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21

22 Abstract

23

24 Resting state functional connectivity (RSFC) reflects the organization of functional networks in the 

25 brain. Functional networks measured during “resting”, or task-absent, state are correlated with 

26 cognitive function, and much development of these networks occurs between infancy and adulthood. 

27 However, RSFC research in the intermediate years (especially between ages 3 and 5 years) has been 

28 limited, mainly due to a paucity of child-appropriate neural measures and behavioral paradigms. This 

29 paper presents a new paradigm to measure RSFC in young children, utilizing functional near-infrared 

30 spectroscopy (fNIRS) and Freeplay, a simple behavioral setup designed to approximate resting state 

31 in children. In Experiment 1, we recorded fNIRS data from children aged 3-8 years and adults aged 

32 18-21 years and examined feasibility and validity of our measure of RSFC, and compared measures 

33 across the two groups. In Experiment 2, we recorded longitudinal data at two points (approximately 3 

34 months apart) from children aged 3-5 years, and examined reliability under a variety of measures. In 

35 both experiments, all children were able to complete testing and provide usable data, a significant 

36 improvement over fMRI-based RSFC measurement in children. Results suggest this paradigm is 

37 practical and has good construct validity and test-retest reliability, and may contribute towards 

38 increasing the availability of reliable data on resting state networks in early childhood. In particular, 

39 these are some of the first positive results on the feasibility of reliably measuring functional 

40 connectivity in children aged 3-5 years. 

41

42 Keywords: resting state functional connectivity; fNIRS; early childhood; Freeplay;

43
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45 Introduction

46

47 Brain function arises from a concerted effort of various regions working together in what can be 

48 characterized as networks. Research in the past few decades has focused on properties of these networks 

49 and patterns of connectivity that support cognitive functions [1-3]. Resting state networks (RSNs) -- 

50 networks of regions showing temporal correlation of low-frequency fluctuations (functional connections) 

51 in subjects not performing any task [4] -- can reflect underlying functional organization of the brain.

52 Discovery of resting state functional connectivity (RSFC) and its link to function [5-8] has 

53 widened the door to investigating mechanisms of cognitive function by providing some advantages over 

54 task-based studies: 1) whereas measuring functional connectivity during task provides us with the 

55 connectivity of only those regions specifically involved in the task, measurement during resting state can 

56 provide connectivity information simultaneously among many regions; 2) certain populations (e.g., 

57 clinical populations) or cognitive functions (e.g., motor) that are difficult to engage with specific tasks in 

58 the scanner, can be just as well studied in resting state. For these reasons, resting state measurement has 

59 become a standard paradigm for studying functional connectivity in human adults.

60

61 Measuring RSN development

62

63 RSN research in infants and adults presents a clear developmental trend: whereas 10-20 RSNs 

64 have been identified in adults, only about 5 of these networks are found in infants, the rest likely 

65 developing throughout childhood [9,10]. This suggests that the functional architecture of the brain may 

66 be undergoing dramatic development and restructuring in these intermediate years to create many of these 

67 networks that emerge prominently by adulthood. Patterns of connectivity also change over development 
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68 -- a number of studies have shown that children display more diffuse functional connectivity patterns and 

69 increased connectivity with adjacent regions, while adults show more focal connectivity patterns and 

70 increased connectivity between distant regions [11,12]. This simultaneous increase in both segregation 

71 (pruning short-range connections) and integration (strengthening long-range connections) of brain regions 

72 over development likely reflects a transition from organization around spatial proximity to organization 

73 around higher-order function [12]. Finally, aberrant connectivity in RSNs have been associated with a 

74 variety of psychopathologies from affective disorders such as depression, to diseases of cognitive function 

75 such as Alzheimer’s disease, to neurodevelopmental disorders such as autism or ADHD (for review, see 

76 [10]), suggesting that RSN development may be integral to healthy brain and cognitive development. 

77 Together, these findings highlight the need for studying RSNs over the time course of development and 

78 especially in early childhood, when perhaps the most change is occurring in some brain networks. 

79 However, studying RSNs in children has been challenging, mainly for two reasons. First, 

80 traditional neuroimaging tools (e.g., functional MRI (fMRI), electroencephalography (EEG), or 

81 magnetoencephalography (MEG)) are difficult to utilize with awake children [13,14]. Second, the 

82 standard procedure for measuring resting state connectivity -- to sit still for a period of time -- proves to 

83 be a difficult task for children, and some methods previously employed to increase compliance in children 

84 during resting state measurement, such as movie or video-watching, have been shown to significantly alter 

85 resting state in adult participants [15]. Consequently, resting state studies in children and especially in 

86 young (3-5 years/pre-school aged) children have been limited [16]. The current study uses functional near-

87 infrared spectroscopy (fNIRS) which provides an appropriate solution to child neuroimaging challenges 

88 and introduces a new paradigm called Freeplay to address the difficulty of employing an appropriate 

89 “task” for resting state measurement – the combination provides a simple and efficient paradigm to 

90 improve participant compliance and quality RSFC measurement (of surface regions) in children. By 

91 reconstructing characteristic features of RSFC, we demonstrate the feasibility of this fNIRS-Freeplay set-
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92 up for studying resting state connectivity in preschool and early school-aged children. We also study the 

93 test-retest reliability of the paradigm under a number of measures, showing that consistent results can be 

94 derived across multiple scans, at both individual and group levels. Some multi-session test-retest reliability 

95 studies for RSFC measurement methods exist for adults and older children in fMRI, as well as for adults 

96 in fNIRS, but not for children in fNIRS [17-20].

