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Complement C5a impairs phagosomal maturation in the 
neutrophil through phosphoproteomic remodelling. 
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Abstract 
Critical illness is accompanied by the release of large amounts of the anaphylotoxin, C5a. C5a 
suppresses antimicrobial functions of neutrophils which is associated with adverse outcomes. The 
signalling pathways that mediate C5a-induced neutrophil dysfunction are incompletely understood. 
Healthy donor neutrophils exposed to purified C5a demonstrated a prolonged defect (7 hours) in 
phagocytosis of Staphylococcus aureus.  Phosphoproteomic profiling of 2712 phosphoproteins 
identified persistent C5a signalling and selective impairment of phagosomal protein phosphorylation 
on exposure to S. aureus.  Notable proteins included early endosomal marker ZFYVE16 and V-
ATPase proton channel component ATPV1G1. A novel assay of phagosomal acidification 
demonstrated C5a-induced impairment of phagosomal acidification which was recapitulated in 
neutrophils from critically ill patients.  Examination of the C5a-impaired protein phosphorylation 
indicated a role for the phosphatidylinositol 3-kinase VPS34 in phagosomal maturation.  Inhibition of 
VPS34 impaired neutrophil phagosomal acidification and killing of S. aureus. This study provides a 
phosphoproteomic assessment of human neutrophil signalling in response to S. aureus and its 
disruption by C5a, identifying a defect in phagosomal maturation and new mechanisms of immune 
failure in critical illness.  
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Introduction 1 

Critically ill patients who require exogenous organ support as a result of severe physiologic insult, are 2 

at high risk of secondary infections (Vincent et al, 2009). Critical illness may arise from a variety of 3 

sterile or infectious insults. However, despite its varied aetiology, critical illness is often accompanied 4 

by stereotyped immune dysregulation, with features of both hyperinflammation and immune-5 

mediated organ damage, as well as impairment of anti-microbial functions (Meakins et al, 1977; 6 

Conway Morris et al, 2013; Hotchkiss et al, 2013a). Critical illness is estimated to cause 58 million 7 

adult deaths per year globally, (Adhikari et al, 2010) and whilst much of the mortality is attributable 8 

to the underlying condition, secondary infections make a significant contribution to the eventual 9 

outcome (Adhikari et al, 2010; Scicluna et al, 2015; van Vught et al, 2016; Vincent et al, 2006). 10 

 11 

Impairment of immune cell function predicts secondary infection, (Hotchkiss et al, 2013b; Conway 12 

Morris et al, 2013; Demaret et al, 2015; Landelle et al, 2010) and failure of neutrophil phagocytosis 13 

and bacterial killing has been demonstrated to be one of the strongest predictors of these infections. A 14 

key driver of the functional impairment of neutrophils is the anaphylatoxin C5a (Conway Morris et al, 15 

2009, 2011; Huber-Lang et al, 2002b). However, there remain no efficacious treatments for critical-16 

illness induced immune dysfunction, in part because the mechanisms that underpin C5a-induced 17 

dysfunction are incompletely understood. 18 

 19 

A wealth of data have demonstrated the importance of C5a in driving classical inflammatory events in 20 

neutrophils, including chemotaxis (Ward & Newman, 1969; Ehrengruber et al, 1994), generation of 21 

reactive oxygen species (ROS) (Suire et al, 2006; Mazaki et al, 2006; Huber-Lang et al, 2002b), 22 

phagocytosis (Mollnes et al, 2002; Brekke et al, 2007), degranulation (Denk et al, 2017a, 2017b), and 23 

delayed apoptosis (Lee et al, 2008; Perianayagam et al, 2002, 2004). In critical illness, dysregulated 24 

activation of the complement and coagulation cascades occurs, leading to exposure of neutrophils to 25 

high concentrations of C5a (Hotchkiss et al, 2013a; Venet & Monneret, 2018; Lord et al, 2014; 26 

Conway-Morris et al, 2018; Ward, 2004). In these circumstances, we and others have shown that C5a 27 

reduces neutrophil phagocytosis and ROS production in both rodent models and critically ill patients 28 

(Conway Morris et al, 2009, 2011; Czermak et al, 1999; Huber-Lang et al, 2002b).  Further, C5a 29 

exposure has been shown to be associated with nosocomial infection, organ failure, and increased 30 

mortality in critically ill patients (Conway Morris et al, 2011, 2009, 2013; Czermak et al, 1999; 31 

Huber-Lang et al, 2001, 2002a). 32 

 33 

Whilst several signals mediating aspects of C5a-induced neutrophil dysfunction have been established 34 

(Conway Morris et al, 2011; Denk et al, 2017a; Huber-Lang et al, 2002b), a global picture of 35 
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signalling in neutrophils encountering common pathogens and how this process is perturbed by C5a 36 

does not exist. Such studies are challenging in neutrophils owing to their high degradative enzyme 37 

content and short in-vitro survival times (Luerman et al, 2010). 38 

 39 

This study aimed to characterise the neutrophil phosphoprotein response to a common nosocomial 40 

pathogen, Staphylococcus aureus, and investigate how this is perturbed by prior exposure to C5a.  41 

Our differential phosphoprotein analysis implicated C5a in altered phagosomal maturation, findings 42 

that we confirmed with functional neutrophil assays in C5a-treated healthy donor cells and those from 43 

critically ill patients.  The phosphoprotein response to S. aureus implicated the involvement of the 44 

phosphatidylinositol 3-kinase VPS34, hence we continued examined the effects of this enzyme on 45 

phagosomal maturation.  46 
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Results 47 

