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ABSTRACT 
 
Linking mitochondrial DNA (mtDNA) variation to clinical outcomes remains a formidable 
challenge. Diagnosis of mitochondrial disease is hampered by the multicopy nature and 
potential heteroplasmy of the mitochondrial genome, differential distribution of mutant 
mtDNAs among various tissues, genetic interactions among alleles, and environmental 
effects. Here, we describe a new approach to the assessment of which mtDNA variants may 
be pathogenic. Our method takes advantage of site-specific conservation and variant 
acceptability metrics that minimize previous classification limitations. Using our novel 
features, we deploy machine learning to predict the pathogenicity of thousands of human 
mtDNA variants. Our work demonstrates that a substantial fraction of mtDNA changes not 
yet characterized as harmful are, in fact, likely to be deleterious. Our findings will be of direct 
relevance to those at risk of mitochondria-associated metabolic disease. 
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INTRODUCTION 
 

Because of the critical roles that mitochondria play in metabolism and bioenergetics, 
mutation of mitochondria-localized proteins and ribonucleic acids can adversely affect 
human health (Alston et al, 2017; Suomalainen & Battersby, 2018; Khan et al, 2020; Russell 
et al, 2020). Indeed, at least one in 5000 people (Gorman et al, 2015) is estimated to be 
overtly affected by mitochondrial disease. While a very limited number of mitochondrial DNA 
(mtDNA) lesions can be directly linked to human illness, the clinical outcome for many other 
mtDNA changes remains ambiguous (Vento & Pappa, 2013). Heteroplasmy among the 
hundreds of mitochondrial DNA (mtDNA) molecules found within a cell (Stewart & Chinnery, 
2015; Hahn & Zuryn, 2019; Wei & Chinnery, 2020), differential distribution of disease-causing 
mtDNA among tissues (Boulet et al, 1992), and modifier alleles within the mitochondrial 
genome (Wei et al, 2017; Elliott et al, 2008) magnify the difficulty of interpreting different 
mtDNA alterations. Mito-nuclear interactions and environmental effects may also determine 
the outcome of mitochondrial DNA mutations (Wolff et al, 2014; Hill et al, 2019; Matilainen et 
al, 2017; Turnbull et al, 2018). Beyond the obvious importance of resolving the genetic 
etiology of symptoms presented in a clinical setting, the rapidly increasing prominence of 
direct-to-consumer genetic testing (Phillips et al, 2018) calls for an improved understanding 
of which mtDNA polymorphisms might affect human health (Blell & Hunter, 2019). 
 

Simple tabulation of mtDNA variants found among healthy or sick individuals (Whiffin 
et al, 2017) may be of limited utility in predicting how harmful a variant may be. Differing, 
strand-specific mutational propensities for mtDNA nucleotides at different locations within 
the molecule (Tanaka & Ozawa, 1994; Faith & Pollock, 2003; Reyes et al, 1998) should be 
taken into account when assessing population-wide data, yet allele frequencies are rarely, if 
ever, normalized in this way. Population sampling biases and recent population bottleneck 
effects can lead to misinterpretation of variant frequencies (Zuk et al, 2014; Chheda et al, 
2017; Keinan & Clark, 2012; Landry et al, 2018; Pirastu et al, 2020). Mildly deleterious 
variants arising in a population are slow to be removed by selection (Nachman, 1998; 
Nachman et al, 1996), leading to a false prediction of variant benignancy. Finally, a lack of 
selection against variants that might act in a deleterious manner at the post-reproductive 
stage of life also makes likely the possibility that some mtDNA changes will contribute to 
age-related phenotypes while avoiding overt association with mitochondrial disease 
(Maklakov et al, 2015; Medawar, 1952; Cui et al, 2019; Williams, 1957; Wallace, 1994).  
 

Examining evolutionary conservation by use of multiple sequence alignments offers 
important assistance when predicting a variant’s potential pathogenicity (Raychaudhuri, 
2011; Tang & Thomas, 2016a). However, caveats are also associated with predicting 
mutation outcome by the use of these alignments. First, while knowledge of amino acid 
physico-chemical properties is widely considered to be informative regarding whether an 
amino acid substitution may or may not have a damaging effect on protein function (Dayhoff 
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et al, 1978), the site-specific acceptability of a given substitution is ultimately decided within 
the context of its local protein environment (Zuckerkandl & Pauling, 1965). Second, sampling 
biases and improper clade selection may lead to inaccurate clinical interpretations regarding 
the relative acceptability of specific variants (Zuk et al, 2014; Chheda et al, 2017; Keinan & 
Clark, 2012; Landry et al, 2018). Third, alignment (Kawrykow et al, 2012; Iantorno et al, 2014) 
and sequencing errors (Chen et al, 2017; Smith, 2019) may falsely indicate the acceptability 
of a particular mtDNA substitution. 
 

