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 2 

SUMMARY (148 words) 13 

Most loci identified by GWAS have been found in populations of European ancestry (EA). In 14 

trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 15 

non-EA individuals, we identified 5,552 trait-variant associations at P<5x10-9, including 71 16 

novel loci not found in EA populations. We also identified novel ancestry-specific variants not 17 

found in EA, including an IL7 missense variant in South Asians associated with lymphocyte 18 

count in vivo and IL7 secretion levels in vitro. Fine-mapping prioritized variants annotated as 19 

functional, and generated 95% credible sets that were 30% smaller when using the trans-ethnic 20 

as opposed to the EA-only results. We explored the clinical significance and predictive value of 21 

trans-ethnic variants in multiple populations, and compared genetic architecture and the impact 22 

of natural selection on these blood phenotypes between populations. Altogether, our results for 23 

hematological traits highlight the value of a more global representation of populations in genetic 24 

studies. 25 

  26 
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 3 

INTRODUCTION 27 

Blood-cell counts and indices are quantitative clinical laboratory measures that reflect 28 

hematopoietic progenitor cell production, hemoglobin synthesis, maturation and release from the 29 

bone marrow, and clearance of mature or senescent blood cells from the circulation. Quantitative 30 

red blood cell (RBC), white blood cell (WBC) and platelet (PLT) traits exhibit strong heritability 31 

(h2~30-80%)(Evans et al., 1999; Hinckley et al., 2013) and have been the subject of various 32 

genome-wide association studies (GWAS), including a large study that identified >1000 genomic 33 

loci in ~150,000 individuals of European-ancestry (EA)(Astle et al., 2016). 34 

 35 

Importantly, the distribution of hematologic traits and prevalence of inherited hematologic 36 

conditions differs by ethnicity. For example, the prevalence of anemia and microcytosis is higher 37 

among African-ancestry (AFR) individuals compared to EA individuals in part due to the presence 38 

of globin gene mutations (e.g. sickle cell, a/b-thalassemia) more common among African, 39 

Mediterranean and Asian populations (Beutler and West, 2005; Raffield et al., 2018; Rana et al., 40 

1993). AFR individuals tend to have lower WBC and neutrophil counts partly because of the 41 

Duffy/DARC null variant (Rappoport et al., 2019). Among Hispanics/Latinos (HA), a common 42 

Native American functional intronic variant of ACTN1 is associated with lower PLT count (Schick 43 

et al., 2016).  44 

 45 

Despite these observations, non-EA populations have been severely under-represented in most 46 

blood-cell genetic studies to date (Popejoy and Fullerton, 2016; Popejoy et al., 2018; Wojcik et 47 

al., 2019). Multiethnic GWAS have been recognized as more powerful for gene mapping due to 48 

ancestry-specific differences in allele frequency, linkage disequilibrium (LD), and effect size of 49 
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 4 

causal variants (Li and Keating, 2014). Since blood cells play a key role in pathogen invasion, 50 

defense and inflammatory responses, hematologic-associated genetic loci are particularly 51 

predisposed to be differentiated across ancestral populations as a result of population history and 52 

local evolutionary selective pressures (Ding et al., 2013; Lo et al., 2011; Raj et al., 2013). Given 53 

the essential role of blood cells in tissue oxygen delivery, inflammatory responses, atherosclerosis, 54 

and thrombosis (Byrnes and Wolberg, 2017; Chu et al., 2010; Colin et al., 2014; Tajuddin et al., 55 

2016), factors that contribute to such inter-population differences in blood-cell traits may also play 56 

appreciable roles in the pathogenesis of chronic diseases and health disparities between 57 

populations.  58 

  59 
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 5 

RESULTS 60 

Trans-ethnic and ancestry-specific blood-cell traits genetic associations 61 

We analyzed genotype-phenotype associations at up to 45 million autosomal variants in 746,667 62 

participants, including 184,424 individuals of non-EA descent, for 15 traits (Figure 1, 63 

Supplementary Tables 1-4, and Methods). The association results of the EA-specific meta-64 

analyses are reported separately in a companion paper. In the trans-ethnic meta-analyses, we 65 

identified 5,552 trait-variant associations at P<5x10-9, which include 71 novel associations not 66 

reported in the EA-specific manuscript (Supplementary Table 5). Of the 5,552 trans-ethnic loci, 67 

128 showed strong evidence of allelic effect heterogeneity across populations (Pancestry.hetero <5x10-68 

9) (Supplementary Figure 1 and Supplementary Table 5). Ancestry-specific meta-analyses 69 

revealed 28 novel trait-variant associations (Figure 1 and Supplementary Tables 6-10). 70 

However, 19 out of these 21 novel AFR-specific associations map to chromosome 1 and are 71 

associated with WBC or neutrophil counts, therefore reflecting long-range associations due to the 72 

admixture signal at the Duffy/DARC locus (Reich et al., 2009). We attempted to replicate all novel 73 

trans-ethnic or ancestry-specific genetic associations in the Million Veteran Program (MVP) 74 

cohort (Gaziano et al., 2016). Of the 89 variant-trait associations that we could test in MVP, 86 75 

had a consistent direction of effect (binomial P=6x10-24), 72 had an association P<0.05 (binomial 76 

P=8x10-79), and 44 met the Bonferroni-adjusted significance threshold of P<6x10-4 77 

(Supplementary Table 11). 78 

 79 

For 3,552 loci with evidence of a single association signal based on conditional analyses in EA 80 

(Supplementary Methods), we generated fine-mapping results for each trans-ethnic or ancestry-81 

specific dataset using an approximate Bayesian approach (Methods)(Wellcome Trust Case 82 
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Control et al., 2012). The 95% credible sets were smaller in the trans-ethnic meta-analyses than in 83 

the EA or EAS meta-analyses (Figure 2A), indicating improved resolution owing to both 84 

increased sample size and different LD patterns. When comparing loci discovered in both the trans 85 

and EA analyses, we found that the 95% credible sets were 30% smaller among the trans results 86 

(median (interquartile range) number of variants per 95% credible set was 4 (2-13) in trans vs. 5 87 

(2-16) in EA, Wilcoxon’s P=3x10-4). For instance, a locus on chromosome 9 associated with PLT 88 

counts included seven variants in the EA 95% credible set but only one in the trans set, an increase 89 

in fine-mapping resolution likely driven by limited LD at the locus in EAS (Figure 2B). In the 90 

trans and EA results, respectively, we identified 433 and 403 loci with a single variant in the 95% 91 

credible sets (Figure 2C). 92 

 93 

Next, we assessed our fine-mapped 95% credible sets for the presence of functional variants, which 94 

we defined as variants with coding consequences or those mapping to hematopoietic accessible 95 

chromatin. Genomic annotation of the 95% credible sets of the trans, EA and EAS hematological 96 

trait-associated loci revealed that the proportion of likely functional variants was higher among 97 

those with high PPI (Figure 2D). The enrichment within high-PPI categories was particularly 98 

notable for missense variants, but also observed for intronic and intergenic variants that map to 99 

open chromatin regions in precursor or mature blood cells (Figure 2D)(Corces et al., 2016). We 100 

used g-chromVAR to quantify the enrichment of trans, EA and EAS 95% credible set variants 101 

within regions of accessible chromatin identified by ATAC-seq in 18 hematopoietic populations 102 