C5a induces a prolonged defect in neutrophil phagocytosis of bacteria 48 

C5a induces a defect in phagocytosis of the clinically relevant bacterial species S. aureus (Figure 1A) 49 

and E. coli (1B). Pulse exposure of neutrophils to C5a revealed a persistent defect in phagocytosis 50 

lasting at least seven hours (1C), with short pulses inducing a significant defect. These effects were 51 

not explained by the loss of cell viability (1D). A similar prolonged defect was identified in the whole 52 

blood assay (1E), representing continuous exposure of neutrophils to C5a (which cannot be washed 53 

off in this assay). The ability of C5a to inhibit phagocytosis was dependent on the temporal 54 

relationship between C5a and S. aureus exposure. Only pre-exposure to C5a induced the defect in 55 

phagocytosis, whereas co-exposure or the addition of C5a 30 minutes after S. aureus addition failed to 56 

induce a defect (1F).  57 

 58 

To explore the potential mechanisms whereby pre-exposure to S. aureus prevents the inhibitory effect 59 

of C5a, we examined whether this could be due to reduced C5aR1 expression. Although we could 60 

demonstrate a reduction in C5aR1 following S. aureus exposure (Figure S1A), this was modest and 61 

similar to the reductions induced by other inflammatory mediators including lipopolysaccharide 62 

(LPS) and leukotriene A (LTA), neither of which ameliorated the subsequent suppressive effect of 63 

C5a (Figure S1B). Further, C5a and not LPS, LTA, granulocyte-macrophage colony-stimulating 64 

factor (GM-CSF) and tumour necrosis factor (TNF) reduced neutrophil phagocytosis (Figure S1C). 65 

To confirm the functional relevance of C5a-impaired phagocytosis, we demonstrated that C5a pre-66 

treatment reduced bacterial killing of S. aureus (Figure S1D). 67 

 68 

S. aureus and C5a induce widespread changes in the neutrophil phosphoproteome 69 

Although key signalling ‘nodes’ have been identified in neutrophils following C5a exposure (Conway 70 

Morris et al, 2009, 2011), no map of global signalling networks has been produced.  Given the 71 

rapidity of the C5a-induced phagocytic impairment demonstrated above, and the known signalling 72 

kinetics of G-protein coupled receptors (GPCRs) (Lohse et al, 2008), we examined post-translational 73 

modification by phosphorylation (i.e. a phosphoproteomic approach).  74 

 75 

In total, 4859 proteins and 2712 phosphoproteins were identified in peripheral blood neutrophils 76 

obtained from four healthy volunteers. C5a-induced suppression of phagocytosis in these donors was 77 

confirmed (Figure S2A), and technical reproducibility was high (Figures S2B-E) with the magnitude 78 

of phosphorylation changes within the previously reported range (Papachristou et al, 2018). Changes 79 

in the human proteome were minimal (2 % of total proteome with S. aureus treatment) whereas 80 

phosphoprotein expression varied markedly (31.6 % of total phosphoproteome with S. aureus 81 
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treatment, Table S1). Figure 2 shows the top 2.5% most variable phosphoproteins with protein 82 

identification, whereas the top 25 % are shown in Figure S3 to demonstrate wider changes within the 83 

phosphoproteome. The phosphoproteomic and proteomic datasets are publicly available in the PRIDE 84 

database (data available to reviewers, will be made public on acceptance of manuscript). 85 

 86 

C5a exposure induces persistent alteration in phosphoproteins across several pathways. 87 

Figure 3A shows a volcano plot comparing neutrophils treated with C5a versus vehicle control. 119 88 

proteins were significantly differentially phosphorylated at 1 hour, indicating persistent signalling, 89 

consistent with the prolonged inhibition of phagocytosis seen in Figure 1.  Notably, C5aR1 remained 90 

highly phosphorylated (a modification key to its internalisation) (Braun et al, 2003) and this change 91 

has been used to identify C5a-exposed, dysfunctional neutrophils (Conway Morris et al, 2009, 2011, 92 

2013, 2018; Schmidt et al, 2015; Unnewehr et al, 2013). Pathway enrichment using Metascape (Zhou 93 

et al, 2019) indicated involvement of pathways including membrane trafficking, regulated exocytosis 94 

(degranulation), and phosphatidylinositol-3,4,5-trisphosphate (PIP3) signalling which persist one hour 95 

after stimulation with C5a (Figure 3B). 96 

 97 

S. aureus induces a marked alteration in the phosphoproteome which is significantly impacted 98 

by C5a exposure 99 

Exposure of neutrophils to S. aureus induced a marked alteration in the phosphoproteome (Figure 100 

4A); 863 proteins (31% of the phosphoproteome) significantly alter their phosphor-status. Pathway 101 

enrichment indicated the involvement of multiple pathways, notably Rho-GTPase signalling, 102 

endosomal transport, degranulation, and actin cytoskeleton organisation (Figure 4B, with extended 103 

heatmap showing top 100 pathways shown in Figure S4). 104 

 105 

C5a exposure prior to S. aureus reduced the phosphoprotein response to the bacterium considerably 106 

(Figure 4C). However, comparing C5a and control treated cells exposed to S. aureus, 19 proteins 107 

were identified, suggesting selective pathway modulation (Figure 4D).  When mapped to known 108 

pathways using Metascape (Zhou et al, 2019) and manually annotated from the Uniprot database (The 109 

Uniprot Consortium, 2019), a pattern of reduced phosphorylation of phagosomal maturation proteins 110 

