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Abstract  

BioHansel performs high-resolution genotyping of bacterial isolates by identifying 
phylogenetically informative single nucleotide polymorphisms (SNPs), also known as canonical 
SNPs, in whole genome sequencing (WGS) data. The application uses a fast k-mer matching 
algorithm to map pathogen WGS data to canonical SNPs contained in hierarchically structured 
schemas and assigns genotypes based on the detected SNP profile. Using modest computing 
resources, BioHansel efficiently types isolates from raw sequence reads or assembled contigs 
in a matter of seconds, making it attractive for use by public health, food safety, environmental, 
and agricultural authorities that wish to apply WGS methodologies for their surveillance, 
diagnostics, and research programs. BioHansel currently provides canonical SNP genotyping 
schemas for four prevalent Salmonella serovars—Typhi, Typhimurium, Enteritidis and 
Heidelberg—as well as a schema for Mycobacterium tuberculosis. Users can also supply their 
own schemas for genotyping other organisms. BioHansel’s quality assurance system assesses 
the validity of the genotyping results and can identify low quality data, contaminated datasets, 
and misidentified organisms. BioHansel is targeted to support surveillance, source attribution, 
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risk assessment, diagnostics, and rapid screening for public health purposes, such as product 
recalls.  BioHansel is an open source application with packages available for PyPI, Conda, and 
the Galaxy workflow manager. In summary, BioHansel performs efficient, rapid, accurate, and 
high-resolution classification of bacterial genomes from sequence reads or assembled contigs 
on standard computing hardware. BioHansel is suitable for use as a general research tool as 
well as in fully operationalized WGS workflows at the front lines of infectious disease 
surveillance, diagnostics, and outbreak investigation and response. 

Impact statement 

Public health, food safety, environmental, and agricultural authorities are currently engaged in 
a global effort to incorporate whole genome sequencing technologies into their infectious 
disease research, surveillance, and outbreak investigation programs. Its widespread adoption, 
however, has been impeded by two major obstacles: the need for high performance computing 
to generate results and the expert knowledge required to interpret and communicate those 
results. BioHansel addresses these limitations by rapidly genotyping pathogens from whole 
genome sequence data in an accurate, simple, familiar, and easily sharable manner using 
standard computing resources. BioHansel provides a compact and readily interpretable 
genotype based on canonical SNP genotyping schemas. BioHansel’s genotyping nomenclature 
encodes the pathogen’s position in its population structure, which simplifies and facilitates its 
comparison with actively circulating strains and historical strains. The genotyping information 
provided by BioHansel can identify points of intervention to prevent the spread of pathogenic 
bacteria, screen for the presence of priority pathogens, and perform source attribution and risk 
assessment. Thus, BioHansel serves as a readily accessible and powerful WGS method, 
implementable on a laptop, for genotyping pathogens to detect, monitor, and control the 
emergence and spread of infectious disease through surveillance, screening, diagnostics, and 
outbreak investigation and response activities. 

Data summary 

BioHansel is a Python 3 application available as PyPI, Conda Galaxy Tool Shed packages. It is 
an open source application distributed under the Apache License, Version 2.0. Source code is 
available at https://github.com/phac-nml/biohansel. The BioHansel user guide is available at 
https://bio-hansel.readthedocs.io/en/readthedocs/. Supplementary Materials are available at 
https://github.com/phac-nml/biohansel-manuscript-supplementary-data. 

The authors confirm all supporting data, code and protocols have been provided within the 
article or through supplementary data files. 

Introduction 

Public health, animal health, food safety, and environmental authorities around the world are 
actively working to operationalize whole genome sequencing (WGS) technologies for their 
infectious disease diagnostics, surveillance, and outbreak detection and response programs. 
Data analysis is the biggest challenge facing the adoption of WGS for these applications 
(Deurenberg et al., 2017; Nadon et al., 2017). The genomic data analysis pipelines that serve 
these mission-critical programs must implement robust, reproducible, and computationally 
tractable analytical methods that generate accurate and informative results (PHG Foundation 
2015). Data sharing is another challenge, especially the sharing of pathogen WGS reads, due 
to outmoded data governance policies, insufficient network bandwidth, and scant infrastructure 
to facilitate its distribution among stakeholders in different institutions or in different health 
jurisdictions. Subtyping data derived from pathogen WGS data currently serves as a better 
alternative to WGS for communicating infectious disease information, since the sharing of 
subtyping data is already a well-established and long-standing practice among health authorities 
and is compatible with the existing policies that govern the sharing of such data (European 
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Centre for Disease Prevention and Control, 2015). Subtype data is also much more compact 
than WGS data and requires negligible network bandwidth to transmit). 