97

98 fNIRS with young children

99

100 Traditionally studied with fMRI, and to a lesser degree with EEG/MEG, RSNs have been studied 

101 primarily in adult and sleeping infant populations, but relatively rarely in child populations, as these 

102 imaging techniques are challenging to use with awake children [21]. For example, a major difficulty is the 

103 sensitivity of these modalities to movement artifacts combined with children’s difficulty remaining still 

104 for extended periods of time, which can systematically bias functional connectivity measures [22]. In a 

105 previous study on the feasibility of fMRI measurement in children, Byars et al. [13] reported a 47% 

106 success rate with children between the ages of 5 and 6, under a relatively generous definition of “success” 

107 as ‘completing at least one of four fMRI tasks and an anatomical reference scan’ [14] (p. 2). Moreover, 

108 another more recent study of fMRI feasibility with children and adolescents showed that clinical groups 

109 scanned even less successfully than typically developing controls [14].

110 fNIRS is a relatively recent light-based neuroimaging method that overcomes many of the 

111 challenges with obtaining brain activity measures in child populations. In fNIRS, near-infrared light is 

112 used to obtain an estimate of changes in both oxygenated and deoxygenated hemoglobin concentrations 

113 in a region of the brain. Thus, like fMRI, fNIRS gives an indirect measure of neural activity based on 

114 blood oxygenation levels. Compared to fMRI or EEG, fNIRS is robust to and unrestrictive of motion, 

115 comfortable, quick to set up, and cost effective (see [23] for comparison of techniques). These factors 
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116 make it especially appropriate for use with children. The main limitation of fNIRS in the context of 

117 studying RSFC is that measurement is limited to regions near the surface of the brain (<17 mm of brain 

118 tissue deep). For researchers interested in studying RSFC among surface regions of the brain, this is a 

119 viable neuro-measurement tool. Our study, as discussed below, measures from the surface of the prefrontal 

120 cortex.

121

122 Freeplay in a fNIRS recording set-up can overcome challenges in behavioral methods

123 Resting state studies have mainly recorded from adults instructed to remain still for a period of 

124 time [24]. Some RSFC studies are conducted in infants during sleep [25]. Unfortunately, neither recording 

125 situation is practical for young children; children often have great difficulty remaining quietly still for an 

126 extended time, and unlike infants, children are far less susceptible to maintaining sleep in the scanner. 

127 Moreover, it is not clear that sleep is a good approximation of resting state, as it exhibits its own distinctive 

128 functional connectivity patterns [26-29]. For such reasons, resting state-fMRI studies that are run with 

129 children frequently involve extensive and costly effort in pre-training children in “mock” scanner 

130 environments to help reduce motion artifacts and improve participant compliance. In spite of this pre-

131 training, unwieldy proportions of scans (e.g., ranging from as little as 18% to as much as 53% in children 

132 aged 4-6) are discarded due to movement artifacts contaminating the signal [30,31].

133 To mitigate this, many resting state-fMRI studies with children and patient populations have used 

134 motion picture stimuli, with or without audio, to help engage participants in the fMRI scanner. These have 

135 had some success in improving participant compliance (e.g., reduced participant motion and reduced 

136 frequency of falling asleep) [32,33]. However, viewing movie clips have been found to significantly alter 

137 resting state in adult participants [15]. Furthermore, viewing movie clips may engage task-specific 

138 networks, such as those involved in language or audition. In fact, movies are sometimes used in studies 

139 as stimuli or tasks [34], or have specifically been reported to induce different connectivity patterns 
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140 compared to rest (e.g., early visual network decreased its connectivity with dorsal attention network and 

141 increased its connectivity with the default mode network as well as the fronto-parietal network, during 

142 movie watching [33]. These findings bring into question the validity of using movies for studying “resting 

143 state” -functional connectivities and -networks in particular. However, movie or video-watching still 

144 remains the most feasible method by which to record RSFC from children in an fMRI setting (with varying 

145 success depending on where the movie lies in the spectrum from too engaging to not engaging enough). 