Here, we have deployed a methodology to calculate, by a novel analysis of available 
mammalian genomes, the relative conservation of human mtDNA-encoded positions. 
Moreover, we infer ancestral direct substitutions within mammals and test whether they 
match substitutions from the human reference sequence, providing further knowledge 
regarding the potential pathogenicity of any human mtDNA substitution. By subsequent 
application of machine learning, we demonstrate that a surprising number of 
uncharacterized mtDNA mutations carried by humans are likely to promote disease. We 
provide our predictions, which should be of great utility to clinicians and to those studying 
mitochondrial disease. 
 
RESULTS 
 
Mapping apparent substitutions to a phylogenetic tree allows calculation of relative 

positional conservation in mtDNA-encoded proteins and RNAs 
 

We previously developed an empirical method for detection and quantification of 
mtDNA substitutions mapped to the edges of a phylogenetic tree (Dunn et al, 2020). Here, 
we have extended our approach toward prediction of human mitochondrial variant 
pathogenicity. First, we retrieved full mammalian mtDNA sequences from the National 
Center for Biotechnology Information Reference Sequence (NCBI RefSeq) database and 
extracted each RNA or protein-coding gene using the Homo sapiens reference mtDNA as a 
guide. Next, we aligned the resulting protein, tRNA, and rRNA sequences, concatenated the 
sequences of each species based upon molecule class, and generated phylogenetic trees 
using a maximum likelihood approach. Following tree generation, we performed ancestral 
prediction to reconstruct the character values of each position at every bifurcating node. 
Using the sequences of extant species and the predicted ancestral node values, we 
subsequently analyzed each edge of the tree for the presence or absence of substitutions at 
each aligned human position. We subsequently sum all substitutions at a given position that 
occur along all tree edges to generate a new metric, the total substitution score (TSS, Figure 
1A). The TSS should surpass metrics that consider positional character frequencies derived 
from multiple sequence alignments as a proxy of conservation, as character frequencies are 
highly sensitive to sampling biases among input sequences. Moreover, many site-specific 
measurements of variability, such as Shannon entropy, are limited in dynamic range and 
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benefit minimally from the rapid increase in available genomic information. In contrast, the 
dynamic range of the TSS is very wide, and potentially unlimited, continuously benefitting 
from the accretion of new sequence information.  

 
Furthermore, by excluding edges from analysis that lead directly to extant sequences, 

one can further minimize effects of alignment errors and sequencing errors that may lead to 
eventual misinterpretation of variant pathogenicity. Moreover, mutations mapped to internal 
edges are more likely to represent fixed changes informative for the purposes of disease 
prediction, while polymorphisms that have not yet been subject to selection of sufficient 
strength or duration might be expected to complicate predictions of variant pathogenicity 
(Nachman et al, 1996; Nachman, 1998). Summation of substitutions only at these internal 
edges provides an internal substitution score (ISS, Figure 1B). 

 
When calculated for protein and RNA sites encoded by mammalian mtDNA, it is clear 

that the TSS (and the ISS, not shown) provides an excellent readout of relative conservation 
at, and consequent functional importance of, each alignment position. When comparing TSS 
data from different mtDNA-encoded proteins, our findings are consistent with previous 
results, obtained by alternative methodologies, demonstrating that the core, mtDNA-
encoded subunits of Complexes III and IV tend to be the most conserved, while positions 
within the mtDNA-encoded polypeptides of Complex I and Complex V tend to be less well 
conserved (da Fonseca et al, 2008; Nabholz et al, 2013) (Figure 2A). Examination of the 
structures of these complexes indicate that, indeed, the most conserved residues are 
preferentially localized near the key catalytic regions of each complex (not shown). Within 
each protein, there was, as expected, a spectrum of site conservation values, also illustrated 
by plotting a distribution of TSS values across each polypeptide (Figure S1). Nearly all 
analyzed protein positions appeared to be under some selective pressure and are not 
saturated with mutations, with TSS values existing far from the maximal values that can be 
achieved within this phylogenetic analysis of mammals. Selective pressure on most aligned 
sites is also observed when examining mtDNA-encoded tRNAs and rRNAs (Figure 2B and 
Figure S2). 

 
Beyond summation of substitutions across a phylogenetic tree, the inferred ancestral 

and descendent characters at each edge of the phylogenetic tree can also be examined 
following generation of the substitution map and can provide important information 
regarding what changes to mtDNA-encoded macromolecules might be deleterious or not. 
Specifically, if an inferred direct substitution from the human reference character to the 
mutant character (or the inverse, assuming the time-reversibility of character substitutions) is 
predicted along the edge of a phylogenetic tree, then such a change at a given position 
might be expected to be less deleterious than an inferred direct substitution to or from the 
human character that was never encountered over the evolutionary history of a clade. In 
contrast, the simple presence or absence of a character at an alignment position, without 
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the context of its ancestral character, will fail to reflect epistatic relationships that involve the 
position of interest (Kimura, 1985; Kondrashov et al, 2002; Marini et al, 2010). A further focus 
upon inferred direct substitutions occurring at internal tree edges, which we call internal 
inferred direct substitutions (IIDSs) (Figure 1C), avoids the confounding effects of 
sequencing and alignment errors (Chen et al, 2017; Smith, 2019) and of the 
abovementioned, incomplete selection against newly arisen, mildly deleterious alleles 
(Nachman et al, 1996; Nachman, 1998).  
 