(Corces et al., 2016; Ulirsch et al., 2019). We noted 22 significant trait-cell type enrichments using 103 

the trans-ethnic credible sets, all of which were lineage specific, including RBC traits in erythroid 104 

progenitors, platelet traits in megakaryocytes, and monocyte count in granulocyte-macrophage 105 
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progenitors (GMP) (Figure 2E and Supplementary Table 12). Cell-type enrichments were 106 

largely consistent between fine-mapped traits found in the trans, EA and EAS loci. However, we 107 

observed two noteworthy ancestry-specific differences: the EAS results revealed significant 108 

enrichments in basophil count for the common myeloid progenitor (CMP) population and 109 

eosinophil count for the GMP population, but neither pairing reached significance in the larger EA 110 

meta-analyses (Supplementary Figure 2). These differences persisted even after controlling for 111 

the number of loci tested in each ancestry. This is further supported by our finding that the genetic 112 

correlations for these two traits between EA and EAS are the lowest among all studied blood 113 

phenotypes (see below).  114 

 115 

Phenome-wide association studies (pheWAS) 116 

When we queried the 5,552 trans-ethnic genome-wide significant variants associated with blood-117 

cell traits in three distinct biobanks (EA individuals from UK Biobank (UKBB), Japaneses from 118 

Biobank Japan (BBJ), African Americans from BioVU (BioVU)), we identified 1,140 phenotype-119 

variant associations (Supplementary Table 13). These include 106 variants in BBJ, four variants 120 

in BioVU, and 222 variants in the UKBB. Of the four variants significant in BioVU, three were 121 

located at the b-globin locus and reflect the known clinical sequelae of sickle cell disease. Of the 122 

1,140 associations, 246 were shared across at least two biobanks (Methods). Many of the 123 

associations shared between BBJ and the UKBB were related to dyslipidemia and cardiovascular 124 

diseases (Supplementary Table 13). Because of the large differences in sample sizes between the 125 

three biobanks (Methods), we reasoned that lack of power was the likely explanation for why 126 

associations were not shared across biobanks. However, it appears that differences in allele 127 
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frequencies across the three primary ancestries also played a role. Overall, unique associations had 128 

greater differences in allele frequencies than shared associations (Supplementary Figure 3).  129 

 130 

Trans-ethnic predictions of hematological traits  131 

Polygenic trait scores (PTS) developed in a single ethnically homogeneous population tend to 132 

underperform when tested in a different population (Grinde et al., 2019; Marquez-Luna et al., 133 

2017; Martin et al., 2019). We explored whether we could combine the genome-wide significant 134 

trans-ethnic variants identified in our analyses into PTS that can predict blood-cell traits in a multi-135 

ethnic setting. First, we used trans-ethnic effect sizes as weights to compute PTStrans for each trait, 136 

and tested their performance in independent EA, AFR and HA participants from the BioMe 137 

Biobank (Methods). As expected because our trans-ethnic meta-analyses are dominated by EA 138 

individuals, PTStrans were more predictive in EA, although their performance in HA was 139 

comparable for several traits (lymphocyte and monocyte counts, mean PLT 140 

volume)(Supplementary Figure 4A and Supplementary Table 14). Moreover, for neutrophil 141 

and WBC counts, the variance explained by the PTStrans was up to three times higher in AFR and 142 

HA than in EA samples due to the inclusion of the strong Duffy/DARC locus (Supplementary 143 

Figure 4A). Because these Duffy/DARC variants would not have been included in PTS derived 144 

uniquely from EA association results, this illustrates an interesting feature of using trans-ethnic 145 

variants for building polygenic predictors. Next, we asked if we could increase the variance 146 

explained by calculating PTS using the same trans-ethnic variants but weighting them using 147 

ancestry-specific as opposed to trans-ethnic effect sizes. PTStrans outperformed ancestry-specific 148 

PTSAFR and PTSHA in BioMe AFR and HA participants, respectively (Supplementary Figure 4B-149 

C and Supplementary Table 14). This result likely indicates that the discovery sample size for 150 
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these two populations is still too small to provide robust estimates of the true population-specific 151 

effect sizes.  152 

 153 

Rare coding blood-cell-traits-associated variants 154 

The identification of rare coding variants has successfully pinpointed candidate genes for many 155 

complex traits, including blood-cell phenotypes (Auer et al., 2014; Chami et al., 2016; Eicher et 156 

al., 2016; Justice et al., 2019; Marouli et al., 2017; Mousas et al., 2017; Tajuddin et al., 2016). Our 157 

trans-ethnic and non-EA ancestry-specific meta-analyses yielded 16 coding variants with minor 158 

allele frequency (MAF) <1% (Table 1 and Supplementary Table 15). This list includes variants 159 

of clinical significance (variants in TUBB1, GFI1B, HBB, MPL and SH2B3) and variants that 160 

nominate candidate genes within GWAS loci (ABCA7, GMPR) (Table 1). Our analyses also 161 

retrieved a known missense variant in EGLN1 (rs186996510) that is associated with high-altitude 162 

adaptation and hemoglobin levels in Tibetans (Lorenzo et al., 2014; Xiang et al., 2013). We noted 163 

a missense variant in IL7 (rs201412253, Val18Ile) associated with increased lymphocyte count in 164 

South Asians (SAS)(P=4.4x10-10) (Figure 3A and Supplementary Table 16). This variant is low-165 

frequency in SAS (MAF=2.6%) but rare in other populations (MAF <0.4%). IL7 encodes 166 

interleukin-7, a cytokine essential for B- and T-cell lymphopoiesis (Lin et al., 2017). IL7 is 167 

synthesized as a proprotein that is cleaved prior to secretion, and the IL7-Val18Ile variant localizes 168 

to the IL7 signal peptide comprising the first 25 amino acids. To determine if this variant alters 169 

IL7 secretion, we engineered HEK293 cells with either IL7 allele (Methods). Although there was 170 

no difference in IL7 RNA expression levels (t-test P=0.63), we found that the IL7-18Ile allele, 171 

which associates with higher lymphocyte counts in SAS individuals, significantly increased IL7 172 

protein secretion in this heterologous cellular system (+83%, P=2.7x10-5)(Figure 3B). 173 
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Unfortunately, the relatively small sample size of the SAS cohort prevented us from testing 174 

whether this IL7 variant may be associated with other relevant phenotypes, such as cancer risk or 175 

susceptibility to infections (Lin et al., 2017). 176 

 177 

Genetic architecture of blood-cell traits in EA and EAS populations 178 

We used several different approaches to quantify similarities and differences in genetic 179 

architecture of hematologic traits across populations. Focusing on the two largest studied 180 

populations, EA and EAS, we calculated heritability for all blood traits and found them to be highly 181 

concordant between ancestries (Pearson’s r=0.75, P=0.0033)(Supplementary Table 17)(Bulik-182 