146 Because fNIRS recording set-up is quiet, comfortable to wear, and unrestrictive compared to the 

147 fMRI environment, a less engaging set-up for aiding compliance can be sufficient. Our study proposes an 

148 experimental paradigm called Freeplay that may closely approximate resting state, and which takes 

149 advantage of the spatially unrestrictive nature of an fNIRS recording situation. In this “task”, participants 

150 are seated at a table, presented with a set of simple toys (e.g., wooden blocks, small plastic animals) and 

151 asked to quietly play for a few minutes. The premise is that children can naturally comply much more 

152 easily with sitting still and quietly for a period of time when presented with even simple and unengaging 

153 toys. In addition, the fNIRS possible sampling rate is much greater than that of fMRI, thus requiring less 

154 recording time overall. Due to the simple nature of the toys, Freeplay is expected to induce quiet boredom, 

155 a state we expect may closely approximate resting state. Additionally, the unconstrained nature of this set-

156 up naturally mirrors the “at rest” eyes-open set-up for adults in which adults sit open-endedly for a period 

157 of time without any specific task, and in the same way, allows natural individual variation to be present. 

158 Allowing natural variability is important as it allows researchers to be more confident that connectivity 

159 patterns consistent across many participants are generalizable and not arising from task-specific or stimuli-

160 specific states. 

161

162 Since measuring RSFC in children relies on using approximations of the resting state task (e.g., 

163 movie watching, silent rest), it is important to also develop multiple such approximations, to combat the 
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164 task impurity problem. Freeplay contributes as one method for approximating resting state. Moreover, 

165 Freeplay avoids several biases that are inherent in some previous methods. For example, relatively 

166 engaging or externally-guided stimuli, such as movie clips or screensavers, potentially compromise the 

167 unrestrained and non-externally-directed nature of thinking that is characteristic of true resting state. They 

168 may also potentially engage functional networks differently from rest (e.g., naturalistic movie viewing has 

169 been shown to alter connectivity patterns among certain networks compared to rest) [33]. In contrast, 

170 Freeplay’s undirected or internally-/self- guided nature may more closely mirror the state of adults in 

171 resting state. Additionally, in contrast to other proposed methods that utilize identical or similar visual 

172 stimuli sequences across participants (movies, screensaver-type stimuli, e.g., Inscapes), Freeplay lacks 

173 any time-locking events that could introduce systematic biases when aggregating data across subjects and 

174 artificially inflate across-subject consistencies [35].

175

176

177 Prefrontal Cortex

178

179 The prefrontal cortex (PFC) houses major components of such RSNs as the central executive 

180 network (CEN) and default mode network (DMN). Its development, from infancy through adulthood, is 

181 prominently linked to the development of executive function (EF) [36], a collective system of basic 

182 cognitive processes that includes inhibition, working memory, and cognitive flexibility, and supports 

183 higher-order processes such as planning and problem solving [37,38]. PFC’s protracted development 

184 make it an especially interesting region to study over age, including in early development. Aberrant 

185 functional connections within the PFC have also been associated with ADHD symptoms and impaired 

186 inhibitory and attentional control, implicating its important role in health executive function development 

187 [39]. Additional advantages of measuring PFC with fNIRS are its close proximity to the surface of the 
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188 skull and convenient placement under the forehead (which lacks hair, improving fNIRS signal quality). 

189 Thus, we focused data collection on the PFC in this validation study.

190

191 Current study

192

193 This study aims to demonstrate feasibility of using fNIRS and Freeplay to measure RSFC in pre-

194 school-aged and early school-aged children. We present this paradigm as a potential means to address the 

195 gap in research on RSFC in children, stemming from a lack of appropriate measurement and behavioral 

196 tools for the population. This set-up is designed to place minimal restrictions on the participant, allow 

197 sufficient data collection, and achieve relatively good signal-to-noise ratio (by minimizing sources of 

198 noise introduced by the measurement tool as well as the participant). This study aims to establish 

199 fundamental psychometric properties of the fNIRS-Freeplay paradigm, including construct validity, test-

200 retest reliability, and feasibility. 

201

202 Experiment 1: Comparison with traditional adult resting state

203

204 We first investigated whether the fNIRS-Freeplay paradigm allows us to measure RSFC -- 

205 specifically, whether the paradigm exhibits construct validity. We did this in two ways. First, we asked 

206 whether the fNIRS-Freeplay paradigm reproduces a characteristic feature of adult resting state 

207 connectivity, namely strong connectivity between homologous (bilaterally symmetric) regions of the two 

208 hemispheres [40,41]. Second, we studied the distinguishability of RSFC in adults in Freeplay and adults 

209 in true resting state, in terms of the ability of machine learning classifiers to correctly classify instances of 

210 each.

211 If adults “at rest” and in Freeplay show similar connectivity patterns and are difficult to distinguish 
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212 from each other, this would suggest that Freeplay may be a good approximation of resting state. 

213 Confirming this hypothesis would help validate fNIRS-Freeplay as a paradigm for measuring RSFC in 

214 adults, and a natural next step would be to apply this paradigm to measure RSFC in children. To begin 

215 exploring this (and also to provide a control for our first similarity measure -- classification error between 

216 adults in Freeplay and “at rest”), we additionally measured NIRS-Freeplay data in children, hypothesizing 

217 that adults and children in Freeplay will show different connectivity patterns, consistent with research 

218 suggesting significant development of RSFC from childhood into adulthood [9].

