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Abstract 
 

During early kidney organogenesis, nephron progenitor (NP) cells move from the tip to the 
corner region of the ureteric bud (UB) branches in order to form the pretubular aggregate, 
the early structure giving rise to nephron formation. Chemotaxis and cell-cell adhesion dif-
ferences are believed to drive cell patterning during this critical period of organogenesis, but 
the spatiotemporal organization of this process is incompletely understood.  

We applied a Cellular Potts model to explore to how these processes contribute to directed 
cell movement and aggregation. Model parameters were estimated based on fitting to ex-
perimental data obtained in ex vivo kidney explant and dissociation-reaggregation organoid 
culture studies.  

Our simulations indicated that optimal enrichment and aggregation of NP cells in the UB 
corner niche requires chemoattractant secretion from both the UB epithelial cells and the 
NP cells themselves, as well as differences in cell-cell adhesion energies. Furthermore, NP 
cells were observed, both experimentally and by modelling, to move at higher speed in the 
UB corner as compared to the tip region where they originated. The existence of different 
cell speed domains along the UB was confirmed using self-organizing map analysis.  

In summary, we demonstrated the suitability of a Cellular Potts Model approach to simulate 
cell movement and patterning during early nephrogenesis. Further refinement of the model 
should allow us to recapitulate the effects of developmental changes of cell phenotypes and 
molecular crosstalk during organ development.   
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Author Summary 

The emergence of tissue patterns during vertebrate development is a major interest of both 
experimental research and biocomputational modelling. In this study, we established a Cel-
lular Potts Model to explore cellular processes during early kidney development. The goal 
was to elucidate movements and aggregations of nephron progenitor cells. These precursor 
cells derive from mesenchymal cells around the ureteric buds and eventually form the epi-
thelial structure of the nephron. Moreover, we wanted to explore computationally the 
mechanisms how these cells segregate from metanephric mesenchyme and move towards 
the location where the nephron will be formed. Utilizing the Compucell3D simulation soft-
ware, we developed a model which assumes that nephron progenitor movement and aggre-
gation is governed by only two mechanisms, i.e. cell-cell adhesion differences between cell 
types and nephron progenitor cell chemotaxis in response to chemoattractant secretion 
from two sources. These sources were either the epithelial cells of a static ureteric bud 
and/or the nephron progenitor cells themselves. The simulations indicated faster average 
cell speeds near the ureteric bud corner, the target region of cell movement and aggrega-
tion, and slower speeds near the place of origin, the tip of ureteric bud. The results were 
validated by comparison of the model predictions with experimental data from two ex vivo 
embryonic kidney models and a computational optimization protocol. 

Introduction 

The mammalian kidney is the product of a highly complex, orchestrated developmental pro-
cess, which involves not only proliferation and differentiation processes but also directed 
movement and aggregation of progenitor cells (Krause et al., 2015). Early nephrogenesis is 
characterized by the interplay of the branching and expanding ureteric bud (UB), the epithe-
lial precursor structure destined to become the urinary tract, and the ‘cap’ metanephric 
mesenchyme (CM) surrounding the tips of the UB branches (Fig. 1) (BioPortal, 2019; Blake 
and Rosenblum, 2014; Bohnenpoll and Kispert, 2014; Costantini and Kopan, 2010; 
Desgrange and Cereghini, 2015; Obara-Ishihara T, 1999). A fraction of CM cells differentiate 
into nephron progenitor (NP) cells, which migrate towards the corner of the UB branches 
where they condensate to form circular pretubular aggregates (PTA) (Little, 2012). The PTA 
transforms into the renal vesicle, from which the final structures of the nephron, i.e. the tu-
bules and glomeruli, are derived in a process of elongation and invagination (BioPortal, 
2019; Combes et al., 2016).  
 

Fig. 1. Morphological structures in early nephrogenesis. A) First branching of ureteric bud 
(UB) surrounded by cells of metanephric mesenchyme (MM). B) Terminal branch of UB with 
cap mesenchyme (CM), pre-tubular aggregate (PTA) and renal vesicle (RV). The places of 
UBs are shown in relation to a schematic figure of final kidney. C) Schematic drawing of UB 
trunk, corner, and tip regions with CM of NP and MM cells, with targeted movement of NP 
cells. D) Tracks of NP cell (red) movements around UB (grey) in kidney explant culture 
model. Scalebar (bottom left) represents 50 µm, c.f., (Combes et al., 2016). E) Kidney organ-
oid model with black areas representing UB, and GFP labelled MM cells. D/E) Red arrows 
represent vectors of tip distance (dt) and corner distance (dc) used for analysis. The figure D 
was by a courtesy of Dr Alexander N. Combes regarding the similar figure in (Combes et al., 
2016). 
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Early nephrogenesis research presumed that the movement of NPs towards the PTA was 
mostly linear (Little, 2012; McMahon, 2016). Recent studies indicate that NP movements 
are semi-stochastic and swarming-like (Combes et al., 2016), driven by adhesion differences 
and/or chemotaxis (Chen et al., 2015; Combes et al., 2016). The molecular mechanisms driv-
ing NP cell induction and PTA formation have been partially unravelled (Chen et al., 2015; 
Chi P et al., 2009; Combes et al., 2016; Little, 2015; Little, 2012). UB epithelial cells secrete 
various diffusible signalling proteins that may trigger the differentiation of MM to NP cells as 
well as their chemotactic movement towards the UB corner region (Combes et al., 2016; 
Little, 2015; Saarela et al., 2017). Furthermore, cell aggregation appears to be driven by dif-
ferences in cell-cell adhesion properties (Lefevre et al., 2017), which may also be driven by 
autocrine and/or paracrine intercellular signalling (Dahl et al., 2002; Dudley et al., 1999; 
Oxburgh et al., 2011; Wallner et al., 1998).   

A descriptive analysis of these processes is possible only to a limited extent, since even sim-
ple cell-cell interactions can lead to complex and unexpected large-scale spatiotemporal 
patterns (Magno et al., 2015). Therefore, computational methods have been introduced to 
mechanistically analyse early nephrogenesis (Combes et al., 2016). Combes et al., applying a 
convection-diffusion model, showed that attractive and repulsive cues between CM cells 
and the UB, together with cell adhesion processes, can lead to the commitment and mainte-
nance of the CM in proximity to the tip (c.f.,  

Fig. 1). However, the underlying cellular processes leading to the observed attraction and 
repulsion have not been analysed in detail, and the study was focused on the formation and 
maintenance of the CM rather than the formation of the PTA.  

In this study we used a computational modelling approach to explore in detail the biophysi-
cal  mechanisms underlying the directed movement and aggregation of NP cells, the critical 
first step of nephron development (BioPortal, 2019; Little, 2012). We extended the pioneer-
ing work of Combes et al. by systematically simulating chemical and mechanical cellular pro-
cesses that potentially explain pattern formation during early nephrogenesis and used 3D 
tissue simulation approaches to analyse how different types of chemotaxis and adhesion dif-
ferences between different cell types may explain the formation of both the CM and the 
PTA. Parameter calibration and model validation was achieved by comparison of the simula-
tion results with both published and original experimental data.  

Results 
 
Initial Model Parameter Estimation 
The initial parameter settings for 𝜆𝐴, 𝜆𝑉, 𝑉𝑡 , 𝐴𝑡, and J (see Eq. 2 in Supplement) and the pre-
defined spatial relationships defined the reference model (model 1, Table 1, Fig. 2A).  Start-
ing from these settings, the contact energy coefficients (J) between NP, MM, UB cells and 
the matrix were modified, yielding the adhesion-based models 2 and 8 (Table 1). The pur-
pose of this modification was to identify the range of contact energy coefficients required to 
induce cell aggregations, and to explore the aggregation behaviour of NP and MM cells in 
the CC3D model space (Figs 2B/C) (Andasari et al., 2012; Combes et al., 2016; Osborne et al., 
2017; Swat et al., 2009).  
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Table 1. Model parameters with pre-set values applied in 3D simulations.  

Parameter Pre-set value Models Ref. 