(Tables 111 

Table ) and pathways (Figure 4E) emerged. Notably, early endosomal marker ZFYVE16 and its 112 

interactor TOM1 had impaired phosphorylation following C5a exposure, as did V-type ATPase 113 

subunit G1 (which is critical for phagosomal acidification). ZFYVE16 requires phosphatidylinositol-114 

3-phosphate (PI3P) for recruitment to the phagosome (Sorkin & Von Zastrow, 2009). Another 115 

prominent PI3P-responsive protein noted was Ras-related protein 7a (RAB7A), although this protein 116 
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was not differentially phosphorylated between the C5a/S. aureus and vehicle control/S. aureus 117 

conditions. Figure S5 shows individual donor data for these key proteins. 118 

 119 

Our dataset suggests that C5a exposure that precedes pathogen encounter prevents effective signalling 120 

through the phagosomal maturation pathways, and links intracellular signalling to the prolonged 121 

functional impairment noted in this context. The other major cluster of differentially phosphorylated 122 

proteins were nuclear and nuclear membrane proteins, many of which are involved in mitosis and 123 

nuclear envelope integrity. 124 

 125 

C5a induces an impairment in phagosomal acidification, distinct from the impairment in 126 

ingestion. 127 

The phosphoproteomic signature of altered phagosomal maturation following C5a exposure, and the 128 

involvement of V-ATPase suggested that C5a had effects beyond impaired ingestion of bacteria. To 129 

disentangle the effects of phagocytic ingestion and phagolysosomal acidification, S. aureus 130 

bioparticles co-labelled with the pH-insensitive dye AF488 and pHrodo™ red were used. Neutrophils 131 

ingested particles, and then subsequently acidified the phagosome, a process which could be ablated 132 

by the addition of the V-ATPase inhibitor bafilomycin (Bowman et al, 1988) (Figures 5A and B). C5a 133 

pre-treatment increased the proportion of neutrophils that failed to ingest particles (Figure 5C) and 134 

increased the population that ingested particles but failed to acidify the phagosome (Figure 5D). 135 

Recent reports suggest that C5a induces Na+/H+ exchanger-1 (NHE-1)-mediated cytoplasmic 136 

alkalinisation (Denk et al, 2017a). An NHE-1 inhibitor did not alter the C5a-mediated effect on 137 

phagosomal acidification (Figure 5E), suggesting that the pathways mediating these two effects of 138 

C5a on neutrophils are distinct. Furthermore, we confirmed previous work (Huber-Lang et al, 2002b) 139 

showing C5a impaired ROS production (Figure S6), which in combination with the current findings, 140 

suggests C5a induces a generalised failure of phagosomal maturation in addition to its effect on 141 

phagocytic ingestion.    142 

 143 

 144 

VPS34 inhibition impairs phagosomal acidification 145 

The differential phosphoprotein analysis (Tables 146 

Table ) and phagosomal acidification assays (Figure 5) demonstrated impaired phagosomal 147 

maturation after exposure to C5a. As noted, several of the phosphoproteins that were differentially 148 

phosphorylated are known interactors with PI3P. The phosphatidylinositol 3-kinase VPS34 is the 149 

dominant source of PI3P in mammalian cells (Devereaux et al, 2013). Although VPS34 itself was 150 

detected, its phosphorylation status was not significantly altered. However, the finding that C5a 151 

altered the phosphorylation status of PI3P-responsive proteins led us to explore the role of VPS34 in 152 
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phagosomal acidification. We used the selective inhibitor, VPS34IN1 (Bago et al, 2014) to examine 153 

the role of this enzyme in phagosomal acidification, and how this related to the defect induced by 154 

C5a. VPS34IN1 did not alter the percentage of neutrophils that underwent phagocytosis (Figure 6A 155 

and time-course in E) but did lead to a reduction in the overall number of particles ingested (Figure 156 

6B) and a more marked reduction in pHrodo signal (Figure 6C and time course in F), indicating 157 

VPS34IN1 impairs phagosomal acidification. VPS34 inhibition also led to an impairment in the 158 

killing of S. aureus (Figure 6D), similar to that observed with C5a (Figure S1D) without a significant 159 

reduction in phagosomal ROS production (Figure S7).  160 

 161 

 162 

Neutrophils from critically ill patients exhibit defective phagosomal acidification  163 

To establish the relevance of our findings to the clinical setting, we used our assay of phagosomal 164 

acidification to interrogate neutrophils obtained from critically ill patients and healthy volunteers. We 165 

assessed neutrophil function in critically ill patients, defining neutrophil dysfunction as phagocytosis 166 

of <50% in our previously established zymosan assay (Figure 7A), a threshold associated with a 167 

markedly increased risk of nosocomial infection (Pinder et al, 2018; Conway Morris et al, 2009, 168 

2011). Using our phagosomal acidification assay, we then compared patients with dysfunctional 169 

neutrophils to critically ill patients with functional neutrophils and healthy controls. Dysfunctional 170 

neutrophils exhibited a failure of phagosomal acidification (Figure 7B) that was not seen in patients 171 

with functional neutrophils. Furthermore, we observed a correlation between C5aR1 expression 172 

(decreased after C5a exposure) and phagocytosis (Figure 7C) and an inverse correlation between 173 

C5aR1 expression and phagosomal acidification (Figure 7D), though the latter correlation did not 174 

reach statistical significance. The patients with dysfunctional and functional neutrophils could not be 175 

readily identified by clinical factors such as severity of illness or precipitating insult (Table S2). These 176 

data provide evidence of dysfunctional phagosomal acidification in critically ill patients and imply a 177 

role for C5a in driving this dysfunction.   178 

Discussion  179 

Our data demonstrate that C5a induces both a prolonged defect in phagocytosis of relevant pathogens 180 