219

220 Methods

221 Participants

222

223 Participants were 13 undergraduates (aged 18-21) from Carnegie Mellon University (CMU) and 

224 18 children (aged 3 to 8 years, Mage = 4.8, Medage = 4.3) recruited from the community and the Children’s 

225 School, a CMU-affiliated laboratory school. 17 children were included in the analysis after 1 exclusion 

226 due to experimenter error.  Adults participated in both the standard resting state task and the Freeplay task 

227 within a single session. Task order was randomized. Children participated in Freeplay only.

228

229 Standard Resting State Task

230

231 Participants sat still and quietly at a desk with eyes open for 8 minutes. The scanning duration of 

232 8 minutes sits comfortably over a 7-minute minimum reported to achieve accurate and stable RSFC from 

233 fNIRS measurement in children (aged 6.9 to 8.21 years) in a recent study by Wang, Dong, and Niu testing 

234 fNIRS RSFC test-retest reliability [42]. 

235
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236 Freeplay Set-up

237

238 Participants sat quietly and freely played with a set of toys for about 8 minutes. Toys included: 

239 lincoln logs, wooden nuts and bolts, plastic animal figurines, toy cars, and simple coloring pages (a flower, 

240 turtle, duck, or fish). Toys were chosen to be simple and minimally engaging, to help induce quiet boredom, 

241 a state that we expect may closely approximate resting state (See Figure 1, right panel).

242

243

244 -------------------------------------------------------------------------------------------------------------------------------------------------------

245 Fig. 1. Placement of NIRS probe. The left picture displays NIRS probe strip placed over the forehead; 

246 the right picture shows probe strip secured by scuba cap and the freeplay setup with simple toys.

247 -------------------------------------------------------------------------------------------------------------------------------------------------------

248

249 fNIRS Set-up

250

251 Neural activity was recorded at 20 Hz using a continuous wave real-time fNIRS system (CW6, 

252 Techen, Inc., Milford, MA, USA) with 4 light sources, each containing 690-nm (12 mW) and 830-nm (8 

253 mW) laser light, and 8 detectors, to give oxy-hemoglobin and deoxy-hemoglobin measures in 10 channels 

254 on the PFC (Figure 1, left panel). Sensors were arranged in a layout as depicted in Figure 2. The distance 

255 between light sources and detectors were between 2.8 and 3 cm. Sensors were snapped into a cap strip 

256 built from foam sheet and plastic mesh, and connected to the fNIRS system via optic fibers. For each 

257 participant, the cap strip was positioned on the head, centered on position FpZ according to the 

258 international 10-20 coordinate system standard, extending over the Brodmann area 10 (anterior PFC) and 

259 area 46 (dorsolateral PFC) bilaterally. The strip was secured to the head using a neoprene scuba cap 

260 (pictured in Figure 1), to prevent probe from slipping as well as to cover the probe to prevent ambient 
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261 light from reaching the sensors. The participant sat in a rigid, stationary chair to reduce movement artifacts. 

262 After fitting the fNIRS cap to the participant’s head, signal quality was checked for each source-

263 detector channel and calibrated if needed to make sure the fNIRS fiber optics made good contact with the 

264 scalp of the participant, and that the detector was sensitive to cardiac pulsation as a sign of good signal-

265 to-noise (SNR) ratio. Any detector saturation was also adjusted for in this step. fNIRS data was recorded 

266 for each participant using custom data collection software that interfaced with the fNIRS system, described 

267 in [43].

268

269

270 -------------------------------------------------------------------------------------------------------------------------------------------------------

271 Fig. 2. Probe layout for Experiment 1. Sources are in red and detectors are in blue. Channels are in 

272 black, labeled 1-5 on the right hemisphere and 6-10 on the left.

273 -------------------------------------------------------------------------------------------------------------------------------------------------------

274

275 fNIRS Data Processing

276

277 Raw light attenuation measurements were converted to oxy-hemoglobin and deoxy-hemoglobin 

278 concentration changes using the modified Beer-Lambert law [44,45]. We removed long-term drifts in the 

279 data by subtracting a least-squares linear fit. We then band-pass filtered the data to remove cardiac and 

280 respiration signals (retaining frequencies in the range 0.01-0.1 Hz, as suggested by [40]). To mitigate 

281 motion artifacts in the form of sudden spikes or shifts, we applied a widely-used correlation based signal 

282 improvement (CBSI) filter, which is based on the assumption that true oxy-Hb and deoxy-Hb should be 

283 maximally negatively correlated [46]. As an alternative, we also ran all of the analyses on data filtered 

284 with a kurtosis-based wavelet filter (kbWF), shown previously to outperform other motion artifact 
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285 removal methods such as PCA, tPCA, regular wavelet filter, and spline interpolation [47] -- results with 

286 the kbWF were qualitatively identical and hence not reported here. With the resulting time series, we 

287 computed partial correlations for each channel pair (CP), given the other channels (since there were 10 

288 channels, there were 45 (10 choose 2) distinct CPs). These 45 computed partial correlations, which are 

289 represented graphically in correlation matrices (as in Figure 3) were the main quantities studied in this 

290 paper. We used partial correlation as the index of RSFC in this study because it can factor out correlation 

291 between fNIRS channels due to shared extracerebral components, and is thus thought to characterize 

292 relationships between brain regions more precisely than Pearson’s correlation [48,49].

