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Abstract 9 

To improve the efficacy of drug research and development (R&D), a better understanding of drug 10 
mechanisms of action (MoA) is needed to improve drug discovery. Computational algorithms, such as 11 
ProTINA, that integrate protein-protein interactions (PPIs), protein-gene interactions (PGIs) and gene 12 
expression data have shown promising performance on drug target inference. In this work, we evaluated 13 
how network and gene expression data affect ProTINA’s accuracy. Network data predominantly determines 14 
the accuracy of ProTINA instead of gene expression, while the size of an interaction network or selecting 15 
cell/tissue-specific networks have limited effects on the accuracy. However, we found that protein network 16 
betweenness values showed high accuracy in predicting drug targets. Therefore, we suggested a new 17 
algorithm, TREAP (https://github.com/ImmuSystems-Lab/TREAP), that combines betweenness values 18 
and adjusted p-values for target inference. This algorithm has resulted in higher accuracy than ProTINA 19 
using the same datasets.  20 
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Introduction 24 

The innovation of treatments for diseases remains a challenging task [1-6]. The efficiency of pharmaceutical 25 
research and development (R&D), quantified by the number of new drugs per billion US dollars spent, 26 
dramatically declined from 1950 to 2010 [2]. A large group of drug candidates fail in clinical trials because 27 
they are not effective or safe in humans [2, 5, 7-9]. A major reason is that the systematic effects of drug 28 
candidates are not well studied or modelled in the drug discovery process, and a better understanding of 29 
their mechanisms of action (MoA) can help improve the efficiency of drug R&D [2, 10-12].  30 

Two types of computational approaches have been reported to study MoAs of drugs by modeling high-31 
throughput biological data: comparative analysis and network-based algorithms [13, 14]. Comparative 32 
analysis approaches, such as the Connectivity Map [15], have been used to predict molecular targets of 33 
drugs and assist in drug repurposing [15-20]. They utilize expression profiles as drug signatures and 34 
compare with drugs having known targets, assuming that drugs with high similarities share the same targets. 35 
These approaches much rely on prior knowledge of drugs, thus have limitations in predicting de novo 36 
targets.  37 

Network-based algorithms predict drug or disease targets by combining network information and 38 
transcriptomic data [14, 21-27]. Two recent representatives, DeMAND [22] and ProTINA [14], model the 39 
systemic dysregulation of regulatory network caused by a drug treatment, connecting molecular interactions 40 
with differential expression (DE). The regulatory network is generated by using protein-protein interactions 41 
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(PPIs) and protein-gene interactions (PGIs) obtained from self-curated or public databases, such as 42 
STRING [28] and CellNet [29]. Similar to what has been reported by Noh et al [14], our preliminary 43 
research showed that ProTINA outperforms DeMAND when tested by the same gene expression and 44 
network datasets (Figure S1). Therefore, in this work, we focused on studying ProTINA’s performance. 45 

For ProTINA, a regulatory network, directing from proteins or transcriptional factors (TFs) to regulated 46 
genes, is generated from input PPIs and PGIs based on certain rules (Figure 1) [14]. The assumption is that 47 
the log fold change (LFC) of a gene is the linear combination of the LFCs of all proteins and TFs that 48 
regulate it. The weights are computed by linear regression methods and then integrated into a score for each 49 
regulator, a protein or a TF. Different from DeMAND, ProTINA may result in negative or positive scores, 50 
representing attenuation or enhancement, respectively. Regulators of larger magnitudes are more likely to 51 
be targets (red nodes in Figure 1). Showing promising results in predicting in vitro datasets, DeMAND and 52 
ProTINA have provided a new direction in identifying drug targets and toxicity [14, 22]. 53 

 54 

Figure 1. An overview of ProTINA algorithm. Each node refers to a transcription factor (TF), a non-TF 55 
protein (P) or a gene (G). Arrows present the directions of interactions or edges. The significance of an 56 
edge or protein (including TFs) is color coded, where red refers to high significance while blue refers to 57 
low significance. 58 