Sullivan et al., 2015b). Likewise, within-ancestry genetic correlation coefficients (rg) between 183 

pairs of hematological traits were highly concordant across ancestries (Pearson’s r=0.97, 184 

P<2.2x10-16)(Supplementary Figure 5)(Bulik-Sullivan et al., 2015a). We then used the Popcorn 185 

method to directly measure genetic correlations for blood-cell traits between EA and EAS using 186 

summary statistics for common variants (Brown et al., 2016). For all 13 traits available in both EA 187 

and EAS, genetic correlations were high (lowest for basophils (rg=0.30) and highest for MCH 188 

(rg=0.66)), but significantly different than 1 (P<3x10-6)(Supplementary Table 18). This suggests 189 

that even when considering only common variants, the genetic architecture of blood phenotypes is 190 

substantially different between populations. 191 

 192 

Natural selection at blood-cell trait loci 193 

Natural selection can account for differences in association results between populations, as 194 

highlighted by our analyses of rare coding variants which includes several loci known to be under 195 

selection (CD36, HBB, EGLN1)(Table 1). To further explore this possibility, we assessed whether 196 
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variants that tag selective sweeps (tagSweeps, variants with the highest integrated haplotype score 197 

(iHS)) within continental populations from the 1000 Genomes Project (1000G) are associated with 198 

blood-cell phenotypes (Johnson and Voight, 2018). We found a genome-wide enrichment of 199 

associations results between tagSweeps and hematological traits, particularly within EA, EAS and 200 

AFR populations (Supplementary Figure 6 and Supplementary Table 19). To rule out simple 201 

overlaps due to the large number of sweeps and blood-cell trait loci, we compared the number of 202 

genome-wide significant tagSweeps in EA, EAS and AFR with the number of significant variants 203 

among 100 sets of matched variants (Methods). We found significant enrichment of selective 204 

sweeps for WBC (EA, EAS, AFR), monocytes (EA, AFR), eosinophils (EA), neutrophils (AFR), 205 

lymphocytes (EAS), and PLT (EA, EAS)(Supplementary Table 20).  206 

 207 

In AFR and HA, the enrichments for WBC, neutrophils and monocytes were entirely driven by 208 

selective sweeps on chromosome 1 near Duffy/DARC (Reich et al., 2009). Only three additional 209 

loci shared evidence of associations with blood-cell traits and positive selection across 210 

populations: HLA, SH2B3 (Zhernakova et al., 2010) and CYP3A5 (Chen et al., 2009). We found 211 

eight and 100 non-overlapping selective sweeps with variants associated with hematological traits 212 

in EAS and EA, respectively (Supplementary Table 21). Six of the eight EAS-specific tagSweeps 213 

are also associated with blood-cell traits in EA participants, indicating that these regions do not 214 

account for population differences in hematological trait regulation (Supplementary Table 21). 215 

One of the remaining two variants is located at the HBS1L-MYB locus and, although it is not 216 

associated with blood-cell traits in EA, there are many other variants near MYB associated with 217 

blood phenotypes in EA (Supplementary Table 6). The remaining selective sweep highlighted 218 

by this analysis is located upstream of IL6 (Figure 4). The tagSweep at this locus, rs2188580, is 219 
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strongly associated with PLT count in EAS (PEAS=2.8x10-9, PEA=0.0022), is differentiated between 220 

EAS and EA as indicated by the population branch statistic (PBS)(Yi et al., 2010)(C-allele 221 

frequency in EAS=44%, 4% in EA; standardized PBSEAS=7.353), and overlaps selective sweeps 222 

identified in several EAS populations from the 1000G (e.g. iHSCHS=3.935)(Figure 4). The IL6 223 

locus has previously been associated with WBC traits in EA (Astle et al., 2016), but our finding is 224 

the first report of its association with PLT. IL6 encodes interleukin-6, a cytokine that is a 225 

maturation factor for megakaryocytes, the precursors of PLT (Kimura et al., 1990). Further 226 

supporting the role of IL6 signaling in PLT biology, a well-characterized missense variant in the 227 

IL6 receptor gene (IL6R-rs2228145)(van Dongen et al., 2014) is also associated with PLT count 228 

in EAS (P=4.3x10-6).  229 

  230 
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DISCUSSION 231 

Our meta-analyses of 15 hematological traits in up to 746,667 individuals represents one of the 232 

largest genetic study of clinically relevant complex human traits across diverse ancestral groups. 233 

We have continued to expand the repertoire of loci and genes that contribute to interindividual 234 

variation in blood-cell traits, with potential implications for hematological diseases, but also other 235 

conditions such as cancer, immune and cardiovascular diseases. Our results hold a number of 236 

implications for future human genetic studies. First, we showed that adding even a “modest” 237 

number of non-EA participants to GWAS can yield important biology, such as the identification 238 

of a lymphocyte count-associated IL7 missense variants in 8,189 South Asians (Figure 3). Second, 239 

loci that underlie variation in blood-cell traits represent a broad mixture of shared associations (i.e. 240 

similar allele frequencies and effect sizes across populations) and heterogeneous associations (i.e. 241 

dissimilar allele frequencies and effect sizes across populations). This result contributes to 242 

mounting evidence that a full accounting of the genetic basis of complex human traits will require 243 

a thorough catalog of global genetic and phenotypic variation. Third, because of heterogeneity 244 

across populations in both allele frequencies and patterns of LD, fine-mapping of association 245 

signals can be substantially aided by including multiple ancestries. This will have a dramatic 246 

impact on the success of large-scale efforts aimed at functionally characterizing GWAS findings. 247 

As more studies seek to unravel the causal variants that underlie complex traits associations, we 248 

anticipate that genetic evidence from diverse ancestries will play an important role.  249 

  250 
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SUPPLEMENTERY INFORMATION 251 

Supplementary Information is linked to the online version of the paper. 252 
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1341. 510 
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Figure legends 512 

Figure 1. Trans-ethnic and ancestry-specific meta-analyses of blood-cell traits. (a) Study design 513 

of the project. We used a fixed-effect meta-analysis strategy to analyze genetic associations within 514 

each of the five populations available, and a mega-regression approach that considers allele 515 

frequency heterogeneity for the trans-ethnic association tests. (b) Most blood-cell trait-associated 516 

loci physically overlap between populations. Despite different sample sizes between populations, 517 

we note that few loci are found in a single population, suggesting shared genetic architecture.  518 

 519 

Figure 2. Fine-mapping of loci associated with hematological traits highlights likely functional 520 

variants. (a) We restricted fine-mapping to loci with evidence for a single association signal in 521 

European-ancestry (EA) populations. There are no such loci in Hispanic Americans. The 95% 522 

credible sets in the trans-ethnic meta-analyses are smaller than in the EA or East-Asian-ancestry 523 

(EAS) meta-analyses. (b) Trans-ethnic fine-mapping of a platelet locus. In EA individuals, the 524 

