE Healthcare) and pooling
the untagged elution. Cleaved protein was pooled, concentrated, purified further by Resource Q
ion exchange chromatography, and snap frozen. Protein purity was determined to be > 95% by

SDS-PAGE and Coomassie staining.

ATPase Assays

Proteins (0.25 puM monomer) were incubated with ATP (1mM) (Innova Biosciences) at 37°C for
5 min (or otherwise indicated) in luciferase reactivation buffer (LRB; 25 mM

HEPES-KOH [pH=8.0], 150 mM KAOc, 10 mM MgAQOc 10 mM DTT). For substrate-
stimulation of ATPase activity the indicated concentration of substrate was added. ATPase
activity was assessed via inorganic phosphate release with a malachite green detection assay
(Expedeon) and measured in Nunc 96 Well Optical plates on a Tecan Infinite M1000 plate

reader. Background hydrolysis was measured at time zero and subtracted (DeSantis et al., 2012).

Luciferase Disaggregation and Reactivation Assays

Firefly luciferase aggregates were formed by incubating luciferase (50pM) in LRB plus 8M urea
at 30°C for 30 min. The luciferase was then rapidly diluted 100-fold into LRB, snap frozen, and
stored at -80°C until use. Hsp104 and Skd3 variants (1 uM monomer, unless otherwise
indicated) were incubated with 50 nM aggregated firefly luciferase in the presence or absence of

Hsc70 and Hdj2 (0.167 uM each) in LRB plus 5 mM ATP plus an ATP regeneration system
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(ARS; 1 mM creatine phosphate and 0.25 pM creatine kinase) at 37°C for 90 minutes (unless
otherwise indicated). The nucleotide-dependence of Skd3 disaggregation activity was tested in
the presence of ATP (Sigma), AMP-PNP (Roche), ATPyS (Roche), or ADP (MP Biomedicals)
for 30 min at 37°C without ARS. Recovered luminescence was monitored in Nunc 96 Well

Optical plates using a Tecan Infinite M1000 plate reader (DeSantis et al., 2012).

a-Synuclein Disaggregation Assay

a-Synuclein fibrils were acquired from the Luk lab and formed as previously described (Luk et
al., 2012). par.Skd3 (10uM monomer) was incubated with a-synuclein fibrils (0.5uM monomer)
in LRB in the presence or absence of ARS (10mM ATP, 10mM creatine phosphate, 40pg/mL
creatine kinase) at 37°C for 90 minutes. The samples were then centrifuged at 4°C and 20,000xg
for 20 minutes. After centrifugation the supernatants were pipetted off of the pellets and the
pellets were boiled in Pellet Buffer (PB; 50mM Tris-HCI [pH=8.0], 8M Urea, 150mM NacCl,
10uL/1mL mammalian PI cocktail [Sigma CAT# P8340]) for 5 minutes at 99°C. The total
sample, supernatant, and pellet samples were then blotted on nitrocellulose membrane
(ThermoFisher Scientific CAT# 88018) and incubated with the SYN211 antibody (ThermoFisher
Scientific CAT# AHBO0261). Blots were then incubated with the IRDye® 800CW Goat anti-
Mouse IgG Secondary Antibody (Li-COR CAT# 926-32210) and imaged using the Li-Cor
Odyssey® Fc Imaging System. Samples were quantified using FIJI and normalized as (signal in

supernatant)/(signal in pellet + signal in supernatant).

Western Blots
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Mammalian whole cell lysates were prepared by boiling 500,000 cells in 1x Sample Buffer (SB;
60mM Tris-HCI [pH=6.8], 5% glycerol, 2% SDS, 10% B-mercaptoethanol, 0.025%
bromophenol blue, 1x Mammalian PI cocktail) for 5 min at 99°C. Sedimentation assay samples
were prepared as described above. Western blot samples were boiled for 5 min at 99°C in 1x SB,
separated by SDS-PAGE on a gradient gel (4%—20%, Bio-Rad CAT# 3450033), and transferred
to a PVDF membrane. Membranes were blocked in Odyssey® Blocking Buffer in PBS (Li-Cor
CAT# 927-40000) for 1 hour at 25°C. Blots were then incubated in primary antibody overnight
at 4°C and then in secondary for 30 min at 25°C. The antibodies used were: a-CLPB (Abcam
CAT# ab235349), a-HAX1 (Abcam CAT# ab137613), a-COXIV (Abcam CAT# ab14744),
IRDye® 800CW Goat a-mouse secondary (Li-Cor CAT# 926-32210), and IRDye 680RD Goat
a-rabbit secondary (Li-Cor CAT# 926-68071). Blots were imaged on a Li-Cor Odyssey® Fc

Imaging System.