Target volume (𝑉𝑡) 375 x 10-18 m3 1-8 this work, 
(Combes 
et al., 
2016) 

Lambda volume (𝜆𝑉) 20 x 109 kgm-4s-2 1-8 (Osborne 
et al., 
2017; 
Swat et 
al., 2009)  

Target surface area (𝐴𝑡) 312 x 10-12m2 1-8 this work, 
(Combes 
et al., 
2016) 

Surface lambda (𝜆𝐴) 0.1 x 10-3 kgm-2s-2 1-8 (Osborne 
et al., 
2017; 
Swat et 
al., 2009)  

Time step (MCS) 0.017 h 1-8 (Osborne 
et al., 
2017; 
Swat et 
al., 2009)  

Surface temperature (T) 20 1-8 (Osborne 
et al., 
2017; 
Swat et 
al., 2009)  

Contact energy coefficient (J) (all cells): 5 x 10-15 kgs-2  
(NP&MM): 13 x 10-15 kgs-2  

1,3-4; 
2, 5-7, 8* 

(Osborne 
et al., 
2017; 
Swat et 
al., 2009)  

Chemoattractant secretion (S) 3 DU/s 3-7 (Osborne 
et al., 
2017; 
Swat et 
al., 2009)  

Chemotaxis lambda (𝜆𝐶𝐿) 100 x 10-27 kgm2s-2 3-7 (Osborne 
et al., 
2017; 
Swat et 
al., 2009)  

Global diffusion constant (D) 1.0 x 10-12 m2s-1 3-7 (Brown, 
2011; 
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   *see Table 2 for description of multiple adhesion interfaces in model 8. 
 

Fig. 2. Final cell configurations obtained by 2D simulation with different models. A) 1_REF. 
B) 2_ADH. C) 8_ADH_ADH. D) 4_NP. E) 3_UB. F) 6_NP_ADH. G) 5_UB_ADH. H) 
7_UB_NP_ADH. UB cells are depicted with red, NP cells with green, and MM cells with blue 
colours. Optimized parameters were calibrated to experimental cell properties and used in 
the simulations.   

Next, the impact of chemotaxis on cell patterning was investigated, assuming secretion of 
chemoattractants by UB cells and/or NP cells themselves. To that end, parameters related 
to chemoattractant secretion (S), diffusion (D), degradation (γ), and chemotaxis strength 
(𝜆𝐶𝐿) were introduced (see Eqs 2, 3 in Supplement). To derive plausible value ranges for 
these parameters and explore the effect of chemotaxis on cell clustering, NP cells (model 4; 
Fig. 2D) or UB cells (model 3; Fig. 2E) were assumed as alternative sources of chemoattract-
ant secretion. Finally, the combined effects of the contact energies and chemotaxis were 
considered in the remaining models (5,6,7; Figs 2F-H).  

Simulated Pattern Formation 

The eight model variants yielded distinctly different final cell patterns (Fig. 2). The initial 
conditions and parameters had only a limited effect to the final cell patterns (Fig S1, S2). 
Therefore, the following description refers to the model patterns obtained with optimized 
simulations using random initial cell distribution and no pre-formed chemoattractant gradi-
ent.  

The reference model yielded a cell pattern without coherent clustering over time (Fig. 2A). 
The models involving chemoattractant secretion by NP cells with and without cell adhesion 
differences resulted in cell aggregates between the UB tips without adherence to the UB 
surface (Figs 2D/F). In the models assuming adhesion differences between MM and NP cells 
but no chemotaxis, streak- or ball-like clusters emerged throughout the inter-UB area (Figs 
2B/C). In the models involving UB cell chemoattractant secretion, NP cells aggregated along 
the UB surface, with preference to the corner regions (Figs 2E/G/H).  

Directed migration and preferential aggregation of NP cells in the UB corner was observed 
with the models 3, 5, and 7 (Figs 2E/G/H), resembling the formation of PTA in the corner re-
gion during nephrogenesis (Fig. 2C). The most consistent formation of NP cell clusters re-
sembling PTAs was observed with model 7, which involves chemoattractant secretion by 
both UB and NP cells and stronger adhesion between NP and MM cells relative to other 

Osborne 
et al., 
2017; 
Swat et 
al., 2009) 

Global decay constant (𝛾) 1.0 x 10-7s 3-7 (Osborne 
et al., 
2017; 
Swat et 
al., 2009) 
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models (Figs 2H, 3B/E/H). The video of the model (7) behaviour can be viewed online (Tikka, 
2019d). 

Fig. 3. Representative final cell configurations obtained with the optimized models using ini-
tial chemoattractant fields. Model simulations of 5_UB_ADH_R (A/D/G) and 7_UB_NP_ 
ADH_R (A/D/G and B/E/H) were either in 2D (A-C) or 3D (D-I), assuming both the normal 
50% or 25% (C/F/I) NP cells among total CM cell population. 3D views (G-I) are displayed to-
gether with their central transversal cuts (D-F). UB cells are depicted with red, NP cells with 
green, and MM cells with blue colours. 

Experimental Studies  
The results of the cell movement analysis performed on the explant culture model experi-
ments of Combes et al. (Combes et al., 2016; Lawlor et al., 2019; Lefevre et al., 2017) and 
our own experiments with a dissociation-reaggregation kidney organoid model are provided 
in (Figs 4-6).  

Fig. 4. Cap mesenchyme cell speeds observed in (A) kidney organoid experiments, B) explant 
culture studies (Combes et al., 2016). Cell speeds in corner region are represented in blue 
and cell speeds around tip in orange. Dots represent means and vertical bars 95% confi-
dence intervals. 

The observed overall NP cell speed averages were 0.15±0.02 µm/min in the explant cul-
tures, and 0.13±0.01 µm/min in the kidney organoid MM cells. 

While cell speeds in the explant culture fluctuated considerably more than in the kidney or-
ganoid experiments, in both experimental settings the two cell types moved at different 
rates depending on their location relative to the UB tip (Fig. 4). In the corner region, the av-
erage cell speeds were 0.16±0.02 µm/min in the explant culture experiments and 0.15±0.01 
µm/min in the kidney organoid (Combes et al., 2016). Average speeds in the tip region were 
0.12±0.01 µm/min in both experimental settings. The slower relative cell movement of both 
MM and NP cells around the UB tip region was also apparent when expressed as the tip-to-
corner speed ratio, which was below 1 for most of the observation time (Fig. 5).  

Fig. 5. Average tip-to-corner speed ratios of NP and MM cells in the simulation studies of 
different models together with the results from experiments. A/B) NP cells in the models 
(see legend) with the cells in the explant culture experiments (scaled to model 3 and 4) 
(Combes et al., 2016). C/D) MM cells in the models similarly scaled with cells in the kidney 
organoid experiments. A/C) Simulations before the optimization. B/D) Simulations after the 
optimization. Vertical bars indicate 95% confidence intervals.   
 
According to 2D SOM analysis, stable speeds in the explant culture data were 0.19±0.02 
µm/min in the corner, and 0.14±0.01 µm/min in the tip region (Combes et al., 2016; 
Kohonen, 1982). 2D analysis was performed, because 3D data (z axis) of the explant culture 
experiments was found (regularly) skewed. Stable cell speeds of the kidney organoid data 
(calculated by 3D SOM analysis) were 0.25±0.02 µm/min in the corner and 0.18±0.02 
µm/min in the tip region respectively. The different speed of motion of cells in the tip and 
corner regions is illustrated in the coloured speed contours of the transformed SOM plots 
(Fig. 6). 
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Fig. 6. The cell speed contours of the best SOM groups (see supplement; (Kohonen, 1982)). 
A) NP cells in the explant kidney culture (Combes et al., 2016). B) MM cells in the kidney or-
ganoid model. C) NP cells in the optimized model seven. The speeds and the coordinates (x) 
have been normed (0,1). The experimental and simulation images in the background reflect 
the cell regions. 

Estimation of Final Model Parameters with Particle Swarm Optimization and Resulting Cell 
Patterns 
The parameter ranges for PSO were chosen according to the initial model parameter esti-
mates and the additional PSO algorithms (detailed further in the appendix). The optimiza-
tion procedure aimed at maximising the amount of NP cells at the UB surface while simulta-
neously aligning the NP cell speeds in the model to the cell speeds observed experimentally 
in the explant culture setting, as mentioned in the methods.  

The final model parameter values obtained by the PSO technique are given in Table 2. The 
improvement of the models achieved by the application of PSO is illustrated by the Best 
Quality Values (Table 2; lower numbers indicating better quality). The best model quality 
was obtained for model 7, while the other models showed either substantially lower quality 
or a spuriously high quality without matching the experimental situation. This applied in par-
ticular for the NP secreting models 4 and 6 and the adhesion model 8, where cells did not 
aggregate towards the UB surface in the first place.  

