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Abstract 
Progress in neuroscience is hindered by poor reproducibility of mouse behavior. Here we show that in a                 
visual decision making task, reproducibility can be achieved by automating the training protocol and by               
standardizing experimental hardware, software, and procedures. We trained 101 mice in this task across              
seven laboratories at six different research institutions in three countries, and obtained 3 million mouse               
choices. In trained mice, variability in behavior between labs was indistinguishable from variability within              
labs. Psychometric curves showed no significant differences in visual threshold, bias, or lapse rates              
across labs. Moreover, mice across laboratories adopted similar strategies when stimulus location had             
asymmetrical probability that changed over time. We provide detailed instructions and open-source tools             
to set up and implement our method in other laboratories. These results establish a new standard for                 
reproducibility of rodent behavior and provide accessible tools for the study of decision making in mice. 

1 Authors are listed alphabetically. 
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Introduction 
Reproducibility is a concern across science [Ioannidis, 2005 ] and has been particularly elusive in the               
measurement of mouse behavior. Even seemingly simple behavioral responses to pain or stress can be               
swayed by uncontrolled factors such as the identity [Chesler et al., 2002 ] or sex [Sorge et al., 2014 ] of                   
the experimenter. Behavioral assays have also been frustratingly hard to reproduce across laboratories             
[Chesler et al., 2002 ; Tuttle et al., 2018 ] even when they share a similar apparatus [Crabbe et al., 1999 ].                   
To study the neural basis of behavior, we need paradigms that reliably elicit and predictably manipulate                
mouse behavior. The absence of these paradigms has thus limited the use of mouse models in                
neuroscience. With the growing arsenal of genetic, imaging, and physiological tools available to study              
mouse brains, developing reliable and reproducible paradigms for studying mouse decision making has             
only become more urgent. 

The International Brain Laboratory (IBL) [International Brain Laboratory, 2017 ] faced this challenge            
directly upon inception. A founding goal of IBL is to reveal the neural basis of decision-making by                 
exploring the same mouse behavior across experimental laboratories. This required the IBL to design              
and deploy a decision-making task in mice that could be reproduced across all of our laboratories. The                 
task should be simple enough for mice to learn quickly, but also intricate enough to expose the neural                  
computations that support perceptual decision-making, and easily extended to study further aspects of             
perception and cognition. The task should place specific sensory and motor demands on the mouse in                
each trial over hundreds of trials, ideally providing stronger behavioral control than the assays used in                
previous attempts to identify sources of behavioral variability [Chesler et al., 2002 ; Tuttle et al., 2018 ;                
Crabbe et al., 1999 ]. Based on these criteria, the IBL adopted a task in which mice detect the presence                    
of a visual grating of variable contrast in their left or right visual field, and move the grating via a steering                     
wheel to the center of the visual field [Burgess et al., 2017 ]. This paper describes two implementations of                  
the task: a basic version, in which the probability of stimulus appearance at each of two locations is                  
symmetric, and a biased version of the task, in which probability of stimulus appearance at the two                 
locations is asymmetric and changes across blocks of trials.  

Here we present results from a cohort of mice trained in the basic and the biased versions of the task,                    
demonstrating reproducible behavior across laboratories. To facilitate reproducibility, we specified all rig            
hardware and software components, we standardized surgical and animal habituation protocols, and we             
developed an automated pipeline for advancing animals through training. In parallel, we built a system               
for storing and sharing data [International Brain Laboratory, 2019 ]. Not only did mice learn the basic                
version of the task in all laboratories, but critically, they showed asymptotic performance that was               
indistinguishable across laboratories. Moreover, mice in different laboratories adopted similar strategies           
when confronted with the biased version of the task. These results indicate that a decentralized and                
automated experimental pipeline can yield reproducible mouse behavior across laboratories making it            
now possible to perform high quality, large scale studies of how brain activity gives rise to behavior.  
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Results 
We trained 101 C57BL/6J mice across 7 laboratories in a behavioral task that requires detection of a                 
static visual grating of varying contrast in either the left or right visual field (Figure 1a). The visual                  
stimulus is coupled with movements of a response wheel, and animals indicate their choices by turning                
the wheel left or right to bring the grating to the center of the screen [Burgess et al., 2017 ]. The visual                     
stimulus appears on the screen after an auditory “go cue” indicating starting the trial and only if the                  
animal holds the wheel for 0.2-0.5 sec. Correct decisions are rewarded with sweetened water (10%               
sucrose solution) [Guo et al, 2014 ], while incorrect decisions are indicated by a noise burst and are                 
followed by a longer inter-trial interval (2 s). We first present results obtained in the basic version of the                   
task, where the probability of a stimulus appearing on the left or the right is 50:50. We then present                   
preliminary results obtained in the biased version of the task, a variant where probability switches in                
blocks of trials between 20:80 favoring the right and 80:20 favoring the left. 

Standardized behavioral apparatus and behavioral training 
To facilitate the reproduction of behavioral performance across laboratories, we standardized variables            
that we thought would be critical and that we could readily control, such as animal strain and provider,                  
age range, weight range, light-dark cycle, water access, food protein and fat. Other variables of interest                
were harder to control, but were nonetheless measured (e.g., temperature, humidity, environmental            
sound, etc., Suppl. Table 1 ).  