Mammalian Cell Culture

Isogenic HAP1 and HAP1 ACLPB cells were acquired from Horizon Discovery and knockout
was confirmed via Western blot. Cells were maintained in IMDM (Gibco CAT# 12440053)
supplemented with 10% FBS (GE CAT# SH3007003) and 1% P/S (Gibco CAT# 15140122) at

37°C and 5% COx. Cells were grown at a confluency of 50-60% for mitochondrial isolation.

Mitochondrial Isolation
Mitochondria were isolated as previously described (Frezza et al., 2007). In brief, 50-100*10°
cells were resuspended in SmL SM buffer (50mM Tris-HCI [pH=7.4], 0.25M sucrose, 2mM

EDTA, and 1% BSA) and homogenized with a Dounce homogenizer and Teflon pestle (30
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strokes at 600 RPM) at 4°C. Lysate was then centrifuged at 600xg for 10 minutes. The
supernatant was collected, and the pellet was dissolved in SmL SM buffer and homogenized (15
strokes at 600 RPM). Sample was then centrifuged at 600xg for 10 minutes and the supernatant
was pooled and centrifuged at 12,000xg for 15 min. The pellet was collected and used for further

experiments.

Mitochondrial Sedimentation Assay

Mitochondrial sedimentation assay was performed essentially as previously described
(Wilkening et al., 2018). 60-80ug isolated mitochondria were resuspended in 200uL
Mitochondrial Resuspension Buffer (40mM HEPES-KOH, pH=7.6, 500mM sucrose, 120mM K-
acetate, 10mM Mg-acetate, SmM glutamate, SmM malate, SmM EDTA, 5SmM ATP, 20mM
creatine phosphate, 4 ug/mL creatine kinase, ImM DTT) and incubated at 37°C for 20min. The
mitochondria were then pelleted at 12,000xg for 10 min at 4°C. The mitochondria were then
resuspended in 200uL Lysis Buffer (30mM Tris-HCL, pH=7.4, 200mM KClI, 0.5% v/v Triton X-
100, 5SmM EDTA, 0.5mM PMSF, 1x Mammalian PI cocktail) and lysed in a thermomixer at
2,000 RPM for 10 min at 4°C. The protein concentration of the lysate was then quantified using
a BCA assay (ThermoFisher CAT# 23225). 12ug of lysate was added to a total volume of 50uL
Lysis Buffer and reserved as a total protein sample. 12pg of lysate was added to a total volume
of 50uL Lysis Buffer and sedimented at 20,000xg for 20min at 4°C. The supernatant was
removed, TCA precipitated, and frozen for later processing. The pellet was boiled in 10uL of

Pellet Buffer and frozen for later processing.

Mass Spectrometry
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Pellet samples were excised as whole lanes from gels, reduced with TCEP, alkylated with
iodoacetamide, and digested with trypsin. Tryptic digests were desalted by loading onto a
MonoCap C18 Trap Column (GL Sciences), flushed for 5 min at 6uL/min using 100% Buffer A
(H20, 0.1% formic acid), then analyzed via LC (Waters NanoAcquity) gradient using Buffer A
and Buffer B (acetonitrile, 0.1% formic acid) (initial 5% B; 75 min 30% B; 80 min 80% B; 90.5-
105 min 5% B) on the Thermo Q Exactive HF mass spectrometer. Data were acquired in data-
dependent mode. Analysis was performed with the following settings: MS1 60K resolution,
AGC target 3e6, max inject time 50 ms; MS2 Top N = 20 15K resolution, AGC target Se4, max
inject time 50 ms, isolation window = 1.5 m/z, normalized collision energy 28%. LC-MS/MS
data were searched with full tryptic specificity against the UniProt human database using
MaxQuant 1.6.8.0. MS data were also searched for common protein N-terminal acetylation and
methionine oxidation. Protein and peptide false discovery rate was set at 1%. LFQ intensity was
calculated using the MaxLFQ algorithm (Cox et al., 2014). Fold enrichment was calculated as
LFQ intensity from the ACLPB pellet divided by the LFQ intensity from the wild-type pellet.

