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Abstract 
The reproducibility crisis in science is a multifaceted problem involving practices and incentives, 
both in the laboratory and in publication. Fortunately, some of the root causes are known and can 
be addressed by scientists and authors alike. After careful consideration of the available 
literature, the National Institutes of Health identified several key problems with the way that 
scientists conduct and report their research and introduced guidelines to improve the rigor and 
reproducibility of pre-clinical studies. Many journals have implemented policies addressing these 
same criteria. We currently have, however, no comprehensive data on how these guidelines are 
impacting the reporting of research. Using SciScore, an automated tool developed to review the 
methods sections of manuscripts for the presence of criteria associated with the NIH and other 
reporting guidelines, e.g., ARRIVE, RRIDs, we have analyzed ~1.6 million PubMed Central 
papers to determine the degree to which articles were addressing these criteria. The tool scores 
each paper on a ten point scale identifying sentences that are associated with compliance with 
criteria associated with increased rigor (5 pts) and those associated with key resource 
identification and authentication (5 pts). From these data, we have built the Rigor and 
Transparency Index, which is the average score for analyzed papers in a particular journal. Our 
analyses show that the average score over all journals has increased since 1997, but remains 
below five, indicating that less than half of the rigor and reproducibility criteria are routinely 
addressed by authors. To analyze the data further, we examined the prevalence of individual 
criteria across the literature, e.g., the reporting of a subject’s sex (21-37% of studies between 
1997 and 2019), the inclusion of sample size calculations (2-10%), whether the study addressed 
blinding (3-9%), or the identifiability of key biological resources such as antibodies (11-43%), 
transgenic organisms (14-22%), and cell lines (33-39%). The greatest increase in prevalence for 
rigor criteria was seen in the use of randomization of subjects (10-30%), while software tool 
identifiability improved the most among key resource types (42-87%). We further analyzed 
individual journals over time that had implemented specific author guidelines covering rigor 
criteria, and found that in some journals, they had a big impact, whereas in others they did not. 
We speculate that unless they are enforced, author guidelines alone do little to improve the 
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number of criteria addressed by authors. Our Rigor and Transparency Index did not correlate 
with the impact factors of journals. 
 
Introduction 
The National Institutes of Health (NIH) have designed and adopted a set of rigor and 
reproducibility guidelines expected to be addressed in grant proposals submitted to the NIH that 
covers the aspects of study design most likely to impact a study’s reproducibility (for NIH 
Guidelines see NOT-OD-15-1031; See also EU Report Open Science Monitoring2; for their 
intellectual underpinning3; for examples4,5). Multiple journals have adopted similar guidelines in 
their instructions to authors (e.g. Nature Checklist6).  
 
The NIH guidelines are part of a growing list of recommendations and requirements designed to 
address different aspects of rigor and reproducibility in the scientific literature, e.g., the 
ARRIVE 7, CONSORT 8 and RRID 9 standards. The Animal Research: Reporting of In Vivo 
Experiments (ARRIVE) guidelines are a highly comprehensive and universally accepted set of 
criteria that should be addressed in every animal-based experiment. The guideline contains 39 
items (20 primary questions and 19 subquestions). The Consolidated Standards of Reporting 
Trials (CONSORT) statement is comprised of a 25 item checklist along with a flow diagram 
governing how clinical trials should be reported. The RRID Initiative, another reproducibility 
improvement strategy, asks authors to add persistent unique identifiers called research resource 
identifiers (RRIDs) to disambiguate specific assets used during experimentation. RRIDs can be 
considered as universal product codes (UPC) that identify the ingredients needed for an 
experiment. The initiative covers a wide variety of resources including (but not limited to): 
antibodies, plasmids, cell lines, model organisms, and software tools. The initiative was started 
because antibodies were notoriously difficult to identify unambiguously in the published 
literature.10  
 
Unfortunately, studies of publishing practices generally find poor compliance by authors and 
enforcement by reviewers, even with the availability of checklists and instructions to authors. 
Even when authors assert that they follow ARRIVE, the evidence still shows that the guidelines 
are not followed.11,12 In the case of RRIDs, the guidelines were not routinely followed when 
authors were asked by journals through instructions to authors or by checklists, but a direct 
request from the editors for RRIDs during the publication process proved highly effective in 
improving author compliance.9 

 
In order to reduce confusion around the proliferation of guidelines and to improve author 
compliance, the above guidelines were incorporated into the Materials Design, Analysis, and 
Reporting (MDAR) framework, a recently released pan-publisher initiative enacted to create a 
consistent, minimum reporting standard that spans across all life sciences.13 The MDAR 
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checklist includes many of the elements that are present in the NIH, ARRIVE, CONSORT and 
RRID standards. The checklist is not intended to supplant more granular reporting of 
information, but rather is to be used as a generalist instrument across the biological research 
community. 
 
One reason that author compliance may be low is not simply that there are a plethora of 
guidelines, but rather that there are few tools that support authors, reviewers and editors in 
implementing and enforcing such guidelines. Similarly, studies that seek to investigate the 
degree to which authors comply have been limited to manual review of a few criteria.14,15 We 
recently developed SciScore, an automated tool using natural language processing (NLP) and 
machine learning, that can be used by journals and authors to aid in compliance with the above 
guidelines. SciScore currently evaluates compliance with six key recommendations from the 
above guidelines and checks for key resource identifiability for a variety of resource types. Here 
we introduce SciScore and show how it can be used to assess the impact of rigor and 
reproducibility reporting guidelines comprehensively across the open access scientific literature. 
Using SciScore, it is now possible to create a Rigor and Transparency Index across journals that 
can be compared to current metrics such as Impact Factor. 
 
Methods and Materials 
Text mining the open access subset of PubMed Central 
For this study, we downloaded and processed all open access literature available through 
PubMed Central (PMC, RRID:SCR_004166) in September of 2019. In total, we obtained data 
from 1,578,964 articles from 4,686 unique journals. The PMC Open Archives Initiative (OAI) 
dataset was initially downloaded as directories (one per journal named by the journal’s standard 
abbreviation) allowing for a clear differentiation of each journal. Articles only available as PDFs 
were not included in the PMC-OAI dataset, and were therefore excluded from our analysis. In 
addition, abstract-only articles and articles without a methods section were also excluded from 
our analysis because the reporting criteria are generally included only in the materials and 
methods. We limited our analysis to journals that had published more than 10 papers for any 
given year in the PMC-OAI.  
 