95% credible set include 7 variants with posterior probability of inclusion (PPI) >0.04 and strong 525 

pairwise linkage disequilibrium (LD) with the sentinel variants rs10758481 (r2>0.93 in GBR from 526 

1000 Genomes Project, middle panel).  LD is similarly strong in African-, Hispanic/South 527 

American-, and South-Asian-ancestry populations from the 1000 Genomes Project. However, LD 528 

is weaker in East Asians (r2=0.68 in JPT from 1000 Genomes Project, bottom panel). In the trans-529 

ethnic meta-analysis, rs10758481 has a PPI>0.99 (top panel). In EA and EAS, LD is color-coded 530 

based on pairwise r2 with rs10758481. The dotted line indicates the genome-wide significance 531 

threshold (P<5x10-9). (c) Number of variants in 95% credible sets in each population analyzed. In 532 

trans, EA and EAS, we identified 433, 403 and seven 95% credible sets with a single variant. (d) 533 

Annotation of variants in trans, EA and EAS shows a similar pattern, with a larger proportion of 534 
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likely functional variants (e.g. missense, intergenic and intronic variants within ATAC-seq peaks) 535 

among variants with higher posterior probability of inclusion (PPI). (e) g-chromVAR results for 536 

trans variants within 95% credible sets for 15 traits. The Bonferroni-adjusted significance level 537 

(corrected for 15 traits and 18 cell types) is indicated by the dotted line. mono, monocyte; gran, 538 

granulocyte; ery, erythroid; mega, megakaryocyte; CD4, CD4+ T cell; CD8, CD8+ T cell; B, B 539 

cell; NK, natural killer cell; mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; MPP, 540 

multipotent progenitor; LMPP, lymphoid-primed multipotent progenitor; CMP, common myeloid 541 

progenitor; CLP, common lymphoid progenitor; GMP, granulocyte–macrophage progenitor; 542 

MEP, megakaryocyte–erythroid progenitor. 543 

 544 

Figure 3. A South-Asian-ancestry IL7 missense variant associates with increased lymphocyte 545 

count in humans and IL7 secretion in an heterologous cellular system. (a) Lymphocyte count 546 

association results at the IL7 locus in South Asians (SAS), European-ancestry participants (EA) 547 

and East Asians (EAS). In SAS, there are 7 genome-wide significant variants near IL7, but only 548 

rs201412253 is coding. Linkage disequilibrium (LD) r2 is from 1000 Genomes Project SAS 549 

populations. In EA, the sentinel variant is located downstream of IL7; rs201412253 is rare (minor 550 

allele frequency=4x10-4) and not significant (P=0.073). In EAS, the locus is not associated with 551 

lymphocyte count. rs201412253 is monomorphic in 1000 Genomes Project EA and EAS so we 552 

could not calculate pairwise LD. (b) The 18Ile allele at IL7-rs201412253 increases IL7 secretion 553 

in a heterologous cellular system. Our ELISA assay did not detect secreted IL7 in clones generated 554 

with an empty vector. We tested eight independent clones for each IL7 alleles. Each experiment 555 

was done in duplicate, and we performed the experiments three times (grey circles). The black 556 
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dots and vertical lines indicate means and standard deviations. We assess statistical significance 557 

by linear regression correcting for experimental batch effects.  558 

 559 

Figure 4. Selective sweep and association with platelet count at the IL6 locus in East Asians. The 560 

grey rectangle highlights a genomic region upstream of IL6 that is strongly associated with platelet 561 

(PLT) count. This association signal is driven by results from East Asians (EAS), and is absent 562 

from other populations, including European- (EA) and African-ancestry (AFR) individuals 563 

(green). The region overlaps several selective sweeps detected in EAS from the 1000 Genomes 564 

Project (CDX, CHS, JPT, KHV). In orange, we provide standardized population branch site 565 

(stdPBS) metrics in EA and EAS, indicative of allele frequency differentiation at this locus 566 

between these two populations. 567 

  568 
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METHODS 569 

Study design and participants 570 

All participants provided written informed consent and the project was approved by each 571 

institution’s ethical committee. Supplementary Table 1 lists all participating cohorts. The SNPs 572 

we identified are available from the NCBI dbSNP database of short genetic variations 573 

(https://www.ncbi.nlm.nih.gov/projects/SNP/). No statistical methods were used to predetermine 574 

sample size. The experiments were not randomized and the investigators were not blinded to 575 

allocation during experiments and outcome assessment.  576 

 577 

Phenotypes 578 

Complete blood count (CBC) and related blood indices were analyzed as quantitative traits. The 579 

descriptive statistics for each phenotype in each cohort analyzed are in Supplementary Table 2. 580 

Exclusion criteria and phenotype modeling in the UK Biobank (UKBB)(European-ancestry 581 

individuals), INTERVAL, and Biobank Japan (BBJ) have been described previously (Astle et al., 582 

2016; Kanai et al., 2018). For all other studies, we followed the protocol developed by the Blood-583 

Cell Consortium (Chami et al., 2016; Eicher et al., 2016; Tajuddin et al., 2016). Briefly, we 584 

excluded when possible participants with blood cancer, acute medical/surgical illness, 585 

myelodysplastic syndrome, bone marrow transplant, congenital/hereditary anemia, HIV, end-stage 586 

kidney disease, splenectomy, and cirrhosis, as well as pregnant women and those undergoing 587 

chemotherapy or erythropoietin treatment. We also excluded extreme blood-cell measures: 588 

WBC>200x109 cells/L, HGB>20 g/dL, HCT>60%, and PLT>1000x109 cells/L. For WBC 589 

subtypes, we analyzed log10-transformed absolute counts obtained by multiplying relative counts 590 

with total WBC count. For all phenotypes in all studies, we corrected the blood-cell phenotypes 591 
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for sex, age, age-squared, the 10 first genetic principal components, and other cohort-specific 592 

covariates (e.g. recruitment center) using linear regression analysis. We applied rank-based inverse 593 

normal transformation to the residuals form the regression analysis and used the normalized 594 

residuals to test for association with genetic variants.  595 

 596 

Genotype quality-control and imputation 597 

The genotyping array and quality-control steps used by each cohort as well as their quality-control 598 

steps are listed in Supplementary Table 3. Unless otherwise specified, all studies applied the 599 

following criteria: samples were removed if the genotyping call rate was <95%, if they showed 600 

excess heterozygosity, if we identified gender mismatches or sample duplicates, or if they appeared 601 

as population outliers in principal component analyses nested with continental populations from 602 

the 1000 Genomes Project (Genomes Project et al., 2012). We removed monomorphic variants, as 603 

well as variants with Hardy-Weinberg P<1x10-6 and call rate <98%. 604 

 605 

Genotype imputation for the UKBB, INTERVAL, and BBJ have been described in details 606 

elsewhere (Astle et al., 2016; Bycroft et al., 2018; Kanai et al., 2018). For all other studies, unless 607 

specified in Supplementary Table 3, we applied the following steps for genotype imputation of 608 

autosomal variants. We aligned all alleles on the forward strand of build 37/hg19 of the human 609 

reference genome (http://www.well.ox.ac.uk/~wrayner/strand) and converted files into the VCF 610 

format. We then applied checkVCF (http://genome.sph.umich.edu/wiki/CheckVCF.py) to confirm 611 

strand and allele orientation. We carried out genotype imputation using the University of Michigan 612 