 59 

However, as target inference algorithms become more complicated, it is unclear what roles gene expression 60 
and network data play. A recent study has shown that an accurate description of network topology is able 61 
to cover 65% of the perturbation patterns predicted by a full biochemical model with kinetic parameters 62 
[30]. Several studies have shown that proteins associated with disease and proteins that are drug targets 63 
have significantly different positions within biological networks [31-34]. For target inference algorithms, 64 
it remains an open question as to which kind of biological data most affects the accuracy. Furthermore, 65 
algorithms can infer drug targets in a cell/tissue type-specific manner [14, 22, 27], and it is unknown how 66 
efficient or meaningful cell/tissue type-specific network data is for target inference. Answering these 67 
questions can provide us with insights into future algorithm improvement. 68 

In this work, we evaluated the impact of gene expression and network data, using the human B cell 69 
microarray data from the DREAM challenge (referred to as DP14) as our benchmark dataset [35], and 70 
introduced a new algorithm to predict drug targets. Firstly, we found that ProTINA’s scores are mostly 71 
determined by network data through permutation tests on gene expression. Secondly, we tested how the 72 
selection of networks affects prediction accuracy. Surprisingly, the effects of size or cell type are negligible. 73 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.17.910885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.910885


Next, our analysis suggested that network betweenness values can accurately predict drug targets. The 74 
performance is comparable with ProTINA and is consistent regardless of the network size. Lastly, we 75 
proposed TREAP to combine betweenness values and adjusted p-values from DE for target inference, 76 
which has outperformed ProTINA in accuracy. Moreover, the simplicity of the algorithm makes it more 77 
tractable to users who are not experts in systems and network biology. Our future work will focus on better 78 
balancing both types of data and trying other methods, such as machine learning, to improve prediction 79 
accuracy. 80 

Materials and Methods 81 

Gene expression data used in the analysis 82 

The microarray data of human Diffuse Large B-Cell Lymphoma (DLBCL) OCI-LY3 cell line treated with 83 
14 different drugs under diverse doses at 3 time points, 6, 12 and 24 hours post treatment were obtained 84 
from the NCI-DREAM challenge drug synergy dataset, DP14 (GEO accession: GSE51068) [35]. Three 85 
samples treated with ‘Aclacinomycin A’ under a lower dose were dropped due to less significance. The 86 
microarray data of human liver cell line HepG2 treated with 62 genotoxic or non-genotoxic chemicals at 87 
12, 24 and 48 hours post treatment were obtained from literature, referred to as HepG2 in this work (GEO 88 
accession: GSE28878) [36]. The microarray data of mouse pancreatic cells treated with 29 chromatin-89 
targeting compounds were also obtained from GEO database, referred to as MP (GEO accession: 90 
GSE36379) [37]. For all three datasets, raw data were normalized using the RMA function from the “affy” 91 
R package [38]. The log2 fold change (LFC) values and Benjamini–Hochberg adjusted p-values (adjusted 92 
p-values) were calculated by the “limma” R package [39]. Probes were mapped to gene symbols by using 93 
the “hgu219.db” R package for human microarray data and “moe430a.db” for mouse data. Those with the 94 
lowest average BH-adjusted p-value across all samples were chosen when multiple probes were mapped to 95 
the same gene. 96 

Networks used in the analysis and calculation of topological features 97 

Human or mouse PPIs and their associated confidence scores were obtained from the STRING database 98 
[28]. Interactions with experimental proof or from curated databases (the channels of ‘experiments’ and 99 
‘databases’) were extracted. Interactions transferred from other species or duplicated entries were excluded. 100 
Subnetworks were obtained by applying thresholds ranging from 0.4 to 0.9 to the PPI network, referred to 101 
as PPI04, PPI05, PPI06, PPI07, PPI08 and PPI09, respectively in this paper. 102 