High confidence hits were quantified as minimum absolute fold change of 2 and p-value <0.05.
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Figure 1. Skd3 is homologous to Hsp104 and Hsp78 and is conserved across diverse metazoan
lineages. (A) Domain map depicting S. cerevisiae Hspl104, S. cerevisiae Hsp78, and H. sapiens Skd3.
Hsp104 is composed of a N-terminal domain (NTD), nucleotide-binding domain 1 (NBD1), middle
domain (MD), nucleotide-binding domain 2 (NBD?2), and C-terminal domain (CTD). Hsp78 is composed
of a mitochondrial-targeting signal (MTS), NBD1, MD, NBD2, and CTD. Skd3 is composed of a MTS, a
hydrophobic domain of unknown function, an ankyrin-repeat domain (ANK) containing four ankyrin
repeats, an NBD that is homologous to Hsp104 and Hsp78 NBD2, and a CTD. (B) Phylogenetic tree
depicting a Clustal Omega alignment of Skd3 sequences from divergent metazoan lineages. The
alignment shows conservation of Skd3 across diverse species and shows high similarity between
mammalian Skd3 proteins.
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Figure 2. Skd3 is a protein disaggregase. (A) Domain map depicting the Mitochondrial-processing
peptidase (MPP) cleavage site and mature-length Skd3 (mppSkd3). The positions of the Walker A
mutation (K387A) predicted to disrupt ATP binding and hydrolysis, pore-loop tyrosine mutation (Y430A)
predicted to disrupt substrate binding, and Walker B mutation (E455Q) predicted to disrupt ATP
hydrolysis are shown. (B) mppSkd3 is an ATPase. ATPase assay comparing mppSkd3 and Hsp104. mppSkd3
and Hsp104 ATPase were compared to buffer using one-way ANOVA and a Dunnett’s multiple
comparisons test (N=4, individual data points shown as dots, bars show mean + SEM, **** p<(.0001).
(C) Luciferase disaggregation/reactivation assay showing that mppSkd3 has disaggregase activity in the
presence but not absence of ATP. Luciferase activity was buffer subtracted and normalized to Hsp104 +
Hsp70/Hsp40. Luciferase activity was compared to buffer using one-way ANOVA and a Dunnett’s
multiple comparisons test (N=6, individual data points shown as dots, bars show mean + SEM, ****
p<0.0001). (D) ATPase assay comparing mppSkd3, mpprSkd3***’* (Walker A mutant), yppSkd35455?
(Walker B mutant), and vppSkd3¥*#%* (Pore-Loop mutant), showing that both Walker A and Walker B
mutations abolish Skd3 ATPase activity, whereas the Pore Loop mutation reduces ATPase activity.
ATPase activity was compared to buffer using one-way ANOVA and a Dunnett’s multiple comparisons
test (N=4, individual data points shown as dots, bars show mean = SEM, * p<0.05, **** p<0.0001). (E)
Luciferase disaggregation/reactivation assay comparing mppSkd3 to Walker A, Walker B, and Pore-Loop
variants demonstrating that ATP binding, ATP hydrolysis, and substrate binding are essential for Skd3
disaggregase activity. Luciferase activity was compared to buffer using one-way ANOVA and a
Dunnett’s multiple comparisons test (N=4, individual data points shown as dots, bars show mean + SEM,
Ak p<0.0001).
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Figure 3. PARL cleavage enhances Skd3 disaggregase activity. (A) Domain map depicting mppSkd3
and the PARL cleavage site and corresponding PARL-cleaved Skd3 (parcSkd3). The positions of the
Walker A mutation (K387A) predicted to disrupt ATP binding and hydrolysis, pore-loop tyrosine
mutation (Y430A) predicted to disrupt substrate binding, and Walker B mutation (E455Q) predicted to
disrupt ATP hydrolysis are shown. (B) ATPase assay comparing mppSkd3 and pariSkd3. pariSkd3 is
catalytically active, but is slightly less active than mppSkd3. parLSkd3 and Hsp104 ATPase were compared
to mppSkd3 ATPase using one-way ANOVA and a Dunnett’s multiple comparisons test (N=4, individual
data points shown as dots, bars show mean +£ SEM, * p<0.05, **** p<0.0001). (C) Luciferase
disaggregation/reactivation assay comparing mppSkd3 disaggregase activity to par.Skd3. parLSkd3 was
over 10-fold more active than mppSkd3. Luciferase activity was buffer subtracted and normalized to
Hsp104 + Hsp70/Hsp40. Luciferase activity was compared to mepSkd3 using one-way ANOVA and a
Dunnett’s multiple comparisons test (N=4, individual data points shown as dots, bars show mean + SEM,
##%% p<(.0001). (D) ATPase assay comparing pari.Skd3, pari Skd3%**"4 (Walker A), pari Skd35455?
(Walker B), and pari. Skd3¥** (Pore Loop), showing that both Walker A and Walker B mutations abolish
Skd3 ATPase activity, whereas the Pore-Loop mutation reduces ATPase activity. ATPase activity was