(https://imputationserver.sph.umich.edu) or the Sanger Institute (https://imputation.sanger.ac.uk/) 613 

imputation servers. We phased genotype data using SHAPEIT (Delaneau et al., 2013), EAGLE 614 
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(Loh et al., 2016), or HAPI-UR (Williams et al., 2012). For populations of European ancestry, we 615 

used reference haplotypes from the Haplotype Reference Consortium (HRC r1.1 2016) for 616 

imputation (McCarthy et al., 2016), whereas reference haplotypes from the 1000 Genomes Project 617 

(Phase 3, Version 5)(Genomes Project et al., 2012) were used for non-European ancestry 618 

participants.  619 

 620 

Study-level statistical analyses 621 

We tested an additive genetic model of association between genotype imputation doses and inverse 622 

normal transformed blood-cell phenotypes. We analyzed the major ancestry groups (European 623 

(EA), East Asian (EAS), African (AFR), Hispanic-Latino (HL), South Asian (SAS)) separately 624 

and used linear mixed-effect models implemented in BOLT-LMM (Loh et al., 2018), EPACTS 625 

(https://genome.sph.umich.edu/wiki/EPACTS), or EMMAX (Kang et al., 2010) to account for 626 

cryptic and known relatedness. Autosomal single nucleotide variants were analyzed in all 627 

contributing studies. For simplicity, we only analyzed insertion-deletion (indel) variants from 628 

UKBB and INTERVAL, since a similar reference panel was used for genotype imputation.  629 

 630 

Centralized quality-control and meta-analyses 631 

We performed a centralized quality-control check on the association results of each single study 632 

using EasyQC (v9.0)(Winkler et al., 2014). By mapping variants of each study to the appropriate 633 

ethnicity reference panel (HRC for EA and 1000 Genomes Project Phase3 for non-EA 634 

participants), we were able to harmonize alleles and markers across all studies. We were also able 635 

to assess the presence of flipped alleles per study and check for excessive allele frequency 636 

discrepancies using allele frequency reference data. We also inspected quantile-quantile (QQ) 637 
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plots generated by EasyQC and the corresponding genomic inflation factors as well as SE-N plots 638 

(inverse of the median standard error vs. the square root of the sample size) to evaluate potential 639 

issues with, for example, trait transformation or unaccounted relatedness. We removed variants 640 

with imputation quality metric (INFO score) £0.4. Except for three studies, we also removed 641 

variants with minor allele count (MAC) £5. For UKBB EA, Women Health Initiative (WHI), and 642 

GERA (EA), we instead applied a MAC £20 filter because empirical observations suggested that 643 

unusual inflation of the test statistics (i.e. extreme effect sizes and standard errors) was due to rarer 644 

variants. To simplify handling of tri-allelic and indel variants, which have the same genomic 645 

coordinates but different alleles, we created a unique variant ID for each tested variant. 646 

Specifically, we assigned a chromosome:position(hg19)_allele1_allele2 unique ID to each variant, 647 

in which the order of the allele in the ID was based on the lexicographical order or the indel length. 648 

We performed inverse variance-weighted fixed-effect meta-analyses with GWAMA 649 

(v2.2.2)(Magi and Morris, 2010) and trans-ethnic meta-analyses with MR-MEGA (v0.1.5)(Magi 650 

et al., 2017). For MR-MEGA, we calculated four axes of genetic variation, the default 651 

recommendation, to separate global population groups. 652 

 653 

Statistical significance, genomic inflation and locus definition 654 

For each meta-analysis, we calculated the genomic inflation factor (lGC) for all variants, which 655 

were modest when considering the large sample sizes (lGC range: 0.9-1.2) (Supplementary Table 656 

4). We used a £5x10-9 after GC-correction to declare statistical significance, accounting for the 657 

inflation of the test statistics and the number of blood-cell traits analyzed. To count the number of 658 

loci that we discovered, we first identified the most significant variants (with P£5x10-9) and 659 

extended the physical region around that variant 250-kb on each side. Overlapping loci were 660 
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merged, and we used the most significant variant within the interval as the sentinel variant. In this 661 

manuscript, we defined as novel a locus if no variants were previously reported in the literature to 662 

be associated with the specific blood-cell trait and if the locus is not reported in the companion 663 

manuscript that focuses on EA-specific genetic discoveries. 664 

 665 

Million Veteran Program (MVP) blood-cell trait analyses for replication 666 

Phenotyping. Phenotyping methods published by the EMERGE Consortium and available on 667 

PheKB (https://phekb.org/) were used for retrieving lab data and exclusion criteria for all blood 668 

cell indices. This information was pulled from the VA electronic medical records for all MVP 669 

participants. Lab data was subject to the Boston Lab Adjudication Protocol. This entails five steps: 670 

(i) compile an initial spreadsheet of possible relevant lab tests, (ii) Subject Matter Expert (SME) 671 

does an initial review of possible tests, (iii) analyst adds relevant LOINC codes for SME review, 672 

(iv) second Subject Matter Expert (SME) review, (v) creation of a Lab Phenotype Table/Data Set. 673 

After restricting to only outpatient labs and applying the EMERGE exclusion criteria, for each trait 674 

and each person, the minimum, maximum, mean, median, SD, and number of labs was recorded. 675 

Values were compared to those from UKBB (Astle et al., 2016). 676 

 677 

Genotyping. DNA extracted from whole blood was genotyped using a customized Affymetrix 678 

Axiom biobank array, the MVP 1.0 Genotyping Array. With 723,305 total DNA sequence variants, 679 

the array is enriched for both common and rare variants of clinical importance in different ethnic 680 

backgrounds (Klarin et al., 2018). 681 

 682 
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Analysis. The median lab value was the trait used for analysis. Linear regression models were run 683 

under an additive model in plink2 on 1000G (v3p5) imputed dosages. Analyses were run using 684 

models described above within each race/ethnicity stratum (AFR, ASN, EA, HA) classified based 685 

on their genotype data using HARE (Fang et al., 2019). Meta-analyses for the trans-ethnic analyses 686 

were completed in METAL (Willer et al., 2010).  687 

 688 

Heritabilities and genetic correlations  689 

We calculated heritabilities and genetic correlations between blood-cell traits within the EA and 690 

EAS populations using default parameters implemented in the LD score regression method 691 

(Supplementary Table 17 and Supplementary Figure 5)(Bulik-Sullivan et al., 2015a; Bulik-692 