In order to create the dataset used for our analysis, the OAI articles were fed through the 
SciScoreTM named-entity recognition classifiers. SciScore currently uses 6 core named-entity 
recognition classifiers (see Table 1 for a complete list of entity types detected). Each of these 
was validated using precision and recall as well as their harmonic mean, F1. The values for each 
entity type are listed in Table 1. 
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Table 1. Individual Classifier Performance for Named-Entities 

Entity Type 
F1 Precision Recall Training Set Size 

(sentences 
w/entities) Mean ± SD Mean ± SD Mean ± SD 

Rigor Criteria (5 total points) 

Institutional Review Board Statement * 81.41 ± 3.62  84.45 ± 5.26 79.57 ± 8.83 340 

Consent Statement * 94.75 ± 1.68  96.29 ± 2.42 93.38 ± 3.63 373 

Institutional Animal Care and Use 
Committee Statement * 

81.30 ± 4.20  89.30 ± 4.60 74.89 ± 6.12 591 

Randomization of subjects into groups 83.05 ± 3.04  80.25 ± 5.05 86.45 ± 4.64 368 

Blinding of investigator or analysis 78.96 ± 12.38  77.74 ± 17.16 81.79 ± 10.32 183 

Power analysis for group size 64.45 ± 29.37  73.74 ± 34.13 59.50 ± 26.91 81 

Sex as a biological variable 88.32 ± 3.91  87.94 ± 6.03 88.93 ± 3.52 862 

Cell Line Authentication ^ 54.08 ± 11.88  85.70 ± 10.78 41.15 ± 12.82 155 

Cell Line Contamination Check ^ 91.70 ± 5.24  93.35 ± 7.15 90.65 ± 7.05 151 

Key Biological Resources (5 total points) 

Antibody 78.94 ± 2.62  86.89 ± 3.78 72.46 ± 3.20 16,772 

Organism 66.05 ± 4.70 79.91 ± 6.28 56.64 ± 5.75 4,439 

Cell Line 70.07 ± 5.95  86.48 ± 3.27 59.34 ± 8.03 1,763 

Plasmid ** 79.62 ± 3.35 92.53 ± 3.80 70.09 ± 4.85 2,568 

Oligonucleotide ** 83.03 ± 9.05 95.28 ± 3.13 74.94 ± 13.90 1,893 

Software Project/Tool 89.03 ± 0.90 92.49 ± 2.08 85.84 ± 1.10 10,161 

* Institutional review board and consent statements are scored together as a block where detection of one or more 
of these entities will give the full point value for this section.  
^ Cell line authentication and contamination statements are only scored when a cell line is detected in the key 
resources table and they are scored together, either of these will provide the full points for this section. 
** Entity type not used for analysis in the current paper.  
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Each classifier component was trained and tested separately for precision and recall using human 
curated data. The curator labeled each entity type within tens of thousands of example sentences 
using the smallest word chunk that was still informative. For example, in the sentence, “We used 
the mouse monoclonal GFAP antibody from Sigma”, the antibody name would be [GFAP], 
while the clonality would be [monoclonal]. The source organism would be [mouse], and the 
antibody vendor would be [Sigma]. For antibody detection, these and any other individual 
components describing antibodies are used to identify an antibody and its additional metadata. 
We assume that the authors will report some, but not all antibody features for any given 
antibody. Treating the antibody name feature as its primary tag, the overall F1 score for 
antibodies is 78.9 with a precision of 86.9 and a recall of 72.5. If the curator and algorithm did 
not have complete agreement with regard to the entity in our training dataset, it was considered a 
miss e.g., [GFAP] vs [GFAP antibody] in the example sentence. The remaining features were 
used to improve our antibody name recognition and to determine whether the antibody was 
identifiable. We tested these values using 10 random splits of the data where 90% of the human 
curated data was used as training and 10% is used as the test. The final value comes from a mean 
of all 10 training trials. If the F1 was determined to be below the desired 70% threshold for key 
resources, we attempted to increase the training dataset size. We did not set a minimum desired 
F1 threshold for our rigor classifiers as training data was far more difficult to locate for certain 
criteria. Overall, 11 curators have worked on annotating various components over the last 4 
years. 
 
While the cell line algorithm has been tested previously to find the total number of cell lines used 
throughout the open access subset of PubMed Central,16 the other algorithms had not been 
thoroughly validated before this on complete articles outside of the training set. To validate 
SciScore’s total performance, we tested SciScore against an independent set of human-curated 
data. This set was created using 250 papers randomly chosen using the random() function in 
SQLite (RRID:SCR_017672) from our dataset of open-access papers. Each paper was then 
manually reviewed by a curator to determine which rigor criteria and key resource information 
had been referenced. For each paper, the methods section was read, and the curator noted the 
presence or absence of each entity type. For this check, the curator and SciScore were considered 
to be in agreement if both had marked an entity type as either present or absent. If there was a 
disagreement, it would then be classified as either a false negative error or a false positive error. 
For example, if a paper containing multiple antibodies was noted by the curator as having 
antibodies present, and SciScore determined that there were antibodies present as well, then this 
would be considered an agreement. In that example, if SciScore had determined that no 
antibodies were present, then this would be considered a false negative error. Note, the curator 
did not keep track of exactly which antibodies were used in the paper or how many. For this 
analysis, the curator was blinded to the output of the algorithm while curating papers in this set. 
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For validation, this information was then compared against our calculated SciScore classifier 
performances, listed in Table 1; the results of this analysis are in Table 2.  
 
 

Table 2: Rates of false negatives, false positives, and overall agreement based on manual 
analysis of 250 scored papers (SciScore > 0) from our dataset. 