293

294 Data Analysis Strategy

295

296 Our first goal was to test for significant homologous connectivity, characteristic of RSFC. To do 

297 this, we compared functional connectivity between regions that were homologous (bilaterally symmetric) 

298 to that between non-homologous regions.

299 Our second goal was to test the validity of Freeplay as a task for measuring resting state. To do so, we 

300 compared the functional connectivity in adults between the two conditions, “at rest” and Freeplay. Since 

301 it is difficult to directly measure similarity between two groups of functional connectivity patterns, we did 

302 so by estimating the accuracy of classifiers trained to distinguish different conditions (e.g., between “at 

303 rest” and Freeplay in adults). Higher accuracies suggest greater distinguishability, and hence greater 

304 dissimilarity, between classes. Given the high-dimensionality (45 CPs) of our problem, we used logistic 

305 LASSO (i.e., logistic regression with the Least Absolute Selection and Shrinkage Operator penalty), which 

306 should perform relatively well in our high-dimensional setting [50]. Accuracy was estimated using leave-

307 one-out cross-validation (LOOCV). Within each LOOCV fold, the LASSO regularization parameter λ 

308 was selected by 10-fold cross validation. To reduce the chance that results were classifier specific, we also 
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309 tried a highly distinct classifier, k-nearest neighbors (kNN) classification. Accuracy was again estimated 

310 by LOOCV, with k selected within each LOOCV fold by 10-fold cross-validation (over k=1,…,10, 

311 covering a range of common values [51]). To provide a baseline for comparison, we similarly compared 

312 data from adults versus children in Freeplay.

313

314 Results

315

316 First and foremost, all participants (including all child participants) completed the task and 

317 provided usable data.

318

319

320 -------------------------------------------------------------------------------------------------------------------------------------------------------

321 Fig. 3. Group-averaged partial correlation matrices for children in Freeplay and for adults in 

322 Freeplay and at rest. Channels 1-5 were located on the right hemisphere; channels 6-10 were located on 

323 the left hemisphere. Homologous CPs are circled in the child panel. 

324 -------------------------------------------------------------------------------------------------------------------------------------------------------

325

326 Homologous versus non-homologous CPs

327

328 First, we compared all homologous to all non-homologous pairs of distinct channels, to identify 

329 the strong inter-hemispheric homologous connections. Specifically, we averaged homologous and non-

330 homologous CPs within subjects, forming two sets of measured CP correlations (r-values; separately for 

331 adults and children). This comparison showed that homologous CPs were significantly more strongly 
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332 connected than non-homologous CPs (p<0.001 for both children and adults, by a two-sample t-test of the 

333 Fisher z-transformed r-values as well as a permutation test). 

334

335

336 Adult correlations in Freeplay versus “at rest”

337

338 Next, we compared adult correlations in Freeplay and “at rest” to see how Freeplay compares with 

339 traditional resting state. Logistic LASSO, trained to predict Freeplay or “at rest” from CP correlations, 

340 gave a LOOCV accuracy of 38.462% (worse than chance, 50%), suggesting that the two tasks do not seem 

341 to elicit highly distinct connectivity (95% Wilson score confidence interval (CI): [19.76%, 57.16%]). The 

342 kNN classification to predict Freeplay or “at rest” from CP correlations achieved a LOOCV classification 

343 accuracy of 57.7% (95% Wilson score confidence interval (CI): [48.32%, 67.08%]), just over chance.

344

345 Adult versus child correlations in Freeplay

346

347 Next, we compared correlation matrices between adults and children, both in Freeplay. Logistic 

348 LASSO, trained to predict “adult” or “child” from CP correlations, gave a LOOCV accuracy of 83.333%, 

349 suggesting that adults and children exhibit highly distinct connectivity in Freeplay  (95% Wilson score 

350 confidence interval (CI): [69.997%, 96.669%]). 

351

352 Experiment 2: Test-retest reliability with children in Freeplay

353

354 In this experiment, we studied reliability of the NIRS- Freeplay RSFC measure in children, in 

355 terms of consistency of results across independent scans (intersession, or test-retest, reliability). To do 
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356 this, we collected multiple NIRS-Freeplay scans from children on different days and estimate a 

357 connectivity network from each scan. We then measured similarity of this estimated connectivity network 

358 both across scans within subjects and across subjects.

359

360 Methods

361 Participants

362

363 Participants consisted of 19 children (aged 3 to 5 years, Mage during first scan = 4.34, Mage during 

364 second scan = 4.65, Medage during first scan = 4.31, Mage during second scan = 4.82) recruited from the 

365 Children’s School. Data was collected longitudinally at 2 time points (on average 3.7 months apart), with 

366 2 scans (approximately 1 week apart) at each time point. These data were collected as part of a bigger 

367 study, and the longitudinal aspect was not analyzed in this study. 17 participants completed all 4 scans; 

368 data from 2 participants who were not able to complete all 4 scans due to scheduling constraints was 

369 discarded.