Sullivan et al., 2015b). For genetic correlation of the same phenotype between ancestral 693 

populations, we used Popcorn (Brown et al., 2016). Briefly, Popcorn uses a Bayesian framework 694 

to estimate, using genome-wide summary statistics, the genetic correlation of the same phenotype 695 

but in two different populations (in our case, between EA and EAS). It reports the trans-ethnic 696 

genetic-effect correlation (rge), i.e. the correlation coefficient of per-allele SNP effect sizes, but 697 

also the trans-ethnic genetic impact correlation (rgi), which includes a normalization of the effect 698 

based on allele frequency (Supplementary Table 18). To address whether a difference in the 699 

sample size for the EA and EAS meta-analyses could impact the Popcorn results, we repeated our 700 

analyses using the current EAS results (Nmax=151,807) and EA results from preliminary analyses 701 

of the UKBB dataset (Nmax=87,265)(Astle et al., 2016). These analyses confirmed that for common 702 

variants, cross-ancestry EA-EAS genetic correlations are significantly different (but non-null). 703 

Both LD score regression and Popcorn are not amenable to admixed populations, and cannot 704 
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handle rare variants. For these reasons, we limited these analyses to the large EA and EAS 705 

populations and focused on common variants from the 1000 Genomes Project. 706 

 707 

Statistical fine-mapping 708 

No fine-mapping methods currently exist to handle admixed populations. Furthermore, for some 709 

of the ethnic groups analyzed here, we did not have access to a sufficiently large reference panel 710 

to properly account for LD, complicating conditional analyses and fine-mapping efforts. For these 711 

reasons, we fine-mapped the ancestry-specific fixed-effect meta-analyses by adapting the method 712 

proposed by Maller et al. (Wellcome Trust Case Control et al., 2012) in order to assign posterior 713 

probability of inclusion (PPI) to each variant and construct 95% credible sets.  714 

 715 

This method makes the strong assumption that there is a single independent causal variant at the 716 

tested locus. For this reason, we limited our Bayesian fine-mapping to loci where we identified a 717 

single independent association signal by conditional analysis in EA individuals from the UKBB 718 

(Supplementary Methods). Because EA represented the largest group, we then inferred that there 719 

was also a single association signal in the other populations at these loci, an inference that may not 720 

always be right. Briefly, we added 250-kb on either side of genome-wide significant variants 721 

(P<5x10-9) and merged loci when they overlapped. For the loci identified in the ancestry-specific 722 

meta-analyses, we converted P-values into approximate Bayes factors (aBF) using (Wakefield, 723 

2009; Wellcome Trust Case Control et al., 2012):  724 

 725 

𝑎𝐵𝐹 = % 𝑆𝐸(

𝑆𝐸( + w
	𝑒𝑥𝑝 .

wb(

2𝑆𝐸((𝑆𝐸( + w)
2 726 
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 727 

where b and SE are the variant’s effect size and standard error, respectively, and w denotes the 728 

prior variance in allelic effects, taken here to be 0.04 (Wakefield, 2007). For the trans-ethnic 729 

results, we directly used Bayes factors calculated by MR-MEGA (Magi et al., 2017). We 730 

calculated PPI of each variant by dividing the variant’s aBF by the sum of the aBF for all the 731 

variants within the locus. We generated the 95% credible sets by ordering all variants in a given 732 

locus from the largest to the smallest PPI and by including variants until the cumulative sum of 733 

the PPI ³95% (Mahajan et al., 2018). All variants that map to 95% credible sets are available 734 

online (see URL). 735 

 736 

Functional annotation 737 

To derive basic functional annotation information, we annotated all variants included in 95% 738 

credible sets from ancestry-specific and trans-ethnic meta-analyses with the Variant Effect 739 

Predictor (VEP)( https://useast.ensembl.org/info/docs/tools/vep/index.html), compiling both all 740 

consequences and the most severe consequence for Ensembl/GENCODE transcripts.  We also 741 

specifically annotated rare coding variants using VEP (defined as any variant with MAF <1% in a 742 

given analysis, with a GC-corrected P-value <5x10-9, and annotated as a missense_variant, 743 

stop_gained, stop_lost, splice_donor, or a splice_acceptor, regardless of fine-mapping 744 

results).  We removed all variants with a GC-corrected P-value <5x10-9 in EA, in the MHC region, 745 

and, in analyses including individuals with at least some African ancestry, on chromosome 1 for 746 

neutrophils and total WBC count and for RBC traits near the chromosome 11 b-globin and the 747 

chromosome 16 a-globin loci.  748 

 749 
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Bias-corrected enrichment of blood trait variants for chromatin accessibility of 18 hematopoietic 750 

populations was performed using g-chromVAR, which has been previously described in detail 751 

(Ulirsch et al., 2019). In brief, this method weights chromatin features by fine-mapped variant 752 

posterior probabilities and computes the enrichment for each cell type versus an empirical 753 

background matched for GC content and feature intensity. For chromatin feature input, we used a 754 

consensus peak set for all hematopoietic cell types with a uniform width of 500 bp centered at the 755 

summit. For variant input, we included all fine-mapped variants within 95% credible sets of the 756 

trans-ethnic GWAS. We also ran g-chromVAR for each ancestry-specific meta-analysis, keeping 757 

all other parameters the same, but using fine-mapped variants with the 95% credible sets of each 758 

ancestry-specific study. Finally, to control for the number of loci tested within each ancestry-759 

specific study, we first ranked the loci of the largest cohort (i.e. EA) by sentinel variant p-value, 760 

and then subset only the top n loci, where n equals the number of loci in the smaller cohort (e.g. 761 

EAS) for the same trait. We then ran g-chromVAR on the subset of variants falling within these 762 

top n loci. 763 

 764 

Phenome-wide association study (pheWAS) analysis 765 

UK Biobank (UKBB). We extracted pheWAS results for a list of 5552 variants in UKBB ICD 766 

PheWeb hosted at the University of Michigan (Accessed 21 August 2019). To account for severe 767 

imbalance in case-control ratios, we selected the output from the SAIGE analyses 768 

(http://pheweb.sph.umich.edu/SAIGE-UKB/) based on 408,961 samples from White British 769 

participants (Zhou et al., 2018). In total, 1403 phecodes were tested for association. All results 770 

were downloaded using R, and were parsed and organized into data table format using the 771 

data.table, rvest, stringr, dplyr and tidyr packages. 772 
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 773 

Biobank Japan (BBJ). We performed a pheWAS for the lead variants identified by the trans-ethnic 774 

meta-analyses. From the list of all the significantly associated variants with blood cell-related 775 

traits, we extracted those genotyped or imputed in the BBJ project (nSNP = 4,255). Next, we curated 776 

the phenotype record of the disease status and clinical values for the same individuals analyzed in 777 

the discovery phase (nindiv = 143,988). Then, we performed the logistic regression analyses for 22 778 

binary traits (20 diseases and 2 behavioral habits) which had a sufficient number of case samples 779 

(ncase = 2,500). Regression models were adjusted for age, sex and 20 principal components as 780 

covariates. Trait-specific covariates are described elsewhere (Kanai et al., 2018).  781 

 782 

BioVU. BioVU is the biobank of Vanderbilt University Medical Center (VUMC) that houses de-783 

identified DNA samples linked to phenotypic data derived from electronic health records (EHRs) 784 

system of VUMC. The clinical information is updated every 1-3 months for the de-identified 785 