Entity Type 
False Positives False Negatives Overall Agreement 

Size (#) Rate (%) Size (#) Rate (%) Size (# 
agreed) Rate (%) 

Rigor Criteria 

Institutional Review Board Statement or 
Consent Statement 

11 4.4 3 1.2 236 94.4 

Institutional Animal Care and Use 
Committee Statement 

7 2.8 15 6.0 228 91.2 

Randomization of subjects into groups 16 6.4 8 3.2 226 90.4 

Blinding of investigator or analysis 2 0.8 7 2.8 241 96.4 

Power analysis for group size 12 4.8 6 2.4 232 92.8 

Sex as a biological variable 5 2.0 20 8.0 225 90.0 

Cell Line Authentication or 
Contamination Check 

12 4.8 0 0.0 238 95.2 

Key Biological Resources 

Antibody 2 0.8 3 1.2 245 98.0 

Organism 3 1.2 7 2.8 240 96.0 

Cell Line 6 2.4 4 1.6 240 96.0 

Software Project/Tool 8 3.2 41 16.4 201 80.4 

 
Scoring Framework  
All research papers in the PMC-OAI dataset were scored on a 10-point scale. To calculate the 
total score for each paper, the scoring was broken down into two equally weighted sections: 5 
points for rigor adherence (made up of the rigor criteria listed in Table 1) and 5 points for key 
resource identification (consisting of the key biological resource types listed in Table 1). In cases 
where no rigor criteria or key resources were detected, the paper received a score of 0. Papers 
given a 0 were excluded from the dataset because in cases where SciScore cannot find any 
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criteria to judge, there is no way of determining if a score is appropriate. As SciScore was 
originally intended for biomedical research articles, papers scored as 0 typically fall far outside 
of its scope (e.g. X-ray crystallography), or are the wrong paper type (e.g. a letter to the editor). 
Indeed, of the 197,892 not applicable (0 scoring) papers, over 30,000 came from the following 
five journals: Acta crystallographica. Section E, Structure reports online (98% of articles scoring 
0), Nanoscale research letters (71%), Beilstein journal of organic chemistry (78%), Acta 
crystallographica. Section E, Crystallographic communications (95%), and iScience (100%); see 
supplementary data file 1. In order to validate this assumption, a second set of human-curated 
data was created using 250 papers that had received a score of 0. These papers were randomly 
chosen using the random() function in SQLite. Each paper was then manually reviewed by a 
curator to determine if any rigor criteria had been mentioned and which key resources, if any, 
had been referenced. Similar to our scored paper analysis, any criteria found was marked as 
either present or absent. The curator was not blinded to the output of the algorithm for this set, 
which may introduce an element of bias for this portion of the analysis. We note that when 
creating the manually checked datasets, we grouped IRB and consent as well as cell line 
authentication and contamination statements so the coding would be consistent with the output of 
the automated pipeline.  
 
The rigor section of each score adds roughly one point for each criterion that is detected. For 
example, the score would be increased by one point if the author discussed blinding of the 
investigator during data analysis. In certain cases, a particular criterion may be deemed irrelevant 
and is not scored, such as the cell line authentication statement, which would not be required in 
papers that do not use cell lines. Currently, we weigh ethical approval sentences (which could be 
of the following types: IRB, IACUC, or consent statement) as two points because this tool is 
intended for manuscripts in preparation and not having a statement on ethics can have serious 
legal ramifications. In short, simply comparing the total number of found, relevant criteria to the 
total number of expected, relevant criteria roughly provides the score for the rigor section. This 
presents a positive bias in scores towards vertebrate animal and human subjects papers that 
include the ethical approval statement, and a negative bias against cell line and invertebrate 
papers, as ethical approval is not required in those cases. The current version of the tool does not 
score cell line authentication if no cell line is detected, but does not yet have the ability to 
distinguish whether ethical approval is necessary. 
 
The key resources section is scored altogether as one block and takes into consideration the total 
number of resources found using a similar found:expected ratio scoring system. In brief, all 
detected resources are categorized into two scoring groups: detected but not uniquely identifiable 
(no points), and identifiable (full points). In our example mentioned above, “We used the mouse 
monoclonal GFAP antibody from Sigma”, the algorithm is likely to detect a single antibody and 
vendor, but the catalog number or research resource identifier (RRID) would not be found. For 
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this sentence, this resource would not contribute any points towards the “found” total because the 
resource is not uniquely identifiable. It would, however, still contribute towards the expected 
resources count, so if this was the only resource detected, the author would receive a 0 of 5 for 
this section. If the author were to provide a catalog number, the algorithm may suggest a RRID 
given that it is able to estimate with a high level of confidence a single RRID entity with 
matching metadata (this is granted a point for for identifiable section), a valid matching RRID 
guarantees the point. We then calculate the key resource section’s score using a weighted 
average based on these two categories: unidentifiable and identifiable, and the proportions of key 
resources in each. When the algorithm fails to recognize a resource, that is considered a false 
negative, occuring at rates outlined in Table 1. We note that the values reported in Table 1 are for 
individual entities, when an entity is discussed several times, the probability should be additive. 
Papers tend to discuss resources several times in the methods section; for cell lines, each cell line 
was mentioned twice, improving the rate of resource identification in the paper. So we expect 
that our scores for SciScore to curator agreement should be at or above the raw values. Final 
scores are rounded to the nearest integer. 
 
Impact Factor Comparison 
All journals contained in the PMC-OAI were initially considered for our analysis. In order to 
ensure that the average score calculated for each journal was representative of their true average, 
we limited our analysis to journals with sample sizes larger than the minimum required sample 
size calculated for each journal. Journals that did not meet this minimum were excluded from our 
analysis. We then searched the Journal Citation Reports (JCR, RRID:SCR_017656) database 
(operated by Clarivate Analytics) to obtain the journal impact factor (JIF) and average JIF 
percentile for each journal’s 2018 scores. These values are the most recent obtainable scores as 
new JIF information is usually released ~6 months after the end of the year (e.g. JIF values for 
2019 will be released around June of 2020). Searches were performed in November of 2019. 
Journals that did not have their information listed in the JCR were excluded from our analysis. 
JIF is “calculated by dividing the number of current year citations to the source items published 
in that journal during the previous two years” according to Clarivate Analytics 
(RRID:SCR_017657), the official source for JIFs. For JIFs in 2018, this roughly translates to the 
following equation (Eq. 1): 
 