Substitution scores and inferred direct substitutions can be linked to human mtDNA 

variant pathogenicity 

 
Since summation of detected substitutions across a phylogenetic tree provides a 

robust measure of relative conservation at different macromolecular positions, we were 
confident that a phylogenetic analysis that includes TSSs would also provide information 
about the pathogenicity of human mtDNA variants. To test this possibility, we focused our 
attention upon harmful substitutions annotated within the MITOMAP database of pathogenic 
mtDNA alterations (Lott et al, 2013). Indeed, we detected a clear relationship between 
confirmed pathogenicity and conservation at mtDNA-encoded amino acid positions, as 
reflected by positional TSSs (Figure 2C). Similarly, there was a strong link between tRNA 
mutation pathogenicity and TSSs obtained from mammalian tRNA data (Figure 2D). The 
paucity of confirmed pathogenic mitochondrial rRNA mutations in the MITOMAP database 
made comparisons using this class of molecules impractical, yet we expect future 
confirmation of additional pathogenic mutations in mitochondria-encoded rRNAs to permit 
further analyses. Together, findings obtained by phylogenetic analysis of mitochondria-
encoded proteins and tRNAs indicate that TSSs are a valuable asset when predicting which 
mtDNA mutations might lead to disease. 

 
To test the possibility that IIDSs, like TSSs, may predict pathogenicity, we compared 

human variants confirmed to cause disease to those variants currently labelled as 
polymorphisms within the MITOMAP database. Pathogenic human amino acid changes from 
the reference sequence are rarely encountered among the internal edges of a mammalian 
phylogenetic tree (Figure 3A). In contrast, reportedly polymorphic alleles were much more 
likely to have the amino acid substitution identifiable along internal edges of the mammalian 
tree. For nucleotide substitutions in tRNAs, a similar analysis comparing confirmed 
pathogenic variants and variants annotated as polymorphisms detected no statistically 
significant relationship between pathogenicity and the detection of IIDSs. 

 
Widespread, uncharacterized pathogenicity among human mtDNA polymorphisms  

 

A subset of substitutions currently annotated as ‘polymorphic’ in the MITOMAP 
database were distinguished by very low TSS scores at the relevant alignment position, 
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suggesting that mutations at those positions could, in fact, be deleterious. Moreover, when 
considering polymorphisms, the absence of IIDSs within the mammalian phylogenetic tree 
that would match particular human variations suggested that additional pathogenicity may 
exist among human mtDNA substitutions currently considered polymorphic. In order to 
explore whether additional pathogenic mutations might indeed be discovered among 
variants currently tabulated as ‘polymorphic,’ we tested whether protein polymorphisms 
tabulated in MITOMAP that cannot be directly linked to the human reference character along 
internal edges of the mammalian phylogenetic tree are under purifying selection. Selection 
was assessed by determining the number of full-length mtDNA samples found in GenBank 
(Benson et al, 2013) that were assigned within MITOMAP to a given variant. Measuring 
selection by assessment of population frequencies can be problematic due to potential 
sampling biases and population bottlenecks (Auer & Lettre, 2015), timing of mutation arrival 
within an expanding population (Luria & Delbrück, 1943; Rosche & Foster, 2000), and the 
divergent nucleotide- and strand-specific mutational propensities of mtDNA  (Tanaka & 
Ozawa, 1994; Faith & Pollock, 2003; Reyes et al, 1998). Even so, the distribution of variant 
frequencies among full-length sequences in GenBank was strikingly different for those 
mutations for which an IIDS could be identified in our mammalian trees of proteins (Figure 
3B), and even tRNAs (Figure 3C), when compared to those for which an IIDS could not be 
identified. These results indicate that many human mtDNA protein and tRNA variants 
currently considered to be polymorphic are, in fact, harmful, and these findings further 
validate the development of the IIDS as a feature useful for determining variant 
pathogenicity. 