370

371

372 -------------------------------------------------------------------------------------------------------------------------------------------------------

373 Fig. 4. Probe layout for Experiment 2. Sources are in red and detectors are in blue. Channels are in 

374 black, labeled 1-5 on the right hemisphere and 6-10 on the left.

375 -------------------------------------------------------------------------------------------------------------------------------------------------------

376

377 Freeplay and fNIRS Set-up

378

379 The Freeplay set-up was as in Experiment 1. fNIRS set-up was almost identical to that in 
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380 Experiment 1, with 4 light sources and 8 detectors, to give oxygenation measures in 10 channels on the 

381 prefrontal cortex, except with a slightly different sensor layout as depicted in Figure 4. 

382

383 fNIRS Data Processing

384

385 Data was preprocessed and partial correlations computed as in Experiment 1. Again, since there 

386 were 10 channels in this probe design, there were 45 (10 choose 2) distinct CPs.

387

388 Measures of within vs. between subject variance

389

390 Kendall’s W and intra-class correlation (ICC) are measures of concordance between groups, 

391 frequently used to study test-retest reliability in fMRI data [52-54,17]. In particular, these measures 

392 quantify the degree to which scans from the same participant agree compared to scans between different 

393 participants. Kendall’s W and ICC both range from 0 to 1, where values approaching 1 indicate high 

394 stability of inter-participant variability -- that is, scans are highly reproducible and unique within 

395 participants. Smaller values (approaching 0) indicate low stability of inter-participant variability, where 

396 scans are highly variable within participants and not differentiable between participants.

397 Kendall’s W and ICC are defined for a given CP as follows. Given ranks (over subjects) of the 

398 RSFC in that CP (in each scan), Kendall’s W is the mean (over subjects) of the squared deviation of the 

399 sum (over scans) of the ranks. That is, if m is the number of scans and n is the number of subjects, if ri,j 

400 denotes the rank of the ith subject’s RSFC in scan j, then Kendall’s W is defined by the following set of 

401 equations:

402          𝑅𝑖 =
𝑚

∑
𝑗 = 1

𝑟𝑖,𝑗,           𝑅 =  
1
𝑛

𝑛

∑
𝑖 = 1

𝑅𝑖         (1)
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403    𝑆 =
𝑛

∑
𝑖 = 1

(𝑅𝑖 ‒ 𝑅)2,          𝑊 =
12𝑆

𝑚2(𝑛3 ‒ 𝑛)
 .         (2)

404 ICC is defined as the proportion of between subjects variation to total variation. That is,

405 𝐼𝐶𝐶 =
𝐵𝑆𝑉

𝐵𝑆𝑉 + 𝑊𝑆𝑉,

406 where BSV denotes the between-subjects variance (i.e., the average (over scans) of the variance across 

407 subjects) and WSV denotes the within-subjects variance (i.e., the average (over subjects) of the variance 

408 across scans).

409

410 Measures of similarity between binarized connectivity networks

411

412 In addition to the partial correlation matrix itself, studies of RSFC are often interested in the 

413 network structure of functional connectivity. Studying this requires binarizing the partial correlation 

414 matrix (i.e., identifying each CP as either “connected” or “disconnected”. Therefore, to study reliability 

415 of the functional connectivity network, we binarized each CP by thresholding the absolute value of its 

416 partial correlation value at a “connectivity threshold” θ; absolute values below θ were replaced with 0 

417 (denoting an unconnected CP), and absolute values above θ replaced by 1 (denoting a connected CP).

418 We then used two indices of inter-scan reliability: the F1 score (a.k.a., Dice coefficient), a general 

419 measure of overlap between two sets (twice the ratio of the number of CPs functionally connected in both 

420 scans to the sum of the numbers of functionally connected CPs over both scans) and the Matthews 

421 correlation coefficient (MCC), the correlation between the binarized pattern of 0’s and 1’s, across all 45 

422 CPs. Accuracy (proportion of agreement) between the two binarized scans was not used as a measure of 

423 similarity because it is extremely sensitive to the connectivity threshold; for example, using a threshold 

424 of 0 (full connectivity) or 1 (no connectivity) results in a perfect accuracy of 1. The raw (continuous, un-
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425 thresholded) correlation was also not used, as it is relatively difficult to interpret as a measure of reliability. 

426 We chose θ to maximize (over 1000 equally spaced values between 0 and 1) each reliability index (F1 

427 score and MCC) and used LOOCV to obtain an unbiased estimate of each reliability index.