(S. aureus and E.coli), and persistent signalling across multiple pathways for some hours after the 181 

well characterised initial signalling events such as ionised calcium flux (Blackwood et al, 1996) and 182 

PIP3 generation (Houslay et al, 2016). This finding supports the proposal that persistent C5a-induced 183 

signalling may mediate the neutrophil dysfunction observed in critically ill patients (Conway Morris 184 

et al, 2009, 2011). 185 

 186 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.907618doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.907618
http://creativecommons.org/licenses/by/4.0/


 9 

To our knowledge, the data presented here (Figures 3-5) represent the deepest sequencing of the 187 

human neutrophil proteome and phosphoproteome (Muschter et al, 2015; Tak et al, 2017; McLeish et 188 

al, 2013). These data provide a phosphoproteomic assessment of the human neutrophil response to S. 189 

aureus and C5a. Unlike transcriptomic data (Juss et al, 2016; Rorvig et al, 2013; Kobayashi et al, 190 

2002), phosphoproteomics provides a direct assessment of mediators that are likely to have functional 191 

implications, especially in short-lived cells such as neutrophils (Luerman et al, 2010; Fessler et al, 192 

2002) and early pathogen exposure timepoints, as examined in this study.   193 

 194 

The marked changes observed in phosphoproteins in response to S. aureus are perhaps unsurprising, 195 

as the response to and clearance of bacteria are primary functions of neutrophils. Many of the 196 

pathways identified (Figures 4 and S4) are consistent with established literature on neutrophil 197 

responses to S. aureus, and indeed other bacteria, including activation of PI3K (Li et al, 2016), toll-198 

like receptor signalling (Jann et al, 2011) and neutrophil degranulation (McGovern et al, 2011).  199 

 200 

The enrichment of PI3K and Rho GTPase signalling on C5a stimulation are in keeping with our 201 

previous identification of key roles for these molecules in C5a-mediated functional deficits in 202 

neutrophils (Conway Morris et al, 2009, 2011; Scott et al, 2015). The marked suppression of the 203 

phosphorylation response to S.aureus induced by C5a pre-treatment is not simply a response to 204 

reduced particle ingestion. Fifteen minutes after pathogen contact there were limited differences in the 205 

ingestion rates between C5a and control treatments, and these became more marked over time (Figure 206 

1). Furthermore, the differential analysis of C5a/S. aureus versus vehicle control/S. aureus conditions 207 

identified defects in specific signalling pathways, most notably those involving endosomal trafficking. 208 

This led us to examine the process of phagosomal maturation, and to identification of a C5a-induced 209 

failure of phagosomal acidification (Figure 5) with similar findings in critically ill patients (Figure 7).  210 

Failure of phagosomal maturation and intracellular killing has been described in primary immune 211 

deficiency (Buvelot et al, 2017), but has not previously been described as part of the immuno-paresis 212 

of critical illness.  Impaired phosphorylation in pathways involving nuclear envelope breakdown and 213 

nuclear pore disassembly by C5a was unanticipated. The functional relevance of these changes 214 

remains unclear, though they may be early processes in the formation of non-lethal DNA-containing 215 

neutrophil extracellular traps (NETs) (Pilsczek et al, 2010). 216 

 217 

Important signalling proteins involved in the process of phagosomal maturation (such as RAB7A, 218 

TOM1 and ZFYVE16) can be recruited to the phagosomal membrane by PI3P produced 219 

predominantly by VPS34 (Botelho et al, 2000; Levin et al, 2016; Sorkin & Von Zastrow, 2009). Both 220 

ZFYVE16 and TOM1 phosphorylation were impaired by C5a exposure.  We investigated the role of 221 

VPS34 as a mediator of neutrophil bactericidal function, and found that selective VPS34 inhibition 222 

produced a similar impairment in phagosomal acidification to that observed with C5a (Figure 6). The 223 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.907618doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.907618
http://creativecommons.org/licenses/by/4.0/


 10 

finding that a similar defect could be induced by inhibiting VPS34, the dominant source of PI3P in 224 

neutrophils (Devereaux et al, 2013), adds further validation to the pathway signature identified in the 225 

phosphoproteomic profile.  226 

 227 

Ellson and colleagues (Ellson et al, 2001) demonstrated that PI3P plays an important role in targeting 228 

neutrophil oxidase components to phagosomal membranes and its importance in phagosomal 229 

maturation has also been identified in Dictyostelium discoideum (Buckley et al, 2019), murine 230 

macrophages, and macrophage-like cell lines (Naufer et al, 2018). However, the role of VPS34 in 231 

human neutrophils has previously been inferred indirectly (Anderson et al, 2008), owing to prior lack 232 

of selective inhibitors and the difficulties of genetically manipulating human neutrophils. Anderson 233 

and colleagues (Anderson et al, 2008) demonstrated a role for VPS34 in NADPH oxidase-mediated 234 

reactive oxygen species generation in neutrophils. We found a non-significant reduction in ROS 235 

production (Figure S7) that was much less marked than the effect on phagosomal acidification. The 236 

reasons for these divergent findings are uncertain, though may include differences in ROS 237 

measurement assays, our use of a selective VPS34 inhibitor, and differences between primary human 238 

neutrophils and cell lines. The mechanism by which VPS34 inhibition impairs killing of S. aureus 239 

requires further investigation, as phagosomal acidification is not thought to be critical to this process 240 