Human PGIs and their confidence scores were obtained from the Regulatory Circuits, a database of 103 
predicted, cell/tissue type-specific PGIs [40]. PGI networks of 8 different cell/tissue types were studied in 104 
this analysis: ‘lymphocytes of B lineage’, ‘lymphocytes’, ‘lymphoma’, ‘myeloid leukocytes’, ‘lung’, ‘heart’, 105 
‘epithelial cells’ and ‘hepatocellular carcinoma cell line’. The network of ‘lymphocytes of B lineage’ were 106 
predicted by samples including those from DLBCL, the same cell line with DP14 [40], thus was chosen as 107 
a reference for analysis of DP14. PGI subnetworks for each cell/tissue type, namely PGI05, PGI10, PGI15 108 
and PGI20, were obtained by thresholds ranging from 0.05 to 0.20, respectively. Mouse PGIs were 109 
compiled from two manually curated databases of transcriptional regulatory networks: TRRUST (version 110 
2) [41] and RegNetwork [42]. These interactions are not cell/tissue type-specific, and no threshold was 111 
applied to them prior to analysis of MP. 112 

Degree or betweenness values were calculated by the “igraph” R package [43]. PPIs or the combination of 113 
PPIs and PGIs (PPI+PGI) were treated as undirected graphs, while PGIs were treated as directed graphs. 114 

Reference drug targets 115 
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The reference targets of each chemical were extracted from STITCH database (version 5.0) [44, 45] for 116 
analyses of DP14, HepG2 and MP. Only targets with experimental proof or from curated databases were 117 
collected as shown in Table S1. 118 

Prediction of drug targets by ProTINA  119 

LFC values, PPI and PGI subnetworks were analyzed by “protina”  R package [14]. Slope matrices of each 120 
time point were calculated following the user manual. For samples with only two timepoints, control 121 
samples served as 0hr post treatment to calculate associated slope matrices. Samples from different doses 122 
for the same drug were treated as separate groups. 123 

Prediction of drug targets by TREAP 124 

For target prediction by TREAP, the assumption is that genes with high betweenness values or low adjusted 125 
p-values are more likely to be drug targets. Adjusted p-values and PPI+PGI betweenness values were 126 
calculated as explained in the former sections. Ranks of genes were obtained by sorting betweenness values 127 
and adjusted p-values, respectively, and genes with the same betweenness or adjusted p-value shared the 128 
same rank. Final scores were calculated by summing up the ranks from both metrics for each gene. In this 129 
work, all analyses on TREAP used 0.9 as the threshold for human or mouse PPIs and 0.20 for human PGIs. 130 
No threshold was applied to mouse PGIs.   131 

Calculation and comparison of AUROC values 132 

Area under the receiving operator characteristics (AUROC) values in this paper were calculated by 133 
comparing scored proteins with reference drug targets through the “pROC” R package [46]. As ProTINA 134 
scores can be positive or negative, the absolute scores were used to calculate AUROC. The median AUROC 135 
across all drugs in each dataset was calculated to represent accuracy of a whole test. For drugs having more 136 
than one doses, the AUROC values of low doses were excluded. In terms of topological features, degree or 137 
betweenness values were directly used to calculate AUROC values without pre-processing. TREAP scores 138 
were directly used for calculation of AUROC without preprocessing. Difference in any pair of chosen tests 139 
were computed by performing pairwise t-test between their AUROC values. A p-value less than 0.05 were 140 
regarded as significantly different. 141 

Permutation tests on gene expression 142 

The null hypothesis for permutation tests in this work is that the median AUROCs of randomized gene 143 
expression are smaller than that of nonrandomized gene expression, and the p-values were calculated 144 
accordingly. For ProTINA, gene labels for DP14 that refer to the rows of LFC and associated slope matrices 145 
were randomly shuffled for 1000 times. Randomized data were applied to ProTINA under the same network 146 
setup, PPI09 and PGI20. For TREAP, gene labels of adjusted p-values for each dataset, namely DP14, 147 
HepG2 and MP were randomly shuffled for 1000 times, respectively, and drug targets were predicted using 148 
PPI09 and PGI20 (for MP no threshold was applied). AUROC and median values were calculated as 149 
explained in the former section.  150 