compared to buffer using one-way ANOVA and a Dunnett’s multiple comparisons test (N=4, individual
data points shown as dots, bars show mean + SEM, **** p<0.0001). (E) Luciferase
disaggregation/reactivation assay comparing par.Skd3 to Walker A, Walker B, and Pore-Loop variants
showing that ATP binding, ATP hydrolysis, and substrate binding are essential for par.Skd3 disaggregase
activity. Luciferase activity was compared to buffer using one-way ANOVA and a Dunnett’s multiple
comparisons test (N=4, individual data points shown as dots, bars show mean + SEM, **** p<(.0001).
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Figure 4. Skd3 disaggregates a-synuclein fibrils. (A) Representative dot blot of a-synuclein
disaggregation assay. Blot shows solubilization of a-synuclein fibrils by pari.Skd3 in the presence of an
ATP regeneration system (ARS), but not in the presence of pari.Skd3 or ARS alone. (N=3). (B)
Quantification of a-synuclein disaggregation assay showing that par.Skd3 in the presence of an ARS
disaggregates a-synuclein fibrils. Results are normalized as fraction in the supernatant relative to the
fraction in the supernatant and the pellet. The fraction of a-synuclein in the supernatant was compared to
buffer using a repeated measure one-way ANOVA and a Dunnett’s multiple comparisons test (N=3,
individual data points shown as dots, bars show mean + SEM, * p<0.05).
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Figure 5. The ankyrin-repeat domain and NBD are required for Skd3 disaggregase activity. (A)
Domain maps showing the ankSkd3 and ngpSkd3 constructs. (B) ATPase assay comparing ankSkd3 and
nep2Skd3 ATPase activity. Results show that ankSkd3, nepSkd3, and ankSkd3 + nxep2Skd3 do not have
ATPase activity. Data is from the same experiments as Figure 3B. ATPase activity was compared to
buffer using one-way ANOVA and a Dunnett’s multiple comparisons test (N=4, individual data points
shown as dots, bars show mean = SEM, **** p<(0.0001). (C) Luciferase disaggregation/reactivation assay
comparing ankSkd3, nepSkd3, and ankSkd3 + nepSkd3 disaggregation activity. Results show that
ankSkd3, nepSkd3, or ankSkd3 + nepSkd3 are inactive disaggregases. Data is from same experiments as
Figure 3C. Luciferase activity was buffer subtracted and normalized to Hsp104 plus Hsp70 and Hsp40.
Luciferase disaggregase activity was compared to buffer using one-way ANOVA and a Dunnett’s
multiple comparisons test (N=4, individual data points shown as dots, bars show mean + SEM, ****
p<0.0001).
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Figure 6. Skd3 does not collaborate with Hsp70 and Hsp40 in protein disaggregation. (A) Luciferase
disaggregation/reactivation comparing mppSkd3 disaggregase activity in the presence and absence of
Hsp70 (Hsc70) and Hsp40 (Hdj1). Results show a stimulation of Hsp104 disaggregase activity by Hsp70
and Hsp40, but no stimulation of disaggregase activity for mppSkd3. mppSkd3 plus Hsp70 and Hsp40 was
compared to mppSkd3 using a two-tailed, unpaired t-test. Test found no significant difference in
disaggregation activity. (N=4, individual data points shown as dots, bars show mean + SEM). (B)
Luciferase disaggregation/reactivation comparing par.Skd3 disaggregase activity in the presence and
absence of Hsp70 and Hsp40. Results show no stimulation of disaggregase activity for par.Skd3 by
Hsp70 and Hsp40. pari.Skd3 plus Hsp70 and Hsp40 was compared to pariSkd3 using a two-tailed,
unpaired t-test. Test found no significant difference in disaggregation activity. (N=4, individual data
points shown as dots, bars show mean + SEM).
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Figure 7. Skd3 maintains the solubility of key mitochondrial proteins in human cells. (A) Schematic
showing sedimentation assay design. HAP1 cells were lysed and the mitochondrial fraction was separated
from the cytosolic fraction. The mitochondrial fraction was then lysed and the soluble fraction was
separated from the insoluble fraction via sedimentation. The samples were then either analyzed via mass-
spectrometry or western blotting. (B) Volcano plot showing the log, fold change of protein in the Skd3
(ClpB) knockout pellet compared to the wild-type pellet. The 99 proteins that were enriched in the Skd3
pellet are highlighted in red. The 53 proteins that were enriched in the wild-type pellet are highlighted in
green. Significance cutoffs were set as fold change >2.0 and p<0.05, indicated with blue dashed lines