Table 2. Optimized parameter values for each model variant (1-8). Values are presented as: 
Random (Uniform), e.g. for NP_ADH: 7.9 (13). {*} 8_ADH_ADH assumed nine cell-cell adhe-
sion interfaces: {1-3} ‘Wall (UB) and NP/MM/Medium’, {4} ‘NP and NP’, {5} NP and MM’, {6} 
‘MM and MM’, and {7-9} ‘Medium and NP/MM/Medium’. The parameters of spatial rela-
tionships (𝑽𝒕, 𝑨𝒕, 𝝀𝑽, NO), except 𝝀𝑺, and the ones not mentioned here were constant (see 
Table 1). 
 

 

REF 
(1) 

ADH 
(2) 

UB  
(3) 

UB_ADH 
(4) 

NP  
(5) 

NP_ADH 
(6) 

UB_NP_ADH 
(7) 

ADH_ADH  
(8) 

Chemoattractant  
secretion rate 
(DU/s) 

0 0 3 3 3 3 6.91 0 

Chemotaxis 
lambda  
(10-27; kgm2s-2) 

0 0 4.22 
(4.19) 

43.9 (43.8) 67.94 
(71.3) 

74.5 
(74.3) 

1.41 0 

Global diffusion  
constant  
(10-12; m2s-1) 

0 0 1 1 1 1 1.83 0 

Global decay con-
stant (s) 

0 0 1 x 10-7 1 x 10-7 0.002 0.002 4.69 x 10-7 0 

Surface motility 
(Potts "tempera-
ture") (DU) 

10 25 25 25 25 25 49.8 25 

Surface lambda  
(10-3; kgm-2 s-2) 

0.01 0.01 0.01 0.01 0.01 0.01 8.11 0.01 

Adhesion differ-
ences between 

5.0 {5} 7.9 {5} 5.0 {5} 6.68 {5}  
(6.98 {5}) 

5.0 {5} 7.9 {5} (13 
{5}) 

7.86 {5} 21.1 {1}, 25.2 {2},  
1.75 (3), 0.50 {4}, 
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cell types    
(10-15; kgs-2) 

33.3 {5}, 37.7 {6},  
35.8 {7}, 29.7 {8},  

1.57 {9}  
(26.6 {1}, 47.8 {2},  
29.5 (3), 0.50 {4},  
20.5 {5}, 0.52 {6},  
24.1 {7}, 1.54 {8},  

38.1 {9}) 

PSO Best Quality 
Value 

-61,269 -56,436 -201,902 -206,525 -202,545 -205,261 -213,787 -340,361 

 

In the optimized models, the calculated total distance travelled by the NP cells during the 
simulation period was between 90-160 µm. The optimization procedure resulted in a more 
accentuated difference in corner and tip cell speeds in the models involving chemoattract-
ant secretion by the UB (3, 5, 7 in Figs 5, S3). The different speed of motion of cells in the tip 
and corner regions is also illustrated for model 7 by the coloured speed contours of the 
transformed SOM plots (Fig. 6C). The tip-to-corner speed ratio of NP cells in these models 
decreased with time, aligning with the NP cell speed ratio observed towards the end of the 
explant culture experiments (Fig. 5B). By contrast, the MM cell speeds in the kidney organ-
oid experiments were better matched by the optimized NP secreting models (4 and 6; Fig. 
5D). In the secreting models 3-7 the overall speeds of the NP cells both in the tip and corner 
regions consistently exceeded those of the MM cells (0.13±0.03 v. 0.03±0.02 µm/min; Fig. 
5). Correspondingly, NP cells in the kidney organoid experiments were enriched in the cor-
ner according to UB secreting models (3, 5, 7; Fig. 7B). On the other hand, MM cells in the 
explant culture experiments increased in the tip similarly as in the NP secreting models or 
vice versa in the corner (4, 6; Figs 7, S4). 

Fig. 7. Enrichment of NP and MM cells in the corner region of the simulation studies of dif-
ferent models together with results from experiments. A/B) NP cells in the models (see leg-
end) with the cells in the explant culture experiments (scaled to model 3 and 4) (Combes et 
al., 2016). Model 7 is presented with NP cell quantities of 50% (black; regular) and 25% 
(grey; scaled). C/D) MM cells in the similar models with cells in the kidney organoid experi-
ments (see legend). A/C) Simulations before the optimization. B/D) Simulations after the op-
timization. Vertical bars indicate 95% confidence intervals.   

The enrichment of the cells in different compartments is partly reflected by the relative tip-
per-corner cell distances of around 0.66 in the explant culture experiments, which were 
closest to the UB secreting models (3, 7; Figs S4, S5) (Combes et al., 2016). However, the rel-
ative tip-per-corner cell distances in the kidney organoids were best recapitulated by the ad-
hesion-based or NP secreting models (1, 2, 4, 6; Fig. S5).  
 

Discussion  

In this work we used a computational modelling approach to explore the biophysical mecha-
nisms driving committed nephron progenitor cells to form proximal tubular aggregates, the 
early nephron precursor structure during kidney organogenesis. The movements and aggre-
gations of the cap mesenchyme cells were studied using a Cellular Potts model, which was 
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modulated to simulate the relative impact of chemotaxis and cell-cell adhesion forces. The 
movement of nephron progenitor cells towards the corner regions of the branching ureteric 
bud and the formation of cell aggregates was best reproduced by assuming a combination 
of chemotactic and differential cell adhesion forces. The parameter estimates were vali-
dated and optimized by analysis of cell behaviour in two experimental models of early 
nephrogenesis. We observed, both ex vivo and in silico, an accelerating speed of motion of 
committed NP cells as they migrate from the UB tip to the corner region.       

Cap mesenchyme cells have been described to move in a quasi-stochastic fashion between 
the corner and tip regions of the branching ureteric buds (UB) following certain environ-
mental cues (Combes et al., 2016; Lawlor et al., 2019). While the bulk of metanephric mes-
enchymal (MM) cells have been considered as static, an emerging subpopulation, the neph-
ron progenitor (NP) cells, is believed to move linearly from the UB tip to the corner region 
(Little, 2012). In order to reproduce these movement patterns in silico several assumptions 
had to be made; these related to the initial spatial structure, cell quantities and properties 
and were founded on both experimental evidence and on established insights into cellular 
biophysics. 

General assumptions included the assertion that all, and only, NP cells were committed to 
the formation of PTA, and that changes in three main energies should affect the movements 
and aggregations of NP and MM cells, i.e. contact surface energies, chemotaxis energy, and 
cell size changes. The impact of cell sizes was minimal since the initial most expansive 
phases were discounted in the simulation, leaving chemotaxis and cell-cell adhesion as the 
main energies to drive cell sorting between regions.   

Indeed, there is substantial experimental evidence supporting the notion that the sorting of 
NP cells between the tip and corner regions is established by cell-cell adhesion differences 
and both inductive and chemotactic molecular signalling from the ureteric bud epithelia 
(Brown et al., 2013; Karner et al., 2011; Lefevre et al., 2017). Previous studies identified cell-
cell adhesion molecules such as cadherins, to drive cell sorting (Junttila et al., 2015; Lefevre 
et al., 2017). Extracellular signals inducing NP cell commitment involve the secretion of 
WNT11, BMP7, FGF9, and WNT9B, which upregulates Wnt4 (Bohnenpoll and Kispert, 2014). 
NP cell induction has also been shown to involve the activation of Notch and additional sig-
nalling pathways (Lindstrom et al., 2015; Perantoni et al., 2005). At the same time, MM cells 
require SMAD1/5-mediated BMP signalling to transition towards a state in which they can 
receive the inductive cues (Brown et al., 2013). While WNT9B was the first secreted mole-
cule attributed a role as a chemoattractant for NP cells, subsequent studies identified PDGF-
AA, FGF8, BMP4 and CXCL12 as further potential effectors driving NP cell chemotaxis (Atsuta 
and Takahashi, 2015; Carroll et al., 2005; Grieshammer et al., 2005; Ricono, 2008). Recently, 
evidence has been provided that NP cells within the UB tip region do not move in a linear 
fashion but exhibit a nearly stochastic swarm-like behaviour  (Combes et al., 2016). Moreo-
ver, NP cell commitment and migration towards the corner region may not be a unidirec-
tional, irreversible process: a subset of NP cells at the corner region were observed to mi-
grate back to the tip region to re-enter the uncommitted MM cell pool, losing Wnt4 expres-
sion (Lawlor et al., 2019). This behaviour was tentatively explained by semi-stochastic cell 
movement with exposure of NP cells to different cues depending on their spatial position, 
with prolonged or additional signals to NP cells being required for persistent clustering in 
the corner region and PTA formation. 
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We performed various model simulations to test the impact of chemotaxis and adhesion 
driven cell sorting on NP cell trafficking and clustering towards the region where PTA could 
be formed. The initial model setup and simulation studies were followed by a validation and 
optimization step, where explant culture and organoid experiments were utilized to further 
align the model parameters to fit the cell movements and aggregations observed ex vivo. 