428

429

430 Results

431

432 Group-level RSFC correlation

433

434 The calculated Pearson and Spearman correlations between mean (across subject) RSFC matrices 

435 in each scan (lower triangle of the matrices, excluding main diagonal) were 0.95 with 95% Confidence 

436 Interval (CI) (0.88, 0.96) (deoxy-Hb: 0.95 with 95% CI (0.89, 0.95)) and 0.85 with 95% CI (0.64,0.90) 

437 (deoxy-Hb: 0.85 with 95% CI (0.58, 0.90)), respectively. This scan1-scan2 correlation for each channel 

438 pair is plotted in Figure 5 (panel (c)), along with visualizations of the group level RSFC matrices (panels 

439 (a) and (b)). The strong correlation values suggest that conclusions drawn from RSFC group-level matrices 

440 should be fairly reproducible. Figure 5(c) also suggests that the presence of adjacent channel pairs, which 

441 tend to be strongly functionally connected, skews the RSFC distributions to the right. However, stronger 

442 correlations of homologous pairs compared to the rest (non-homologous or adjacent) are still observed. 

443 Nevertheless, we investigated the effects of adjacent channel pairs by also running all the analyses with 

444 adjacent channels removed – the results are discussed in the section “Post-hoc tests” below.

445 To also measure consistency across scans at the individual level, we calculated Pearson and 

446 Spearman correlations between RSFC matrices in each scan, for each subject. The average of those 

447 correlations was 0.47 with 95% CI (0.42,0.53) (deoxy-Hb: 0.47 with 95% CI (0.42, 0.54)) for Pearson and 
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448 0.43 with 95% CI (0.37, 0.49) (deoxy-Hb: 0.42 with 95% (0.36, 0.48)) for Spearman, suggesting that 

449 consistent, detectable signals are present even at the individual level. 

450

451

452 -------------------------------------------------------------------------------------------------------------------------------------------------------

453 Fig. 5. Correlation matrices for scans 1 and 2. Plot of correlation between the two correlation maps 

454 shown on the right. Each point corresponds to a CP. Adjacent and homologous CPs, which consistently 

455 exhibit stronger functional connectivities, are distinguished from other CPs.

456 -------------------------------------------------------------------------------------------------------------------------------------------------------

457

458 Within vs. between subject variance

459

460 Kendall’s W values (across subjects, between scans, for each CP) had a significantly positive mean 

461 (across CPs) of 0.55, with 95% CI (0.52, 0.60) (deoxy-Hb: 0.55 with 95% CI (0.50, 0.59)). Similarly, ICC 

462 values (across subjects, between scans), also calculated for each CP, were significantly positive, with a 

463 mean of 0.53 with 95% CI (0.51, 0.55) (deoxy-Hb: 0.52 with 95% CI (0.50, 0.55)). Both of these results 

464 reflect greater consistency within subjects (or smaller within-subject variance) than between subjects.

465

466 Consistency of connectivity patterns

467

468 The mean (across LOOCV folds) F1 score was 0.71 with 95% CI (0.66, 0.76) (deoxy-Hb: 0.67 

469 with 95% CI (0.63, 0.71)). The mean cutoff threshold chosen was θ=0.73, corresponding to functional 

470 connectivity in a mean of 6.4% of CPs. The mean MCC was 0.44 with 95% CI (0.37, 0.51) (deoxy-Hb: 

471 0.39 with 95% CI (0.29,0.49)), with a mean cutoff threshold of θ=0.66, corresponding to functional 
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472 connectivity in a mean of 9.4% of CPs. Within each cross-validation fold, a nested LOOCV was used to 

473 select the thresholds that maximized the reliability score. The entire cross-validation curves are shown in 

474 Figure 6.

475 We performed a permutation test comparing the F1 score or MCC to that after randomly permuting 

476 the CPs in the second scan for each participant, to test a null model where CPs are randomly identified as 

477 functionally connected, with the two scans independent. This test rejected the null for both F1 score and 

478 MCC (ps<0.01; 1000 permutations). That is, within subjects, we find functional connectivity consistently 

479 in the same channels between scans. 

480 Interestingly, similar tests in which second scans were randomly permuted across participants (i.e., for 

481 a null model of identical/non-distinct participants) were not significant (ps>0.05), suggesting consistency 

482 across subjects in Freeplay. This is encouraging from the perspective of trying to identify a common 

483 pattern of functional connectivity across individuals. However, further work is needed to understand the 

484 sensitivity of the paradigm to individual differences (that may correlate with other quantities of interest, 

485 such as age, or behavioral measures), for which we conjecture that the continuous (un-thresholded) CP 

486 correlations may be more informative.

487

488 -------------------------------------------------------------------------------------------------------------------------------------------------------

489 Fig. 6. Plot of reliability for each measure over threshold values ranging from 0 to 1. Thin lines show 

490 bootstrapped 95% confidence bands. The threshold that maximizes reliability was the same for both F1 

491 and MCC, as indicated by the vertical orange line. For F1 and MCC, reliability is undefined when the 

492 entries are all 0 or all 1.

493 -------------------------------------------------------------------------------------------------------------------------------------------------------

494

495 Post-hoc tests 
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496

497 As is apparent from the group RSFC matrices shown in Figures 2 and 4, adjacent channels are 

498 quite strongly correlated with each other -- thus, it is possible that the consistent patterns we detected were 

499 driven primarily by these correlations between adjacent channels. To test for this possibility, we re-ran all 

500 of the concordance tests after removing adjacent channel pair correlations from the RSFC matrix. The 

501 results are shown in Table 1. Although significance levels were generally reduced, all tests that had been 

502 significant when adjacent channels were included continued to be significant after their removal, at alpha 

503 level 0.05.