Results 151 

Permutation tests show that ProTINA is predominantly determined by network data 152 

To understand how much network or gene expression data contribute to ProTINA’s accuracy, we performed 153 
1000 permutation tests by randomizing the LFC gene expression values (Materials and Methods). To 154 
shorten the computation time on ProTINA, the smallest PPI and PGI subnetworks (PPI09 and PGI20) were 155 
chosen for this analysis (discussed more in the following section). For prediction scores obtained from 156 
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ProTINA, the area under the receiver operating characteristics (AUROC) values were calculated per drug, 157 
and the median AUROC across all drugs is used as a metric for each test.  158 

The median AUROC obtained by nonrandomized LFCs is 0.799. As shown in Fig. 2, 220 of 1000 159 
permutation tests have higher median AUROC values than that (one-tailed p-value = 0.221). Most tests 160 
have similar accuracy to the original test. This indicates that randomizing LFCs does not diminish 161 
ProTINA’s accuracy significantly, therefore, network data determines most of ProTINA’s performance.  162 

   163 

Figure 2. 1000 Permutation tests were performed by randomizing the gene expression and calculating the 164 
median AUROCs. The blue vertical line refers to the median AUROC obtained by nonrandomized gene 165 
expression. 166 

Selection of networks has limited effects in the prediction accuracy of ProTINA 167 

Next, we studied how the selection of PPIs and PGIs affects target inference accuracy. PPI and PGI 168 
subnetworks of different sizes or cell/tissue types were tested using the same gene expression data from 169 
DP14 (Materials and Methods). Similar to permutation tests, the median AUROC represents the accuracy 170 
for each PPI-PGI combination.  171 

In total, 24 PPI-PGI combinations of different sizes were tested on ProTINA. As shown in Figure 3a, 172 
ProTINA favors small PPI and large PGI subnetworks. The combination of PPI09 and PGI05 shows the 173 
highest accuracy, and its median AUROC is 0.821. As the threshold increases from 0.4 to 0.9, the number 174 
of interactions in PPI subnetwork ranges from 380375 to 281357 (Figure S2), and the median AUROC 175 
increases for most tests. For example, the median AUROC increases from 0.785 (PPI04) to 0.811 (PPI09) 176 
for analyses under PGI10. But there are PPI subnetworks that do not follow this trend. Under PGI05, PPI05 177 
shows lower median AUROC than PPI04 (0.784 and 0.796, respectively). For PGI subnetworks, as the 178 
number of interactions range from 123394 to 5932 (Figure S2), the median AUROC shows an opposite 179 
trend to that of PPI subnetworks (Figure 3a). An example is that the median AUROC decreases from 0.821 180 
(PGI05) to 0.785 (PGI20) when using PPI09. Most tests show a consistent trend except for those using 181 
PPI05. A possible reason is that new proteins and associated interactions are included in the network as the 182 
threshold for PGIs changes from 0.05 to 0.10. So that the network topology is changed, and predictions 183 
from ProTINA are affected accordingly. 184 

However, median AUROC values vary in a small range while the size of PPI or PGI subnetworks changes 185 
significantly (Figure 3a, 3b and Figure S3). The highest and lowest median AUROC values for ProTINA 186 
are 0.821 and 0.753, with a difference less than 0.1 (Figure 3b). In addition, most of these differences are 187 
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insignificant. When comparing with the test using PPI09 and PGI20, none of the 24 tests are significant in 188 
AUROC values (p-value > 0.05 for all tests), although the combination of PPI04 and PGI15 has resulted in 189 
a pairwise p-value of 0.057. Furthermore, we studied the effects on standard deviations (SDs) of AUROC 190 
values across 12 drugs for each test. All of them maintain at a low level below 0.13. In summary, we 191 
conclude that the size of networks has limited effects on the prediction accuracy of ProTINA, while small 192 
PPI and large PGI networks tend to improve the accuracy. 193 