Every animal was subject to standardized procedures and was trained in a standardized setup (Figure               
1b,c ). First, we performed surgery to implant a headbar for fixation, following a standardized surgery               
protocol (Appendix 1). Then, during the subsequent recovery period we handled the mice and weighed               
them daily. Following recovery, we put mice on water scheduling and habituated them to the               
experimental setup, following standardized procedures (Appendix 2). The experimental setups were           
identical across laboratories, built from open-source hardware and software with identical components            
(Appendix 3 ). These components include systems for head-fixation, visual and auditory stimuli            
presentation, video and audio recording, and measurement of ambient temperature and humidity.  

The training proceeded in automated steps, following predefined criteria (Figure 1d-f). Initially, mice             
experienced only “easy” trials with highly visible stimuli (100% and 50% contrast). When animals met               
predefined performance criteria based on the proportion of correct responses over the recent trial history               
(details in Appendix 2 ), the contrast set was incrementally updated to include contrasts of 25%, 12%,                
6%, and finally 0% (Figure 1d, Suppl. Table 2). For the example animal in Figure 1, the 25% contrast                   
trials were introduced in session 10, 12% in session 12, and the remaining contrasts in session 13 (at                  
which point we removed the 50% contrast trials, because well-trained mice performed as well at 50% as                 
they did at 100% contrast). To reduce response biases, incorrect responses on “easy” trials were               
followed by a “repeat trial” where the same stimulus location was more likely to be repeated.  

As training progressed, the automated protocol gradually increased motor demands and reduced            
rewards, to encourage determined responses and increase the number of trials. At the beginning of               
training, to encourage the mice, the wheel gain was high (8 deg/mm), making the stimuli highly                
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responsive to small wheel movements, and correct responses were rewarded with large volumes (3 μL).               
As training progressed, the wheel gain was reduced to 4 deg/mm and reward volume to 1.5 μL                 
according to a predefined schedule.  

The duration of training sessions was not fixed, but varied according to performance. Sessions lasted at                
most 90 minutes and ended according to various criteria based on number of trials, total duration, and                 
response times (Suppl. Table 3). For instance the example animal in Figure 1, session 2 reached                
criterion when 45 minutes elapsed with <400 trials; sessions 7, 10, and 14 ended when response                
duration increased to five times above baseline (Figure 1e).  

Over the course of training, mouse performance gradually improved until meeting final criteria (Figure              
1f). At first, performance hovered around or below 50%. It could start below 50% because of                
no-response trials, of systematic response biases, and of our bias-correcting algorithm that favored             
repeating “easy trials” on the side that the animal tended not to choose. Performance then typically                
increased so that mice made only rare mistakes (lapses) on “easy trials”, as shown for the example                 
mouse on day 14. Animals were considered trained on the basic task when they had been introduced to                  
all contrast levels and had met or exceeded the pre-defined criteria for sustained performance levels,               
bias, threshold and lapse frequency, for 3 consecutive sessions. 

This automated training procedure is described in detail in Appendix 2. 

Animal performance was monitored daily, entered into a joint database [International Brain Laboratory,             
2019 ] and reviewed in weekly meetings attended by researchers across the collaboration. Metadata             
about each session and mouse (e.g., session start time, animal weight, etc.) were entered into a colony                 
management database (Alyx) accessible through a web browser [International Brain Laboratory, 2019 ].            
The raw behavioral responses and compressed videos and audio were transferred to a central              
repository. Behavioral data were automatically ingested into the DataJoint platform [Yatsenko et al,             
2018 ] where automated analyses produced daily visualizations that are now freely accessible online             
(data.internationalbrainlab.org ). This daily analysis of the data allowed us to assess whether animals             
met predefined criteria for learning and could be considered fully trained in the basic task. 
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Figure 1. Standardized behavioral apparatus and automated training. a , Schematic of the task. Moving the wheel to bring                  
the visual stimulus to the center of the screen leads to a reward (left panel), whilst bringing it outside leads to a time out (right                         
panel). b, CAD model of the behavioral apparatus. c, Pipeline for mouse surgeries and training. Of 122 implanted mice, 108                    
started the training procedure, and 101 completed the training procedure and met the criteria for training in the basic task. d,                     
Performance of an example mouse (KS014, from Lab 1) throughout training. Squares indicate choice performance for a given                  
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stimulus on a given day. The color scale indicates the percentage of right (purple) and left (brown) choices. Empty squares                    
indicate stimuli that were not presented. Negative contrasts denote stimuli on the left, positive contrasts denote stimuli on the                   
right. e, Example sessions from the same mouse. Vertical lines indicate when the mouse reached the session-ending criteria                  
based on response time ( black) and response accuracy ( cyan) averaged over a rolling window of 10 trials. f, Psychometric                   
curves for those sessions, showing fraction of rightward choice as a function of stimulus position and contrast. Circles show the                    
mean and error bars show ± 1 S.D.  