Our simulation studies support an important role of chemoattractant gradients arising from 
the UB surface for net directed NP cell movement. The model variants lacking UB chemoat-
tractant secretion resulted in ectopic NP cell aggregation. Moreover, differential cell-cell ad-
hesion properties appear to be required for the formation of NP cell aggregates. Paracrine 
chemotactic signalling by NP cells may play a role in this process as suggested by the optimal 
performance observed with a model combining adhesion differences with chemoattractant 
secretion by both the UB and the NP cells in the model 7.  

Our model also adequately recapitulated the semi-stochastic movement of NP cells around 
the ureteric buds. Both the average cell speed and their net travelled distance fitted the 
speeds and distances observed in the explant culture system. Notably, with the model 7 we 
even observed individual cells returning from the corner to the tip region, in keeping with 
recent experimental findings (Lawlor et al., 2019).   

Another notable finding, obtained both in the analysis of the explant culture data and by 
computational modelling and confirmed by self-organized speed mapping, is the faster NP 
cell speed in the corner as compared to the tip region. Our model simulations indicated that 
the acceleration of NP cells approaching the UB corner is due to the high chemoattractant 
gradient present in this region.  

The behaviour of cells in the dissociation-reaggregation kidney organoid culture experi-
ments was more challenging to simulate since no marker differentiating native MM from 
committed NP cells was available. As in the explant culture study, persistently faster cell 
movement was observed for cells in the corner and slower speed for those in the tip region. 
In contrast to the explant culture studies where our model simulations pointed to the UB as 
the predominant source of chemoattractant, regional cell speeds and quantities in the or-
ganoid studies were best approximated by the simulation assuming chemoattractant re-
lease from NP cells in addition to differences in cell-cell adhesion energies (model 6). This 
difference might have been caused by altered secretory functions of the ureteric bud epi-
thelia following cell dissociation and reaggregation, and by the shorter experimental time 
period utilized in the kidney organoid model which was primarily designed to study early 
MM cell movement patterns. Nonetheless, the model 6 indicates that mesenchymal cell 
movement may be primarily driven by auto/paracrine chemotaxis of mesenchymal cells. 

While our work demonstrates the suitability of a relatively simple computational model to 
reproduce the main cellular events in early nephrogenesis, several limitations should be em-
phasized. First, we did not allow for continuous recruitment of NP cells from the MM cell 
pool but assumed fixed cell quantities during the time window of analysis. Also, the lack of 
in vitro models deficient in individual components of the biological system prevented an ex-
ternal validation of the performance of our model in simulating impairments of nephrogen-
esis under abnormal conditions. Finally, the current model system did not allow to explore 
the roles of individual molecular signalling pathways or more than a single chemoattractant 
gradient. Such models would have required far more granular spatiotemporal biochemical 
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information than currently available. Given these limitations, it is even more remarkable 
that NP cell migration and PTA formation can be accurately modelled based on two biophys-
ical mechanisms, i.e. chemotaxis and cell-cell adhesion differences.    

In conclusion, we established, validated, and applied a three-dimensional computational 
model of early nephrogenesis which describes the migration and initial aggregation of neph-
ron progenitor cells as a function of stochastic swarming, chemotaxis and cell-specific adhe-
sion properties. Our simulations suggest chemoattractant secretion by both the ureteric bud 
epithelia and the nephron progenitor cells themselves. Both experimentally and by simula-
tion a non-linear migration pattern was observed, with cell movement accelerating while 
moving from the ureteric bud tip to the corner region. Our work demonstrates that compu-
tational modelling can aid in interpreting experimental data to reveal underlying biophysical 
mechanisms. The proposed model may be used as a starting point for more refined model 
systems as new molecular insights and experimental settings with higher information con-
tent become available. 

Methods 
 
Model Construction 

We applied Cellular Potts model (CPM) to describe the behaviour (movement and aggrega-
tion) of NP and MM cells during early murine nephrogenesis (postconceptional day 12), and 
used the CompuCell3D software (CC3D) for this purpose (Combes et al., 2016; Lefevre et al., 
2017; Saarela et al., 2017). Mathematical details of the developed CPM are given in the sup-
plements ( 

Cellular Potts Model (CPM)). The following general assumptions were made to adjust CPM 
(Combes et al., 2016; Saarela et al., 2017): 

1. NP, MM, and matrix cells are able to migrate by cell sorting (as described in CPM 
chapter) (Combes et al., 2016; Lawlor et al., 2019). 

2. Matrix cells are chemically and physically neutral in comparison to other cells 
(Combes et al., 2016). 

3. Only NP cells are able to perform chemotaxis, while UB, NP, or both cell types 
can secrete a chemoattractant (Junttila et al., 2015).  

4. UB cells are static (“drift corrected UBs” (Combes et al., 2016)).  
5. All cell types undergo neither proliferation nor apoptosis during the period of the 

observation (Combes et al., 2014; Lindström et al., 2018; Little, 2012).  

The initial (3D) CC3D model setting comprised 2 L-shaped structures composed of 64 UB 
cells each separated by a space filled with MM and NP cells (n=196 each), and a matrix com-
partment comprising all remaining empty (pixel) space (Swat et al., 2009). The setting mim-
icked the spatial structure of two adjacent UB branches with surrounding metanephric mes-
enchyme (Fig. 8) (Andasari et al., 2012; Combes et al., 2016). The CM cells initially surround-
ing the UB tips consist of MM cells, which have similar cell volumes, masses, and general 
regulation mechanisms ( 

Fig. 1C). NP cells are induced from CM cells at the outset of the modelled period (Lawlor et 
al., 2019). All cells were set to cubical shape, with initial cell surface areas of 375 µm3 for the 
MM and NP cells and 1000 µm3 for the UB cells. The distal end of the UB branch structure 
was denoted as “tip region” and the origin of the inner angle of UB as “corner region” (Fig. 
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8C). Our primary interest was to analyse the model cell outcomes in the corner region, 
where the PTA is formed (Fig. 8C-E).  

Fig. 8. Two-dimensional (A-D) and three-dimensional (E-H) simulation patterns obtained 
with model 7_UB_NP_ADH. A/E) Initial cell patterns with uniform (A) and random (E) cell 
positions; tip distance (dt; [40,50]) and corner distance (dc; [20,40]) vectors are depicted in 
(A).  B/F) Initial chemoattractant gradient patterns.  C/G) Final cell patterns.  D/H) Final 
chemoattractant patterns. In panels A, C, E, and G UB cells are depicted in red, NP cells in 
green and MM cells in blue, while matrix space appears black. In panels B, F, D, and H, 
standardized chemoattractant concentration gradients are depicted by coloured areas (2D) 
or sheets (3D), ranging from 0 (blue) to 1 (red).  

Simulation Studies 
Eight model variants were constructed to simulate the impact of (a) chemotaxis of NP cells 
related to chemoattractant secretion from NP and/or UB cells separately or together with 
(b) adhesion-based cell sorting related to adhesion differences between different cell types. 
The model characteristics are listed in (Table 1). These variants represented the mechanisms 
potentially driving the cells in the studied experimental biological systems (ex vivo kidney 
and renal organoid), which corresponded the evaluated in vivo early nephrogenesis 
(Combes et al., 2016). 

The first model variant (1_REF) did not include mechanical or chemical differences between 
different cell types but NP and MM cells showed patterns of ‘random walking’. This model 
served as a reference, or minimum model. The second model (2_REF_ADH) assumed differ-
ences in adhesion energies between NP and MM cells (Lefevre et al., 2017) but no chemo-
taxis processes. Models 3 and 4 introduced chemotaxis of NP cells, assuming chemoattract-
ant secretion either by the UB cells (3_UB) or the NP cells themselves (4_NP), while adhe-
sion properties of NP and MM cells were set equal. In models 5 and 6, models 3 and 4 were 
augmented by adding adhesion energy differences between NP and MM cells (5_UB_ADH, 
6_NP_ADH). The seventh model included all features, i.e.  chemotaxis of NP cells, adhesion 
differences between NP and MM cells, and chemoattractant secretion by both NP and UB 
cells (7_UB_NP_ADH). Finally, a multi-adhesion model (8_ADH_ADH) was tested with adhe-
sion differences between all cells in the model (except UB-UB). For analysis and interpreta-
tion, models 3, 5, and 7 were categorized as ‘UB secreting models’, 4 and 6 as ‘NP secreting 
models’, 1, 2, and 8 as ‘non-secreting models’ and (2, 5, 6, 7, and 8) as ‘adhesion-based 
models’.  