The ability of WGS to resolve bacterial relationships is unmatched by any other molecular 
technology, and its adoption by public health and food safety authorities has revolutionised our 
ability to track and respond to disease outbreaks (Nadon et al., 2017; Tang et al., 2017; Besser 
et al., 2018; Zakham et al., 2019). WGS is especially useful for highly clonal organisms, since 
there are typically only a small number of genetic changes that distinguish a clonal disease 
outbreak from unrelated contemporaneously circulating strains, and the genetic changes that 
provide this discrimination are important to contextualize, monitor, and respond to such 
outbreaks. Clonally acquired genetic changes manifest predominantly as point mutations, such 
as single nucleotide polymorphisms (SNPs) and small insertions or deletions (indels). Additional 
non-clonal sources of genetic diversity include recombination and the gain or loss of mobile 
elements such as transposons, bacteriophage, and plasmids. Several approaches exist that 
exploit this genomic diversity to estimate the genetic and epidemiological relatedness of 
infectious diseases, the most popular being the gene-by-gene methods and the SNP-based 
methods (Schürch et al., 2018). The choice of typing approach depends on its intended 
application (for a review see Nadon et al., 2017), although in general, gene-by-gene approaches 
are popular for routine surveillance activities, whereas SNP-based approaches are used when 
extra discriminatory power is required, or for pathogens that are not amenable to gene-by-gene 
methods. Comparisons of gene-by-gene and SNP-based approaches show that these methods 
both produce concordant and complementary results (Katz et al., 2017; Whaley et al., 2018; 
Jagadeesan et al., 2019). Regardless of the method used, the analysis of WGS data can be 
highly complex and can require high performance computing and specialized genomics 
expertise to carry out and to interpret the results (Carriço et al., 2018). 

Gene-by-gene methods estimate genetic relatedness by indexing the allelic diversity of a 
designated set of genes. Each allelic variant is assigned a unique identifier and the genetic 
distance between two isolates is computed as the number of allelic differences that exist 
between them (Maiden et al., 2013). The core genome multi-locus sequence typing (cgMLST) 
approach considers only the genes that are common to all (or nearly all) genomes for a given 
pathogen, whereas the whole-genome multi-locus sequence typing (wgMLST) approach 
considers both core and accessory genes. Gene-by-gene approaches generate allelic profiles 
that can be assigned to a categorical type; in this way, a large amount of genomic data is 
collapsed into a simple and highly compact form which facilitates pathogen genomic data 
sharing. They do not, however, consider the individual nucleotide variants that distinguish the 
alleles, nor do they consider polymorphisms occurring in intergenic regions (Jagadeesan et al., 
2019). While this approach helps to ameliorate the confounding effects of recombination on 
genotype assignment, it renders the gene-by-gene approaches somewhat less discriminatory 
than their SNP-based counterparts. Gene-by-gene methods can also be sensitive to 
contamination and mixed colonies, although this problem extends to all genotyping approaches 
(Page et al., 2017). Several pipelines are available for gene-by-gene analysis of WGS data; 
popular examples include Ridom SeqSphere+ (Jünemann et al., 2013), BIGSdb (Jolley and 
Maiden, 2010; Jolley et al., 2018), BioNumerics (Applied Maths), EnteroBase (Alikhan et al., 
2018), and SRST2 (Inouye et al., 2014).  