Learning rates differ across mice and laboratories 
Nearly all the mice that started the training process reached the criteria for being trained (101 out of                  
108). However, the learning rates of these trained mice were highly variable both within and across                
laboratories (Figure 2a, b). This was perhaps to be expected, as we did not prescribe any learning rate                  
criteria: our aim was rather to maximize the number of trained animals. For mice that learned the task,                  
the average training took 18.1 ± 13.5 days (s.d., n = 101), similar to the 14 days of the example mouse                     
from Lab 1 (Figure 2a, black). The fastest learners met training criteria in 3 days, the slowest 59 days.                   
Most mice that ended up learning the task did so within 40 days (Figure 2c). The number of days                   
needed to meet training criteria were significantly different across laboratories (Figure 2d, p = <0.001,               
Kruskal-Wallis nonparametric test followed by a post-hoc Dunn’s multiple comparisons test, Suppl.            
Table 4 ). Some labs had fairly homogeneous training rates (e.g., Lab 2 within-lab interquartile range of                
7.5 days for animals to reach trained criteria), while other labs had larger variability (e.g., Lab 6                 
interquartile range of 22 days). Variability in performance was large in the middle of training but                
decreased as animals learned the task. For example, the variance (s.d.) of performance on easy trials                
was 19.1% (mean 80.7%) on day 15 , but 10.1% (mean 91.1%) on day 40 (Suppl. Figure 4a-b ). Some                  
variability in performance, however, persisted after training, with the performance of some trained             
animals occasionally dropping. For instance, this occurred in multiple mice in Lab 4 (Figure 2a). Such                
drops could be due to occasional losses of motivation resulting in no-response trials, which are labeled                
as incorrect trials in our analyses.  
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Figure 2. Learning rates differ across mice and laboratories. a, Performance on easy contrast trials (50% and 100%                  
contrast) across mice and laboratories. Each panel represents a different lab, and each curve represents a mouse ( gray). The                   
transition from gray to blue indicates when performance criteria for the basic task are met. Black, performance for example                   
mouse in Fig. 1d-f. b, Average performance for each laboratory across training days. c, Cumulative proportion of mice to have                    
reached trained status as a function of session number. d, Distribution of training times by laboratories ( gray) compared to the                    
IBL as whole ( yellow). Outliers are presented as diamonds.  

Performance of trained mice is indistinguishable across laboratories 
Despite the variability in learning rates, once animals were trained their performance on completed trials               
was indistinguishable across laboratories (Figure 3a-e). In every laboratory, psychometric curves           
showed a stereotyped shape (Figure 3a). The averages across mice of these psychometric curves were               
similar across laboratories (Figure 3b). The asymptotic values of these curves (i.e., the responses on               
easy contrasts of 50% and 100%) were close to perfect (90.3 ± 3.6% correct, Figure 3c ) with no                  
significant difference across the 7 laboratories. The slope of the curves, which measures contrast              
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sensitivity, was also similar across laboratories, at 13.6 ± 4 (s.d., n = 7, Figure 3d ). Finally, the                  
horizontal displacement of the curve, which measures response bias, was small at 0.1 ± 7.8 (s.d., n = 7,                   
Figure 3e ). All these measures showed no significant difference across laboratories (p > 0.05). 

Variations across laboratories were also small in terms of trial duration and number of trials per session,                 
even though no specific effort was made to harmonize these variables (Suppl. Figure 2a,b ). The               
median trial duration was 427 ± 242 ms, showing small differences across laboratories (Figure 3f, p =                 
0.006, Kruskal-Wallis nonparametric test Suppl. Table 5 ). Mice on average performed 725 ± 240 trials               
per session, with occasional differences across laboratories (Suppl. Figure 2b ). This difference was             
significant (p = 0.001, one-way ANOVA) but only in respect to one laboratory relative to the rest (Suppl.                  
Table 6 ). It may reflect true differences between the mice in the laboratories, but may also simply reflect                  
different experimenter decisions on when to end training sessions: our standard protocol suggested but              
did not mandate when to end a session. 

Having found little variation in behavioral variables when considered one by one, we next asked whether                
in combination they may define a pattern that would distinguish laboratories from each other.              
Considering the three behavioral variables in Figure 3c-e, we trained a classifier (Random Forests,              
[Pedregosa et al., 2011 ]) to predict lab membership from these behavioral variables. To ensure              
robustness, we used 3-fold cross-validation with 2,000 splits of test and training sets, which resulted in a                 
large distribution of classifier results. Chance level was determined by shuffling the laboratory labels and               
repeating the classification as before.  
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Figure 3. Indistinguishable psychophysical performance in trained mice across laboratories. a , Psychometric curves             
across mice and laboratories in trained mice. Each line represents an individual mouse (grey). Black line shows psychometric                  
curve for the example mouse in Fig. 1d. b, Average psychometric curve for each laboratory. Circles show the mean and error                     
bars ± 1 the S.D. c-e, For the three sessions at which a mouse passes the “trained” criterion, box plots showing the distribution                       
of ( c ) performance on easy trials (50 and 100% contrasts), ( d) visual threshold, and ( e) bias across laboratories (grey) and IBL                     
as a whole (yellow). h, Performance of a Random Forest classifier when trying to predict in which lab mice were trained, based                      
on the behavioral metrics in c- e. We included the timezone of the laboratory as a positive control. Dashed red line represents                     
chance-level classification performance. g-i, For the subsequent sessions after criterion (14 ± 3.8 sessions per animal), using                 
only data from the unbiased block (first 90 trials per session), box plots as in c-e. j, Performance of a Random Forest classifier                       
trying to predict lab membership based on the behavioral metrics in g-i. 