46


https://doi.org/10.1101/2020.01.17.911016

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.17.911016; this version posted January 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(N=3, p<0.05). (C) Select statistically significant terms for GO biological processes from the enriched
proteins in the Skd3 knockout pellet. Dashed line shows p=0.05 (p<0.05). For full list see Fig. S9b. (D)
Representative western blot of sedimentation assay showing relative solubility of HAX1 protein in wild-
type and Skd3 (ClpB) knockout cells. Results show a marked decrease in HAX1 solubility when Skd3 is
knocked out. (N=3). (E) Quantification of HAX1 sedimentation assay shows an overall increase in the
insoluble HAX1 relative to the total protein in the Skd3 (ClpB) knockout cell line. Quantification is
normalized as signal in the pellet divided by the sum of the signal in the pellet and supernatant. The
fraction in the pellet for the Skd3 knockout was compared to the wild-type cells using a two-way,
unpaired, t-test. (N=3, individual data points shown as dots, bars show mean + SEM, * p<0.05).
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D. Severity ATPase Disaggregase
o okd3 | 1.00 +/-0.00 | 1.00 +/-0.00
o Skd 3726 Moderate 1.64+/-0.11 | 0.28+/-0.03
o Skd3R4730 Severe 0.10 +/-0.07 | 0.00 +/-0.00
par Skd3A51 Severe 0.00 +/-0.00 | 0.00 +/-0.00
o k3R Severe 1.11+/-0.19 | 0.04+/-0.01