 
A support vector machine predicts harmful mtDNA variants 

 

Given the clear presence of deleterious substitutions among so far uncharacterized 
variants, we sought a high-throughput method that could, with confidence, identify these 
potentially deleterious substitutions. Toward this goal, we turned to machine learning. 
Specifically, we deployed a support vector machine (SVM) (Cortes & Vapnik, 1995), 
designed to minimize risk of misclassification and able to take advantage of non-linear 
features (Bhavsar & Ganatra, 2012), to predict the risk of mtDNA variants using our 
conservation features. Positive training sets for our SVM consisted of protein or tRNA 
mutations annotated as confirmed pathogenic alterations within the MITOMAP database 
(Lott et al, 2013). Negative training sets included variants annotated as polymorphic in 
MITOMAP and also characterized by the highest counts of homoplasmic alleles within 
HelixMTdb, a database emerging from a survey of nearly 200,000 human samples (Bolze et 
al, 2019). Beyond these training variants, our total set of variants for prediction included 
substitutions tabulated in MITOMAP, substitutions indexed in HelixMTdb, and simulated 
substitutions from the reference sequence not yet encountered in the clinic. Analyzed 
positions were gapped within less than or equal to 1.5% of analyzed sequences. As SVM 
features, we exploited TSS, ISS, and IIDS. However, since SVMs may beneficially 
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incorporate features, even with theoretical shortcomings, in unanticipated ways, we also 
expanded our feature set to include other features related to conservation. These additional 
features included the number of characters found at alignment positions (internal edges and 
all edges), whether the mutant character is ever found at internal nodes, and positional 
Shannon entropy.  
 

For variants found within protein-coding genes, our SVM approach clearly permitted a 
robust and global prediction of which polymorphisms not yet classified as pathogenic may 
cause or contribute to disease (Figure 4A and Table S1). Importantly, when examining the 
behavior of protein-coding variants within our negative training sets, only one false-positive 
was obtained. Furthermore, few confirmed pathogenic mutations were found among the 
predicted negative set. The proficiency of our model in correctly identifying true positives in 
the training set without a corresponding loss in specificity is highlighted by the associated 
Receiver Operating Characteristic (ROC) curve [area under the receivership curve (AUC), 
0.96] (Figure S3A). The Matthews Correlation Coefficient (MCC), reflecting the overall 
performance of our classifier (Guilford, 1954; Chicco & Jurman, 2020), was 0.89, indicating a 
model with high proficiency at separating our positive and negative training sets. Accuracy 
for our model was calculated to be 0.95, precision was 0.97, sensitivity was 0.90, specificity 
was 0.98, and our F-score was 0.94, all of which are outcomes that also suggest 
outstanding classifier performance on variation within mitochondria-encoded polypeptides. 
Of features assessed by our SVM, all of which are related to site conservation among 
mammals, IIDS stood out as dominant in providing predictive value (Figure S3B).  

 
To further validate our approach, we turned to the thousands of uncharacterized 

mtDNA changes encountered during generation of the HelixMTdb. Data presented above 
(Figure 3B and 3C) and previous studies (Ye et al, 2014; Elliott et al, 2008; Wei & Chinnery, 
2020) support the idea that pathogenic alleles reside among the set of uncharacterized 
changes and mutations currently annotated as polymorphic. Moreover, frequent clinical 
encounters with a variant observed in a heteroplasmic state (not consisting of 100% of the 
molecules in a cell) can often be a signal of pathogenicity (Stewart & Chinnery, 2015; Hahn & 
Zuryn, 2019). Therefore, we reasoned that by first separating unannotated variants by SVM 
prediction class, then comparing the fraction of instances that each allele within that class 
was determined to be heteroplasmic within an individual, we might assess our prediction 
capability. We note that heteroplasmy was not a feature used for development of our 
prediction model. Upon analysis, heteroplasmy profiles were quite clearly distinct (Figure 4B) 
when comparing those variants that we predict to be harmful and those variants that we 
predict to be benign, and we obtained a Kolmogorov-Smirnov D statistic of 0.471, 
suggesting that our methodology has quite successfully revealed alleles in protein-coding 
genes that are likely to cause metabolic disease. We have named our approach MitoCAP, 
for “Mitochondrial Disease Predictions Using Changes Across Phylogeny”. 
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 Other classifiers provide their own predictions, or otherwise provide the opportunity 
to predict, whether some or all of the potential changes in mtDNA-encoded proteins may be 
deleterious. We selected several of these methods for comparison with MitoCAP. We 
focused our attention primarily upon two recently developed and mitochondria-specific 
classifiers: Mitoclass (Martín-Navarro et al, 2017) and the meta-classifier MitImpact 
(Castellana et al, 2015). We also included two other tools that allow batch submission of 
substitution input, PolyPhen-2 (Adzhubei et al, 2013) and PROVEAN (Choi et al, 2012), 
promoting further evaluation of mitochondria-specific classifiers. Finally, we chose Panther-
PSEP (Tang & Thomas, 2016b) which, like MitoCAP, takes advantage of phylogenetic tree 
information while making predictions. These different classifiers do include some convergent 
concepts within their prediction schemes. However, we expected that our use of novel 
phylogenetic and conservation features would lead to tangible improvement in the prediction 
of mtDNA variant pathogenicity.  
 