Articles  + Articles2017 2016

Citations  + CitationsArticles 2017 Articles 2016                  (Eq. 1) 
 

Because of this, when we calculated the average score for each journal, we only included scores 
from 2016 and 2017, so that the SciScores and JIFs would theoretically be representative of 
roughly the same papers. We say “roughly” because JIF is calculated using “citable items”, a 
vague term sometimes made up of a variety of article types (original research, commentaries, 
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opinions, etc.),17 while SciScore is currently intended for use on original research. The average 
JIF percentile is calculated using the rank of each journal’s impact factor grouped by the field in 
which the journal is indexed. This calculation accounts for citation variations between different 
scientific fields as JIF percentile only compares journals within a specific category (cell biology 
journal vs. cell biology journal). As a result, any difference in citation counts between fields (e.g. 
physical chemistry vs. immunology) will be mitigated, allowing for a better comparison across 
all biomedical research. SciScore percentile was calculated based on the average SciScore of all 
490 journals used in our impact factor comparison. In order to evaluate the correlations between 
JIF vs. SciScore and JIF percentile vs. SciScore percentile, we used Google Sheets to calculate 
Spearman's rank-order correlation for each. Spearman’s correlation was chosen over Pearson’s 
because we did not assume bivariate normality. One potential source of bias affecting this 
analysis is the FUTON (full text on the Net) bias, which positively impacts citation counts for 
open-access research, while negatively impacting the number of citations for research not freely 
available on the web.18,19  
 
Statistics 
To determine if a journal sampling was representative of its population in our impact factor 
analysis, we calculated the minimum sample sizes (n) required for each journal using the 
following equation (Eq. 2) for the sample size estimation of a finite population: 
 

n = ε2
z ·p(1 − p)2 ︿ ︿

1 + 
ε ·N2

z ·p(1 − p)2 ︿ ︿                (Eq. 2) 

 
where z is the z score, is the sample proportion, ε is the confidence interval, and N is thep︿  
population. We used a confidence level of 95%, a confidence interval of 5%, and a sample 
proportion of ~0.875, which was the proportion of papers in our dataset that received a score 
above 0. Population sizes varied, but were determined by performing searches on PubMed 
restricted by publication type [journal article] and journal name. The minimum sample size was 
also calculated for each year to determine how far back our analysis should consider. For those 
calculations, the population was determined by the number of journal articles published in 
PubMed for a given year. These calculations were performed in Sheets (Google Sheets; 
RRID:SCR_017679). For all other analyses, journals were only included if more than 10 papers 
were scored per year.  
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For SciScore named-entity classifiers, we used the standard measures used to quantify 
performance: recall (R), precision (P), and the harmonic mean of R and P (F1). These were 
determined by the following formulae: 
 

 R =  T rue P ositives
T rue P ositives + F alse Negatives         (Eq. 3) 

 
 P =  T rue P ositives

T rue P ositives + F alse P ositives         (Eq. 4) 
 

1 F =  (2·P ·R)
(P  + R)         (Eq. 5) 
 

In this case, false negatives are criteria that were missed by SciScore but were labeled by a 
human curator, and false positives were incorrectly identified text labeled by SciScore. 
 
We did not obtain an institutional review board approval to conduct this study as we did not 
utilize any human or animal subjects, making this study exempt.  
 
Results 
Of the 1,578,964 articles analyzed by SciScore, 197,892 articles were considered not applicable. 
Research was considered not applicable if no scoring criteria were found resulting in a SciScore 
of 0. In total, 1,381,072 papers were scored, giving a score rate of 87.5% for articles with 
accessible methods sections. To determine the quality of SciScore annotations beyond the 
training set, we used a sampling of 250 papers randomly selected from the scored papers 
(SciScore > 0) and 250 papers randomly selected from the “not applicable” papers (SciScore = 
0). Every methods section was read, and the curator noted the presence or absence of each entity 
type used in our analysis (entity types shown in Table 1). As previously mentioned, some entity 
types (IRB and consent; cell line authentication and contamination) were combined. In order to 
maintain consistency throughout our analysis, we counted the presence of one of these entity 
types as sufficient for both. Of these entity types though, all can be considered conditional and 
are therefore not entirely independent; e.g., studies that require IRB approval usually require a 
statement of consent; studies using cell lines normally require both an authentication statement 
and a contamination statement. Because of this, we feel that it is not unreasonable to group these 
criteria together in these instances.  
 
For the 250 scored papers, the curator-SciScore agreement rate for each entity type is shown in 
Table 2. These 250 papers were scored by a curator for each of the criteria listed in Table 2. In 
every case, the entity type had an agreement rate above 80%; most were over 90%. We assumed 
that if both the curator and SciScore agreed about the presence of an entity type in the paper, 
then the answer was correct and we did not look more deeply into these data. We reported papers 
with disagreement as either false positives or false negatives with the assumption that the curator 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.15.908111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.908111
http://creativecommons.org/licenses/by/4.0/


is always correct. False negatives were defined as cases where the classifier incorrectly noted an 
entity type as absent when it was in fact present. Inversely, false positives were defined as cases 
when the classifier incorrectly noted an entity type as present when it was missing. The false 
negative values and false positive values for each entity type are listed in Table 2. For key 
resources, the overall agreement should represent additive probability for instances where 
multiple resources were mentioned. In all cases, the agreement rate was measured above the raw 
classifier F1 rate except for software tools, which had an agreement rate that was lower than 
expected based on our previous training data (Table 1).  
 
Of the 250 “not applicable” papers, 81.2% were found to have been correctly scored (n = 203). 
Of these 203 papers, 5 were found to be using supplementary methods sections, so a human 
might be able to look at these, but these sections are invisible to our algorithm, so we did not 
consider these a miss; 6 had their experimental procedures broken up across different sections of 
their papers, while 6 did not contain a clear methods sections at all. 47, or 18.8%, of the “not 
applicable” papers were found to have been incorrectly scored, that is, they were within scope, 
but the algorithm did not detect any relevant entity. Of these 47 incorrectly scored papers, 45 
were found to contain at least one software tool that was not detected by SciScore. This was by 
far the most missed entity in this set of papers. Blinding and sex as a biological variable were 
each missed by SciScore in 3 papers, while IRB/Consent, IACUC, blinding, and organism entity 
types were each found to only have been missed in one paper. These values all fall in line with 
what was expected based on our calculated rates for false negatives (shown through the recall 
rate in Table 1). The relatively low agreement rate for software tools seems reasonable as new 
software tools are often created with a specific use in mind and, as a result, are sometimes only 
used a handful of times. Because of this, there is a high number of uncommon software tools 
with which SciScore has very little tool specific training data. This leads to a higher rate of false 
negatives for those types of software. However, this issue only impacts uncommonly used or 
recently created software. As a result of these analyses, we did not seek to tune parameters 
further for SciScore. 
 