Figure 8: Skd3 disaggregase activity predicts the clinical severity of MGCA7-associated mutations.
(A) Domain map depicting all published mutations in Skd3 that have been associated with MGCA7.
Mutants in red are studied further here. (B) ATPase assay showing the effect of four homozygous
MGCA7 mutations on Skd3 activity. pari. Skd3™**™ has increased ATPase activity, part. Skd3**7°? and
parcSkd34%"Y have decrease ATPase activity, and pari Skd3***°" has unchanged ATPase activity
compared to wild type. par.Skd3 MGCA7 mutants ATPase activities were compared to part Skd3 wild-
type using one-way ANOVA and a Dunnett’s multiple comparisons test (N=3, individual data points
shown as dots, bars show mean + SEM, **** p<0.0001). (C) Luciferase disaggregation/reactivation assay
showing the effect of the same four homozygous MGCA7 mutations on Skd3 activity. pari Skd3™*™ had
reduced disaggregase activity, whereas par Skd3**7°?, pari . Skd3**"Y, and pari.Skd3***°F had almost
completely inactive disaggregase activity compared to wild type. Luciferase activity was buffer
subtracted and normalized to Hsp104 plus Hsp70 and Hsp40. Luciferase disaggregase activity was
compared to pariSkd3 wild type using one-way ANOVA and a Dunnett’s multiple comparisons test
(N=3, individual data points shown as dots, bars show mean + SEM, **** p<(.0001). (D) Table
summarizing the clinical severity of each MGCA7 mutation as well as the ATPase activity and luciferase
disaggregase activity. The table shows a relationship between luciferase disaggregase activity and clinical
severity, but no relationship between either the ATPase activity and clinical severity or ATPase and
luciferase disaggregase activity. Values represent ATPase activity and luciferase disaggregase activity
normalized to wild-type parcSkd3 activity. Values show mean £ SEM (N=3).
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Figure 9. Skd3 is a protein disaggregase that is activated by PARL and inactivated by MGCA7-
linked mutations. (A) Schematic illustrating (i) that Skd3 is a protein disaggregase that is activated by
PARL cleavage of its hydrophobic auto-inhibitory domain, (ii) that Skd3 works to solubilize key
substrates in the mitochondrial intermembrane space and inner membrane that are involved in apoptosis,
protein import, calcium handling, and respiration, and (iii) that mutations in Skd3 associated with
MGCAT7 result in defective Skd3 disaggregase activity in a manner that predicts the clinical severity of
disease.
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Figure S1: Skd3 NBD alignment to other AAA+ proteins reveals high similarity to Hsp104 and
Hsp78. Alignment of NBD2s from H. sapiens Skd3, S. cerevisiae Hsp104, S. cerevisiae Hsp78, E. coli
ClpB, E. coli CIpA, and S. aureus ClpC. Alignments were constructed using Clustal Omega. Bottom row
shows consensus sequence of alignment. Highlighted in red are the Walker A and Walker B motifs.
Highlighted in green are the Pore Loop motifs. Highlighted in blue are the Sensor I, Sensor II, and
Arginine Finger motifs.
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Figure S2. Alignment of Skd3 to diverse metazoan lineages shows conservation of key motifs and
domains. Alignment of Skd3 protein from diverse metazoan lineages. Alignment was constructed using
Clustal Omega. Alignment shows high level of conservation of Skd3 among species. H. sapiens, G.
gorilla, and C. jacchus Skd3 have an additional insertion in the ankyrin repeat domain that is not
conserved in the other species. This alignment was used to generate the phylogenetic tree in Figure 1B.
The M. brevicollis Skd3 sequence was included in the alignment for reference. MTS (mitochondrial-
targeting sequence, ANK (ankyrin-repeat domain), NBD (nucleotide-binding domain), and CTD (C-
terminal domain).
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Figure S3. Recombinant Skd3 is highly pure and immunoreactive with several commercially
available antibodies. (A) Representative gel of mppSkd3 showing high purity via Coomassie Brilliant
Blue stain. (B) Western blot with Skd3 antibody (Abcam ab76179) showing immunoreactivity of a
singular band of purified mppSkd3. (C) Western blot with Skd3 antibody (Abcam ab87253) showing
immunoreactivity of a singular band of purified mppSkd3. (D) Western blot with Skd3 antibody
(Proteintech #5743-1-AP) showing immunoreactivity of a singular band of purified mppSkd3.
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Figure S4. Skd3 is a protein disaggregase. (A) ATPase assay time course showing that vppSkd3 ATPase
activity is approximately linear over the first five minutes of the assay. (N=4, bars show mean + SEM).
(B) Luciferase disaggregation/reactivation activity time course showing that vppSkd3 disaggregates more
luciferase over time (N=4, bars show mean + SEM). (C) Luciferase disaggregation/reactivation assay
showing dose-response relationship between mppSkd3 concentration and luciferase reactivation (N=4, dots
