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Abstract—The word embeddings related to paradigmatic and
syntagmatic axes are applied in an fMRI encoding experiment
to explore human brain’s activity pattern during story listen-
ing. This study proposes the construction of paradigmatic and
syntagmatic semantic embeddings respectively by transforming
WordNet-alike knowledge bases and subtracting paradigmatic
information from a statistical word embedding. It evaluates
the semantic embeddings by leveraging word-pair proximity
ranking tasks and contrasts voxel encoding models trained
with the two types of semantic features to reveal the brain’s
spatial pattern for semantic processing. Results indicate that in
listening comprehension, paradigmatic and syntagmatic semantic
operations both recruit inferior (ITG) and middle temporal gyri
(MTG), angular gyrus, superior parietal lobule (SPL), inferior
frontal gyrus. A non-continuous voxel line is found in MTG with
a predominance of paradigmatic processing. The ITG, middle
occipital gyrus and the surrounding primary and associative
visual areas are more engaged by syntagmatic processing. The
comparison of two semantic axes’ brain map does not suggest a
neuroanatomical segregation for paradigmatic and syntagmatic
processing. The complex yet regular contrast pattern starting
from temporal pole, along MTG to SPL necessitates further
investigation.

Index Terms—fMRI encoding, semantic embedding, paradig-
matic, syntagmatic, regression

I. INTRODUCTION

Some functional magnetic resonance imaging (fMRI) inves-
tigations on word-meaning processing in the human brain have
correlated semantic embedding vectors with neural activity
recording. Especially it probes into the representational and/or
operational functionalities of neural regions. Previous studies
[1]–[6] revealed a distributed pattern of cortical areas’ correla-
tion with word semantic models. The relatively well-modeled
voxels are typically located in the temporal, parietal and frontal
lobes. Studies show that context length [5], semantic category
[2], [7], conceptual concreteness [8] and perceptual properties
[9], [10] are all related factors to differentially elicit semantic
activities in different lobes. Yet, despite abundant literatures on
theoretical semantic network architecture[11], no concluding
evidence enlightens each cortical region’s functional role in
the processing.

Classical view [12] supported a temporal construction of
semantic processing. To bridge the temporal-centric semantic
processing theories and the found distributivity, a structure
of semantic hub [13], [14], located in the bilateral anterior

temporal lobe (ATL), acting as a centralized location that
hosts and/or processes semantics, is by far consistent with
human neural modeling studies [15], anatomical analysis [16]
and pathological observations [17]. For example, in patients
with semantic dementia (SD), the ATL atrophy and hypo-
metabolism lead to a conceptual deficit. These patients develop
a specific loss of capability to use distinctive features (such
as stripes for zebras) necessary to identify and characterize
a concept. So that, they will fail to name specific categories
(eg. zebra) and would use similar or hypernymous categories
(eg. horse) instead. The semantic hub’s involvement in linguis-
tic and non-linguistic semantic tasks indicates a generalized
supra-modal or amodal concept network storage in ATL,
beyond word meanings. It is said to accept inputs from a
specific semantic neural component and activates reciprocally
other components to evoke a complete mental representation
of a word. Therefore, the hub must support a holistic structure
of all words with at least minimal information. [18] suggests
that the left ATL is a non-syntactic conceptual hub involved
in semantic composition. The convergence of ATL’s relat-
edness to semantic composition of conceptual attributes, to
the preservation of hypernymous or similarity links (zebra–
horse) and to the loss of the distinctive features in case of
lesion to this region, needs to be further explored. As for the
other components in the semantic processing system, they are
either responsible for a modality specific semantic information
stream or a semantic control/computation function.

An analogy in structural linguistics for this two-fold se-
mantic processing is the paradigmatic and syntagmatic axes
proposed by De Saussure, Jakobson and Halle. The two-axis
proposition is best illustrated by an example in Table I. To
render the paradigmatic absentia candidates, the responsible
neural structure should hold at least a local lexical similarity
comparison in the paradigmatic sense, and sort out the most
similar words. The syntagmatic axis looks for semantic as-
sociations mainly by collocation. The functional association
of syntagmatic semantics with the neural components found
active in the aforementioned previous studies needs to be
further explored. In addition, Saussure’s theoretical proposal
is completed by a psycholinguistic meta-analysis by [20] on
two dissociated groups of aphasics each associated with one
semantic axis, namely selection-deficits for paradigmatically
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TABLE I
AN EXAMPLE OF SYNTAGMATIC AND PARADIGMATIC AXES

syntagmatic

pa
ra

di
gm

at
ic The ridiculous girl fell into the pond.

silly person jumped river.
foolish woman tripped lake.
funny lady plunged sea.
crazy princess walked ocean.
klutzy child ran pool.