(Lacoma et al, 2017) and it is likely that the enzyme inhibition leads to further defects in phagosomal 241 

maturation. It is intriguing to note that whilst VPS34 inhibition does not reduce the percentage of cells 242 

that undergo phagocytosis (Figure 6A), consistent with previous work (Anderson et al, 2008), it does 243 

reduce the number of particles ingested (Figure 6B). This suggests a hitherto undescribed relationship 244 

between phagosomal maturation and the capacity of cells to ingest particles. 245 

 246 

Our data also demonstrate that the timing of C5a exposure (before, alongside, or after pathogen 247 

encounter) has an important effect on neutrophil function. Only pre-exposure to C5a impaired 248 

subsequent neutrophil phagocytosis (Figure 2). Reduced C5aR1 availability for ligation by C5a is 249 

unlikely to explain this observation, as C5aR1 downregulation is induced by multiple agents that do 250 

not have the same effect on phagocytosis (Figure S1). Given the marked phosphoproteomic response 251 

to S. aureus and its distinction from the response to C5a (Figures 3 and 4), a potential explanation is 252 

that signalling induced by S. aureus simply overwhelms C5a-induced phosphorylation changes unless 253 

they were established prior to S. aureus exposure, though this hypothesis requires further 254 

experimental validation.  255 

 256 

This study was conducted entirely in primary human neutrophils, using C5a, an established, clinically 257 

relevant modulator of neutrophil function that has been linked to a range of adverse outcomes in 258 

critically ill patients. The use of clinically relevant pathogens, and the development of a whole-blood 259 

bacteraemia model, increases the relevance of our study to the in-vivo situation. Impaired ingestion of 260 
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zymosan by patient neutrophils has been associated with adverse outcomes including development of 261 

subsequent nosocomial infection (Conway Morris et al, 2011). The finding that patients with such 262 

impairment also manifest impaired phagosomal acidification that correlates with markers of C5a 263 

exposure (Figure 7) suggests that the identified mechanisms may be clinically relevant.  264 

  265 

Several potential limitations should be highlighted. The phosphoproteomic response to S. aureus was 266 

evoked with heat-killed bacterial particles, conjugated with fluorescent dyes, and these may not fully 267 

reflect the response to live bacteria, although they do allow parallel functional assessment and 268 

standardisation of the stimulus between donors and across research sites. Although whole blood is a 269 

more physiologically relevant than cell-culture media, it remains an abstraction from the situation in-270 

vivo, as it must be anticoagulated and does not involve normal flow or interaction with a vascular 271 

endothelium. Furthermore, the model may not reflect the function of neutrophils that have migrated 272 

into tissues, where most bacterial infections occur. Technical limitations currently prevent efficient 273 

phosphoproteomic assessment of cells from whole blood, and therefore isolated cells with the inherent 274 

in-vitro artefacts must be used.  275 

 276 

In conclusion, we have demonstrated the role of C5a in mediating neutrophil dysfunction in the 277 

clinically relevant setting of S. aureus and E. coli bacteraemia, and demonstrated that the effects of 278 

C5a can persist for many hours. We also describe the neutrophil phosphoproteomic response to S. 279 

aureus, and to prolonged exposure to C5a. This approach identified a defective phagosomal 280 

maturation signature induced by C5a, likely involving modulation of Class III PI3K-dependent 281 

pathways. Further, we have shown the functional manifestation of this phosphorylation signature in a 282 

model of bacteraemia. Finally, the clinical relevance of this failure of phagosomal acidification was 283 

observed in critically ill patients. A deeper understanding of the biology of neutrophil dysfunction in 284 

critical illness is key to developing effective treatments for a phenomenon associated with multiple 285 

adverse clinical outcomes.286 
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Materials and methods 

Donors 

Ethical permission for obtaining peripheral venous blood from healthy volunteers was provided by the 

Cambridge Local Research Ethics Committee (REC reference 06/Q0108/281) and all donors provided 

written, informed consent.  Critically ill patient blood samples were obtained under an approval 

granted by the North East-Newcastle & North Tyneside 2 Research Ethics Committee (REC 

reference: 18/NE/0036). Inclusion and exclusion criteria are detailed in the supplemental methods. 

Assent was provided by a personal or nominated consultee. 

 

Further details of methods and reagents described below are available in the supplementary materials. 

 

Neutrophil isolation 

Neutrophils were isolated from citrated peripheral venous blood by using a modification of the 

discontinuous plasma-Percoll density gradient centrifugation technique initially described by Böyum 

in 1968.(Boyum, 1968)  

 

Phagocytosis of pHrodo™ S. aureus and E. coli Bioparticles by purified neutrophils 

Purified human neutrophils, suspended in Iscoves Modified Dulbecco’s Medium (IMDM) with 1 % 

autologous serum at a concentration of 5 x 106/mL, were incubated in microcentrifuge tubes with 

purified human C5a or vehicle control. pHrodo-conjugated S. aureus or E. coli bioparticles were 

opsonised, in 50 % autologous serum for 30 min prior to be being added to the suspended cells. 

Analysis was by flow cytometry (Attune NxT, Thermofisher) 

 

No-wash, no-lyse whole blood assay of neutrophil phagocytosis and ROS production 

Blood, collected into argatroban 150 µg/mL, was treated with inhibitors or priming agents as 

indicated in the respective figure legends, before being exposed to S. aureus 

pHrodo™/dihydrorhodamine (DHR) or E.coli pHrodo™.  Aliquots were stained on ice with anti-

CD16 antibody, diluted and analysed by flow cytometry (Attune NxT).  