show mean + SEM, ECs50=0.394uM). (D) Luciferase disaggregation/reactivation assay showing mepSkd3
disaggregase activity in the presence of different nucleotides. Results show that mppSkd3 can disaggregate
luciferase in the presence of ATP, but not in the absence of ATP, in the presence of ADP, or in the
presence of ATP analogues ATPyS (slowly hydrolyzable) or AMP-PNP (non-hydrolyzable). Luciferase
assay incubated for 30 min and no ATP regeneration system was used (N=4, individual data points shown
as dots, bars show mean + SEM, **** p<0.0001).
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Figure S5. The auto-inhibitory domain of Skd3 is hydrophobic. (A) Kyte-Doolittle hydrophobicity
score was calculated for Skd3 using the ExPASy web server(Kyte and Doolittle, 1982; Wilkins et al.,
1999). A positive hydrophobicity score indicates highly hydrophobic regions. Analysis shows a spike in
hydrophobicity corresponding to the inhibitory domain of Skd3.
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Figure S6. PARL cleavage of Skd3 enhances Skd3 disaggregase activity. (A) Sequence logo depicting
the conservation of the auto-inhibitory domain (orange) and PARL-cleavage motif (green) of Skd3.
Arrows indicate MPP and PARL cleavage sites. Logo shows a high level of homology suggesting
conserved importance. Sequence Logo was built with WebLogo using Skd3 protein sequence from 42
different mammalian species. (B) ATPase assay time course showing that par.Skd3 ATPase activity is
approximately linear over the first five minutes of the assay (N=4, bars show mean + SEM). (C)
Luciferase disaggregation/reactivation activity time course showing that pari.Skd3 disaggregates more
luciferase over time (N=4, bars show mean + SEM). (D) Luciferase disaggregation/reactivation assay
showing dose-response relationship between pari.Skd3 concentration and luciferase reactivation (N=4,
dots show mean + SEM, ECs=0.836puM). (E) Luciferase disaggregation/reactivation assay showing
rar.Skd3 disaggregation activity in the presence of different nucleotides. Results show that pari. Skd3 can
disaggregate luciferase in the presence of ATP, but not in the absence of ATP, in the presence of ADP, or
in the presence of non-hydrolyzable ATP analogues ATPyS or AMP-PNP. Luciferase assay incubated for
30 min and no ATP regeneration system was used. (N=4, individual data points shown as dots, bars show
mean = SEM, **** p<(0.0001).
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Figure S7. pari.Skd3, but not nppSkd3, ATPase activity is stimulated by a model substrate. (A)
ATPase assay showing that par.Skd3 but not vepSkd3 is stimulated by the model substrate B-casein.
ATPase activity with substrate was compared to controls without substrate using a two-tailed, unpaired t-
test. (N=4, individual data points shown as dots, bars show mean + SEM, * p<0.05).
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Figure S8. Verification of Skd3 knockout in HAP1 cells. (A) Representative western blot of HAP1
cells showing knockout of Skd3. First and second lane show 100ng load of recombinant mppSkd3 and
par.Skd3. Anti-Skd3 (Abcam CAT# ab235349) and anti-COXIV (Abcam CAT# ab14744) antibodies
were used.
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Figure S9. Skd3 deletion increases insolubility of mitochondrial inner membrane and
intermembrane space proteins. (A) Terms for GO cellular component associated with the enriched
proteins in the Skd3 knockout pellet. Dashed line shows p = 0.05 (p<0.05). (B) Full list of terms for GO
biological processes associated with the enriched proteins in the Skd3 knockout pellet. Dashed line shows
p =0.05 (p<0.05).

63


https://doi.org/10.1101/2020.01.17.911016

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.17.911016; this version posted January 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

BH1 BH2
Acid HD2  PEST HD1 TMD

HAX1

1 30 40 56 74 89104 117 183 228 261273279

IUPRED Score

0-0 T T T T T
0 50 100 150 200 250

Amino Acid
Figure S10. HAX1 is a highly disordered protein. (A) Domain map of HAX1 with IUPRED disorder
prediction score plotted underneath. [IUPRED scores higher than 0.5 predict disorder. Analysis suggests
that HAX1 is a highly disordered protein. Acidic domain labeled in green, BH1 and BH2 domains labeled
in purple, HD1 and HD2 domains labeled in blue, PEST domain labeled in orange, and transmembrane
domain (TMD) labeled in tan.

Table S1: Proteins enriched in HAP1 ACLPB cell pellet. Proteins from mass spectrometry data in
Figure 7b highlighted in red that have >2.0 fold change increase in the ACLPB cell pellet compared to
WT and a p-value of <0.05.

Table S2: Proteins enriched in HAP1 WT cell pellet. Proteins from mass spectrometry data in Figure
7b highlighted in green that have >2.0 fold change increase in the WT cell pellet compared to ACLPB and

a p-value of <0.05.
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