This example is adapted from [21]. Gray-colored texts are in absentia,
black-colored texts are in presentia.
On a phrasal level, the twofold proposition projects lexical entities in
a phrasal linguistic unit onto two semantic axes. The syntagmatic axis
operates in presentia, it combines words (present in the context) into larger
linguistic units (phrases, sentences and paragraphs) using contexts and
syntactic rules. In this case, ridiculous and girl is combined into a larger
semantic unit. Each word in the larger unit is combinatorially bound to
another, and the combination adds additional semantic value to the whole
larger linguistic unit.
In contrast, the paradigmatic axis provides alternative words (in absentia)
to clarify and complete the meaning of the current present word in the
phrase. These unselected candidates proposed by the paradigmatic axis are
near synonyms to the default word, and they do not change the meaning
of the phrase.

impaired aphasics, and contexture-deficits for syntagmatically
impaired ones, implying potentially different cortical loci for
the processing of two axes.

This study leverages the contrast of paradigmatism and
syntagmatism to investigate the nature of each cortical region’s
involvement in lexical semantic processing.

II. METHOD

This study hypothesizes on a representational and/or opera-
tional account that the paradigmatic and syntagmatic axes en-
gage different yet not necessarily dissociated neural structures
during semantic processing. Consistent with other works using
fMRI encoding experiments [1], we propose an investigation
by modeling neural activity with semantic embedding features,
separately for the paradigmatic and syntagmatic axis, to po-
tentially segregate the respective responsible neural structures.

The experiment is conducted with priorly collected data
from the framework project ”Neural Computational Models
of Natural Language” (Principle Investigators: John Hale and
Christophe Pallier). The stimuli materials preparation, partici-
pant recruitment, fMRI experiment and fMRI data preprocess-
ing are carried out in [22].

Following the standard fMRI encoding procedure, the first
step is to model the time-sequences of the administered stimuli
received by experiment participants during the fMRI sessions.
The external stimuli model will rely on paradigmatic and syn-
tagmatic representation models (semantic embeddings), which
themselves are abstract vectorial representations of semantic
values in a high-dimensional space. The second step consists
of voxel-level regression analyses which map the theoretical
stimuli temporal signals onto actual fMRI measured brain
activities. The brain activities are modeled as a temporo-spatial

4-dimension data. In MRI recordings, the brain volume is
divided into small 3D volume units, namely voxels. Each voxel
has a time series of spatially aggregated brain-activity mea-
surement within its volume. A voxel-wise regression model
is a mathematical function mapping the temporal semantic
sequences onto the brain activity signal space.

The result analysis relies on each voxel model’s predictive
power provided with its training feature dataset. Stronger the
model performance (or the model performance improvement
compared to another model), the stronger the correlation
between the neural activity in that voxel and the semantic and
non-semantic feature contained in the training set.

A. Participants

20 French native speakers (11 females, average age of
24.5 years-old, range 18–39 years-old, right handed according
Edinburgh’s inventory [23] adapted for French, averaged score
0.903, range 0.375–1, without antecedent neurological or psy-
chiatric disorders) were recruited from NeuroSpin’s volunteer
inventory. The recruited participants declare to have not been
exposed to any material related to The Little Prince within
last 5 years, including written books, audiobooks, films in any
languages, and to be unable to clearly recall the story of the
book.

B. Procedure

After being received by a researcher and informed with
the experience protocol, the participants are first examined
by the lab doctor, then invited to scan an anatomical MRI
which lasts 8 minutes. In the scanner, the participants are
able to see the instructions and visual aides displayed on
the screen through a mirror. During the anatomical scan, two
illustrations from the first two chapters of the Little Prince
[24] are presented to prepare the participants. A sound test
phase follows: the introductory paragraphs are administered to
the participants under the noise of MRI scanner. The auditory
stimuli is adapted from the audiobook [25]. Once the sound
adjusted, the functional imaging sessions begin.