SNP-based phylogenomic approaches are a popular alternative to gene-by-gene approaches. 
They typically rely on the selection of a high-quality reference genome against which all other 
isolates are compared, followed by the identification of the nucleotide variants that differentiate 
the reference and the query genomes. These approaches generate highly accurate phylogenies 
with the power—in theory—to distinguish isolates differing by a single base pair; however, a 
number of technical barriers exist that impede their routine application for infectious disease 
surveillance, outbreak detection, and response. One major barrier concerns the nature of the 
output—a phylogenetic tree—which provides context on the evolutionary relationship of a 
collection of isolates, but must be recomputed and reinterpreted as new isolate genomes 
become available. Traditional SNP methods do not assign genotype codes to the isolates 
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(SnapperDB (Dallman et al., 2018) is a notable exception); this frustrates surveillance and 
outbreak investigations since the lack of genotype offers no straightforward means for 
comparing actively circulating strains with historical strains or strains circulating in other health 
jurisdictions. Another quite prohibitive barrier is the high computing cost required to carry out 
the analysis, often requiring high performance computing to generate results on a timescale 
useful for outbreak investigations. Despite these barriers, SNP-based phylogenomic analysis 
pipelines are used extensively for outbreak investigation and response. Notable examples of 
SNP-based phylogenomic pipelines include the CFSAN SNP Pipeline (Davis et al., 2015) used 
in the international GenomeTrakr network for detection of foodborne pathogens, the Lyve-SET 
hqSNP pipeline (Katz et al., 2017) used for the analysis of enteric organisms at the U.S. Centers 
for Disease Control, the SNVPhyl pipeline (Petkau et al., 2017) used for bacterial 
phylogenomics by the Canadian Public Health Laboratory Network, and the SnapperDB pipeline 
(Dallman et al., 2018) used for national surveillance of enteric pathogens at Public Health 
England. Each of these pipelines has its own set of complex dependencies and assumptions 
that can influence the results (Petkau et al., 2017; Katz et al., 2017; Lynch et al., 2016). In a 
recent review of 41 different SNP detection pipelines, the authors demonstrated that the choice 
of reference genome for SNP calling had a substantial effect on the variants identified, which 
can influence the phylogeny and thus its scientific and epidemiological interpretation (Bush et 
al., 2019). SNP detection is sensitive also to recombination, sequence coverage, and the 
presence of contamination (Petkau et al., 2017), although these sensitivities hold true for gene-
by-gene methods as well.  

One method for circumventing the difficulties inherent in traditional SNP-based workflows is to 
pre-identify the SNPs contained in the target organism’s core genome that capture the clonal 
evolutionary history of that organism. These phylogenetically informative SNPs, termed 
canonical SNPs, can be organized into hierarchically structured genotyping schemas. Like their 
gene-by-gene-based counterparts, canonical SNP-based approaches can generate compact, 
informative genotypes and have proven useful for source tracking, surveillance, trend analysis, 
and epidemiological investigations (Coll et al., 2014; Wong et al., 2016). Hierarchical SNP-
based genotyping schemas have been designed for several organisms, including M. 
tuberculosis (Coll et al., 2014), Salmonella Typhi (Wong et al., 2016), S. Heidelberg (Labbe et 
al., 2019) and Bordetella pertussis (van Gent et al., 2011). Although promising, with the 
exception of S. Typhi and M. tuberculosis, the utility of these genotyping schemas—and hence 
the canonical SNP approach in general—has been limited by the lack of companion software to 
extract the informative SNPs and assign a genotype (Coll et al., 2015; Khol et al., 2018; Wong 
et al., 2016). 

Regardless of the chosen approach, an important and frequently encountered concern when 
using WGS for microbial genomic applications is the potential to encounter contamination, which 
can confound subtype assignment, and can be troublesome to detect. Mixed infections, which 
present similarly to contamination, can be similarly troublesome to detect (Khol et al., 2018; 
Anyansi et al., 2019). The most common sources of contamination include improperly isolated 
genomic material, environmental contamination, the libraries used to prepare the genomic 
material for sequencing, and DNA barcode “cross-talk” generated during the sequencing step 
(Wright and Vetsigian, 2016; Pettengill et al., 2016; Goig et al., 2019). To account for this 
complexity, contamination detection pipelines are commonly applied to newly generated WGS 
data prior to analysis. These pipelines normally assign reads to taxa using fast phylotyping tools 
such as Kraken (Wood and Salzberg, 2014), Centrifuge (Kim et al., 2016), or Kaiju (Menzel et 
al., 2016). However, these tools cannot reliably assign taxa beyond the species level and thus 
are unsuitable for identifying genomic contamination from the same species (Ye et al., 2019; 
Sczyrba et al., 2017; McIntyre et al., 2017). Few options exist for identifying intra-species 
contamination in highly clonal microbial genomic sequence data (Anyansi et al., 2019). 
ConFindr identifies intra-species contamination by searching for the presence of multiple variant 
bases in a set of conserved single-copy ribosomal protein-encoding genes (Low et al., 2019). 
However, this approach is unable to detect contamination from highly clonal lineages that may 
have little to no diversity at these loci. QuantTB (Anyansi et al., 2019) identifies mixed infections 
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by comparing the SNP profiles of M. tuberculosis samples to those present in a curated 
reference database of genome sequences (Anyansi et al., 2019). The VCFMIX program (Wyllie 
et al., 2018) similarly maps reads to a reference genome followed by statistical analysis of 
detected SNPs for known genotypes. A simple modification of the QuantTB and VCFMIX 
approaches to identify contamination in clonal populations of infectious disease is to compare 
against lineage-specific canonical SNPs targeted by k-mers, eliminating the need for whole 
genome mapping. 