The classifier failed to identify the laboratory of origin of the mice, indicating that there were no                 
systematic behavioral signatures of mice in one laboratory over others (Figure 3c-e). The classifier              
performed at chance level (Figure 3f , left), with an F1 score of 0.14 ± 0.027 and a 95th percentile of the                     
distribution included the chance level of 0.15 (estimated by shuffling the laboratory labels). As depicted               
by the confusion matrix, the most common classifications were off-diagonal, and hence incorrect (Suppl.              
Figure 3b ). For instance, mice from Lab 6 were often incorrectly classified as being from Lab 2. As a                   
positive control, we included an informative variable: the time zone in which animals were trained. In this                 
control, the classifier performed well above chance (Figure 3f, right). Similar results were obtained with               
two other classifier algorithms (Suppl. Figure 3 ). 

For many applications, it is important to know that the performance of trained mice is not only                 
reproducible, but also stable in once the animals are trained. To assess this stability, we compared the                 
behavioral performance across laboratories 1-15 days after reaching trained status (Figure 1c, Figure             
3g-i). Again, we observed that lab membership could not be identified above chance by classifiers               
(Figure 3j, Suppl. Fig 3d-f ) and there was no significant difference across laboratories on the               
performance, visual threshold, and bias (Figure 3g-i).  

Mice successfully integrate priors into their decisions and task strategy  
In addition to the basic task, we implemented a biased variant of the task, an extension that includes                  
more complex across-trial dynamics (Figure 4a,b ). This task variant enabled us to examine how animals               
integrate information across trials, and use this prior knowledge in their perceptual decisions. Once              
animals reached satisfactory performance in the basic task, as determined by our predetermined criteria              
(Suppl. Table 2 ), we introduced a biased prior over stimulus location. Sessions started with a block of                 
unbiased trials (50:50 probability of left vs. right, Figure 4a , gray region) and then alternated blocks of                 
variable length (20-100 trials) biased towards the right (20:80 probability, Figure 4a , red regions) or               
towards the left (80:20 probability, Figure 4a , blue regions). The transition between blocks was not               
signaled, so the mice had to estimate a prior for stimulus location based on recent task statistics. This                  
task probes if and how mice learned to make decisions that combine incoming visual evidence with                
internal beliefs about the dynamic structure of the environment. To assess performance we thus              
measured the change in rightward choices as a function of stimulus contrast and block type (80:20 vs.                 
20:80; Figure 4b, distance between black dotted lines). 
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Figure 4. Mice successfully integrate priors into their decisions and task strategy. a, Block structure in an example                  
session. Each session started with 90 trials of 50:50 prior probability, followed by alternating 80:20 and 20:80 blocks of varying                    
length. Presented stimuli (black, 10-trial running average) and the animal’s choices (red, 10-trial running average) track the                 
block structure. b, Psychometric curves shift between biased blocks for the example mouse (left) and averaged over all animals                   
(right). For each animal and signed contrast, we computed their ‘bias shift’ by reading out the difference in choice fraction                    
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between the 80:20 and 20:80 blocks (dashed lines). c, Shift in rightward choices as a function of signed contrast. Each line                     
represents an individual mouse (grey), with the example mouse in black. d, Average shift in rightward choices as a function of                     
signed contrast for each laboratory (colors as in c; error bars show mean +- 68% CI). e, Shift in rightward choices at signed                       
contrast = 0, for each lab (grey) and the IBL as a whole (yellow). f, Mice change their strategy across tasks. Psychometric                      
curves as a function of choice and reward history, with previous rightward/leftward choices shown in blue/green, and previous                  
rewarded/unrewarded trials in dark/light colors and solid/dashed lines. Error bars show mean +- 68% CI across animals. g,                  
Each animal’s ‘history strategy’, quantified as the shift in the psychometric function by previous choice, separately after correct                  
and error trials and between the basic (circles) and biased (triangles) task; colors as in c.  

The change in block statistics caused comparable shifts in the psychometric curves of mice in all 7                 
laboratories (Figure 4c,d). As expected, block structure had the greatest impact on choices when              
sensory evidence was absent (contrast = 0%, Figure 4c,d ). In this condition, rightward choices in the                
two conditions differed by an average of 29.6%, and this value did not significantly differ across                
laboratories (Figure 4e, one-way ANOVA F(6) = 1.179, p = 0.333). 
 
Lastly, we compared how stimulus statistics influenced choice behavior in both of the task variants               
(Figure 4f,g ). For both the unbiased and biased versions of the task, we constructed psychometric               
functions conditioned on the previous trial’s choice (Figure 4f, blue vs green) and outcome (Figure 4f,                
dark vs light). Mice tended to repeat their choices, both after rewarded and unrewarded choices. The                
tendency for repetition was weak in the basic task (Figure 4f, left) and much stronger in the biased task                   
(Figure 4f , right). Representing each animal’s change in ‘history strategy’ from the basic task (circles) to                
the biased task (triangles) as a vector (Figure 4g), we found no significant difference in the vector’s                 
norm (one-way ANOVA F(1,6) = 0.5523, p = 0.7663) or angle (circular Watson-Williams test, F(1,6) =                
0.5601, p = 0.7603) between labs. Mice in different laboratories, therefore, incorporated history into their               
task strategy in similar ways. 