Reproducibility criteria over time 
In table 3, scored PMC-OAI data is grouped by journal and year showing the average SciScore, 
RTI, the proportions of papers addressing specific rigor criteria, and the proportions of uniquely 
identifiable resources. In total, only 8 papers received the maximum score of 10. Summary data 
is presented to preserve author anonymity.  
 
[ Table 3 Supplemental Data: All Journals scored by year] 
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For reference, the average SciScores, standard deviations, proportions of papers addressing rigor 
criteria, and proportions of identifiable key resources across all papers (SciScore > 0) are shown 
in the supplemental data file for Figure 1 . This data is grouped by year (1997 - 2019).  
 
Between 1997 and 2019, the average, annual SciScore has more than doubled from 2.0 ± 0.9 to 
4.2 ± 1.7 (Fig 1.A). This increase in SciScore coincides with increased levels of both rigor 
criteria inclusion and key resource identifiability. For rigor criteria inclusion, adherence levels 
largely increased for the following criteria: sex (21.6% to 37.0%) and randomization of group 
selection (9.8% to 30.1%). Levels of inclusion of statements about blinding (2.9% to 8.6%) and 
power analysis (2.2% to 9.9%) increased, but remained relatively low (Fig 1.B). For key 
resource identifiability, antibodies (11.6% to 43.3%) and software tools (42.1% to 86.7%) were 
increasingly found to be uniquely identifiable in the methods section, while organisms (21.1% to 
22.0%) and cell lines (36.8% to 39.3%) remained at low levels of identifiability (Fig 1.C). 

Figure 1: Overall SciScores and their breakdown shown between 1997 and 2019. (A) Average SciScore of the 
scored dataset representative of the biomedical corpus showing a relatively steady increase over time. (B) 
Percentage of papers mentioning the use of sex, blinding, randomization of subjects, and power analysis. Sex and 
randomization have increased significantly, while blinding and power analysis have increased, but are still at 
relatively low rates. (C) Percentages of key resources (antibodies, organisms, cell lines, and software tools) that 
are considered uniquely identifiable. Rates of software tools and antibodies have increased, while organisms and 
cell lines have remained relatively stagnant. Data underlying these graphs are available in the supplemental data 
file for figure 1. 

 
To serve as a control, we analyzed only the most relevant papers to determine if our overall 
analysis accurately reflects more granular subsets. Papers containing IACUC statements in 2018, 
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the most recent full year, comprised about a quarter of the total PMC-OAI papers scored (51,312 
of 208,963). These animal papers showed the following rates of rigor criteria: sex 55.82% 
(compared to 37.54% in the total set), blinding 12.33% (8.74%), randomization 36.26% 
(30.30%), and power 7.34% ( 9.57%). Of 62,652 organisms detected in the total literature, 
51,134 were represented in the subset. Identifiability of organisms was 21.71% vs 20.81% in the 
total set. These numbers suggest a trend in that the vertebrate animal subset of the literature is 
somewhat better than the total literature especially when looking at sentences describing the sex 
of the animal, group selection criteria and blinding, it remains far from ideal. 
 
Antibody identification, in particular, has made considerable improvements going from the least 
identifiable key resource to the second most identifiable one in just the last few years, although 
antibody identification still remains under 50% overall. Some journals have made significant 
changes, leading to a more dramatic improvement compared to others (Fig 2). For example, Cell, 
a STAR20 methods compliant journal, improved their antibody identifiability rates from 11.1% to 
96.7% from 2014 to 2019. eLife, a participant in the RRID Initiative, increased their antibody 
identifiability rates from 27.2% to 89.6% from 2014 to 2019. On the other hand, Oncotarget 
(21.6% to 36.4%) and PloS One (22.7% to 32.2%) have each improved, but their absolute rates 
remain relatively low, with each falling below the overall average during that time frame (21.8% 
in 2014; 43.3% in 2019). For this analysis, we only included journals that had more than 10 
papers, containing at least one antibody, scored (SciScore > 0) in a given year. 

 

Figure 2: Percentage of antibodies that are able to be uniquely identified shown by journal with the overall trend 
across the biomedical literature shown in blue. A significant improvement can be seen starting in 2016 for Cell 
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and eLife when STAR methods formatting and RRIDs were first implemented in their respective journals 
contributing to a noticeable improvement in antibody identifiability for the entire biomedical literature. Data 
underlying this graph are available in the supplemental data file for figure 2. 

 
Table 5 shows the top 15 journals with the highest antibody identification rates for 2019 along 
with the number of antibodies detected in each. Seven (46.7%, Cell Stem Cell, Immunity, Cell, 
Molecular Cell, Developmental Cell, Cell Metabolism, Current Biology, and Cell Reports) have 
implemented the STAR methods reagent reporting format. Fourteen (93.3%, see Table 5) 
participated in the RRID Initiative and continue to enforce the use of RRIDs as of 2019. 
Therefore, these two drivers (STAR methods implementation and RRID Initiative participation) 
appear to have meaningfully contributed to improving the rate of identifiability in a majority of 
the best antibody identifying journals.  
 