  

In variations on this assay, S. aureus particles labelled with the pH-insensitive dye AlexaFluor 

(AF)488 or dual labelled with AF488 and pHrodo red were used. pHrodo red conjugation of AF488 S. 

aureus was performed in-house using the pHrodo particle labelling kit (Thermofisher). Fluorescence 

of extracellular particles was quenched with trypan blue (0.1mg/mlL).  
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Patient samples were analysed in a different laboratory that did not have access to an Attune Nxt flow 

cytometer, to fit with established workflows in this laboratory red cells were lysed using Pharmlyse 

(BD Bioscience, Wokingham, UK) followed by washing twice using a Facswash Assistant (BD 

Bioscience) prior to undertaking flow cytometry (Fortessa, BD Bioscience).  

 

Bacterial killing assay – whole blood 

Methicillin-sensitive S. aureus (MSSA) bacteria (strain ASASM6, kind gift from Prof Gordon 

Dougan, University of Cambridge) were grown to early log-phase. Blood was collected into 

argatroban and incubated with bacteria for 1 hour. Human cells were lysed by addition of pH 11 

distilled water for 3 minutes before plating of serial dilutions on Colombia blood agar.  

 

Preparation of whole human neutrophil lysates for phosphoproteomics  

Neutrophils were isolated from whole blood as detailed above, and resuspended in RPMI 1640 media 

containing 10 mM HEPES with 1 % autologous serum (AS) at a concentration of 1x107 cells/mL.  

 

Proteomic and phosphoproteomic studies 

Triplicates of 1x107 neutrophils were treated with vehicle control or C5a (100 nM, 60 minutes) at 37 

°C before addition of pHrodo™ S. aureus (15 µg/mL). Phagocytosis was allowed to occur for 15 

minutes. Aliquots were withdrawn from each triplicate and pooled at the indicated timepoints. Cells 

were centrifuged at 400 g for 5 min at 4 °C, supernatants aspirated, and cell pellets snap frozen in 

liquid nitrogen. Cells were lysed by the addition of 0.5 % sodium dodecyl sulphate (SDS)/0.1 M 

triethylammonium bicarbonate (TEAB) buffer and sonication, before undergoing centrifugation, 

trypsin digestion, tandem mass tag labelling, fractionation, phosphopeptide enrichment, and liquid 

chromatography and tandem mass spectrometry (LC-MS/MS) analysis. The experimental schematic 

can be seen in Supplemental figure S8.  

 

Statistical analysis of wet laboratory data 

Data are presented as individual data points with summary statistics (median and interquartile range 

(IQR) or mean and standard deviation (SD) according to whether data are normally distributed. 

Parametric or non-parametric statistical tests were applied as appropriate after data were tested for 

normality using the D'Agostino-Pearson test. Tests used for comparisons are indicated in figure 

legends. Two-tailed P values were computed, P < 0.05 was considered statistically significant. Non-

significant differences have not been indicated in figures for clarity. Statistical analyses were 

undertaken using GraphPad Prism v8.0 (GraphPad Software; San Diego; California). 
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Statistical analysis of phosphoproteomics data 

Spectral .raw files from data dependent acquisition were processed with the SequestHT search engine 

on Thermo Scientific Proteome Discoverer™ 2.1 software. Data were searched against both human 

and S. aureus UniProt reviewed databases at a 1 % spectrum level false discovery rate (FDR) criteria 

using Percolator (University of Washington). MS1 mass tolerance was constrained to 20 ppm, and the 

fragment ion mass tolerance was set to 0.5 Da. TMT tags on lysine residues and peptide N termini 

(+229.163 Da) and methylthio (+45.988 Da) of cysteine residues (+45.021 Da) were set as static 

modifications, while oxidation of methionine residues (+15.995 Da) and deamidation (+0.984 Da) of 

asparagine and glutamine residues were set as variable modifications. For TMT-based reporter ion 

quantitation, we extracted the signal-to-noise (S:N) ratio for each TMT channel. Parsimony principle 

was applied for protein grouping. 

 

Peptide and phosphopeptide intensities were normalised across conditions using median scaling and 

then summed to generate protein and phosphoprotein intensities. Proteins and phosphoproteins were 

independently identified and quantified in all samples from all four donors; species not meeting these 

criteria were excluded from subsequent analysis. Log base 2 fold change (Log2FC) was calculated 

between conditions of interest, compared across n = 4 donors and tested for statistical significance by 

limma-based linear models with Bonferroni's correction for multiple testing.  Hierarchical clustering 

using Euclidean distance was undertaken on the entire dataset. Heatmaps and volcano plots were 

generated as shown in Results. Statistical analyses were performed in RStudio (RStudio Team, 2016) 

using the qPLEXanalyzer (Papachristou et al, 2018) package, and plots were produced using the 

ggplot2 (Wickham, 2016) package.  