For the comfort of the participants and their concentration
during listening comprehension, the audiobook is divided into
9 blocks, so that each block lasts at most 15 minutes. For
each chapter, the reading of chapter title is removed from
the audio, and 3 seconds of silence is added. Within each
block, the participants listened passively with eyes closed,
to introduce the minimum amount of perturbation to the
BOLD signal. At the end of each block, they were tested
with comprehension multi-choice questions displayed on the
screen and responded orally. Additionally, they were required
to answer “comprehension questions” necessitating finer and
deeper reflexions or to retell the synopsis of the past block.
4 or 5 blocks are played in the morning, and the rest in the
afternoon. A final block is added, where the audio stimuli
is comprised of normal French sentences and acoustically
deformed sentences to localize language-processing related
areas.
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C. MRI Acquisition and Preprocessing

Structural and functional data are acquired on a whole-
brain 3-Tesla Siemens scanner at NeuroSpin. Structural images
are collected in 154 axial slices with 1 mm isotropic voxels.
Functional images are collected with multi-echo EPI sequence
(3.1593mm3 , TR = 2000 ms). Multi-echo sequence is used to
boost BOLD and non-BOLD component identification based
on TE dependence, resulting in a higher signal-to-noise ratio
in the final image rendering [26].

MRI data is analyzed with Multi-Echo Independent Compo-
nent Analysis (ME-ICA) toolkit (https://github.com/ME-ICA/
me-ica). Raw structural data and 4-D time-series data grouped
by TE are supplied to render de-noised sMRI and fMRI, which
are also spatially warped in Montreal Neurological Institute
(MNI) template.

D. Paradigmatic Embedding

The paradigmatic embedding is built based on a French
version of WordNet [27], [28], WOLF [29], a knowledge graph
of words and abstract concepts. WordNet models synonym
groups (synset) as vertices in a graph, and various semantic
relations as edges connecting two vertices. The explicit seman-
tic relations in WordNet are hand-coded by linguists. WOLF
is a machine translated version of WordNet, manually verified
and corrected by its authors.

With WordNet-alike knowledge bases, it is possible to
compare pure taxonomical semantic similarity. Therefore, the
knowledge base supports a modeling implementation of the
paradigmatic axis. Such speculation is backed by a meta-
analysis [30]. [30] collected a set of proposed distance metrics
on WordNet then compared the word-pair ‘proximities’ against
human similarity/relatedness judgement data (word-pair prox-
imity ranking task). The results show that with WordNet it
is possible to derive paradigmatic-specific semantic informa-
tion. [31] uses WordNet retrofitting to enhance distributional
embeddings. With the same ranking task and benchmarks, the
enhanced versions perform better in paradigmatic tests and
significantly worse in syntagmatic settings.

In WordNet-like knowledge bases, some of the semantic
relations are paradigmatic: synonymy, hypernymy, hyponymy,
the relation where an adjective is a participle of a verb
(exhausting–exhaust), adjective having similar meaning (ex-
hausting–effortful) and adverb deriving from adjective (essen-
tially–essential). Other relations are syntagmatic: collocations,
meronymy/holonymy (ceil–house), entailment/causality (sun-
set–milky-way). To build the paradigmatic embedding, We use
[32]’s algorithm to transform the tree-like knowledge base
consisting of synsets into a lexical semantic embedding, using
a sub-graph of WordNet with only paradigmatic edges.

Consider vertices, which are more closely and densely
connected by paradigmatic edges, more proximate in the
paradigmatic sense. The algorithm implements first an infinite
random walk to compute the graph distance between every
word-pair with a discount factor for longer paths. In Eq. 1,
M is the adjacency matrix of the knowledge graph, γ is a
decay parameter weighting how longer paths are dominated

by shorter ones. MG is the convergent limit of the iterative
process, which is the final state of the random walk. Then a
normalized positive point-wise mutual information transforma-
tion is applied to reduce noises induced by unbalanced word
occurrence frequency. Finally a principle component analysis
(PCA) is applied for dimensionality reduction to render the
final embedding output. The number of PCs are determined in
the later feature engineering stage.