EHRs. Detailed description of program operations, ethical considerations, and continuing 786 

oversight and patient engagement have been published (Roden et al., 2008). DNA samples were 787 

genotyped with genome-wide arrays including the Multi-Ethnic Global (MEGA) array, and the 788 

genotype data were imputed into the HRC reference panel(McCarthy et al., 2016) using the 789 

Michigan imputation server (Das et al., 2016). Imputed data and the 1000 Genome Project data 790 

were combined to carry out principal component analysis (PCA) and African-American samples 791 

were extracted for analysis based on the PCA plot. PheWAS were carried out for each SNP with 792 

the specified allele (Denny et al., 2010). Phenotypes were derived from billing codes of EHRs as 793 

described previously (Carroll et al., 2014). Each phenotype (‘phecode’) has defined case, control 794 

and exclusion criteria. We required two codes on different visit days to instantiate a case for each 795 
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phecode. In total, 1815 phecodes were tested for association. Association between each binary 796 

phecode and a SNP was assessed using logistic regression, while adjusting for covariates of age, 797 

sex, genotyping array type/batch and 10 principal components of ancestry.   798 

 799 

Merging across biobanks. We defined statistical significance within each biobank to be a 800 

Bonferroni corrected level of 0.05/pq, where p is the number of phecodes tested and q is the 801 

number of variants tested. We merged results across UKBB and BioVU by matching on phecode, 802 

as these two biobanks used the same phecode system for classifying outcomes. To merge with 803 

BBJ, we cross-referenced the 22 outcomes in BBJ with the phecode library used by BioVU/UKBB. 804 

Matches were determined based on phenotype similarity between the BioVU/UKBB phenotype 805 

description and the outcomes described in Nagai et al. (Nagai et al., 2017). 806 

 807 

Polygenic trait score (PTS) analyses 808 

We restricted these analyses to variant-trait associations that reached genome-wide significance 809 

(P<5x10-9) in the trans-ethnic MR-MEGA meta-analyses (Supplementary Table 5). For each of 810 

these variant-trait pairs, we calculated an effect size – hereafter referred to as trans weights –  using 811 

the fixed-effect meta-analysis method implemented in GWAMA and all cohorts available (Magi 812 

and Morris, 2010). For the same variants, we also retrieved the ancestry-specific effect sizes (or 813 

weights). We calculated the PTS using plink2 by summing up the number of trait-increasing alleles 814 

(or imputation doses) that were weighted by their corresponding trans (PTStrans) or ancestry-815 

specific (PTSEA, PTSAFR, PTSHA) weights. The variance explained by the PTS on corrected and 816 

normalized blood-cell traits was calculated in R using linear regression. For these analyses, we 817 
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had access to 2,651 AFR, 5,048 EA and 4,281 HA BioMe participants, as well as 2546 AFR ARIC 818 

participants, that were not used in the discovery effort.   819 

 820 

Analysis of natural selection 821 

To quantify the contribution of positive selection on blood-cell trait variation, we used the recent 822 

map of selective sweeps identified in the different populations of the 1000 Genomes Project 823 

(Johnson and Voight, 2018). We grouped the sweeps identified in the 26 1000 Genomes Project 824 

populations into five larger populations that correspond to our ancestry-specific meta-analyses: 825 

Europe-ancestry (CEU, TSI, GBR, FIN, IBS); East-Asian-ancestry (CHB, JPT, CHS, CDX, 826 

KHV); African-ancestry (YRI, LWK, GWD, MSL, ESN, ASW, ACB); South-Asian-ancestry 827 

(GIH, PJL, BEB, STU, ITU); and Hispanic/Latino-ancestry (MXL, PUR, CLM, PEL). Following 828 

the nomenclature by Johnson and Voight(Johnson and Voight, 2018), each selective sweep is 829 

summarized by the variant located within the sweep that has the highest iHS value. iHS (Integrated 830 

Haplotype Score) is a statistic to quantify evidence of recent positive selection. A high positive 831 

iHS score (iHS > 2) means that haplotypes on the ancestral allele background are longer compared 832 

to derived allele background. A high negative iHS score (iHS < -2) means that the haplotypes on 833 

the derived allele background are longer compared to the haplotypes associated with the ancestral 834 

allele. We retrieved the blood-cell trait association results for these sweep-tagging SNPs from the 835 

ancestry-specific meta-analyses (Supplementary Table 19). To determine if the inflation 836 

observed in the QQ plots was significant, we generated 100 sets of SNPs that match the selective 837 

sweep-tagging SNPs based on allele frequency, gene proximity, and the number of LD proxies in 838 

European-ancestry, East-Asian-ancestry and African-ancestry individuals using SNPsnap (Pers et 839 

al., 2015). For these analyses, we excluded the HLA region and variants in LD (r2>0.5). We 840 
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computed empirical significance by tallying the number of sets with the same or more genome-841 

wide significant variants than the canonical sets of selective sweep-tagging SNPs (Supplementary 842 

Table 20).  843 

 844 

We also computed the population branch statistic (PBS)(Yi et al., 2010). PBS measures the amount 845 

of allele frequency change in the population since its divergence from the other two populations. 846 

For a target population, PBS is calculated as:  847 

 848 

𝑃𝐵𝑆 = 	
𝑇567895,;<;597 + 𝑇567895,=>587=>? − 𝑇;<;597,=>587=>?

2  849 

 850 

where 𝑇 = − log(1 − 𝐹EF) is an estimate of the divergence time between two populations. Here, 851 

FST between each pair of populations was estimated using Weir and Cockerham’s estimate (Weir 852 

and Cockerham, 1984). We then divided all variants with calculated PBS into 50 bins of equal size 853 

by derived allele count in the target population, and then standardized the raw PBS values within 854 

each bin. To calculate PBS for Europe-ancestry (CEU, TSI, GBR, and IBS, without FIN), we used 855 

YRI as an outgroup and East-Asian-ancestry (CHB, JPT, CHS, CDX, KHV) as a sister population; 856 

for East-Asian-ancestry, we used YRI as an outgroup and Europe-ancestry as a sister population; 857 

for YRI, we used East-Asian-ancestry as an outgroup and Europe-ancestry as a sister population.  858 

 859 

IL7 functional analyses 860 

We PCR amplified and cloned the IL7 wildtype (rs201412253-Val18) and mutant (rs201412253-861 

18Ile) open reading frame (ORF) in the pcDNA5/FRT vector (ThermoFisher Scientific) using 862 

HindIII and BamHI restriction sites (see Supplementary Table 22 for ORF and primer 863 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.17.910497doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.910497
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

sequences). We validated the sequences of the two plasmids by Sanger Sequencing. Flip-InTM-293 864 

cells (ThermoFisher Scientific) at 80% confluency were transfected with 1:10 mixes of empty 865 

pcDNA5 or pcDNA5 derivatives coding for IL7-Val8 or IL7-18Ile and pOG44 FLP recombinase 866 

coding vector (ThermoFisher Scientific) using polyethylenimine. Transfectant clones were 867 

expanded and selected in DMEM medium supplemented with 10% Foetal Bovine Serum, 4 mM 868 