As health authorities increasingly adopt WGS for microbial surveillance, diagnostics, and 
outbreak response, tools that provide rapid, accurate results with minimal computing 
requirements and generate results in a useful, familiar, and easily sharable form are in high 
demand. We developed BioHansel to meet this demand. BioHansel uses a fast k-mer mapping 
approach to identify canonical SNPs in pathogen WGS data and uses these SNPs to assign 
high-resolution genotypes that encode the isolate’s position in a population structure. Here we 
describe BioHansel’s design and demonstrate its ability to rapidly and accurately genotype 
isolates for S. Heidelberg, S. Enteritidis, S. Typhimurium, S. Typhi, and M. tuberculosis using 
modest computing resources. We then demonstrate BioHansel’s intrinsic ability to assess input 
genomic data for the presence of intra-species contamination. We also demonstrate 
BioHansel’s memory efficiency, compute speed, and scalability by performing a benchmarking 
study against Snippy, a popular traditional microbial SNP variant detection pipeline (Seemann 
et al., 2015). 

Methods 

Canonical SNP genotyping schemas 

Most SNP-based genotyping schemas use canonical SNPs to assign genotypes. We designed 
our BioHansel schemas by conducting a deep manual investigation of the population structure 
for each pathogen, culminating in the identification of canonical SNPs that hierarchically partition 
that pathogen’s population structure. Each schema consists of a set of canonical SNPs, their 
genomic context, and a hierarchically encoded nomenclature that records the SNP’s position in 
the hierarchy. Schemas are constructed from these SNPs by specifying, for each SNP, an 
“inclusion” SNP variant and an optional “exclusion” SNP variant that defines how the SNP 
partitions the population structure into subpopulations, as detailed below. 

We provide schemas for S. Enteritidis (SE), S. Typhimurium (ST), S. Heidelberg (SH), M. 
tuberculosis (MTB), and S. Typhi (Typhi). Users can also supply BioHansel with their own 
custom schemas, which are encoded in a simple FASTA format. The SE, ST, and SH schemas 
were developed at the Public Health Agency of Canada’s National Microbiology Laboratory; the 
MTB and Typhi schemas were adapted from previously published genotyping schemas 
developed by Coll et al. (2014) and Wong et al. (2016), respectively. The SE and ST schemas 
were developed and tested using > 20,000 publicly available WGS datasets drawn from all 
available SE and ST WGS datasets available in the NCBI SRA database at the time of schema 
construction and thus represent international sources. The SH schema was developed from 
> 2,000 isolates drawn from mostly Canadian and American sources. Details of the schema 
construction process along with all five schemas, the reference genome sequences used to 
construct the schemas, the phylogenies constructed from the canonical SNPs, and the 
genotypes along with their associated SNP profile variants are provided in the Supplementary 
Materials (https://github.com/phac-nml/biohansel-manuscript-supplementary-data). 