The following model characteristics were permutated in the models to test their effect on 
cell movement and aggregation in the different model variants: (i) Initial (NP and MM) cell 
positions; (ii) initial spread of the chemoattractant from UB or NP or both (Combes et al., 
2016); (iii) cell-cell adhesion properties, especially of the moving NP and MM cells (Lefevre 
et al., 2017).  For this purpose, we tested NP and MM cells with random (R) or uniform (U) 
initial cell distribution together with the spread of chemoattractant by simulations with or 
without the initial presence of a chemoattractant field (Fig. 8, Table 1). 

Each model variant was simulated 30 times. During each of these basic simulations 
(8x30x4=960), we recorded both the centre of mass (COM) of the moving cell types (NP and 
MM) and the relative amount of chemoattractant in these COMs over 1000 Monte Carlo 
Steps (MCS, see  
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Cellular Potts Model (CPM)). With these COM values, we calculated the average speeds, dis-
tances, and the local concentration of the chemoattractant separately in the tip and corner 
regions (Figs 1C, 8A, S7,  see ‘Model Simulations’  and ‘Technical ’). The cell speeds in the 
corner and tip regions were denoted as ‘corner speeds’ and ‘tip speeds’, respectively. Simi-
larly, the distances of these cells from the outermost point of the UB tip were denoted as 
“tip distances” and the distances from the UB corner as “corner distances” (Figs 1C, 8A). For 
direct comparison, the ratio of the tip to the corner values of the speeds, distances, and 
concentrations were calculated. Exemplary 3D model simulation snapshots are shown in Fig. 
8. 

Computational Estimation of Model Parameters  
Two computational schemes were elaborated for estimating the parameters of the model 
variants in order to investigate the qualitative and quantitative differences in the respective 
simulations.  

The process of model parameter estimation was initiated by varying values in a 2D cell-sort-
ing simulation study using the CC3D software as described in the (back-inducing) strategy 
mentioned below (see also  

Cellular Potts Model (CPM) in Appendix) (Andasari et al., 2012; Combes et al., 2016; 
Osborne et al., 2017; Swat et al., 2009; Swat et al., 2012). The initial parameters of spatial 
relationships (such as 𝜆𝐴, 𝜆𝑉, 𝑉𝑡 , 𝐴𝑡 in Eq. 2) and the cell numbers were chosen to be in com-
parable ranges as observed in the explant culture and kidney organoid experiments (see ex-
perimental data sources and Figs 7, 8). These initial settings constituted the reference model 
1. The initial parameter ranges for the contact energy coefficient (J), which refers to the cell-
cell adhesion differences (Chen et al., 2015; Lefevre et al., 2017), and chemotaxis strengths 
(𝜆𝐶𝐿) (Chen et al., 2015; Chi P et al., 2009; Combes et al., 2016; Little, 2015; Little, 2012) 
were taken from the respective literature for the other 2D models (2-8) (Magno et al., 2015; 
Swat et al., 2009). The parameter values for all 2D models were subsequently scaled to 3D 
by multiplying by two as explained in (Magno et al., 2015), given the neighbourhood order 
of three. The final parameter values for the 3D models are given in Table 1.  

The simulation strategy for the models 2-8 was to produce NP cell aggregates, preferably 
close to spheroidal shape, by permutating the previously mentioned initial parameters 
(Andasari et al., 2012; Lefevre et al., 2017; Saarela et al., 2017; Swat et al., 2009). Particu-
larly, we aimed this aggregation to be directed towards the corner region at the end of the 
simulations (Figs 1C, 8A). Accordingly, the initial literature estimates were modified one at 
the time in the following order:  

1. 𝜆𝐶𝐿 of NP cells 
2. 𝐷, 𝛾, and 𝑆 of the chemoattractant coming from UB and/or NP cells 
3. J between NP, MM, and/or UB cells 
4. 𝜆𝑉 and 𝜆𝐴 of NP and MM cells 
5. 𝑉𝑡 and 𝐴𝑡 of NP and MM cells 

 

The Particle Swarm Optimization (PSO) technique was used to optimize the model parame-
ters (Anum et al., 2016). The PSO was set to maximise the number of NP cells at the surface 
of UB (in models 1, 2, 3, 5 and 8), mimicking the patterns in the kidney organoid experi-
ments while simultaneously minimizing the difference between simulated and experimental 
(UB) tip cell speeds (Anum et al., 2016; Lefevre et al., 2017). In the NP secreting models (4, 6 
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and 7) we maximized the common surface area between NP cells for making PTA with the 
corner cell speeds. The construction of PSO codes for the models in the CC3D development 
program ‘Twedit++’ incorporated various model coding components presented in (Tikka, 
2019a).   

The optimization of the simulated cell speeds was achieved by comparison with the experi-
mental data of Combes et al. (Combes et al., 2016) (see below), if the CM cells described in 
that study corresponded to the NP cells in our model. Simulation settings, parameters and 
constants that were optimized together using the PSO algorithm are referred to as ‘PSOed’. 
Details of the PSO method and the ranges of its parameters are given in the supplement. 

Simulated cell speeds were also compared to the movement of MM cells observed in a kid-
ney organoid model (see below), if these cells corresponded to both NP and MM cells in our 
simulations. Cells attached or close to the UB tip in the organoid model were considered 
MM cells in the simulations, while the remaining MM cells were assumed to be NP cells (7C-
E, see also supplementary chapter ‘Technical Workflow’).  

Self-Organized Maps (SOM)  
The Self-Organized Map (SOM) approach, an iterative machine learning method (Kohonen, 
1982), was applied to identify and compare especially stable cell speed regions in the simu-
lations and experiments. Specifically, we sought to compare if the simulated and real NP 
cells behaved differently at the tip and corner regions respectively. The Python function 
‘MiniSom’ (GitHub, 2019) was applied to compare the SOM results derived from our simula-
tions with the experimental data of Combes et al. (Combes et al., 2016). Details of the im-
plementation are given in the supplement. 

Experimental Data Sources  
In this study, two sources of ex vivo experimental data were used to calibrate and validate 
the simulation models (Combes et al., 2016; Tikka, 2019b). These comprised results ob-
tained with an explant culture model reported by Combes et al. (2016), and original results 
reported in this work obtained with a dissociation-reaggregation kidney organoid model 
(Combes et al., 2016; Costantini and Kopan, 2010; Saarela et al., 2017; Tikka, 2019b). The 
data consisted of the images recorded during the experiments (see Microscopy methods be-
low). The sizes of the recorded data frames (number of samples per number of time points) 
were 15 x 50 (for explant culture in 12.5-15h) and 1x15 (for kidney organoid study in 2.5h; 
see ‘Technical Workflow’ for more details). The explant culture experiments of Combes et 
al. comprised 500 NP cells, whereas the kidney organoid studies presented here comprised 
of 500-2000 MM cells. Outliers were replaced with a moving average of three previous data 
values; see python code ‘rolling mean’. 