L-glutamine, 100 IU penicillin, 100 µg/ml streptomycin and 100 µg/ml hygromycin. We measured 869 

the secretion of IL7 in eight independent clones for each IL7 allele (rs201412253-Val18 and 870 

rs201412253-18Ile) as well as in four clones generated with the empty vector by ELISA assay. 871 

We used the High Sensitivity Quantikine HS ELISA kit from R & D Systems (Cat # HS750). We 872 

seeded 100,000 cells per 12-wells plates and grew them for 6 days in DMEM glutamax plus 10% 873 

FBS before doing the ELISA. We measured each supernatant in duplicate and seeded each of the 874 

clones in triplicate.  The whole experiment was done on three different weeks (three complete 875 

biological replicates). We extracted total proteins from cells with RIPA buffer and we quantified 876 

the lysates by BCA. We used this quantification to normalize the ELISA assays. We extracted total 877 

RNA from ~500,000 cells using the Qiagen RNEasy kit (cat # 74136). We checked the quality of 878 

the RNA by Bioanalyzer and quantified its concentration by Nanodrop. We reverse transcribed 1 879 

ug of total RNA into cDNA using the ABI kit (Life Technologies Cat # 4368814). We used two 880 

pairs of primers for IL7 and assays for three normalizing genes (HPRT, GAPDH, TBP, 881 

Supplementary Table 22). We followed the MIQE recommendations and performed the qPCR 882 

reactions with the Sybergreen Platinum (Life Technologies Cat # 11733-046) on a Biorad CFX384 883 

thermocycler. 884 

  885 
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DATA AVAILABILITY STATEMENT 886 

All results are available at the following URL: http://www.mhi-humangenetics.org/en/resources 887 

 888 

URLs 889 

checkVCF: http://genome.sph.umich.edu/wiki/CheckVCF.py 890 

EPACTS: https://genome.sph.umich.edu/wiki/EPACTS  891 

Imputation servers: https://imputationserver.sph.umich.edu or https://imputation.sanger.ac.uk/  892 

NCBI dbSNP: https://www.ncbi.nlm.nih.gov/projects/SNP/  893 

PheKB: https://phekb.org/ 894 

Strand alignment resources: http://www.well.ox.ac.uk/~wrayner/strand  895 

UK Biobank SAIGE results: http://pheweb.sph.umich.edu/SAIGE-UKB/ 896 

Variant Effect Predictor: https://useast.ensembl.org/info/docs/tools/vep/index.html  897 
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Table 1. Non-synonymous variants with a minor allele frequency (MAF) £1% identified in non-European-ancestry (EA) populations or in the trans-

ethnic meta-analyses. The population in which each variant was discovered is listed in the first column. Complete association results for each variant 

are available in Supplementary Table 15. Genomic coordinates (chr:position) are on build hg19. For the trans-ethnic results, mMAF corresponds to 

the mean MAF across all studies. EA, European-ancestry; EAS, East Asians; SAS, South Asians; AFR, African-ancestry; HA, Hispanics; PLT, platelet; 

NEU, neutrophil; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; MPV, 

mean platelet volume; EOS, eosinophil; MON, monocyte; RDW, red blood cell distribution width; LYM, lymphocyte; RBC, red blood cell count; 

HGB, hemoglobin; WBC, white blood cell. 

Population Position Phenotype rsID mMAF 
(%) P-value Gene Annotation Note 

EAS 1:43805737 PLT rs117656396 0.9 5.20x10-12 MPL missense Thrombopoietin receptor; MAF <0.1% in EA 
and SAS.  

EAS 3:133476778 MCH rs143019827 0.4 4.52x10-9 TF missense Transferrin (iron binding protein); 
monomorphic in non-EAS populations. 

EAS 3:184046450 PLT rs112809828 0.08 2.03x10-35 EIF4G1 missense MAF <0.01% in EA. Located ~45kb from 
thrombopoietin (THPO). 

EAS 6:16295278 MCH/MCV rs78806162 0.4 4.79x10-14/ 4.82x10-12 GMPR missense MAF <0.1% in SAS; monomorphic in EA.  
EAS 6:41621210 MCH/MCV rs201503063 1 4.28x10-9/ 1.03x10-9 MDFI missense Monomorphic in non-EAS populations. 

EAS 7:100014072 MCH/MCV rs6957339 0.07 3.65x10-21/1.02x10-10 ZCWPW1 missense 
MAF in EA <0.03%; more common in AFR 
and HA populations (MAF=0.2-0.6%). 
Located ~204kb from TFR2. 

EAS 19:1049396 LYM/WBC rs201347186 0.6 8.78x10-13/6.53x10-22 ABCA7 missense 

Previous GWAS identified common missense 
SNPs in ABCA7 associated with NEU (Astle et 
al., 2016); monomorphic in non-EAS 
populations. 

EAS 20:57599434 PLT rs121918555 0.06 1.27x10-13 TUBB1 missense 

Mutation previously characterized in Japanese 
patients with congenital 
macrothrombocytopenia (Kunishima et al., 
2009); monomorphic in non-EAS populations. 

SAS 9:135863848 MPV/PLT rs527297896 0.5 2.24x10-19/3.57x10-18 GFI1B missense 

Mutation previously identified in patients with 
thrombocytopenia without a-granule or 
bleeding defect (Rabbolini et al., 2017); 
monomorphic in non-SAS populations. 

Trans 1:43803807 PLT rs17292650 0.2 2.87x10-16 MPL missense 
Thrombopoietin receptor; known common 
variant in AFR populations 
(MAF=4.2%)(Auer et al., 2012). 

Trans 1:231557623 HCT rs186996510 1 4.90x10-15 EGLN1 missense 
Low-frequency variant in EAS (MAF=4.1%) 
and AFR (3.2%), rare in SAS (0.6%) and EA 
(<0.01%). Associated with adaptation to 
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hypoxia and HGB in Tibetans (Xiang et al., 
2013). 

Trans 7:80300449 RDW rs3211938 0.3 5.75x10-14 CD36 nonsense Known common variant in AFR populations 
(MAF=9.3%)(Chami et al., 2016). 

Trans 9:136083640 RBC rs12336956 0.8 1.01x10-9 OBP2B missense 
Association signal in EA (MAF=0.3%); 
MAF=3% in HL; MAF=19% in AFR. Located 
~47kb from ABO. 

Trans 11:5248232 LYM rs334 0.2 9.50x10-16 HBB missense Sickle cell anemia mutation, well known for 
RBC trait associations. 

Trans 12:111856673 PLT rs78894077 0.9 7.63x10-38 SH2B3 missense 
Common variant in EAS (MAF=3.6%). 
Associated with myeloproliferative neoplasms 
(Chen et al., 2016). 

Trans 17:38062390 WBC rs35266519 0.8 6.69x10-12 GSDMB missense Rare across all populations. Previously 
reported for NEU count (Mousas et al., 2017).  
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