First, we tested how the compared methods would fare against the training set that 
was used to build our own prediction model for variants in protein-coding genes. It may be 
challenging, in an unbiased manner, to compare metrics of prediction success that we 
obtained using our own training sets to those achieved by other methods using our training 
sets. However, selection of variants for inclusion within our training sets was based upon 
conservative measures of pathogenicity or benignancy, and not upon our own interpretation 
of individual variant hazard. Therefore, we should expect other classifiers to also perform 
well on our training set. Of the six methods compared, the two methods specifically 
designed to assess variants within mitochondrial protein coding genes, MitImpact and 
Mitoclass, performed second and third best on our training set, as reflected by MCC values. 
These classifiers were followed by PROVEAN, PolyPhen-2, and Panther-PSEP (Figure 4C). 
MitoCAP also scored best against our training set when considering most auxiliary 
measures of prediction proficiency (Figure S4). 

 
We further explored the magnitude by which the underlying prediction models might 

differ from one another. To further investigate this possibility, we first plotted the level of 
agreement between MitoCAP other methods when assessing all classified variants, and we 
noted a pronounced lack of overlap between our MitoCAP predictions and the predictions of 
other methods (Figure 4D). For example, MitImpact appears to predict that a substantial 
number of alleles that we predict as pathogenic are actually innocuous. In contrast, Panther-
PSEP predicts that a pronounced number of alleles that we call benign are actually 
deleterious.  

 
In order to more quantitatively assess how similar each pair of prediction outcomes 

may be to one another, we next applied MCC calculations as a way to measure prediction 
correspondence. During these analyses (Figure 4E), the maximum MCC value calculated 
during comparisons between methods was 0.61, obtained during comparison of MitoCAP 
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and PROVEAN, and a similar score of 0.60 was the outcome of comparing the MitoCAP and 
Mitoclass predictors. All other comparisons provided MCC values of 0.5 or (sometimes 
substantially) less. Therefore, MitoCAP seems to provide predictions for unannotated 
variants that are most in accordance with, but not identical to, those produced by PROVEAN 
and Mitoclass. 

 
But which of these prediction approaches is most likely to appropriately characterize 

unannotated variants? When heteroplasmy data for unannotated variants in HelixMTdb are 
analyzed for other prediction methods (Figure S5), as performed above for MitoCAP, 
MitoCAP best separated variants into classes with different heteroplasmy propensities and 
achieved the highest Kolmogorov-Smirnov D score (Figure 4F). Consequently, our prediction 
method appears to be the most successful among the tested classifiers in identifying 
harmful mtDNA variants within protein-coding genes. 

 
For mitochondria-encoded tRNAs, notable separation between positive and negative 

training sets (Figure S6A and Table S2) was also achieved by MitoCAP. When considering 
our tRNA training set, the MitoCAP MCC value was 0.82, accuracy was 0.91, precision was 
0.86, sensitivity was 0.95, specificity was 0.88, and the F-score was 0.90.  The strong 
performance of our classifier is exemplified by the ROC curve (Figure S3C) and the 
associated AUC of 0.94. The number of characters seen at internal nodes for positions of 
interest, as well as the TSS and ISS, appeared to play the strongest role during development 
of the SVM prediction model (Figure S3D). When samples outside of our training set from 
our two predictive classes were plotted for heteroplasmy classification frequency in 
HelixMTdb, we again noted a significant difference in the two distributions (Figure S6B), 
indicating successful prediction of previously unanticipated pathogenicity. When compared 
to two other methods of tRNA variant pathogenicity prediction, PON-mt-tRNA (Niroula & 
Vihinen, 2016) and MitoTIP (Sonney et al, 2017), the MitoTIP classifier performed better 
when considering the MitoCAP training set (Figure S6C and Figure S7). All three methods 
tested appear to diverge substantially from one another in their pathogenicity predictions 
(Figure S6D and Figure S6E). MitoTIP most distinctly separated distributions of 
heteroplasmy frequency within different predictive classes of unannotated variants (Figure 
S6F and Figure S8). However, superior separation of heteroplasmy distributions by MitoTIP 
may not be surprising, since MitoTIP incorporates whether variants have been encountered 
as heteroplasmic during its classifications, while MitoCAP does not.  

 
Taken together, our analyses indicate that MitoCAP appears to be the most proficient 

among the compared methods in predicting pathogenicity of variants in mtDNA-encoded 
proteins, while alternative methods may outperform MitoCAP during classification of tRNA 
variants.  
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DISCUSSION 
 

We describe here a methodology that allows improved quantification of the relative 
conservation of sites within and between genes, RNAs, and proteins. TSS and ISS values 
provide a measure of conservation that can minimize errors in conservation calculation that 
result from sampling biases. Importantly, these scores are of theoretically unlimited dynamic 
range and will benefit from the continuous expansion of available sequence information. 
Even nearly identical sequences can be utilized by our approach, allowing for an ever-
increasing input dataset that can be deployed toward calculation of site-specific 
conservation.  