Kidney Organoids 
Embryonic kidneys were dissected from embryonic day 11.5 mouse embryos from crossing 
of Wnt4Cre (Shan et al., 2010) and tomato floxed Rosa26 Green fluorescent protein (GFP; 
mT/mG) reporter mice (Muzumdar et al., 2007) as described in (Junttila et al., 2015). Intact 
UBs were treated with GDNF and dissociated MM with BMP7 and FGF2 as in (Junttila et al., 
2015). The intact UB was reaggregated with MM cells and incubated overnight to form a 
kidney organoid. The organoids were set to grow in a FiZD culture (Saarela et al., 2017) for 
time-lapse imaging into a temperature and gas controlled on-stage incubator (OkoLab, Italy) 
on a Zeiss LSM780 confocal microscope. 
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Microscopy, Image Processing and Data Segmentation 
In order to track and distinguish MM cells from UB cells, MM cells were expressing GFP. The 
fluorescence microscopy of this work was performed with a Zeiss LSM 780 confocal micro-
scope (Carl Zeiss, Germany) using 25x/0.8 Zeiss LCI PlanNeofluar water immersion objective 
with a 488nm wavelength for excitation and a range of emission from 490-601nm. Out of 
original images of 250 µm x 300 µm x 29 µm (XYZ), an area of two close and relatively static 
UBs (approx. 150 µm x 100 µm) was selected with the Zen Blue (Carl Zeiss, Germany) imag-
ing program. There were 16 Z-layers in the (z axis) stack from which all were selected. Here, 
XYZ pixel size was 0.24 µm x 0.24 µm x 1.46 µm and the temporal resolution was given by 
16-time frames with 10 min between the frames. The video of the moving MM cells in the 
kidney organoid experiment is given stack-by-stack in (Tikka and Skovorodkin). Deconvolu-
tion was used to improve image signal to noise ratio, contrast and resolution. This process 
was done with Huygens Professional program (Scientific Volume Imaging, The Nether-
lands) using distilled PSF, with background value of 3.5, S/N value of 10, autobleach correc-
tion off, and saving the resulting deconvolved image as 16-bit tiff file format (Saarela et al., 
2017). The segmentation of the tiff file of the deconvolved image was done with a previ-
ously compiled in-house MATLAB code (Saarela et al., 2017). The code produced a raw data 
file, .csv, of the positions, sizes and speeds of all of the cells by identifying objects that it re-
deemed as cells from the images. We specified the cell diameter range between 0.5-20 µm.  
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Supplemental Appendix 
Cellular Potts Model (CPM) 
The CC3D models used here were based on the framework of CPM (Hirashima et al., 2017; 
Swat et al., 2012).  During each simulated time step of the model, here named a Monte 
Carlo Step (MCS), all cell border pixels were attempted to be replaced by the neighbouring 
ones (Swat et al., 2012). This happened with a probability (P) according to Boltzmann distri-
bution, which depended on the change in an ‘effective energy’ H  

𝑃 = {
1                  𝑖𝑓 ∆𝐻 ≤ 0

𝑒(−∆𝐻/𝑇)    𝑖𝑓 ∆𝐻 > 0
},       Eq. (1) 

where T was called the temperature, i.e. the relative amount of cell surface random fluctua-
tions. The main idea is that the displacements of individual cell pixels are accepted only if 
the overall effective energy (lower part of Eq. 2) is reduced. The power in the probability 
function depended also of the inverse of a "temperature", which represents the effective 
motility of the cell's membrane. If the net energy change after MCS was negative, i.e. ∆𝐻 ≤
0, the index changes were adopted. In cases where ∆𝐻 > 0, the likelihood P, for a success-
ful ‘index-copy attempt’, follows a Boltzmann distribution in (Eq. 1). The formulation of the 
effective energy contains quantities reflecting chemical and physical properties of the cells, 
such as area and volume constraints, cell-cell surface adhesion and processes related to 
chemotaxis (Andasari et al., 2012; Swat et al., 2012). Especially, the effective energy H rep-
resented a mix of true physical energies (such as cell-cell adhesion), terms that mimicked 
energies (e.g. the response of a cell to a chemotactic gradient) and terms that reflected 
basic principles of the evolution of the model (Hirashima et al., 2017). The effective energy 
used in this study is given by 

𝐻 = ∑ 𝐽 (𝜏(𝜎𝑖̅), 𝜏(𝜎𝑗̅))𝑖,̅𝑗̅
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

+ ∑ 𝜆𝐶𝐿(𝑐(𝑥⃗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) − 𝑐(𝑥⃗)) + 𝜆𝑉𝑖,̅𝑗̅
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

∑(𝑉 − 𝑉𝑡) +

𝜆𝐴 ∑(𝐴 − 𝐴𝑡),         Eq. (2) 

where the first sum denotes the adhesion energies, ∆𝐸𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛, and the second sum the 
chemotaxis energies, ∆𝐸𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠. Especially, J was defined as boundary energy per unit 
area between two different cells (𝜎𝑖̅ 𝑎𝑛𝑑 𝜎𝑗̅)  in the pixel interface of the cells 

((𝜏(𝜎𝑖̅), 𝜏(𝜎𝑗̅)). The chemotaxis energy term was calculated for chemotaxis cells and their 

neighbours. Here, 𝑐(𝑥⃗)  and 𝑐(𝑥⃗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) indicated the chemoattractant concentrations at 

the pixel source and its neighbouring pixel, respectively, where 𝜆𝐶𝐿 reflected the strength of 
chemotaxis (Chen et al., 2015; Kopan, 2014; Swat et al., 2012). Finally, 𝜆𝑉 and 𝜆𝐴 penalized 
deviations of cell volume and area from the preferred values 𝐴𝑡 and 𝑉𝑡, respectively. A cer-
tain level of minimal adhesion (J) was necessary for the cell movements according to Eq. (2). 
The cells in a model without adhesion difference or chemoattractants would become nearly 
immobile soon after the beginning of the simulation. The volume expansion at the begin-
ning of the simulation cannot sustain movements. Finally, the diffusion equation that gov-
erned the chemoattractant concentration evolution (𝑐(𝑥⃗)) was 

𝜕𝑐(𝑥⃗)

𝜕𝑡
= (𝐷𝛿)∇2𝑐(𝑥⃗) − (𝛾𝛿)𝑐(𝑥⃗) + 𝑆𝛿,      Eq. (3) 

where 𝐷, 𝛾, and 𝑆 were the diffusion, degradation and secretion rates for the cell in ques-
tion, such as NP, respectively. 𝛿 represent Boolean switches that were either 1 or 0 depend-
ing on whether the concentration was located on the cell or not. If it was in the cell in the 
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question, then the switch value was one. The chemoattractant diffusion field (
𝜕𝑐(𝑥⃗)

𝜕𝑡
) evolved 

independently of the cell domain in a separate domain (Fig. 8). However, this domain was 
similar in size as the cell domain (Fig. 8). The current modelling handled three cell types (UB, 
NP, MM) as the sources and receivers of the values of the field. Accordingly, the PDE in the 

equation (3) can be expanded into three equations (i.e. 
𝜕𝑐(𝑥⃗)𝑈𝐵

𝜕𝑡
 , 

𝜕𝑐(𝑥⃗)𝑁𝑃

𝜕𝑡
, 

𝜕𝑐(𝑥⃗)𝑀𝑀

𝜕𝑡
) Similarly, 

all the constants and variables in each of the equations can be subscripted with the respec-
tive name of the cell, e.g. 𝐷𝑁𝑃 (Swat et al., 2012). ODEs could have been also used in respect 
to subcellular processes but were not considered in this modelling approach.  

Details of PSO Method 
The search or iteration in PSO improves the candidate solutions with respect to a given 
measure of quality [15,28,31], such as the amount of NP cells in UB and speed differences. 
PSO solves the problem by using a population of candidate solutions. These solutions are 
called swarms. The algorithm moves the individual candidate solutions, i.e. particles, around 
the search-space according to the particle's position and speed. The movement of particles 
are influenced by their own best-known positions. The movements are also guided towards 
the best-known position across all particles in the swarm. These best solution places are up-
dated as better positions are found. This process moves the swarm towards the best solu-
tions. PSO makes few assumptions about the problem being optimized and it can search 
very large parameter spaces efficiently (Andasari et al., 2012; Swat et al., 2009; Zhang et al., 
2015).  

The PSO parameters for the simulations were always the same. The momentum and scaling 
factors in equation 8 were 𝜔 =0.73 and 𝑐1=𝑐2=1.5. The maximum speed for a parameter was 
limited to the parameter's maximum allowed value. The PSO was implemented in python 
and the PSO code created the parameter files for each CC3D run, submitted the jobs to a 
SLURM job manager on a small Linux cluster, waited for job completion, extracted the re-
sults and calculated new parameters for each particle in each swarm. 

The PSO's were run for 60 iterations using 4 independent swarms and 8 particles per swarm. 
Since the CC3D simulations are stochastic, and replicate runs with the same parameter set 
do not give identical results, we ran each simulation three times and used the average re-
sult. Therefore, a complete PSO run for a model included 60x4x8x3=5760 simulations. For 
the 2D models a single CC3D simulation typically took 30 seconds, for 3D models 30 
minutes. Since we had access to a 32-node cluster, we ran 32 simulations in parallel and the 
total time required for a model was therefore 60x3 times the time of a single run. Elapsed 
time for a complete PSO run was approximately 2 hours for the 2D models and 5 days for 
the 3D models.  