 

Data sharing statement 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 

the PRIDE (Perez-Riverol Y et al, 2019) partner repository with the dataset identifier PXD017092 

and will be made public on acceptance after peer-review 
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Figure legends 
Figure 1: C5a induces a prolonged defect in neutrophil phagocytosis of bacteria 

A and B: Isolated neutrophils were pre-treated with 100 nM C5a or vehicle control for 60 min before 
incubation with S. aureus (A) or E. coli (B) bioparticles. Data are presented as the median phagocytic 
index for each condition for n=7 (A) or 6 (B) independent donors, *P = 0.016 (A) and 0.031 (B) by 
Wilcoxon’s matched-pairs signed rank test. 
C: Neutrophils were pulsed with 100 nM C5a or PBS control for the indicated periods of time, 
followed by 2 washes. S. aureus bioparticles were then added and cells were incubated for the 
indicated time points. Data are presented as the mean and SD of the phagocytic index of C5a-treated 
cells relative to their paired vehicle control for n=5 independent experiments. P < 0.0001 for time and 
P = 0.0186 for treatment by two-way ANOVA. ***P = 0.0001 ****P < 0.0001 by Dunnett’s multiple 
comparison test.  
D: Data are presented as the mean and SD of the percentage of DRAQ7 positive, dead cells for n=5 
independent experiments. P = 0.378 for time and P = 0.349 for treatment by two-way ANOVA. 
E: Anticoagulated whole blood was pre-treated with 300 nM C5a or control for the indicated duration 
before phagocytosis was measured as previously indicated. Data are presented as the mean and SD of 
the cumulative phagocytic index for 4 independent experiments. P < 0.0001 by two-way ANOVA, 
****P < 0.0001, ***P < 0.001 by Sidak’s multiple comparisons test. 
F: S. aureus particles were incubated with isolated PMNs in the presence of 100 nM C5a or PBS 
added at the indicated time points, with time 0 representing the time of addition of S. aureus 
bioparticles. Experiments proceeded for the indicated time points and phagocytic index quantified. 
Data are presented as the mean and SD of the phagocytic index of C5a-treated cells relative to their 
paired vehicle control for n=5 independent experiments. P < 0.0001 for time and P = 0.0186 for 
treatment by two-way ANOVA. ****P < 0.0001 by Dunnett’s multiple comparisons test. 
 
Figure 2: S. aureus and C5a induce widespread changes in the neutrophil phosphoproteome  

Heatmap of phosphoprotein intensity relative to baseline (log2 fold change) across the four 
experimental conditions shows phosphoproteins with variance across conditions in the top 97.5th 
centile with dendrograms clustered by Euclidean distance. Increased phosphoprotein expression is 
indicated in red, decreased in blue. Only phosphoproteins detected in all four donor samples were 
included. 
 
Figure 3: C5a exposure induces persistent alteration in phosphoproteins across several pathways 

A: Proteins with adjusted P-values < 0.05 are shown in blue and the 20 proteins with the highest 
absolute log2 fold change are labelled. P-values were computed by limma-based linear models with 
Bonferroni’s correction for multiple testing. B: Metascape(Zhou et al, 2019) enrichment heatmap 
showing functional clusters of phosphoproteins affected by C5a treatment.   
 
Figure 4: S. aureus induces a marked alteration in the phosphoproteome that is significantly impacted 
by C5a exposure 

 A, B, D: Proteins with adjusted P-values < 0.05 are shown in blue and the 20 proteins with the 
highest absolute log2 fold change are labelled. P-values were computed by limma-based linear models 
with Bonferroni’s correction for multiple testing. C: Metascape(Zhou et al, 2019) enrichment 
heatmap showing functional clusters of phosphoproteins affected by S. aureus exposure. E: 
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Metascape(Zhou et al, 2019) bar graph showing top non-redundant functional clusters of 
phosphoproteins enriched in the vehicle control/S. aureus condition versus C5a/S. aureus condition. 
 
Figure 5: C5a induces an impairment in phagosomal acidification, distinct from the impairment in 
ingestion 

A: Exemplar flow cytometry plots of whole blood pre-treated with vehicle control or bafilomycin A 
(60 min; 100nM) prior to exposure to 5 µg/mL co-labelled AF488/pHrodo red S. aureus for 120 min. 
Both phagocytosis (x-axis) and phagosomal pH (y-axis) can be measured simultaneously in the same 
population of cells. pHrodo™ fluorescence increases with decreasing pH, indicating phagosomal 
maturity as shown.  
B: Conditions as in A. Data are shown as individual data points with mean for n=7 individual donors. 
P = 0.016 by Wilcoxon’s test. 
C: Whole blood was pre-treated with vehicle control or C5a (300 nM; 60 minutes) prior to exposure 
to phagocytosis probe for 180 min. Phagocytosis without maturation (i.e. AF488 signal) is shown. 
Data are shown as mean and SD of n = 5 individual donors. ****P < 0.0001 by repeated-measures 
two-way ANOVA with Bonferroni’s multiple comparisons test. 
D: Conditions as in C. The percentage of S. aureus particle positive (AF488+) cells with low pH 
(mature) and high pH (immature) phagosomes is shown for control and C5a-treated conditions. Data 
are shown as mean and SD of n = 5 individual donors. ***P < 0.001 by repeated-measures two-way 
ANOVA with Bonferroni’s multiple comparisons test. 
E: Whole blood was pre-treated with C5a, NHE-1 inhibitor (5µM), or both, then exposed to 
maturation probe for 60 min. The percentage of AF488+ cells with high pH (immature) 
phagolysosomes is shown. Data are shown as individual data points with median from n = 7 
individual donors. P = 0.0080 by Friedman’s test, *P < 0.05 for Dunn’s test of multiple comparisons, 
ns = non-significant.  
 