 194 

Figure 3. Prediction accuracy of ProTINA using networks of different sizes or cell/tissue types. (a) PPI or 195 
PGI subnetworks of different sizes were tested on ProTINA to predict targets for DP14. The axes refer to 196 
the confidence thresholds for PPI (x axis) and PGI (y axis) subnetworks, and the median AUROC values 197 
are the metric for prediction accuracy. Among all PPI-PGI subnetwork combinations, PPI09-PPI05 and 198 
PPI04-PPI20 have the highest and lowest accuracy in terms of median AUROC values, respectively. Panel 199 
(b) shows the boxplot of these two groups. Each dot represents the AUROC of a drug. (c) PGI subnetworks 200 
of 7 cell/tissue types were applied to ProTINA for target prediction. 201 

 202 

To analyze the performance of cell/tissue type-specific networks, 28 tests using PGIs from 7 cell/tissue 203 
types were performed on ProTINA using the same PPI subnetwork, PPI09. Most tests counterintuitively 204 
show similar median AUROC values regardless of cell/tissue types (Figure 3c, Figure S4). In theory, the 205 
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PGI subnetworks for immune cells should have higher accuracy than non-immune cell types, and those for 206 
‘lymphocytes of B cell lineage’ should outperform other immune cells. This is because that samples from 207 
DLBCL, the same cell line with DP14, were used to predict the interactions for ‘lymphocytes of B lineage’ 208 
[40] (Materials and Methods). However, using the AUROC values from PGI20 for ‘lymphocytes of B cell 209 
lineage’ as a reference, no other cell/tissue types are significantly different (pairwise p-values > 0.05 for 210 
all) under the same network setup. In conclusion, we have shown that the selection of PPIs or PGIs in terms 211 
of either the size or cell/tissue type is not the key factor to prediction accuracy of ProTINA. 212 

Topological features have similar prediction accuracy to ProTINA, and protein betweenness 213 
outperforms degree 214 

Our findings have shown that ProTINA depends on network topology more than gene expression, and that 215 
it has consistent performance regardless of the network size or the cell/tissue type the network represents. 216 
These suggest that ProTINA is probably determined by some network topological feature that remains 217 
relatively stable across different PPI or PGI subnetworks, such as protein degree or betweenness. The 218 
degree of a protein is the number of proteins/genes with which it interacts, while the betweenness is a 219 
measure of bottleneckedness, e.g. the amount of information flowing through the proteins that connect the 220 
rest of the network. Analyses of these features and their effects on drug target prediction may provide 221 
meaningful insights on improving prediction accuracy.  222 

To test our hypotheses, we studied degree and betweenness values for PPIs, PGIs and PPI-PGI 223 
combinations (referred to as PPI+PGI in the following text). Firstly, for PPIs, we compared scores obtained 224 
from ProTINA (using PPI09 and PGI20) with their associated protein degrees or betweenness values in 225 
PPI09 for each drug. The majority of the drugs show a weak but evident correlation between absolute 226 
ProTINA scores and protein degrees, however, the correlation for betweenness is much lower (Table S2). 227 
For instance, the correlation coefficient is 0.211 for ‘Rapamycin’ (Figure 4a), while the correlation of 228 
betweenness values is smaller than that of degrees, which is 0.085 for the same drug (Figure 4b). Notice 229 
that a large portion of the top 100 proteins scored by ProTINA (red points in Figure 4a, b) lie in the group 230 
of high degree or betweenness values. 231 