M
(n)
G = I + γM + γ2M2 + · · ·+ γnMn

MG =
∞∑
e=0

(γM)
e

= (I − γM)−1
(1)

E. Syntagmatic Embedding

The syntagmatic embedding is based on DepGloVe [33],
a GloVe-alike [34] distributional semantic models [35]–[38],
constructed based on the distributional hypothesis [39] that
words having similar context have as well similar meanings.
However, this consideration also brings close words consis-
tently co-occurring in same contexts, such as teacher and
student. In several analyses [30], [40], a set of pre-trained
corpus-based distributional word-embeddings including GloVe
are shown to always mix paradigmatic and syntagmatic axes
into the actual embedding.

Since GloVe-like co-occurrence-based statistical distributed
representation models contain both paradigmatic and syntag-
matic information, it remains as an ideal source for syn-
tagmatic information extraction as there exists no, to our
knowledge, a pure syntagmatic embedding.

Under a linear-additive approximation of the mixture of
the two semantic axes, a syntagmatic embedding can be ex-
tracted from a GloVe-like embedding by subtracting detectable
paradigmatic counterpart. Suppose the abstract paradigmatic
semantic relations modeled by the mixed embedding is also
accounted by the paradigmatic embedding constructed in the
previous section, then we can use the projection of the
paradigmatic embedding onto the mixed space to reveal the
paradigmatic component and separate the two semantic sub-
spaces.

Consider MIX, PAR and SYN in Eq. (2) as 2D matrix
representations respectively for the co-occurrence-based Dep-
GloVe, the paradigmatic embedding built with WOLF, and the
syntagmatic embedding to be constructed. The lexicons of the
three embeddings are aligned such that each row with the same
index from three matrices represents one same lexicon unit. F
is a transformation matrix learned with general linear model,
of which the computational objective is to minimize the L-2
norm of SYN.

MIX = PAR.F + SYN (2)

F. Feature Engineering

To construct stimuli-based temporal sequence features, the
audiobook and the original text of the Little Prince serve as the
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base. The onset and offset of each word in the audio document
is aligned with the text. To aggregate the semantic value
of various inflected French words, stemming is performed
for source corpora and the Little Prince with spaCy and
FrenchLefffLemmatizer [41]. The lemmatized text is
manually verified.

Five feature time-sequence groups are created. The acous-
tic energy RMS is modeled by the average square root of
the amplitude each ten millisecond, calculated with Octave
(https://www.gnu.org/software/octave/). The word presence in-
dicator WRATE is a binary feature. The feature’s activation
function is set to 1 from the onset to the offset of the
word. Content word presence indicator CWRATE is similar to
WRATE, and the feature returns 1 only if the part-of-speech
(POS) tag of the word is among nouns, verbs, adjectives and
adverbs. Two semantic feature groups PAR (for paradigmatic)
SYN (for syntagmatic) takes the latent values extracted from
the corresponding embedding for the duration of the word
utterance.

G. Encoding Regressors

Voxels are considered as independent units as in other
projects [4]. The BOLD temporal signal associated with
an arbitrary voxel j is modeled as a linear combination
of activities elicited by non-semantic and semantic features
(3). The fis are the previously presented feature temporal
sequences. For each voxel, five classes of encoding mod-
els are trained: RMS, RMS+WRATE, RMS+WRATE+CWRATE,
RMS+WRATE+CWRATE+PAR, RMS+WRATE+CWRATE+SYN.
The order of the feature groups are consistent across
different semantic modeling and the feature regressors
are orthonormalized to remove potential confounds in
later contrast analyses. Here hrf is the hemodynamic
function used in Statistical Parametric Mapping software
(https://www.fil.ion.ucl.ac.uk/spm/), provided by the Python
library nistats (https://nistats.github.io/) [42]. This function
mocks the BOLD response to neural activations. The convolu-
tion of hrf with feature activation functions models the hereby
elicited BOLD signal, converts the activation function into
regressors which are used in later regression/encoding. The
coefficients βi,j are to be determined via regression models.

BOLDj(t) =
∑
i

βi,j × fi(t) ∗ hrf(t) + Noise(t), (3)

One particularity for PAR regressors is the filtering by
regressor variance as they are based on PCA factored com-
ponents. Regressors are dropped if its variance over the time-
sequence is smaller than 10−5, which resulted 100 residual
PAR regressors.

H. fMRI Encoding

The relatively small observation samples collected from
fMRI sessions and abundant regression features motivate the
regularization with Ridge, which is described by (4) to pro-
mote the generalizability of the learned transformation matrix.