Table 5: Top 15 journals sorted by percent of antibodies that were identifiable in 2019. For this analysis, there were 
682 journals in which more than 10 antibody containing articles were accessible in our dataset.  

papers 
analyzed Year Journal 

Antibodies 
Detected Identifiable % Identifiable 

13 2019 Cell stem cell* 242 236 97.52% 

16 2019 Immunity* 430 419 97.44% 

24 2019 Cell* 362 350 96.69% 

42 2019 Molecular cell* 548 524 95.62% 

11 2019 ASN neuro* 84 80 95.24% 

13 2019 Developmental cell* 123 117 95.12% 

12 2019 Cell metabolism* 181 171 94.48% 

17 2019 Current biology : CB* 132 123 93.18% 

14 2019 The Journal of neuroscience* 91 84 92.31% 

11 2019 Particle and fibre toxicology 11 10 90.91% 

240 2019 Cell reports* 1458 1312 89.99% 

491 2019 eLife* 2476 2218 89.58% 

75 2019 eNeuro* 344 308 89.53% 

18 2019 BMC biology* 62 55 88.71% 

21 2019 Journal of the Endocrine Society* 69 58 84.06% 

*Indicates participation by the journal in the RRID initiative as of 2019. The complete dataset is available in the 
supplemental data file 2.  

 
All cell lines should be authenticated according to the international cell line authentication 
committee (ICLAC) guidelines because cell lines often become contaminated during 
experiments.21 Authentication of cell lines is usually accomplished by short tandem repeat (STR) 
profiling. This procedure is recommended at the outset of the experiment, at the conclusion of 
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the experiment, and at a random time during the experiment. If this important control is 
completed, it should be stated in the manuscript. Similarly, authors should also test whether 
mycoplasma has contaminated their cell lines. For our purposes, we treated checking for 
mycoplasma contamination and authentication assessment like STR profiling as evidence that 
authors checked at least some aspect of cell line authenticity. Table 6 shows the journals that 
have the highest rates of authentication or contamination and the identifiability of cell lines in 
those journals. The percent of authentication is calculated as the percent of papers that contain a 
contamination or authentication statement is detected where at least one cell line is found. 
 
Table 6: Top 15 journals sorted by percent of cell line authentication (authentication or contamination) that were 
identifiable in 2019. There were 2,280 journals in which more than 180,316 articles and more than 388,337 cell 
lines were accessible in our dataset. The complete dataset is available in the supplemental data file 3.  

papers 
analyzed Year Title Cell lines found % Identifiable % Authentication 

278 2019 eLife 849 54.77% 70.86% 

11 2019 Nature microbiology 39 33.33% 63.64% 

83 2019 Oncogene 302 41.06% 54.22% 

23 2019 Journal of cell science 87 31.03% 52.17% 

27 2019 Nature 85 47.06% 51.85% 

33 2019 Oncogenesis 95 35.79% 51.52% 

14 2019 Breast cancer research 86 34.88% 42.86% 

29 2019 EMBO molecular medicine 65 38.46% 41.38% 

17 2019 Disease models & mech. 23 43.48% 41.18% 

17 2019 EMBO reports 42 35.71% 41.18% 

18 2019 Cell 67 35.82% 38.89% 

178 2019 BMC cancer 485 40.21% 38.20% 

37 2019 Molecular cell 157 36.94% 37.84% 

14 2019 Ther. adv. in me. oncology 48 43.75% 35.71% 

946 2019 Nature communications 2601 38.06% 34.14% 

 
Checklists may assist authors in finding aspects of their manuscript that were not addressed, but 
until now it has been very difficult to determine if these checklists are effective. Most studies 
that addressed this issue looked at a relatively limited sample of journal articles.12 We consider 
below a use case, in which the implementation of a checklist system appeared to be effective in 
improving the number of rigor criteria addressed by authors. In 2013 to 2014, Nature made a 
significant push with authors to address rigor criteria. We plotted the average SciScore along 
with its components over this period (Fig 3) and found that the average score rose by nearly 2 
points over just a few years. This is based largely on a concomitant rise of authors addressing 
blinding, randomization and sex of subjects. To a smaller degree, antibodies became more 
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identifiable and power analysis was described in a larger proportion of papers. In stark contrast, 
the Proceedings of the National Academy of Sciences of the United States of America (PNAS), 
which put out several reports advocating for the need for increased rigor,22 showed no change in 
composite score: 3.33 in 2015 to 3.42 in 2019.  

 
Figure 3: Analysis of rigor criteria for the journal Nature. The left axis represents the percentage of papers that fulfill 
a particular criterion. The right axis represents the average SciScore. The figure shows that during and after the 
implementation of the Nature checklist, the average SciScore as well as all measures except for organism 
identifiability have improved markedly. While scores were increasing before the checklist implementation, the 
checklist appears to quickly boost numbers. Data underlying this graph are available in the supplemental data file for 
figure 3.  
 
A comparison of the Rigor and Transparency Index with the Journal Impact Factor 
In total, we included data from 490 journals (totaling 243,543 articles) for the JIF vs. Journal 
Rigor and Transparency (average SciScore) comparisons. The comparison between the raw JIFs 
and the Rigor and Transparency Index (Fig 4.A) showed a slight negative relationship, however, 
the correlation coefficient (Rs = -0.1102) suggests that this is not a significant relationship. 
Similarly, the JIF percentile vs. SciScore percentile relationship showed no significant 
correlation (Rs = -0.1541; Fig 4.B).  
 
Discussion 
In this study, we introduce an automated tool, SciScore, that evaluates the materials and methods 
sections of a scientific paper for adherence to several key reporting guidelines introduced by 
funding agencies and journals over the past decade. Because the tool is automated, it provides us 
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the opportunity to look at overall trends in adherence to these guidelines across the breadth of the 
scientific literature for the first time. 
 

  

 

Figure 4: Average journal SciScore between 2016-2017 as a function of the journal impact factor for 2018 (data 
from published papers from 2016-2017). Data from 490 journals are shown in each graph. (A) A comparison 
between the raw JIFs and Rigor and Transparency Index is shown. The correlation coefficient is calculated using the 
formula for Spearman’s rank-order correlation (Rs  = -0.1102253134). (B) A comparison between JIF percentiles and 
SciScore percentiles is shown. The axes are labeled with quartiles; top quartile is Q1. For presentation purposes 
only, using Google Sheets with journal names as centered data labels, we chose the top 45 journals by the number of 
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articles included and then we removed labels that were overlapping until we were left with 25 labeled journals, 
shown above. All 490 journals, for which we had sufficient data in the open access literature to compare to the 
Journal Impact Factor, are presented in supplementary data file for figure 4. Correlation values were calculated using 
the formula for Spearman’s rank-order correlation, the line is not shown (Rs  = -0.1541069707). 
 