We next tried to predict drug targets by using PPI degree or betweenness values without considering gene 232 
expression or PGIs. The assumption is that proteins with higher degree or betweenness values are more 233 
likely to be targets. As shown in Figure 4c, the median AUROC values for PPI degree or betweenness 234 
values are close to those for ProTINA. What’s more, betweenness values perform better than degrees. The 235 
highest and lowest median AUROC values for degrees are 0.814 and 0.727 (Figure 4c), and those for 236 
betweenness values are 0.866 and 0.800, even higher than associated median AUROC values for ProTINA 237 
under the same network setup. As the size of PPI subnetworks shrinks, the median AUROCs for degrees 238 
decreases accordingly (Figure 4c), with a correlation coefficient value of -0.950 between the medians and 239 
thresholds. While the decrease of network size also diminishes the accuracy of betweenness, the median 240 
AUROCs remain higher than those of degrees and decrease relatively slower. 241 
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  242 

Figure 4. (a) Degree or (b) betweenness values of proteins in PPIs were compared with associated ProTINA 243 
scores for ‘Rapamycin’. The correlation coefficient is 0.211 for absolute ProTINA scores and degrees, and 244 
that for betweenness values is 0.085. Red points refer to the top 100 proteins scored by ProTINA. (c) The 245 
degree and betweenness values were used to predict drug targets assuming higher scores are more likely to 246 
be targets. Each point shows the median AUROC value and the number of proteins under a PPI threshold. 247 
For reference, the grey dashed line refers to the highest median AUROC achieved by ProTINA, which was 248 
obtained from using PPI09 and PGI05.  249 

 250 

Secondly, the degree and betweenness values of PGI subnetworks were also compared with associated 251 
ProTINA scores, however, there are no clear trends between them (Table S2). In addition, drug target 252 
prediction based on PGI degree or betweenness values are not comparable with that by PPI topological 253 
features (Figure S5). This might be related to the limited amount of PGI interactions. 254 

Lastly, we calculated topological features for PPI+PGI and compared them with ProTINA scores. As 255 
expected, they show the same trend with PPIs (Table S2). The correlation coefficient between degrees and 256 
ProTINA scores is 0.208 for ‘Rapamycin’, while that for betweenness values is 0.079 (Figure 5a, b). 257 

Predicting drug targets by PPI+PGI degree or betweenness values results in higher median AUROC values 258 
than those for PPIs. In addition, for all thresholds of PPIs or PGIs applied to this analysis, betweenness 259 
values outperform degrees. The accuracy for PPI+PGI degrees ranges from 0.833 to 0.733 in terms of 260 
median AUROC values, and that for betweenness values ranges from 0.878 to 0.782 (Figure 5c). As the 261 
size of PPI or PGI subnetworks decreases, the median AUROC values for PPI+PGI degrees also decreases. 262 
PPI+PGI betweenness values have the same behavior as the size of PPIs changes, while for PGIs the trend 263 
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is less evident. PGI10 has the best performance in parallel comparisons. In summary, betweenness values 264 
well predict drug targets and show even higher accuracy than ProTINA. 265 

  266 

Figure 5. (a) PPI+PGI degree or (b) betweenness values were compared with associated ProTINA scores 267 
for ‘Rapamycin’. The correlation coefficient for absolute ProTINA scores versus degrees and absolute 268 
ProTINA scores versus betweenness values is 0.208 and 0.079, respectively. Red points refer to the top 100 269 
proteins scored by ProTINA. (c) The degree and betweenness values were used as measures to predict drug 270 
targets, and the median AUROC values were calculated for each prediction. The axes refer to the confidence 271 
thresholds for PPI (x axis) and PGI (y axis) subnetworks. 272 

Missing information in network topology can be covered by differential expression  273 

Topological features, degree or betweenness values, have shown high prediction accuracy without taking 274 
gene expression into account. Our permutation tests have also indicated that network data has more effects 275 
in ProTINA’s performance than gene expression data. What’s more, ProTINA has much better performance 276 
than differential expression (DE) analysis on drug target prediction according to prior research [14]. All of 277 
the above has raised a question about whether gene expression data can help to predict drug targets. To 278 
address this concern, we compared DE analysis (adjusted p-values, Materials and Methods) with two other 279 
target prediction methods in terms of their performance on each drug: PPI+PGI betweenness and ProTINA. 280 