BioHansel schema design 

We designed BioHansel to work with hierarchical genotyping schemas that follow the lineage 
genotyping framework developed for M. tuberculosis (Coll et al., 2014). This approach provides 
a flexible, adaptable, and extensible framework for representing clonal population structures. 
We provide a brief synopsis of the BioHansel schema creation procedure here; a more detailed 
procedure is available in the Supplementary Materials. 
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The population structure for a given organism is hierarchically clustered into lineages, clades, 
subclades, and so on. Genotypes are assigned to every node in the population structure using 

a dotted-decimal notation (𝑋1, 𝑋1. 𝑋2, 𝑋1. 𝑋2. 𝑋3, etc.) that encodes the node’s position in the 
hierarchy. For quality control purposes, one or more unique inclusion SNP k-mers must support 
each labelled genotype in the lineage. Each inclusion k-mer consists of the SNP variant that 
distinguishes a clade from the rest of the population along with equal-length flanking sequences 
that uniquely specify that SNP in the target population. (We found that a k-mer length of 33 
nucleotides demonstrated good sensitivity and specificity for our schemas, but BioHansel can 
use k-mers of any size, including variable size k-mers.) Only dichotomous, core genome SNPs 
(i.e., only a single variant form found throughout the whole population) were considered as 
candidate canonical SNPs. This excluded SNPs present only in a subpopulation (i.e., those 
contained in indel regions) from our genotyping schemas. BioHansel can, however, accept 
schemas with SNPs in indel regions, and it also accepts k-mers containing degenerate bases.  

BioHansel requires only that an inclusion k-mer be specified for each SNP defining a 
subpopulation. If the optional exclusion k-mer is additionally specified, then it will be used for 
quality assessment and quality control (see the BioHansel Read-the-Docs for more detail). The 
addition of exclusion k-mers ensures that all the expected SNP targets are present in the 
dataset. A large number of missing targets can indicate poor quality sequence data, inadequate 
genome coverage, or recombination. The presence of both inclusion and exclusion k-mers for 
a given SNP position indicates possible cross-contamination or mixed culture. BioHansel issues 
warnings when it encounters these conditions. 

BioHansel 

BioHansel accepts pathogen genome sequence reads or assembled contigs along with a 
corresponding canonical SNP genotyping schema. BioHansel forms quality assessment and 
(QA) and quality control (QC) on the supplied sequence data, searches the data for matching 
k-mers contained in the schema, and assigns a genotype based on the detected SNP profile. 
We summarize this workflow in Figure 1.  

SNP detection algorithm 

BioHansel searches for k-mers within the input sequence data using the Aho–Corasick 
algorithm (Aho and Corasick, 1975) implemented in the pyahocorasick Python library (Muła, 
2019). The Aho–Corasick algorithm rapidly and efficiently searches for the supplied set of reads 
or assembled contigs for k-mers defined in the corresponding schema. BioHansel expands the 
k-mers containing degenerate bases to include all possible variants and searches the input data 
for these variants. 

 

Quality Assessment and Quality Control 

BioHansel’s QA/QC module provides insight into the validity of obtained genotyping results by 
reporting the consistency of the detected SNPs with the population structure defined in the 
associated schema (Figure 1). Several features are assessed, including the total number of k-
mer targets identified, the presence of a single SNP variant for a given genotype, the 
phylogenetic consistency of detected SNP profile, and the depth of coverage for detected SNPs 
(when read data is provided as input; see below). When both inclusion and exclusion k-mers 
are provided, BioHansel tallies the number of k-mer targets found in the genomic data to assess 
the quality of the results: isolates that are missing a large number of target SNPs indicate poor 
quality sequence data, inadequate read sequence coverage, or possible recombination. If 
BioHansel is provided with read data, it will calculate the coverage depth of each detected SNP, 
report the average coverage across all detected SNPs, and issue a warning if it falls below the 
minimum coverage threshold. BioHansel determines intermediate genotypes or ambiguous 
genotyping results by examining the phylogenetic consistency of the detected SNP profile. 
Phylogenetic consistency is determined by selecting the genotype(s) with the highest resolution 
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within the hierarchy and then counting the number of detected SNPs present in the lower 
hierarchical levels that support the final genotype.  

BioHansel includes checks for confidence and ambiguity. The tool assigns as ambiguous 
genotyping results that are missing ≥ 3 target SNPs for a given genotype. When both the 
inclusion and exclusion k-mers are provided in the schema, BioHansel reports a fail status if it 
cannot identify the exclusion k-mer targets contained in the subpopulation defined by the 
highest-resolution genotype identified in the supplied sequence data. If all of the inclusion k-mer 
SNP targets from a single level of the hierarchy are missing, the isolate is assigned a status of 
inconclusive. BioHansel also detects heterozygosity at a variant site if it identifies both inclusion 
and exclusion k-mer targets in the WGS data; this can be indicative of an intra-strain mixture or 
contamination.  