The Ridge regression training algorithm uses a regularization
coefficient αj to balance the complexity of the model and
the signal loss between the proposed model (the deterministic
part as described by (2)) and the real signal BOLDreal,j)
measured for a given voxel j. For model classes containing
PAR or SYN features, feed-forward feature selection is applied
to maximally avoid potential overfitting by taking only the first
Nj,cls number of features into consideration in voxel modeling.
The values of the regularization coefficient αj and Nj,cls are
determined independently for each voxel via a grid search in
a later stage of computation.

min
βi,j

∑
t

|
Nj,cls∑
i

βi,j × fi(t) ∗ hrf(t)− BOLDreal,j(t)|2

+ αj

Nj,cls∑
i

β2
i,j

(4)

Models are trained and evaluated by means of a block-wise
cross-validation where an fMRI record block is left to test the
model. The coefficient of determination r2 is is a measure of
the quality of the prediction. For each voxel j of a subject, the
performance of the voxel model is averaged over nine cross-
validations. Then, for each model class cls, the grid search
retains only the combination of αj and Nj,cls yielding the
highest r2. Group scores are obtained by averaging the same
voxel model scores of all subjects.

Voxel models are contrasted across model-classes and 3D
maps summarizing voxel-wise differences reveal each feature’s
spatial distribution in the human brain for language processing
tasks. Five contrasts are calculated (see (5)) to show the
evolution of lower- to higher-level language processing in the
human brain. The first four contrasts are computed with nested
voxel models. For the fifth, a non-nested model comparison
framework [43] is experimented for regression simplicity. The
contrast maps are visualized with the help of nilearn[42].

ContrastWRATE = r2RMS+WRATE − r2RMS
ContrastCWRATE = r2RMS+WRATE+CWRATE − r2RMS+WRATE

ContrastPAR = r2RMS+WRATE+CWRATE+PAR − r2RMS+WRATE+CWRATE
ContrastSYN = r2RMS+WRATE+CWRATE+SYN − r2RMS+WRATE+CWRATE
ContrastPS = r2RMS+WRATE+CWRATE+PAR

− r2RMS+WRATE+CWRATE+SYN
(5)

III. RESULTS

A. Twofold Dissociation in Embeddings

The constructed paradigmatic and syntagmatic embeddings
successfully dissociates two semantic principles as shown
by the word-pair semantic proximity ranking task (Table
II), measured with paradigmatic-/syntagmatic-specific bench-
marks. The French benchmark data are translated [44] from
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TABLE II
SEMANTIC SPACE SEMANTIC RANKING TASK RESULTS

Semantic
Space

Vocabulary
Size

Dimension Paradigmatic
SimLex-999

Syntagmatic
WS353-ASN

French

PAR 56665 634 .2812 .0511

Out of Vocabulary .048 .04

MIX

24519 200
.1449 .2078

SYN .0771 .1566

Out of Vocabulary .0797 .0711

English

PAR 15000 511 .4989 .0193

MIX 2.2M
300

.3752 .5709

SYN 8157 .2133 .5918

Out of Vocabulary .002 .024

The semantic ranking task compares the correlation between the model
predicted word-pair similarity scores and the gold-standard. The null
hypothesis is a non-existent linear correlation. Spearman’s r is reported
to measure the quality of an embedding in one semantic axis. Scores
marked in bold correspond to a p-value larger than 0.05.
Both PAR embeddings attain high correlation scores in paradigmatic
test and near-zero syntagmatic scores. Both MIX spaces perform well
in both task-sets, with a slight preference for association, consistent
with [40]’s conclusion. The extracted SYNs have comparable scores in
syntagmatic tests with MIX, but have a non-zero, yet much reduced score
in paradigmatic tests.

two widely used English datasets [45], [46] 1. By paradigmatic
sub-graph curation, the French PAR contains only paradig-
matic semantic information. The constructed French SYN
significantly reduced paradigmatic information compared to
the original embedding, while its syntagmatic counterpart is
also slightly impacted, as indicated by the task results. To
visually control the embedding quality, we sampled a few
tokens from the Little Prince and examined the vectorial
neighbours with TensorFlow (http://projector.tensorflow.org/)
embedding projector from different embeddings and were
reassured of the axis-wise purity of each embedding, thus the
effect of axis dissociation. To further validate the methodology,
the embedding construction and benchmarking are replicated
in English using WordNet and a pre-trained GloVe embed-
ding2. The replication achieves a better dissociation of two
semantic axes, supporting our methodology, and suggesting
that the French embeddings could be further tested with more
appropriate behavioral benchmark data.