We calculated AUROC values for all three methods using the same network setup, PPI09 and PGI20 281 
(Figure 6). For most drugs, such as ‘Mitomycin C’ or ‘Cycloheximide’, PPI+PGI betweenness and 282 
ProTINA have close AUROC values, and they outperform DE analysis. Consistent behaviors between 283 
ProTINA and PPI+PGI further indicates the impact of network topology on ProTINA’s accuracy. In 284 
contrast to these drugs, DE has much higher prediction accuracy than PPI+PGI or ProTINA for ‘Monastrol’ 285 
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(the AUROCs are 0.998, 0.771 and 0.555, respectively). This means that DE analysis of gene expression 286 
data can capture information missing in network topology, and that it is necessary to include gene 287 
expression data for drug target inference and improvement of accuracy.  288 

  289 

Figure 6. AUROC values of each drug obtained from three different methods: differential expression (DE) 290 
analysis by adjusted p-values, betweenness values from the combination of PPI09 and PGI20 (PPI+PGI) 291 
and ProTINA analysis by PPI09 and PGI20.  292 

A novel algorithm that combines network topology and DE analysis for target inference 293 

To better combine network topology and DE analysis and improve inference accuracy, we suggest TREAP 294 
(target inference by ranking betweenness values and adjusted p-values) to predict drug targets. There are 295 
three steps for this algorithm. The first step is to calculate PPI+PGI betweenness values and obtain adjusted 296 
p-values from DE analysis. For gene expression profiles with multiple timepoints, DE analysis can be 297 
performed per time point or across all timepoints. The second step is to calculate the ranks of genes by 298 
sorting betweenness values and adjusted p-values, respectively. Genes with high betweenness values or low 299 
adjusted p-values are scored with high ranks. The third step is to generate final scores by summing up the 300 
ranks from both metrics for each gene. Genes with higher scores are more likely to be targets for associated 301 
drugs. 302 

TREAP was tested by three different gene expression profiles: (i) DP14 [35], (ii) human HepG2 cells treated 303 
with genotoxic or non-genotoxic chemicals, referred to as HepG2 in this work [36] and (iii) mouse 304 
pancreatic cell lines treated with chromatin-targeting compounds, referred to as MP [37]. Human and mouse 305 
PPIs were obtained from STRING [28], and PGIs were obtained from Regulatory Circuits [40], TRRUST 306 
(version 2) [41] and RegNetwork [42]. AUROCs were calculated by comparing scored genes with known 307 
targets for each test as a measurement of accuracy.  308 

TREAP shows stable performance and maintains high accuracy for all datasets tested in this study (median 309 
AUROCs > 0.800, Figure 7). While TREAP takes significantly less computation time than ProTINA, it has 310 
higher median AUROCs when compared with ProTINA under the same dataset (Figure 7). For DP14, the 311 
median AUROC of TREAP is 0.850, higher than that of ProTINA, 0.799 (p-value = 0.11). Notice that it is 312 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.17.910885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.910885


also higher than using PPI+PGI betweenness values alone, which is 0.798. TREAP significantly 313 
outperforms ProTINA in HepG2. The median AUROC is significantly improved from 0.739 to 0.801, with 314 
a p-value of 0.0002. For MP, TREAP and ProTINA have close median AUROCs as 0.806 and 0.799, 315 
respectively (p-value = 0.39). By integrating betweenness values and adjusted p-values to represent both 316 
network topology and DE analysis, TREAP is comparable with and sometimes better than ProTINA in 317 
accuracy for all datasets analyzed in this work. In addition, we performed 1000 permutation tests on TREAP 318 
by randomizing the adjusted p-values for each dataset. Different from ProTINA, TREAP is significant when 319 
compared with permutation tests on the adjusted p-values from DP14, with the one-tailed p-value as 0.007 320 
(Figure S6). For HepG2, the one-tailed p-value is 0.058, while for MP, TREAP is less significant and shows 321 
a one-tailed p-value as 0.314. 322 