 
Beyond the development of a novel quantitative measure of conservation, we also 

use ancestral predictions to generate IIDSs - a binary read-out of site-specific substitution 
information. Researchers often consult generalized substitution matrices when predicting 
whether a change may be harmful or not (Dayhoff et al, 1978; Jones et al, 1992), yet amino 
acid exchangeability matrices change when moving across clades (Zou & Zhang, 2019), and 
successful substitution of any given character occurs in the context of a very specific local 
environment (Zuckerkandl & Pauling, 1965; Tang & Thomas, 2016a). By mapping 
substitutions to phylogenetic tree edges, ample sequence data can allow identification of 
IIDSs within the context of a particular macromolecular position, thereby improving 
prediction of variant pathogenicity. We note that focusing upon IIDSs, rather than the simple 
presence or absence of a character at a site, can indirectly integrate information about 
potential epistatic interactions that permit or block a substitution from being successfully 
established within a lineage. 

 
Protein variants of confirmed pathogenicity were clearly characterized by low 

substitution scores and by an absence of IIDSs. But how should one weigh these and other 
available factors when classifying, in an unbiased and high-throughput manner, other 
variants already encountered or waiting to be discovered among human mtDNAs? To 
address this question, we deployed a machine learning approach, trained on existing data 
present in the MITOMAP database, toward determination of mtDNA mutation pathogenicity. 
Our apparent false-positive rate for protein coding variants appears to be extremely low, 
which is essential when avoiding the potential psychological effects of a false-positive test 
(Stewart-Brown & Farmer, 1997; Committee on Bioethics, 2001). Moreover, metrics of 
prediction capability for mitochondrial amino acid substitutions indicate very strong 
proficiency at pathogenicity prediction (MCC of 0.89), and specificity and sensitivity metrics 
resulting from our SVM predictions appear exemplary (AUC > 0.96). Importantly, comparison 
of multiple approaches by measuring the difference in heteroplasmy propensity, a common 
indicator of pathogenicity (Ye et al, 2014), within different predicted classes suggests that 
we can successfully outperform other methods specifically designed to classify 
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mitochondrial variants, as well as several approaches focused more generally upon protein 
substitutions. 

 
The MitoCAP predictions that we provide allow for improved comprehension of which 

mtDNA variants identified within a patient may be linked to mitochondrial disease. Our 
approach also allows researchers focusing upon the fundamental aspects of mitochondrial 
disease to rapidly prioritize variants identified in the clinic for directed study. 

 
mtDNA variants predicted to be pathogenic may lead to cryptic and age-related 

mitochondrial disease 

 
Our results are congruent with earlier analyses suggesting that harmful mtDNA 

substitutions may be common within the human population (Ye et al, 2014; Elliott et al, 2008; 
Nachman et al, 1996). So why have so many of these deleterious changes not yet been 
classified as pathogenic within the clinic? 
 

First, if a mutation is relatively common within the population, clinicians may 
inappropriately determine that the mtDNA variant is unlinked to patient symptoms (Whiffin et 
al, 2017). However, population frequency is not currently, at least when taken in isolation, a 
highly reliable predictor of clinical outcome, since population counts require substantial 
correction for strand- and nucleotide-specific mtDNA mutational biases  (Tanaka & Ozawa, 
1994; Faith & Pollock, 2003; Reyes et al, 1998), and sampling biases are typically a hazard 
when carrying out population-wide studies (Zuk et al, 2014; Chheda et al, 2017; Keinan & 
Clark, 2012; Landry et al, 2018). 
 

Second, deleterious mtDNA variants often must rise beyond a certain threshold 
among the hundreds of mtDNA molecules potentially resident within a cell before overt 
symptoms can manifest (Stewart & Chinnery, 2015; Russell et al, 2020). Concordantly, our 
data suggest a strong propensity for heteroplasmy in the set of substitutions that we predict 
to be pathogenic, but are not yet clinically annotated as disease-associated. Differential 
distribution of mtDNA variants within a carrier, either established during development or 
resulting from bottleneck effects in renewable and non-mitotic tissues (Zhang et al, 2018; 
Stewart & Chinnery, 2015), may generate clones with a high proportion of deleterious 
mutations and may lead to complex, tissue-specific outcomes (Greaves et al, 2006; 
Nekhaeva et al, 2002; Bratic & Larsson, 2013; Fayet et al, 2002). Moreover, the phenomena 
described above may lead to age-related symptoms not easily classified as mitochondrial 
disease, since even relatively common mtDNA sequence variants have been suggested to 
contribute to diseases like diabetes, heart disease, and cancer (Chinnery & Gomez-Duran, 
2018; Marom et al, 2017; Wei et al, 2017). We are certainly tantalized by the prospect that 
pathogenic variants illuminated by our approach might impinge upon human lifespan. 
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METHODOLOGY 
 