Figure 6: VPS34 inhibition impairs phagosomal acidification 

Whole blood was pre-treated with vehicle control or VPS34IN1 (1 µM; 60 min) prior to addition of 5 
µg/mL maturation probe (A-D), or live S. aureus (E), for 120 minutes prior to analysis.  
A: Percentage of neutrophils that have phagocytosed bioparticles. P = 0.31 by Wilcoxon’s test. n = 6 
individual donors. 
B: MFI of ingested particles, indicating relative quantity of phagocytosis. P = 0.03. by Wilcoxon’s 
test. n=6 individual donors. 
C: pHrodo™ Median Fluorescent Intensity (MFI), indicating phagosomal acidification. P = 0.03. by 
Wilcoxon’s test. n=6 individual donors. 
D: After phagocytosis of live bacteria, human cells were lysed in alkaline dH2O and surviving 
bacteria were incubated overnight on blood agar. Bacterial survival was quantified by counting 
colonies. P = 0.03 by paired t-test, n=5 individual donors. 
E-F: Whole blood was processed as above with quantification of phagocytosis (E) and acidification 
(F) at the indicated time points. There was a reduction in phagosomal acidification as shown but no 
change in percentage of cells that underwent phagocytosis. Data are shown as mean and SD of n=5 
individual donors. **P = 0.0058 for drug treatment by repeated measures two-way ANOVA with 
Bonferroni’s multiple comparisons test. 
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Figure 7: Neutrophils from critically ill patients exhibit defective phagosomal acidification  

A: Zymosan-based assay demonstrating differentially impaired phagocytosis in critically ill patients. 
Data are shown as individual patients/controls with median values indicated. n = 6 patients with 
dysfunctional neutrophils and 5 patients with functional neutrophils respectively. ** P=0.004 by 
Mann-Whitney U-test. 
B: Neutrophil phagosomal acidification was assessed in whole blood from critically ill patients using 
the maturation probe. Patients were classed as dysfunctional using the assay from A. Data are shown 
as individual patients/controls with mean from n = 6 patients with dysfunctional neutrophils, 5 
patients with functional neutrophils and 10 healthy controls respectively. P = 0.04 by one-way 
ANOVA. **P < 0.01 by Holm-Sidak’s test of multiple comparisons.  
C, D: C5aR1 expression was assessed by flow cytometry and correlated (Spearman) with 
phagocytosis (C) and phagosomal acidification (D) for n = 12 patients. NB: One patient’s cells did not 
adhere to tissue culture plastic for the zymosan assay, thus they could not be assigned to dysfunctional 
or non-dysfunctional groups shown in A and B. C5aR1 expression and maturation probe data was 
available to allow inclusion in correlation analyses in C and D, hence the difference in numbers 
between these figures.  
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Figures 
Figure 1 
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Figure 2  
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Figure 3  
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Figure 4  
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Figure 5  
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Figure 6  
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Figure 7 
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Tables 
Table I: Differentially phosphorylated proteins between C5a and control-treated neutrophils 
exposed to S. aureus. 

All 19 phosphoproteins with Bonferroni adjusted p-values < 0.05 for difference in phosphorylation 
status between the Control plus S. aureus vs C5a plus S. aureus conditions. Subcellular location and 
function manually annotated from Uniprot database (The Uniprot Consortium, 2019). 

Protein name Sub-cellular 
localisation 

Functional role 

Endosomal/phagosomal   
Zinc finger FYVE domain-
containing protein 16 (ZFYVE16) 

Early Endosomes PI(3)P binding FYVE domain, 
found on early endosomes, targets 
TOM1 to endosomes 

Target of Myb protein 1 (TOM1) Endosomes/azurophil 
granule membrane 
(neutrophil) 

Known interactor with ZFYVE16 

V-type proton ATPase subunit G 1 
(ATP6V1G1) 

Endosomes/phagosomes Proton channel acidifying 
vacuolar structures 

Wiskott-Aldrich protein (WAS) Cytoplasm, phagosomes RhoGTPase effector and actin 
polymerisation 

Epsin-1 (EPN1) Plasma membrane, 
clathrin coated pits 

Regulates receptor-mediated 
endocytosis, PI(4,5)P binding 

Lysosomes   
Ubiquitin carboxyl-terminal 
hydrolase 5 (USP5) 

Lysosome and 
cytoplasm 

Deubiquitination 

Synaptic vesicle membrane protein 
VAT-1 homolog (VAT1) 

Lysosomes/azurophil 
granule (neutrophil) 

Neutrophil degranulation 

Nuclear   
Nuclear pore complex protein 153 
(NUP153) 

Nuclear membrane Phosphorylation occurs during 
nuclear membrane disassembly 

Lamin-B1 (LMNB1) Nuclear membrane Phosphorylation occurs during 
nuclear membrane disassembly 

Histone H3.3 (H3F3A) Nucleus Histone protein 
Protein SGT1 homolog (SUGT1) Nucleus and 

kinteochore 
Mitosis 

Sperm-associated antigen 7 
(SPAG7) 

Nucleus Nucleic acid binding 

Splicing factor U2AF 35 kDa 
subunit (U2AF1) 

Nucleus RNA splicing 

Chromatin complexes subunit 
BAP18 (BAP18) 

Nucleus Chromatin organisation 

Nuclear/Cytoplasmic proteins   
Serine/threonine-protein kinase 3 
(STK3) 

Nucleus/cytoplasm Cycles between nucleus and 
cytoplasm, influenced by 
phosphorylation status under 
control of caspases 

Transforming acidic coiled-coil-
containing protein 1 (TACC1) 

Nucleus, centerosome, 
microtubules 

Microtubule organisation and 
mitotic spindle formation 

Serine/threonine-protein kinase 
TAO2 (TAOK2) 

Nucleus/Cytoskeleton Regulation of actin cytoskeleton 
and MAP kinase activity 

Endoplasmic reticulum   
Protein lunapark (LNP) Endoplasmic reticulum Phosphorylated during mitosis 
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Thioredoxin-related 
transmembrane protein 1 (TMX1) 

Endoplasmic reticulum Cell response to oxidative stress 
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