Discussion 
Like other scientific disciplines, neuroscience has been subject to concerns about reproducibility (Baker,             
2016 ). This could be due to insufficient standardization of protocols and equipment across laboratories,              
or to the choice of behaviors that depend on too many internal and external factors. We developed and                  
employed identical experimental equipment and a standard set of protocols to examine whether mouse              
decision-making can be reproduced across laboratories. We trained 101 mice in this task across 7               
laboratories in 3 countries, and obtained ~3 million mouse choices. Once mice learned the task, their                
performance was indistinguishable across laboratories. Mice in different laboratories had similar           
psychophysical performance in a purely sensory version of the task, and adopted similar choice              
strategies in a more advanced version of the task that required tracking the stimulus prior probability.  

The most prominent type of variability we observed was in a factor we had not attempted to control: the                   
learning rates of individual mice, both within and across laboratories. While we cannot ascertain the               
source of cross-laboratory variability in learning rates, we believe the variability might originate from              
differences in the expertise and familiarity of different labs with visual neuroscience and mouse behavior.               
We speculate that as experimenters gain more experience, the differences in learning times will              
decrease. Indeed, one approach to standardizing learning rates might be to introduce full automation in               
behavioral training, reducing the need for human intervention [e.g., Scott et al., 2013 ; Poddar et al.,                
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2013 ; Aoki et al 2017 ]. We anticipate that approaches such as self-head fixation, live-in home cage                
training systems, and individualized dynamic training methods [Roy et al., 2018 ] used independently or              
in combination may reduce variability in learning rates. 

Nonetheless, the origin of individual differences in learning times is a key question that we plan to                 
investigate. The full dataset contains data from many mice, but the number of animals per laboratory is                 
relatively small and quite variable, as different experimental sites became active in the collaboration at               
different times. As these laboratories continue to train the much larger cohort of mice needed for our                 
map of brain activity [International Brain Laboratory, 2017 ], we expect that the increased statistical              
power in the larger data set will enable us to more extensively examine the sources of variability in                  
learning rates.  

In addition to demonstrating reproducibility, we hope that the resources we have created will be useful to                 
the community (see Appendices for a detailed description of all aspects of the behavioral apparatus               
and its associated automated training protocol). The apparatus designs, hardware and software that we              
used are entirely open-source and modular, allowing adjustments to accommodate different scientific            
questions. The data are freely accessible at data.internationalbrainlab.org , and include all 3 million             
choices made by all the mice during the task.  

We aim to support the wider adoption of this experimental apparatus and task by other laboratories. To                 
this end, we have released the documentation, protocols, and code required to implement the task, train                
mice, and analyze the behavioral data. We hope that these resources catalyze the development of new                
adaptations and variations of our approach, and accelerate the use of mice in high quality, reproducible                
studies of neural correlates of decision-making.  

 

Acknowledgments 
We thank C. Reddy for help developing animal welfare and surgical procedures; G. Bekheet, F.               
Carvalho, P. Carriço, R. Barrett and D. Halpin for help with hardware design. AEU is supported by                 
the German National Academy of Sciences Leopoldina. LEW is supported by a Marie             
Skłodowska-Curie Actions fellowship (no. 795846). FC was supported by an EMBO long term             
fellowship and an AXA postdoctoral fellowship. HMV was supported by an EMBO long term              
fellowship. MC holds the GlaxoSmithKline / Fight for Sight Chair in Visual Neuroscience. This work               
was supported by the Simons Collaboration on the Global Brain and the Wellcome Trust. 

 

 

 

13 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.909838doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pone.0083171
https://doi.org/10.1038/s41467-017-01371-0
http://pillowlab.princeton.edu/pubs/Roy18_NeurIPS_dynamicPsychophys.pdf
https://doi.org/10.1016/j.neuron.2017.12.013
https://data.internationalbrainlab.org/
https://doi.org/10.1101/2020.01.17.909838
http://creativecommons.org/licenses/by/4.0/


References  
Aoki, R., Tsubota, T., Goya, Y., Benucci, A. (2017) An automated platform for high-throughput mouse behavior and physiology                  
with voluntary head-fixation. Nat Commun  8:1196 

Baker, M. (2016). 1500 scientists lift the lid on reproducibility. Nature 533, 452-454 

Burgess, C.P., Lak, A., Steinmetz, N.A., ZatkaHaas, P., Bai Reddy, C., Jacobs, E.A.K., Linden, J.F., Paton, J.J., Ranson, A.,                   
Schroder, S., et al. (2017). High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice. Cell Rep.                 
20, 2513–2524. 

Chesler, E.J., Wilson, S.G., Lariviere, W.R., Rodriguez-Zas, S.L., and Mogil, J.S. (2002). Influences of laboratory environment                
on behavior. Nat Neurosci  5, 1101-1102. 

Crabbe, J.C., Wahlsten, D., and Dudek, B.C. (1999). Genetics of mouse behavior: interactions with laboratory environment.                
Science 284, 1670-1672. 

Guo ZV, Hires SA, Li N, O'Connor DH, Komiyama T, et al. (2014) Procedures for behavioral experiments in head-fixed mice.                    
PloS ONE 9: e88678. 