504

505 Tab. 1. Results excluding adjacent channels.

Quantity Oxy (95% CI) Deoxy (95% CI)

Pearson (Group) 0.75 (0.32, 0.77) 0.74 (0.46, 0.78)

Spearman (Group) 0.71 (0.43, 0.75) 0.71 (0.34, 0.78)

Pearson (Subject) 0.18 (0.09, 0.26) 0.18 (0.09, 0.25)

Spearman (Subject) 0.17 (0.06, 0.25) 0.17 (0.07, 0.25)

Kendall’s W 0.55 (0.50, 0.61) 0.55 (0.49, 0.59)

ICC 0.53 (0.49, 0.55) 0.53 (0.50, 0.56)

F1 0.51 (0.47, 0.54) 0.52 (0.49, 0.54)

MCC 0.05 (-0.01, 0.12) 0.06 (0.00, 0.13)

506
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507

508 Summary of results

509

510 This study explored the feasibility of using fNIRS and Freeplay to measure RSFC in children. 

511 Consistent with previous results, we were able to recover connectivity features characteristic of RSFC, 

512 helping validate our fNIRS set-up for measuring traditional RSFC. More specifically, homologous 

513 channel pairs were significantly more correlated than non-homologous channel pairs, consistent with 

514 previous results which found higher coherence between bilateral homologous region pairs than in fronto-

515 posterior pairs or arbitrary pairs in adults [40,41].

516 Additionally, in adults, correlation patterns in Freeplay were similar to that in traditional resting 

517 state -- trained classifiers did not perform significantly better than chance, suggesting that Freeplay may 

518 produce a state similar to that in the traditional resting state condition. Since Freeplay was designed to 

519 approximate resting state in children, who struggle with the traditional resting state task, this comparison 

520 of Freeplay to the traditional task in adult participants serves as an additional check for the viability of 

521 fNIRS-Freeplay for measuring RSFC in children. Crucially, all children completed the task and provided 

522 usable data, speaking to the practical utility of the Freeplay paradigm for studying RSFC in children. 

523 Further, correlations in adults and children in Freeplay showed different patterns, from which a trained 

524 classifier was able to predict “adult” or “child” with high accuracy -- this is in line with our expectations 

525 given that we know RSNs develop significantly with age. Finally, Experiment 2 demonstrated inter-scan 

526 reliability, in that similar connectivity patterns are found between 2 independent scans of the same 

527 individual, and that within-subject variance is significantly lower than between-subject variance. This 

528 reliability is observed for both the raw RSFC matrices and the resulting connectivity networks after 

529 thresholding appropriately, and is observed both with and without adjacent channel pairs.

530
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531 Limitations and future directions

532

533 The test-retest reliability value for ICC (0.53) was lower in our paper than in a previous paper (0.7) 

534 by Niu et al. looking at RSFC test-retest reliability in adults [19]. Some possible reasons for this may be 

535 that: 1) since we are measuring in children, the data may be noisier, and 2) they measured functional 

536 connectivity in terms of Pearson (rather than partial) correlations, which can be inflated by other sources 

537 of correlation between channels besides functional brain correlations.

538 Although our study compared “Freeplay” to the traditional “at rest” condition measured with adults, 

539 it did not compare to either a true task condition, or a “movie-watching” condition. Comparing the 

540 functional connectivity patterns in “Freeplay” with not just “at rest” but also these other conditions may 

541 help us better characterize RSFC. For example, if we are able to show that a trained classifier can 

542 effectively distinguish between adults in the “at rest” or “Freeplay” conditions from those in the movie 

543 watching condition, it would provide a comparison condition for “Freeplay” as well as corroborate 

544 previous findings that “movie watching” alters resting state.

545 The current study introduced a new paradigm for measuring resting state functional connectivity 

546 in children that combines fNIRS and a method called Freeplay to help increase participant compliance 

547 and induce a state similar to adult resting state in children. We demonstrated the practical feasibility as 

548 well as the construct validity of the Freeplay-fNIRS paradigm for studying RSFC in children by measuring 

549 correlations between pairs of regions in the PFC. As previously discussed, the PFC is a central player in 

550 the central executive network (CEN), and studying its RSFC patterns over development is crucial to 

551 understanding how the CEN develops and supports executive function (EF). Zhao et al. [55] recently 

552 found that network properties of RSFC in the PFC, as measured by fNIRS, were correlated with varying 

553 performance in EF tasks in adults. An important next step will be to extend those investigations to children. 

554 Future work can explore the changes in PFC connectivity structures that parallel observed cognitive 
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555 development in EF or other domains subserved by the PFC. As a practical setup for measuring RSFC in 

556 children, the fNIRS-Freeplay paradigm will allow investigation of questions such as these to advance 

557 understanding of the neural mechanisms of cognitive development. 

558
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