As for the speed differences between the Combes et al. 2016 experiments and simulations, 
PSO penalized the overall quality value with difference of χ2 speed values in each (simula-
tion and experiment) time point. This speed difference quality value was smaller than the 
quality value of the surface coverage (Anum et al., 2016; Combes et al., 2016). Accordingly, 
the speed quality values in each time point for every model were multiplied by scaling factor 
(of 100), to correspond to 20% of the maximum quality value from NP coverage at UB in 3D 
(7_UB_NP_ADH_R (3D)). It is unlikely that the speed quality values were higher in other 
models.  
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We applied the following constraints during the PSO iterations:  

• Chemotaxis lambda (𝜆𝐶𝐿), secretion rate (S), the diffusion constant (𝐷) as well as the de-
cay constant (𝛾) were restricted by the upper bounds of 100, 30, 0.5 and 0.001, respec-
tively; in order to allow an appropriate convergence of the CC3D algorithm. 

• The initial contact energy coefficients (J) between NP and MM cell values in the adhe-
sion increment models 2, 5, 6, 7, and 8 were 13 (vs.  5 J in models 1, 3, and 4).  

Typical swarm parameter ranges were: D [0.1, 2.0], 𝛾 [10-8, 10-6], J [2.0, 8.0], 𝜆𝐶𝐿 [10.0, 
150.0], S [0.3, 30.0], T [5, 50.0], and Surface’s lambda [0.001, 10]. Depending on the model 
variant, PSOs yielded a variable number of PSOed parameters (Table 2).  

7_UB_NP_ADH_R was deemed to be the most technologically advanced model in compari-
son to others. It contained all the values that other models had and more. Hence, it’s values 
could be used as a maximum appraisal that the other models should not exceed. For in-
stance, the quality value in this model reached a plateau value of 220750. By comparison to 
other models, the quality values resulting from PSOs were in that order of magnitude. For 
example, 4_UB_R had a nominal value (in one PSO) of 199475, where the contribution of 
surface area was 186263.5. The contribution of the speed minimization in that model was a 
negative one (-13211.1). The set of optimized parameter values for this advanced model 7 
were: D=1.83×10-12m2s-1 between (a range of 1, 2) with (PSO run time averages of 
1.42±0.39) and 𝛾 =4.7×10-7×10-7s between (1×10-8, 1×10-6) with (7.2×10-7±1.7×10-7). It has 
also J=7.90×10-15 kgs-2 between (2, 8) with (6.49±2.23), 𝜆𝐶𝐿 =14.1×10-27kgm2s-2 between (10, 
150) with (15.2±5.1), S=6.91 DU/s between (0.3, 30) with (5.46±2.05), T=49.8 DU between 
(5, 50) with (48.14±1.15), and 𝜆𝑆=8.1×10-3kgm-2 s-2 between (0.001, 10) with (8.30±0.83). 
The 2D version of this model took 3.3h for 60 iterations using four swarms of eight particles 
each and PSO variables of w=0.73, c1= c2=1.5, and vmax=1. The quality value reached a plat-
eau value of 10809.0. On the other hand, the 3D model took 20.7 days using the same PSO 
setup. The cells in the basic model simulations accelerated for a relatively long time 
(300MCS) due the lack of the initial concentration field, therefore we added it. The cells 
then almost immediately jumped to the chemotaxis speed at the start of the simulation. 
Hence, we did not calculate the first 10 MCS steps, and obtained the correct speed with a 
small amount of minimization.  

The optimized adhesion difference (J) values for each model, except the secreting and refer-
ence (1, 3, 4) ones, were not that particularly high compared to non-optimized ones. For ex-
ample, 5_UB_ADH had (J of) 6.68, which is in the similar magnitude as 3_UB’s 5. However as 
expected, 8_ADH_ADH had the greatest variety of adhesion differences, e.g. in uniform 
model with: 0.50279 (‘NP and NP’) to 47.808 (‘Medium and NP’), and random model with: 
0.50203 (‘NP and NP’) to 37.680 (‘MM and MM’) (Table 2). The chemotaxis lambda values 
were higher in the NP secreting models than UB secreting ones.  

Model Simulations 
The correspondence of a simulation time unit (MCS) as an experimental one depended on 
the voxel (3D) scale (l), and the maximum speed of the relevant experiments (𝑣𝑚𝑎𝑥) 
(Andasari et al., 2012; Swat et al., 2012).  And it can be calculated together with the physi-

cally maximum allowed speed (0.2
𝑣𝑜𝑥𝑒𝑙𝑠

𝑀𝐶𝑆
) of the simulations 
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𝑡𝑀𝐶𝑆(𝑠) = 0.2
𝑣𝑜𝑥𝑒𝑙𝑠

𝑀𝐶𝑆
∙

𝑙

𝑣𝑚𝑎𝑥
        Eq. (4) 

In our case, we supposed that a cell crawled on a substrate in an experiment with a speed of 

approximately 0.2 
µ𝑚

𝑚𝑖𝑛
. For the simulations, we assumed that 1 µm corresponds to 1 pixel in 

length. In other words, the lattice scale (l) was one 
µ𝑚

𝑝𝑖𝑥𝑒𝑙/𝑣𝑜𝑥𝑒𝑙
. Then the maximum time per 

MCS was 0.2 * 1 / (0.2/60 [seconds/minute])) seconds = 60 seconds. Equation (4) allowed 
also the conversion of model speeds to same scope as experimental speeds.   

Each simulation with a certain set of parameters and initial conditions was repeated 30 
times to extract an average behaviour from the Monte-Carlo based algorithms. It was not 
possible to get simulation cell speeds to similar magnitude as observed experimentally 
merely by selecting the constants (of Eq. 2) arbitrarily, such as (𝐽). ∆𝐻 depends also on local 
pixel concentration fields, and the other variables (Eq. 1-3). The chemoattractant flow is by 
default not hindered by the virtual cells, which is an approximation (Swat et al., 2012). There 
were no differences in the spread mechanisms of chemoattractant between (U and R) mod-
els with or without an initial chemoattractant field. CPM in the algorithm would try to mod-
ify all these, and then minimize the sum. According to Eq. (4), the maximum real time that 
can be assigned to 1000 MCS was ~16.7h (Combes et al., 2016).  

The simulated cell speeds, distances to corner and tip and amount of chemoattractant were 
derived from the changes of cell coordinates between each consecutive frame, more specifi-
cally from cell position changes in the centre of mass between each consecutive time step. 
Therefore, we used all time points for calculating these values. The chemoattractant con-
centration changes were not measured during the ex vivo and organoid experiments. We 
also calculated the ratio between tip and corner values of speeds and distances both in the 
simulations and experiments, should they be in different order of magnitude.  

The ratios were needed because the corner distances of NP cells were within certain range. 
This constituted of the diameter of PTA with extra space. However, the moving (NP and 
MM) cells were in between the two UB trunks. At the same time, the tip distances of NP 
cells were in even smaller range in between the two tips. Hence, the ratio between tip and 
corner distances were needed to be also below one. Moreover, Combes experiment’s tip 
per corner NP cell speeds fluctuated relatively highly compared to model speed values. This 
was one of the reasons for giving separately corner speeds. The other reason was that, NP 
cells between or in the tips moved in swarming fashion.  

Technical Workflow 
The emphasis of this study was to construct models and analyse computationally the result-
ing data. We wanted also to compare the model results to the experimental values of this 
and the previous (Combes et al.) work (Combes et al., 2016). However, the data frames ob-
tained from simulations and experiments, were given in the form of ‘sample amount x time 
frame amount’, e.g. 30x1000 (for a model variant). Accordingly, the study design consisted 
of five separate phases, excluding making of the SOM and PSO routines, described else-
where in the appendix.  

Shortly; importing data to a coding platform (SPYDER), unifying data frames of experiments 
and models (.CSV with PANDA), sample selection (NP or MM cells from the regions), calcula-
tions of speeds, distances and concentrations with specific functions (i.e. the mean in each 
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time point and cell across all the samples), and expressing the averages or plots of the previ-
ous measures. 

Following importation of model and experimental data into a coding development platform 
(SPYDER, using python (Contributors, 2017)) the data frames were unified (using the PANDA 
package (Contributors, 2017)),  symmetrised and converted to similar between model and 
experimental samples. The relevant experimental samples were selected for calculations. 
The corresponding NP and MM cells assigned closest to the left UB tip in simulations were 
selected for calculations (Fig. 8A). Finally, the average values for these samples and cells 
were calculated and values plotted.  

In their original analysis Combes et al. (Combes et al., 2016) considered only NP cell coordi-
nates whereas we simulated the behaviour of both NP and MM cells between two adjacent 
UB tips. Presumably also in this spatiotemporal setting the cells surrounding either UB tip 
reacted first to the chemoattractant coming from that UB (Short et al., 2014), as they did in 
other previous experiments (Lefevre et al., 2017). Presumably, this applied also to the 
chemoattractant coming from the secreting NP cells closer to each other (Fig. 2D/F). This 
practically meant that we give the average measures for those NP and MM cells closer to 
left-hand side L-structure. 