International Brain Laboratory, Bonacchi, N., Chapuis, G., Churchland, A., Harris, K.D., Rossant, C., Sasaki, M., Shen, S.,                 
Steinmetz, N., Walker, E. Y., Winter, O., Wells, M. (2019). Data architecture and visualization for a large-scale neuroscience                  
collaboration, https://doi.org/10.1101/827873 

International Brain Laboratory. (2017). An International Laboratory for Systems and Computational Neuroscience. Neuron.             
2017;96(6):1213–1218. doi:10.1016/j.neuron.2017.12.013 

Ioannidis, J.P. (2005). Why most published research findings are false. PLoS Med  2, e124. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al., (2011). Scikit-learn: Machine learning in                   
python. Journal of Machine Learning Research, 12, 2825–2830. 

Poddar, R., Kawai, R., and Olveczky, B.P. (2013). A fully automated high-throughput training system for rodents. PLoS ONE, 8,                   
e83171 

Roy, N.A., Bak J.H., Akrami A., Brody C.D., Pillow J.W. (2018). Efficient inference for time-varying behavior during learning.                  
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada. 

Scott, B., B., Constantinople, C.M., Erlich, J. C., Tank, D.W., Brody, C.D. (2015). Sources of noise during accumulation of                   
evidence in unrestrained and voluntarily head-restrained rats. eLife ;4:e11308 

Sorge, R.E., Martin, L.J., Isbester, K.A., Sotocinal, S.G., Rosen, S., Tuttle, A.H., Wieskopf, J.S., Acland, E.L., Dokova, A.,                  
Kadoura, B., Leger, P., Mapplebeck, J.C., McPhail, M., Delaney, A., Wigerblad, G., Schumann, A.P., Quinn, T., Frasnelli, J.,                  
Svensson, C.I., Sternberg, W.F., Mogil, J.S., (2014). Olfactory exposure to males, including men, causes stress and related                 
analgesia in rodents. Nat. Methods  11, 629 632. 

Tuttle, A.H., Philip, V.M., Chesler, E.J., and Mogil, J.S. (2018). Comparing phenotypic variation between inbred and outbred                 
mice. Nat Methods  15, 994-996. 

Yatsenko, D., Walker, E. Y. & Tolias, A. S. (2018) Datajoint: a simpler relational data model. Preprint at arXiv                   
https://arxiv.org/pdf/1807.11104.pdf. 

14 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.909838doi: bioRxiv preprint 

https://elifesciences.org/content/4/e11308v2
https://elifesciences.org/content/4/e11308v2
https://arxiv.org/pdf/1807.11104.pdf
https://doi.org/10.1101/2020.01.17.909838
http://creativecommons.org/licenses/by/4.0/


 

Methods 
All procedures and experiments were carried out in accordance with the local laws and following               
approval by the relevant institutions such as the Animal Welfare Ethical Review Body in the UK and the                  
Institutional Animal Care and Use Committee in the US. 

Animals 
Animals (all C57BL6/J mice obtained from Jackson Laboratory or Charles River) were co-housed             
whenever possible, with a minimum enrichment of nesting material and a mouse house. Mice were kept                
in a 12-h light-dark cycle, and fed with food that was 5-6% fat and 18-20% protein. See Suppl. Table 1                    
for details on standardization. 

Surgery 
A detailed account of the surgical methods is in Appendix 1 . Briefly, mice were anesthetized with                
isoflurane and head-fixed in a stereotaxic frame. The hair was then removed from their scalp, much of                 
the scalp and underlying periosteum was removed and bregma and lambda were marked. Then the               
head was positioned such that there was a 0 degree angle between bregma and lambda in all directions.                  
The headbar was then placed in one of three stereotactically defined locations and cemented in place.                
The exposed skull was then covered with cement and clear UV curing glue, ensuring that the remaining                 
scalp was unable to retract from the implant.  

Materials and Apparatus 
For a detailed parts lists and installation instructions, see Appendix 3 . Briefly, all labs installed               
standardized behavioral rigs inspired by Burgess et al., 2017, consisting of an LCD screen (LP097QX1,               
LG), a custom 3D-printed mouse holder and head bar fixation clamp to hold a mouse such that its                  
forepaws rest on a steering wheel (86652 & 32019, LEGO). Silicone tubing controlled by a pinch valve                 
(225P011-21, NResearch) was used to deliver water rewards to the mouse. The general structure of the                
rig was constructed from Thorlabs parts and was placed inside an acoustical cabinet (9U acoustic wall                
cabinet 600 X 600, Orion). LCD screen refresh times were captured with a Bpod Frame2TTL               
(Sanworks). Ambient temperature, humidity and barometric air pressure were measured with the Bpod             
Ambient module (Sanworks), wheel position was monitored with a rotary encoder (05.2400.1122.1024,            
Kubler) connected to a Bpod Rotary Encoder Module (Sanworks). Video of the mouse was recorded               
with a USB camera (CM3-U3-13Y3M-CS, Point Grey). A speaker (HPD-40N16PET00-32, Peerless by            
Tymphany) was used to play task-related sounds, and an ultrasonic microphone (Ultramic UM200K,             
Dodotronic) was used to record ambient noise from the rig. All task-related data was coordinated by a                 
Bpod State Machine (Sanworks). 
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Habituation, Training and Experimental Protocol 
For a detailed protocol on animal training, see Appendix 2 . Mice were handled for at least 10 minutes                  
and given water in hand for at least for two consecutive days prior to head fixation. On the second of                    
these days, mice were also allowed to freely explore the rig for 10 minutes. Subsequently, mice were                 
gradually habituated to head fixation over three consecutive days (15-20, 20-40, and 60 minutes,              
respectively), observing an association between the visual grating and the reward location. On each trial,               
with the steering wheel locked, mice passively viewed a Gabor stimulus (100% contrast, 0.1              
cycles/degree spatial frequency, random phase, vertical orientation) presented on a small screen (size:             
approx. 246 mm diagonal active display area). The screen was positioned 8 cm in front of the animal                  
and centralized relative to the position of eyes to cover ~102 visual degree azimuth. The stimulus                
appeared for ~10 s randomly presented at -35° (left), +35° (right), or 0° (center) and the mouse received                  
a reward in the latter case (3ul water with 10% sucrose).  