Mitochondrial DNA sequence acquisition and conservation analysis 
 

Mammalian mtDNA sequences were retrieved from the National Center for 
Biotechnology Information database of organelle genomes 
(https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/ on September 26, 2019). These 
1184 mammalian mtDNA genomes were aligned using MAFFT on the ‘auto’ setting (Katoh & 
Standley, 2013). Four sequences that were egregiously misaligned were removed, and 
MAFFT alignment with the ‘auto’ setting was carried out again. Individual gene sequences 
were extracted from these alignments, based upon the annotated human mtDNA 
(NC_012920.1). After gap removal, translation of protein coding genes was performed using 
the vertebrate mitochondrial codon table in AliView (Larsson, 2014). MAFFT alignments of 
each gene product were performed using the G-INS-i iterative refinement method, then 
individual concatenates for each species were generated from protein coding sequences, 
tRNAs, and rRNAs. Duplicates were removed from the protein, tRNA, and rRNA 
concatenates using seqkit v0.10.2 (Shen et al, 2016). 

 
Maximum likelihood trees for each molecule class concatenate were built using 

FastTreeMP (Price et al, 2010) with four subtree-prune-regraft moves, two rounds of branch 
length optimization, slow nearest neighbor interchange, and by use of a generalized time-
reversible model. Next, ancestral prediction was carried out using the PAGAN package 
(Löytynoja et al, 2012), with concatenated alignments and phylogenetic trees used as input. 
The PAGAN output was then analyzed using “binary-table-by-edges-v2.2” and "add-
convention-to-binarytable-v1.1.py" (https://github.com/corydunnlab/hummingbird) (Dunn et 
al, 2020) to allow for a sum of substitutions at alignment positions encoded by human 
mtDNA. All fluctuating edges were extracted using “report-on-F-values-v1.1” 
(https://github.com/corydunnlab/hummingbird). Correspondence files for the human mtDNA 
(NC_012920.1) convention and alignment positions were generated using “extract-
correspondence-for-merged-alignment-v.1.1.py”, followed by the construction of the look-
up tables of amino acid direct substitution and presence using “direct-subst-lookup-table-
proteins-v.1.1.py” and “AA-presence-lookup-table-v.1.1.py”, respectively 
(https://github.com/corydunnlab/Edge_mapping_conservation). For IIDS determination, only 
edges with standard characters at both connected nodes were considered. For TSS and ISS 
calculation, the PAGAN output files for tRNAs and rRNAs were, before inferring a 
substitution, processed so that each ambiguous IUPAC nucleotide code was replaced by 
one of the possible standard nucleotides represented by that IUPAC code within the entire 
tree at that given position. For positions that contained only N’s and gaps, N’s were 
replaced by gaps. Replacement of ambiguous characters with standard characters was 
carried out using using script “replace-nonstandard.py” 
(https://github.com/corydunnlab/Edge_mapping_conservation), and the standard nucleotide 
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was picked at random from available standard characters at a given alignment position 
using the random.choice() function of the Python random module. Gap percentage for each 
position was calculated using trimAI v1.4.rev22 (Capella-Gutiérrez et al, 2009) on alignments 
removed of predicted sequences for internal nodes. Shannon entropy was calculated using 
the ‘Shannon’ script (https://gist.github.com/jrjhealey/), also on alignments removed of 
predicted sequences for internal nodes. Custom scripts were used to merge various data 
tables. Software generated within the context of this study was written using Python 2.7. 
 

Statistical testing and graph production were performed using Prism 8.4.3 
(https://www.graphpad.com). 

 
mtDNA variant database utilization 
 

MITOMAP data used in this study (Lott et al, 2013) were downloaded on October 1, 
2019. HelixMTdb data used in this study (Bolze et al, 2019) were downloaded on October 
15, 2019. Only substitutions were analyzed within the context of this study; insertions and 
deletions were not analyzed. 
 
Support vector machine classification 
 

Our SVM classifier (Cortes & Vapnik, 1995) was developed using the R-language 
(https://www.R-project.org/) package e1071 (Meyer et al, 2014), for which the 
implementation is based on libsvm (Chang & Lin, 2011). A supervised binary classification 
model was built using positive and negative training sets. Each negative training set included 
those alleles with the highest number of homoplasmic samples in HelixMTdb and also 
annotated as a polymorphism within MITOMAP. For proteins, the negative training sets 
consisted of 50 mtDNA substitutions (encoding 51 protein variants) from the reference 
sequence. For tRNAs, the negative training sets also consisted of 50 substitutions. Positive 
training sets consisted of variants confirmed as pathogenic in MITOMAP on the date the 
database was queried. The positive training set for mtDNA-encoded proteins consisted of 
39 mtDNA substitutions (encoding 40 protein variants), and the positive training set for 
mtDNA-encoded tRNAs consisted of 39 substitutions. Predictions were made for protein 
and tRNA sites gapped at 1.5% or less within our alignments. Decision values are related to, 
but do not directly represent, scalar distance from variant points to SVM margins (Sanz et al, 
2018). 