Consequently, the calculations of speeds, distances and concentrations were performed for 
NP and MM cells near to the left-hand side of the simulated UB (c.f., Figs 1D/E, 8A/E). There-
fore, the experimental and simulated distances of cells to the tip or corner were compara-
ble. This was mainly a result of similar spatial dimensions and effective cell motilities in sim-
ulated vs. experimental systems. The experimental tip and corner distances were normal-
ized (0 to 1), followed by multiplying the transformed distances by model averages. This was 
done because the frame shapes in the experiments and simulations were slightly different 
(Figs 1, 8). The speeds and concentrations were not scaled between simulations and models. 
However, we give the tip per corner values for the cell distances and concentrations. This 
was because we needed to scale the experimental (tip and corner) distances to the same or-
der of magnitude as the model values.  

In addition, during the work of setting the model, we discovered that the value of the chem-
otaxis secretion constant multiplied by its strength constant, i.e. the chemotaxis lambda, 
should be less than twenty. The reason for this was to avoid a virtual cell loss. Otherwise, 
the loss would arrive from the disruption of the virtual cell membranes. It was possible that 
same would apply in the early nephrogenesis, i.e. cells would need to control the amount of 
secretion and how to respond to it. Therefore, the average dimensionless concentration lev-
els were handy way to assess the reliability of the workflow for a stable model simulation 
(Figs 8, S2, S6, S7). This did not of course apply to the non-secreting models (1, 2, 8), which 
did not have any chemoattractant (Fig. 2). 

Details of SOM 
SOM is a machine learning method involving an artificial network to represent the original 
experimental or simulation data. The method resembles mathematical iteration by conduct-
ing an unsupervised learning to compress the data to a two-dimensional (2D) map of nodes. 
The primary relationships of the data elements, such as the cell names and their different 
coordinates, can be conserved with a neighbourhood function. (Kohonen, 1982) 
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The iteration routine consisted of giving weights to the real distances between the network 
nodes and the data. The node whose weight vector was most similar to the data was called 
the best matching unit (BMU). The weights of the BMU and nodes close to it in the SOM grid 
were adjusted towards the input vector. The magnitude of the change decreased with time 
and with the grid-distance from the BMU. The iteration equation for a node v with weight 
vector 𝑊𝑣 was 

 

𝑊𝑠(𝑠 + 1) = 𝑊𝑣(𝑠) + 𝜃(𝑢, 𝑣, 𝑠)𝛼(𝑠)𝐷((𝑡) − 𝑊𝑣(𝑠)),   (10) 

 

where D(t) was the data vector, s was the iteration step index number, t was a randomly or 
otherwise selected index number of the training sample, u was the index number of the 
BMU for D(t), and α(s) was a monotonically decreasing learning coefficient. Finally, θ(u,v,s) 
was the neighbourhood function. It gave a distance between the previous node (u) and the 
node (v) in the iteration step (s). (Kohonen, 1982) 

For performing this kind of an iterative calculation, the use of computer program techniques 
was naturally implied, such as ‘MiniSom’ python function developed earlier (GitHub, 2019). 
Shortly, it required four instructions: 1. Importing and normalizing the initial experimental 
or simulation data, 2. Specifications for the node map; the size of the node map matrix, 
learning coefficient, initial spread of neighborhood function as gaussian, and the neighbor-
hood function, which was here the ‘Mexican hat’ in order to gather all 2D nodes inside an 
oval, 3. By randomly and with the principle component analysis style weighted BMUs, and 4. 
The iteration, i.e. the random training 5000 times by default, since more than 300 did not 
enhance the accuracy significantly (GitHub, 2019), and plotting the SOM nodes with gradu-
ally increasing colors in respect to their closeness to the original data. As for the other val-
ues, sigma was four, learning rate 0.5, and the size of the random seed 10. The routine took 
about 15-40 minutes depending on the original size, i.e. memory space used by the com-
puter, of the initial data. This was followed by the grouping of closest SOM nodes, or groups, 
to different categories, such as here to the cell coordinates and their instantaneous speeds, 
in respect to the previous time point coordinates.  

The segmentation worked so that we reduced the noise-cell coordinates to their respective 
real cells by applying the mean area and speed (50 µm2, 0.15 µm/min) (Stegmaier et al., 
2016). The tool selected and grouped all the cell coordinates together with their speeds in 
the experiments or simulations. With the appropriate SOM transformed plotting routines, 
we evaluated the reasons for the cell developments in the different cell coordinates. 

It was not necessary to find the NP cell speed regions with SOM or otherwise by choosing 
certain NP cells rather than the derivates of their speed trend. This was performed by se-
lecting all instantaneous NP speeds and their coordinates of experimental noisy data (partic-
ularly our experiments) to SOM. And after the iteration procedures, we transformed the 
speed contours, i.e. ‘stable regions’, back to real normed space with experimental images in 
the background (Stegmaier et al., 2016). As a result, SOM could be also used as a way to 
check the imaging or segmentation accuracy, as well as a segmentation tool as such.  

We devised a SOM node matrix size as 10 times 10 due computational efficiency (GitHub, 
2019), and the original size of the experimental data matrix as 25000 times four (Combes et 
al., 2016; GitHub, 2019). And from those 100 possible nodes (of SOM), we found 10-30 
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nodes in total that were close to the original data (after the iterative training). Subse-
quently, we chose eight closest groups to the data.  

We further selected the groups, where the cell speeds were 95 % similar in the beginning 
and in the end. This was because we were interested in the different regions of speeds. 
There were usually three groups from the eight. We could remap these three nodes of 
‘speeds and coordinates of NP cells’ back to normalized 2D or 3D experimental or simulation 
space, because we knew the (original) coordinates of these cells.  

Captions of Supplementary Images 
Fig S1. Cell patterns at the end of CC3D simulations. The NP secreting model (4_NP) was 
simulated with the initially A) uniform and B) random cell patterns (defined in Fig. 8). UB 
cells are depicted with red, NP cells with green, and MM cells with blue colours. 

Fig. S2. Chemoattractant patterns at the end of CC3D simulations. The primary patterns for 
UB and NP secreting models. A) 3_UB and 5_UB_ADH, B) 4_NP and 6_NP _ADH, C) 7_UP_NP 
_ADH. Standardized chemoattractant concentration gradients are depicted by sheets, rang-
ing from 0 (blue) to 1 (red). 

Fig. S1. Average speeds of NP cells in tip and MM cells in corner in the simulation studies of 
different models together with the results from experiments. A/B) NP cells in the models 
(see legend) with the cells in the explant culture experiments (Combes et al., 2016). C/D) 
MM cells in the models (see legend) with cells in the kidney organoid experiments. A/C) 
Simulations before the optimization. B/D) Simulations after the optimization. Vertical bars 
indicate 95% confidence intervals. 

Fig. S2. Average NP (A/B) and MM (C/D) cell quantities at the tip in the simulation studies of 
different models together with the results from experiments. A/B) NP cells in the models 
(see legend) with the cells in the explant culture experiments (scaled) (Combes et al., 2016). 
C/D) MM cells in the models (see legend) with the cells in the kidney organoid experiments 
(scaled). A/C) Simulations before the optimization. B/D) Simulations after the optimization. 
Vertical bars indicate 95% confidence intervals. 

Fig. S5. Tip-to-corner distance ratios of NP (A/B) and MM (C/D) cells in the simulation stud-
ies of different random models together with the results from experiments. A/B) NP cells in 
the models (see legend) with the cells in the explant culture experiments (scaled to model 3 
and 4) (Combes et al., 2016). C/D) MM cells in the models similarly scaled with cells in the 
kidney organoid experiments. A/C) Simulations before the optimization. B/D) Simulations 
after the optimization. Vertical bars indicate 95% confidence intervals. 

Fig. S6. Average tip per corner concentration changes in COMs of NP and MM cells in the 
simulation studies of different models together with the results from experiments. A/B) NP 
cells in the models (see legend) with the cells. C/D) MM cells in the models. A/C) Simulations 
before the optimization. B/D) Simulations after the optimization. Vertical bars indicate 95% 
confidence intervals. 

Fig. S7. Study design of computational analysis workflow. Experimental and model data was 
importer to Spyder and converted to symmetrical matrices. The calculation of NP cell speeds 
and positions were done after selecting matching samples of experiments and models, and 
plotted with own functions.  
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