On the fourth day, the steering wheel was unlocked and coupled to the movement of the stimulus. For                  
each trial, the mouse must use the wheel to move the stimulus from its initial location to the center to                    
receive a reward. Initially, the stimulus moves 8° per mm of movement at the wheel surface. If the                  
mouse completes at least 200 trials within a session, the gain is immediately halved and remains at                 
4°/mm for all future sessions. At the beginning of each trial, the mouse must not move the wheel for a                    
quiescence period of 200-500 ms (randomly drawn from an exponential distribution with a mean of 350                
ms). If the wheel moves during this period, the timer is reset. After the quiescence period, the stimulus                  
appears on either the left (-35°) or right (+35°) with a contrast randomly selected from a predefined set                  
(initially, 50% and 100%). Simultaneously, an onset tone (5 kHz sine wave, 10 ms ramp) is played for                  
100 ms. As soon as the stimulus appears, the mouse has 60 s to move the stimulus. If it correctly moves                     
the stimulus 35° to the center of the screen, it receives a 3 μL reward; if it incorrectly moves the stimulus                     
35° away from the center (20° visible and the rest off-screen), it receives an error timeout. If the mouse                   
responds incorrectly or fails to reach either threshold within the 60-s window, a noise burst is played for                  
500ms and the inter-trial interval is set to 2 s. If the response was incorrect and the contrast was 'easy'                    
(≥50%), a ‘repeat’ trial follows, in which the previous stimulus contrast and location is presented with a                 
high probability (see Appendix 2).  

Mice were classified as having learned the basic visuo-spatial detection task once three criteria were               
met: (1) 0% and 6% contrasts had been introduced to the contrast set, (2) >200 trials were completed                  
with >80% performance on easy (100% and 50% contrasts) trials in each of the last three sessions, and                  
(3) a four-parameter psychometric curve (bias, lapse left, lapse right, threshold) fitted to performance on               
all trials from the last three sessions had parameter values of bias < 16, threshold < 19, and lapses <                    
0.2. 

Once an animal was classified as trained on the basic task, it moved to a biased version of the visual                    
detection task. In this variant of the task, the trial structure is identical, except that stimuli are more likely                   
to reappear on the same side for variable blocks of trials, and counterbiasing ‘repeat’ trials are not used.                  
Each session begins with 90 trials in which stimuli are equally likely to appear on the left or right (10                    
repetitions at each contrast), after which the probability of the stimulus appearing on the left alternates                
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between 0.8 and 0.2 for a given block. The number of trials in each block is drawn from a truncated                    
exponential (range = 20-100, mean 50, τ = 60) 

Classification of laboratory membership 
Three different classifiers were used to try to predict in which laboratory a mouse was trained based on                  
behavioral metrics: Random Forest, Naive Bayes and Logistic Regression. We used the scikit-learn             
implementation available in Python with default configuration settings for the three classifiers. The             
dataset was split into a training set and a testing set according to 3-fold cross-validation, this random                 
split was repeated 2000 times. For every split, the classification accuracy was calculated as the F1 score                 
(equation 1) which is a standard way of measuring a classifier’s accuracy. An F1 score of 0 indicates                  
complete misclassification and a score of 1 indicates perfect classification. 

 
Equation 1 

 

Data and code availability 
The data can be accessed in two ways (International Brain Laboratory, 2019 ): via DataJoint and web                
browser tools at data.internationalbrainlab.org or via Open Neurophysiology Environment (ONE) through           
FigShare at https://doi.org/10.6084/m9.figshare.11636748 . Python scripts to produce all the figures are           
available at github.com/int-brain-lab/paper-behavior.  

 

Appendices 
Appendices are available online: 

Appendix 1 

Appendix 2 

Appendix 3 
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Supplementary Tables 

Suppl. Table 1. Standardization 

Category Variable Standardized Standard Recorded 

Animal Weight  Within a range 18 - 30g at headbar implant Per session 

 Age Within a range 10-12 weeks at headbar implant Per session 

 Strain Exactly C57BL/6J Once 

 Sex No Both Once 

 Provider Two options Charles River (EU) Jax (US) Once 

Training Handling One protocol Appendix 2 No 

 Hardware Exactly Appendix 3 No 

 Software Exactly Appendix 3 Per session 

 Fecal count N/A N/A Per session 

 Time of day No As constant as possible Per session 

Housing Enrichment Minimum requirement At least nesting and house Once 

 Food Within a range Protein: 18 - 20%, Fat: 5 - 6.2% Once 

 Light cycle Two options 12 Hr inverted or non-inverted Once 

 Weekend water  Two options Citric acid water or measured water Per session 

 Co housing status No Co-housing preferred, separate problem    
mice 

Per change 

Surgery Aseptic protocols One protocol Appendix 1 No 

 Tools/Consumable
s 

Required parts Appendix 1 No 
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Suppl. Table 2. Training progression criteria 