Technical considerations 
Currently, PMC-OAI currently represents only a fraction of the total biomedical literature and as 
a result must be considered a biased subsample. First, because this data consists of only full text 
accessible, open-access papers or copies of closed access papers supported by the NIH with 
licenses permissive for text mining, some journals may not be represented. Second, PMC was 
only launched in February 2000, meaning that papers in PMC will be on average more recent 
than the entire literature. Most of the data available through PMC is from the past 5 to 10 years, 
whereas PubMed contains a significant amount of older articles that date back 30 to 40+ years. 
Because of these concerns, we concede that PubMed, with 30.37 million articles as of November 
27, 2019, is only partially represented in the portion of PubMed Central accessible for text 
mining. As a result of this differential, we cannot be certain that the text-mining accessible 
papers in PubMed Central are completely representative of the totality of biomedical literature. 
However, given that PubMed is our best guess at the totality of the biomedical literature, then it 
stands to reason that a sample of 5.2% of a population of this magnitude should be a reasonable 
representation of the total, especially in the more recent years. Journals that are not represented 
in this set of data are either those that are unavailable as open access, or unavailable under a 
text-mining allowed license.  
 
We note that one of the most glaring omissions from our dataset is the journal Science. There are 
several reasons why this may be the case, the most likely being that the articles are not included 
in the PMC-OAI, a subset that is roughly half of the “free to read” set of papers in PubMed 
Central because of restrictive licenses. The other issue with Science articles specifically is that 
many of them do not contain a methods section that can be scored. Since Science’s format is 
highly abbreviated, the methods section tends to be pushed into the supplementary materials 
where it is likely to be formatted as an image (pdf file) rather than text. It is possible that this 
treatment of the methods section leads to not only invisibility from text mining algorithms, but 
also less attention from reviewers. To a text mining algorithm that expects text data formatted 
according to the journal article tag suite (JATS) standard, a pdf file labeled supplement is 
effectively invisible. One way to get around this is to attempt to score these papers manually. For 
the 18,000 papers available from Science in PubMed Central, a person who could score a paper 
every 5 minutes would need to work for roughly 1,500 hours or 187 days 24/7. As a point of 
reference, the algorithm was measured to score a paper in about 2 seconds, so the task would 
take 10 hours on a single machine (the 1.6M articles were processed in about 6 weeks on a single 
machine). The biomedical literature is being produced at a rate of about 2 million articles per 
year, a rate that long ago has exceeded the ability of any human to read, much less deeply 
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understand the content. We expect that scientists will need a helping hand from some form of 
robot that can pre-digest some of this content, but to be effective, this robot will need access to 
the content. It would be a real shame if the flagship journals were not represented in this new 
paradigm. 23 

 
Several aspects of the SciScore classifiers had low F1 scores (Table 1), indicating that the 
algorithm had a relatively more difficult time in finding some types of entities. One example is 
power analysis, which had an F1 score of 64 with very high variability. This means that for this 
metric and also for cell line authentication (F1 = 54), the currently deployed algorithms are 
simply not all that accurate. The problem likely stems from the fact that our curators were only 
able to find 80 examples of power analysis statements and 150 examples of cell line 
authentication in the tens of thousands of papers that constituted our training dataset. Compared 
to the 17K statements involving antibodies, this number is very low. In the future, we plan to 
create an expanded data set to improve these numbers. However, the simple fact that curators 
could not easily find these statements in the literature also shows that these rigor criteria are the 
least used and most problematic. 
 
Analysis of reporting trends 
Since the early 2000s, there have been multiple calls to improve scientific reporting and increase 
the specificity within methods sections because of irreproducible research.24,25 In 2007, Sena and 
colleagues used meta-analysis to assess the presence of various rigor criteria in the scientific 
literature about different diseases.15 While we are not able to exactly replicate those findings, our 
results can be compared. In their study, a human curator scored the presence of rigor criteria in 
624 papers, a tremendous amount of human effort. These were broken down into disease groups, 
including stroke, multiple sclerosis and parkinson’s disease. In this set of the literature, authors 
addressed randomization of subjects into groups between 1 and 10% of the time. In our data, 
randomization is addressed in 8 to 27% of papers between 1997 and 2007, with a steady rise of 
this value over time. It is likely that Sena sampled from 2005 papers and before more frequently, 
making the range comparable. In the Sena paper, blinding was addressed 2 to 13% of the time 
depending on the disease area, while our data shows a range of 3 to 7% of papers where authors 
mentioned blinding. Sample size calculation was not detected in any study by Sena and our data 
shows a 2 to 7% detection rate of power calculations. Our data includes pre-clinical and clinical 
studies, while Sena’s study only included the former, making a direct comparison a little more 
tenuous. While reasonable people may argue that different techniques were used in performing 
these studies, including study selection and the criteria for inclusion, there is a striking similarity 
in this very cursory comparison, suggesting that the overwhelming majority of studies published 
in 1997-2007 did not address randomization, blinding and power analysis. This result is not 
entirely surprising given that these factors were specifically identified as leading to problems 
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with reproducibility and were therefore targeted in the reporting guidelines that emerged after 
this period. 
 
Since 2007, there has been a steady improvement in rigor inclusion and key resource 
identifiability rates across the literature. Between 1997 and 2019, the average score of 
biomedical research has more than doubled indicating an improvement in the transparent 
reporting of scientific research. However, it is difficult to assign causality. While the checklist 
implemented at Nature has clearly been well executed (see Fig 3), in general, guidelines and 
checklists have been shown to be relatively ineffective at improving the reporting tendencies of 
authors; because of this, we highly doubt these improvements are entirely due to the presence of 
checklists and guidelines.12 We do believe, however, that these guides provided authors with 
good focal points for where they should put forth effort in order to improve the reporting of their 
research, and while efforts such as the ARRIVE guidelines initially remained relatively 
unsuccessful in changing author behavior, there was eventual improvement (Fig 1). Given our 
current dataset, we can state that these reporting improvements appear to be occurring across 
biomedicine in general, suggesting that they may be due in part to an increase in awareness of 
the importance of reporting on good scientific practice. 
 