B. Primary Auditory Processing

With acoustic feature RMS, the r2 distribution map illus-
trated with obtained voxel model performances (Fig. 1) reveals

1The translations are available on https://github.com/nicolasying/
Similarity-Association-Benchmarks, commit c97583f.

2The pre-trained model can be downloaded from https://nlp.stanford.edu/
projects/glove.
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Fig. 1. Acoustic energy feature reveals bilateral primary auditory cortices
with a slight left lateralization.
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Fig. 2. Content word presence indicator feature improvements are mainly
located in bilateral temporal pole, inferior temporal gyrus, frontopolar pre-
frontal.

several voxel-clusters with the most significant and largest
activations from left posterior superior temporal gyrus (pSTG,
Brodmann Area (BA) 41, peak at -60 -12 4, r2max = 0.0362),
followed by right pSTG (61 -13 2, r2max = 0.0328). Other
important yet much weaker activations are found in right
middle cingulate cortex (MCC, BA23, 0 -24 29, r2max =
0.0189) and right middle frontal gyrus (MFG, BA10, 29 56
20, r2max = 0.0180).

C. Gross Semantic Processing

Possibly due to the collinearity between RMS and WRATE,
the addition of word presence indicator to the feature set does
not improve voxel-models. The results are omitted. CWRATE
on the contrary, boosts a large portion of voxels’ performance
especially for those initially badly predicted with only RMS
and WRATE features (Fig. 2), indicating that voxels processing
semantic information has a limited usage of primary acoustic
features.

The major improvement of CWRATE is remarked in left
middle and inferior temporal pole (TP) (BA38, -53 11 -33), bi-
lateral posteroinferior temporal gyrus (ITG, including fusiform
gyrus FG, BA19/37, -47 -43 -24, 45 -69 -38), frontopolar
prefrontal cortex (fpPFC, near rectus gyrus, -5 46 -26) and
posterior cerebellum (Wilcoxon’s W=136, ∆r2>0.0067, p-
value<10−3.66 uncorrected).

D. Paradigmatic Processing

Fig. 3 illustrates the voxel performance improvements when
paradigmatic semantic embedding features PAR are added to
RMS+WRATE+CWRATE regressors. The most improved voxel
clusters are located in bilateral middle temporal gyri (MTG,
-51 -34 1, 57 -36 0, left cluster more significant), right
angular gyrus (AG, 35 -65 44) and left superior parietal lobule
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Fig. 3. Paradigmatic embedding improves voxel models located in bilateral
middle temporal gyri, angular gyri and left superior parietal lobule.
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Fig. 4. Syntagmatic embedding improves voxels from the bilateral anterior
temporal lobe, posterior middle temporal gyri, bilateral inferior frontal gyri,
right angular gyrus and left middle occipital gyrus.

(SPL, -27 -72 44) (W=210, ∆r2>0.0079, p-value<10−4.35

uncorrected).

E. Syntagmatic Processing

Fig. 4 illustrates the voxel performance improvements
when syntagmatic semantic embedding features are added
to RMS+WRATE+CWRATE regressors. The most significant
improvements are slightly different from paradigmatic neural
responses. The most significantly improved cluster, which is
located in left MTG, is more posterior than that found for
PAR contrast (-53 -58 3). Other important clusters include
bilateral inferior frontal gyrus pars triangularis (IFGtri, -46 37
11, 50 35 8), left middle occipital gyrus (MOG, -32 -78 41),
right AG (43 -75 39) (W=190, ∆r2>0.0065, p-value<10−4.18

uncorrected).

F. Paradigmatic and Syntagmatic Particularity

Current data suggest that paradigmatic and syntagmatic
semantic processing are not supported by macroscopically
dissociated neural components: the voxels along left MTG,
right anterior and posterior MTG, bilateral SPL and IFGtri
are improved equally by PAR and SYN.

To reveal a differential map for two semantic axes’ prefer-
ence, the two classes of voxel models are contrasted with each
other (Fig. 5). Most voxels are slightly better modeled by SYN
models. Along the non-nested model comparison framework
[43], the collinearity between paradigmatic and syntagmatic
regressors are discovered. With PAR feature regressors, it is
not possible to predict SYN features via a generalized linear
model, whereas SYN regressors can be mapped to partially
reconstruct first 5 PAR regressors.