Adaptive parameter Initial value 

Contrast set [100, 50] 

Reward volume 3  μL 

Wheel gain 8 deg/mm 

 

Criterion Outcome 

200 trials completed in a session Wheel gain decreased 4 deg/mm 

> 70% correct Contrast set = [100, 50, 25] 

> 70% correct after above Contrast set = [100, 50, 25, 12.5] 

200 trials after above Contrast set = [100, 50, 25, 12.5, 6.25 ] 

200 trials after above Contrast set = [100, 50, 25, 12.5, 6.25,0 ] 

200 trials after above Contrast set = [100, 25, 12.5, 6.25, 0 ] 

200 trials complete in a session &  
reward volume >= 1.5 μL 

Next session decrease reward by 0.1 μL  

For each of the last 3 sessions:  
>200 trials completed, & 
>80% correct on 100% contrast &  
all contrasts introduced &  
psychometric absolute bias <16 &  
psychometric threshold <19 & 
psychometric lapse rates < 0.2 

Training on the basic task obtained.  
Proceed to training on the biased task.  

 

Suppl. Table 3. Within-session disengagement criteria 

Criterion Explanation 

Session length > 90 min Session too long 

< 400 trials completed & > 45 min elapsed Not enough trials 

> 400 trials & 20-trial rolling median RT > 5x          
session median RT 

Slow-down 
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Suppl. Table 4. Comparison of training times across laboratories 

  P values Dunn’s Multiple Comparisons Test,  
* p < 0.05, ** p < 0.01, *** p<0.001  

 Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 

Lab 1               

Lab 2 *0.01             

Lab 3 0.25 0.124           

Lab 4 0.894 0.027 0.361         

Lab 5 0.356 0.181 0.958 0.457       

Lab 6 0.107 ***<0.001 **0.005 0.103 *0.019     

Lab 7 **0.003 0.357 0.031 **0.007 0.050 **<0.001   

 

Suppl. Table 5. Comparison of trial completion times across laboratories 

  P values Dunn’s Multiple Comparisons Test, 
 * p < 0.05, ** p < 0.01, *** p<0.001  

 Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 

Lab 1               

Lab 2 0.682             

Lab 3 0.590 0.897           

Lab 4 0.062 0.119 0.145         

Lab 5 0.345 0.18 0.143 **0.009       

Lab 6 0.086 0.164 0.197 0.855 *0.014     

Lab 7 **0.004 **0.008 *0.01 0.261 ***<0.0001 0.19   
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Suppl. Table 6. Comparison of number of trials across laboratories 

  P values Tukey’s Multiple Comparisons,  
* p < 0.05, ** p < 0.01, *** p<0.001  

 Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 

Lab 1               

Lab 2 0.9             

Lab 3 0.9 0.63           

Lab 4 0.686 0.9 0.365         

Lab 5 0.06 0.361 *0.011 0.809       

Lab 6 0.9 0.9 0.9 0.861 0.140     

Lab 7 0.189 *0.016 0.349 *0.007 **0.001 0.147   
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Supplementary Figures 
 

 

Supplementary Figure 1. Session-ending criteria. Proportion of sessions that ended in each of the 3 criteria for all mice that                    
learned the task. The three criteria were, 1. Fewer than 400 trials in 45 minutes (green); 2. over 400 trials performed and                      
median reaction time over the last 20 trials was over 5x the median for the whole session (orange); 3. Over 400 trials performed                       
and session length over 90 minutes (blue). 
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Supplementary Figure 2. Behavioral metrics mice were not explicitly trained on varied over labs. a-b, For the three                   
sessions at which a mouse passes the “trained” criterion, box plots showing the distribution of ( a) trial duration from go cue to                      
correct or incorrect outcome in ms and ( b) the average number of trials over the three sessions. c-d, For the subsequent                     
sessions after criterion (14 ± 3.8 sessions per animal), using only data from the unbiased block (first 90 trials per session). Box                      
plots showing the distribution of (c) trial duration as in a and ( d) the average number of trials per session. 
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Supplementary Figure 3. Classification of lab membership by three different classifiers could not predict lab               
membership from behavior during criterion or subsequent sessions. a , Cross-validated classification performance of a              
Random Forest, Naive Bayes and Logistic Regression classifier while predicting lab membership based on behavioral metrics                
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from Fig. 3c-e (criterion sessions). The positive control included the time zone in which a mouse was trained in the dataset. b,                      
Normalized confusion matrices for the classifiers in a which indicates the proportion of occurrences that a mouse was classified                   
to be in the predicted lab (x-axis) while it was from the ‘actual lab’ (y-axis). c, Normalized confusion matrices as in b for the                        
positive control. d-e, Classification performance and confusion matrices as in a-c but for the subsequent sessions after criterion                  
had been reached. 

 

 

Supplementary Figure 4. Performance variability within and across laboratories goes down over training time. a-b,               
Variability in performance (s.d. of % correct) in easy trials (100% and 50% contrast) ( a) within, and ( b) across laboratories                    
during the first 40 days of training. 
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