While there are many causes contributing to the complex issue of scientific irreproducibility, 
none have been more vilified than the antibody.26 As one of the most prevalent tools in 
modern-day biological research, they represent an easy target raising the ire of disgruntled 
scientists as they are known in many cases to display a high level of variability between 
sources. 27 These issues with antibodies, however, cannot be discovered in most papers because in 
most papers, even today, these reagents are not cited in a way that makes it easy to even 
understand which antibody has been used. Antibodies have long been one of least identified 
resources (Fig 1C).10 Comparing the Vasilevsky results to our current analysis, we found that 
antibodies are identifiable less often. For 2013, Vasilevsky found that ~45% of antibodies are 
identifiable, while our algorithm found it to be ~20% (in 2013). This discrepancy can likely be 
attributed to differences in criteria used, the exact papers analyzed, and the size of the sample. 
For each antibody, Vasilevsky looked in all vendor catalogs and searched for the name of that 
antibody, if the vendor search resulted in only one antibody, it was considered identifiable. This 
presents a bit of a best case scenario for antibody identification as similarly named antibodies 
may be added to a company’s inventory in the future or an antibody may simply have its name 
altered over time. Our algorithm relies on the presence of either a catalog number or a RRID for 
identifiability, which are far more stringent. While catalog numbers may still be quite imperfect 
for identifiability,28 they are nevertheless far more stable than a product’s name appearing in the 
vendor’s catalog. Additionally, RRIDs are significantly more stable than either a product’s name 
or its catalog number as they are meant to serve as a sort of unique product code, UPC, that 
transcends any of these superficial changes.  
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Data about software tools may be subject to more significant recency effects than other 
resources. This is partially because SciScore can detect that a word or phrase is the name of a 
software tool, but to be considered identifiable the tool must have accessible metadata. It is 
relatively more likely that tools in common use are more identifiable than tools that may have 
been used over a short period of time. Despite this, we still feel that SciScore has captured a 
majority of the mentioned software tools. This is because software tool mentions appear to 
follow the 80/20 rule where roughly 80% of the mentions are related to 20% of the tools.29 

 
Our analysis of the antibody data clearly demonstrates that some journals, which enforce RRIDs, 
have dramatically higher rates of identifiability (>90%) than the average journal (~40%), see 
Table 5. Enforcing the use of RRIDs is not an effortless exercise; we understand from personal 
communications with the editors of the Journal of Neuroscience that authors are asked to identify 
their research resources 3 times during the publication process, which takes a substantial effort. 
The Cell Press family of journals is quite interesting because of the requirement for a STAR 
table, which makes antibody identification highly visible to journal staff and authors.20 These 
journals are the vanguard of rigor and should be celebrated, especially because it appears that 
they are not only moving their authors to change behavior, but that these changes in behavior are 
also spreading as evidenced by a fairly dramatic overall shift in identifiability since 2016. We do 
not know why this spread is occuring, but in seemingly unrelated journals that did not change 
policies with regard to antibody identification there are more well identified antibodies. Some of 
this could be explained as journals that enforce policy have high rejection rates and those authors 
end up in another journal with well identified antibodies. It may also be that authors have been 
frustrated for so long trying to track down antibodies that when they hear about a way to change 
the current practice, they embrace the change.  
  
Through the use of a vastly different performance indicator than what is currently used (SciScore 
as opposed to JIF), we have created a method to score journals that is very different than the 
impact factor. The Rigor and Transparency Index lists journals with their composite scores and 
rates of inclusion for rigor adherence and resource identifiability. We choose to include JIF 
percentiles in our analysis because we thought it gave a more accurate measure of the “best” 
journals as JIFs are often only compared to journals in the same field due to variations in citation 
counts between different scientific branches.30 Using the average JIF percentile, we were able to 
account for these changes. We also feel that any impact associated with the FUTON or NAA (no 
abstract available) biases would be mitigated because a vast majority of the journals analyzed 
were at least partially open-access and all cases where abstracts were not available were 
universally excluded. In the end though, our analysis indicates that there is no correlation 
between a journal’s impact factor and the Rigor and Transparency Index.  
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Researchers have pointed out various problems with measuring journals based on the JIF.31,32 
Many of these arguments are valid in that they point to this single number as an “outdated 
artifact” that improperly impacts how we view research. The most important underlying problem 
with the JIF, in our opinion, is that it measures popularity (number of citations) and not the 
quality of the work.  
 
The Rigor and Transparency Index differs from the JIF in that it is based on known problem 
areas linked to the inability to reproduce a study. While the composite number for any given 
study is likely nearly meaningless (an 8 is not demonstrably better than a 7, for example), it is 
very difficult to argue that reagents used in a study should not be referenced in such a way as to 
easily identify them. It is also true that all means of reducing investigator bias, such as blinding, 
are not possible in all experimental designs, especially during the conduct of certain experiments. 
However, it is difficult to argue that addressing investigator bias is a waste of time; indeed, 
investigators surveyed by Nature overwhelmingly state that the checklist which covers bias was 
helpful to their reporting of research.33 Investigator bias can creep into any scientific discipline 
and has been shown to artificially inflate effect size in stroke research,34 but these effects have 
been well understood since the 1960’s,35 and have informed the practice of clinical trials. While 
at the current state of the art it is nearly impossible to determine if authors are addressing rigor 
criteria appropriately in a particular study, the fact that most authors largely ignore these does 
mean that investigator bias is not “on the radar” of many researchers as they report on findings. 
In more general terms, we believe that research that completely and transparently reports its 
reagents and methods, is likely to be much better than research that does not. We therefore argue 
that a study that scores 8 or 9, which will necessarily address investigator bias and uniquely 
identify most resources, is better than a study that does not address these and scores 2 or 3. 
 
The creation of the Rigor and Transparency Index provides both a short hand for how a journal is 
doing, and a much more detailed picture of the current state of rigor and transparency practices. 
It can point each journal to significant problem areas that are addressable in future publications. 
It also provides journals and funders the ability to monitor the impact of their policies regarding 
rigor and reproducibility. The RTI can bring attention to the importance of sound science 
practices. 
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