  323 

Figure 7. AUROC values of TREAP and ProTINA predictions for different gene expression profiles: 324 
human lymphoma cells (DP14), human liver cancer cells (HepG2) and mouse pancreatic cells (MP). (p-325 
values = 0.11, 0.0002 and 0.39, respectively) 326 

Discussion 327 

Our analyses have shown that, even though ProTINA requires both gene expression and network data for 328 
inputs, network data predominantly determines accuracy of drug target inference. What’s more, the 329 
cell/tissue type or size of a network has limited impact on ProTINA’s accuracy, while topology, especially 330 
the degree value, affects the performance of ProTINA more.  331 

However, ProTINA has two limitations due to the reliance on network topology alone and the connection 332 
with protein degrees. First, PPIs, a major part of network data, have a known bias toward protein abundance 333 
[33, 47]. It has been reported that interactions obtained from high-throughput experiments have a 334 
correlation between the protein degree and abundance. Second, we have shown that differential analysis of 335 
gene expression data can uncover meaningful information missing in network topology.  336 

To address these two limitations, we suggested a new algorithm, TREAP, which combines protein 337 
betweenness values and adjusted p-values, representing information from both sources of network topology 338 
and DE analysis, to predict drug targets. We chose betweenness values because they are less sensitive to 339 
network sizes and more accurate than degrees in target prediction. TREAP shows more consistent 340 
performance than ProTINA when tested by different gene expression profiles and maintains a median 341 
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AUROC above 0.800. In addition, TREAP takes significantly less computation time than ProTINA, and its 342 
simplicity makes it more tractable to users who are not experts in systems and network biology. It is also 343 
flexible in dealing with samples of limited or multiple timepoints as adjusted p-values can be calculated per 344 
timepoint or across all timepoints based on user’s needs. However, ProTINA needs at least two timepoints 345 
to fully take advantage of the algorithm [14]. Currently, betweenness values and adjusted p-values are 346 
weighted equally for TREAP. Future work should focus on better balancing both types of data and trying 347 
other scoring methods to improve prediction accuracy. 348 

TREAP is presented here as an alternative approach to ProTINA, but it is worth emphasizing advantages 349 
specific to each algorithm. As stated above, TREAP is significantly faster, and the algorithm is not complex, 350 
enabling users from several branches of research to access the tool and understand the findings. ProTINA, 351 
however, is a mechanistically derived algorithm, which allows users with expertise in computational 352 
biology to dive deeper into the possible mechanisms of a drug’s activity. The accuracy of their predictions 353 
is similar when measured using the AUROC, but the permutation tests presented here suggest that TREAP 354 
is more likely to use drug-specific gene expression to make a more accurate prediction. 355 

TREAP and its derivatives have potential in a variety of applications for drug innovation. First, it can assist 356 
in selection of drug candidates and serve as a preliminary test of the efficacy or safety by connecting with 357 
databases for functional annotations, e.g. Gene Ontology [48, 49]. Studying predicted targets can help 358 
exclude poorly targeting drug candidates or those causing severe damage to biological systems. Second, 359 
the algorithm can be applied to drug repurposing by exploring published datasets characterizing drug 360 
treatments, assuming that a pair of drugs sharing the same group of predicted targets can be used to treat 361 
the same disease. Last but not the least, the algorithm can help to discover disease mechanisms [14]. Similar 362 
to drug treatments, diseases can also be treated as a type of perturbation to the biological system of interest. 363 
Predicting disease targets may assist in identifying key components of disease mechanisms and pathology, 364 
which is crucial for innovations in disease treatment [10]. 365 
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