 
The best cost and gamma parameters for the classification model were selected 

based on majority voting of 100-searches of 2^(-8:8) grid surface, using ‘tune.svm’ function 
of e1071 [kernel = 'radial', type = 'C-classification', scale = TRUE, tunecontrol = tune.control 
(cross = 5, nrepeat = 10)]. The classification model was subsequently built and trained using 
the optimized [gamma, cost] parameters of [0.25, 0.0625] for proteins (Figure S9A) and 
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[0.0078125, 256] for tRNAs (Figure S9B), and subsequently used to predict the pathogenicity 
of the training and test set variants. Features were scaled internally during training and when 
applying the model to predict the test set. Predictions for the ROC curve were collected 
using ‘mining’ function of the rminer package (Cortez, 2015), with the optimized parameters 
during 10 runs of 5-fold cross-validation [model="ksvm", task = "prob", method = c("kfold", 
5), Runs = 10]. Feature importance was measured using the ‘Importance’ function from 
rminer (Cortez & Embrechts, 2013), which was run 10 times (method = "DSA"). 

 
Due to the relatively limited number of variants confirmed to be pathogenic or benign 

that one might include in a balanced training set, we also separately evaluated the 
robustness of our classifier using multiple runs of k-fold cross-validation with varying values 
of k. During these experiments, the complete list of our training set was divided into k parts, 
the classifier was trained on the (k-1) parts and the remaining part was used to evaluate the 
classifier performance. The k-fold cross-validation runs were performed with the optimized 
cost and gamma parameters given above. For both protein (Figure S9C) and tRNA (Figure 
S9D) training sets, 2-fold, 3.4-fold and 5-fold cross-validation was run 10 times, 
corresponding to setting 50%, 30% and 20%, respectively, of the training set aside for 
testing, then training the classifier with the remaining variants. In each run, mean 
performance metrics were collected by the ‘mining’ function over 10 repeats of the 
respective k-fold cross-validation [model = “ksvm”, task = “prob”, method = c(“kfold”, 
*variable*), runs = 10). Predictions for the set reserved for testing were then used to calculate 
performance metrics. The performance metrics MCC, Accuracy (ACC), True Positive Rate 
(TPR), True Negative Rate (TNR) and Area Under the ROC Curve (AUC) were calculated 
using ‘mmetric’ of the rminer package. 
 
Comparison of selected, alternative prediction methods with MitoCAP 
 

Pathogenicity predictions for our training and test set variants were compared to 
predictions made by PolyPhen-2 (Adzhubei et al, 2013), PROVEAN (Choi et al, 2012), 
Panther-PSEP (Tang & Thomas, 2016b), Mitoclass (Martín-Navarro et al, 2017) and 
MitImpact (Castellana et al, 2015). PolyPhen-2 predictions were retrieved from its web server 
in batch query mode with the HimDiv classifier and default parameters. Similarly, PROVEAN 
predictions were retrieved from the web server for ‘PROVEAN Protein Batch’ tool for human 
proteins. For Panther-PSEP, variant queries for each of the 13 mitochondria-encoded 
proteins were generated and submitted, along with the protein sequence, to the web server. 
Mitoclass predictions were retrieved from the supplemental data of its publication (Martín-
Navarro et al, 2017). For the meta-classifier employing its own SVM, MitImpact, the latest 
predictions (MitImpact 3D 3.0.5) were used. For comparison with PON-mt-tRNA (Niroula & 
Vihinen, 2016), tested variants were uploaded to the associated web server, and output was 
processed according to the mtDNA strand upon which the tRNA is encoded. The most 
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recent MitoTIP (Sonney et al, 2017) predictions were published on April 27, 2020 and were 
downloaded directly from the MITOMAP server.  
 

For PolyPhen-2 and Panther-PSEP, predictions ‘possibly damaging’ and ‘probably 
damaging’ were considered as ‘pathogenic’. For MitoTIP predictions, ‘likely pathogenic’ and 
‘possibly pathogenic’ were collapsed to ‘pathogenic’ during comparisons, while ‘possibly 
benign’ and ‘likely benign’ were reduced to ‘benign’. Similarly, for PON-mt-tRNA 
annotations, ‘pathogenic’ and ‘likely pathogenic’ were reduced to ‘pathogenic’, while ‘likely 
neutral’ and ‘neutral’ annotations were considered as ‘benign’. Since MitImpact is a meta-
classifier working on mtDNA sequence, it can produce two different pathogenicity 
predictions for two nucleotide changes leading to the same amino acid change. Such 
instances, where the same amino acid change is labeled both as ‘pathogenic’ and ‘neutral’ 
by MitImpact, were classified as ‘contradictory’ and not further processed during analyses. 
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Table S2: SVM output analyzing tRNA-encoding variants found in the MITOMAP and 
HelixMTdb by use of mammalian sequence data. Details of SVM analyses and features 
are found within the methodology section. 
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