The Wilcoxon test on voxel models of 20 subjects yields two
small significant voxel clusters for PAR in left superior frontal
cortex (SFC, BA10, -27 59 25) and left anterior cingulum

L R
L R

-0.009

-0.0045

0

0.0045

0.009

SIM - ASN Contrast, Group
r2 SIM-ASN

∆r2

Fig. 5. Paradigmatic and syntagmatic voxel model contrast. Positive values
correspond to preference for paradigmatic processing, negative values to
syntagmatic.

cortex (ACC, -8 34 25) (∆r2>0.0069, p-value<0.05 voxel-
wise multi-comparison corrected). Left aSTG, right pSTG,
right posterior superior temporal sulcus (pSTS, BA22) and
left aSTS/middle TP are also reported (p<0.001 uncorrected).
SYN found 17 small clusters in bilateral visual association

areas (BA18), primary visual areas (BA17), ventrotemporal
areas (ventral ITG, parahippocampal gyrus), left SPL, left tha-
lamus and bilateral cerebellum (∆r2>0.0068, p-value<0.05
voxel-wise multi-comparison corrected).

IV. DISCUSSION

The acoustic signal regressor is able to provide a primary
auditory processing locus located in bilateral BA41, consistent
with existing literature [47]. The slight left lateralization of
acoustic voxel-model performance is consistent with Ter-
vaniemi and Hugdahl’s [48] finding that left lateralization
is linked to speech processing. The bilateral inferotemporal
improvements, starting from fusiform gyri to anterior temporal
regions, brought by content word presence indicator is asso-
ciated with semantic memory processing [49], [50] and word-
wise semantic priming effect in word meaning comprehension
[51].

The spatial patterns of model improvements by paradig-
matic and syntagmatic features in MTG interlace with each
other, showing a gradient trend for both axes’ processing in
MTG. Both features improve bilateral posterior MTG voxel
models. This region is associated with word-meaning access
across modalities and categories of concept [50] and was also
proposed as a semantic hub [52]. IFGtri, improved by both
semantic axes as well, seems to be associated with general
semantic processing [53]. ITG, predominantly improved by
syntagmatic embedding, is called by [54] as a unification
space enabling syntactico-semantic integration. It suggests that
syntagmatic axis is used in this process. Further investigation
on the feasibility of syntactic prediction via only syntagmatic
and the sentential semantic integration process is needed.

On paradigmatic/syntagmatic preferential contrast, despite
the small effect sizes, the trends are roughly symmetrical
across two hemispheres and the distribution is spatially reg-
ular. However, no region-of-interest (ROI) level analysis has
revealed regional preference for paradigmatic processing, indi-
cating no macroscopic neural structures related to the specific
semantic axis on a group level.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2020. ; https://doi.org/10.1101/2020.01.11.899831doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.11.899831
http://creativecommons.org/licenses/by-nd/4.0/


Another paradigmatic embedding, namely the projection of
paradigmatic embedding onto the mixed space has also been
contrasted with existing SYN models. The contrasts shown by
the two paradigmatic embeddings against SYN are globally
consistent, but are not stable on the voxel level. The intersec-
tion of two paradigmatic-predominant regions (obtained by the
PAR/SYN contrasts) is restrained to two small voxel clusters
located in left posterior to middle STG/MTG and right inferior
parietal lobule.

In conclusion, the paradigmatic/syntagmatic separation in
semantic fMRI encoding leads to minute regional contrasts
for both semantic axes. Syntagmatic processing is dominant
in ITG and MOG. The ITG aspect could be related to seman-
tic unification process. MOG’s linkage to imaginability[55]
and its role in syntagmatic processing remain to be further
investigated. The paradigmatic preference found in MTG is
neighbored by syntagmatic counterpart, and in MTG both axes
improve significantly model performance, indicating a gradient
yet mixed nature of MTG semantic processing. The current
results do not reveal a statistically established preference for
the syntagmatic processing axis over the paradigmatic one
and vice versa in the bilateral ATL, contrary to what might
be expected following [18]. Future research could bridge
syntactic processing, syntagmatic semantic processing and se-
mantic composition. Distributional and structural neuroscience
studies could also complete this current fMRI investigation by
providing anatomical theoretical constructs.
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