Metadata Table 

BioHansel accepts an optional metadata table that can enhance its genotyping report with 
additional contextual information. We include metadata tables for the Typhi and MTB schemas 
that were adapted for BioHansel from previously published work (Wong et al., 2016; Coll et al., 
2014) (see Supplementary Table S3). These metadata tables supplement BioHansel’s 
genotype assignment with the corresponding assignment from the original publications. The 
metadata fields are arbitrary, and users can modify their schemas with as many metadata fields 
as they like; for example, known source associations, associated outbreak events, geographical 
locations, collection date, disease severity, etc.  

Analysis of retrospective outbreaks with BioHansel 

We validated BioHansel using genome sequence reads from three retrospective Canadian 
outbreaks of S. Heidelberg (Bekal et al., 2016) previously analysed using the SNVPhyl 
phylogenomics pipeline (Petkau et al., 2017). We used SNVPhyl with the S. Heidelberg strain 
SL476 reference genome to identify high quality SNPs from 59 S. Heidelberg isolates. The list 
of accessions for these isolates along with their BioHansel genotype codes are provided in 
Supplementary Table S4. Phylogenetic trees were built with Mega7 (Kumar et al., 2016) and 
were visualized with iTOL (Letunic and Bork, 2019). We also analysed the same isolates by 
wgMLST using BioNumerics v. 7.6.3 (Applied Maths, Sint-Martens-Latem, Belgium) using the 
Salmonella wgMLST scheme with 4,396 alleles. Phylogenies were generated from the detected 
allelic profiles using unweighted pair group method with arithmetic mean (UPGMA). 

BioHansel SNP detection validation 

BioHansel’s canonical SNP detection algorithm was validated against Snippy (Seemann, 2015), 
a popular traditional SNP-calling workflow for microbial genomes. BioHansel’s genotype 
assignments for the ST genotyping schema were compared against the results from Wong et 
al. (Wong et al., 2016). We validated the concordance of BioHansel genotyping results with 
Snippy using a combination of real and synthetic data sets. Detailed parameter settings for all 
programs used for validation are provided in Supplementary Worksheet 1. 

BioHansel and Snippy SNP-detection concordance for S. Typhi 

We validated BioHansel’s genotype assignments for S. Typhi with randomly selected genome 
assemblies drawn from the Enterobase public repository of > 7,200 S. Typhi genome sequences 
(Alikhan et al., 2018). The selected assemblies were serotyped using SISTR, a Salmonella in 
silico serotyping tool (Yoshida et al., 2016), to confirm their S. Typhi serotype. This initial dataset 
was filtered to include only sequences with ≥ 40X coverage and a genome assembly size 
between 4.4 Mb and 5.5 Mb. To maximize the diversity of isolates, only a single representative 
isolate sequence was chosen for each sequence type assigned by Enterobase. After filtering 
and dereplication, 1,000 isolates were selected and their reads were downloaded for validation 
(Supplementary Table S5).  
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BioHansel v. 2.2.0 and Snippy v. 4.3 were run on 1,000 sets of S. Typhi sequence reads, and 
their SNP calling concordance was assessed (Table 1). BioHansel does not call SNPs in the 
same sense that a traditional SNP calling workflow does; instead, it reports on whether or not 
an exact match to the k-mer targeting that SNP was found in the sequence read data. In order 
to compare Snippy and BioHansel, we considered only the 68 canonical SNPs contained in the 
S. Typhi schema. For both BioHansel and Snippy, the number of assembled reads or k-mers 
supporting the presence of each SNP was tabulated, and the SNP variant supported by the 
majority of the reads was identified. Each position was assigned one of three states for each 
tool: unambiguous (a single SNP variant detected), mixed (both SNP variants detected) or null 
(missing/absent). Python scripts and a Nextflow workflow were written to extract the SNP 
variants identified by BioHansel and Snippy (Supplementary Materials). The effect of SNP-
coverage cut offs on SNP detection ability were examined using 3X, 6X, and 8X coverage cut 
offs to simulate the level of experimental error found at the range of total coverages typically 
targeted for these pathogens when sequenced on the Illumina MiSeq platform (i.e., > 40X). The 
mean mapping coverage for each read set was was calculated from the Snippy BAM files with 
"samtools depth” (Li et al., 2009). 

Validation of BioHansel genotype assignment against published genotypes 

The genotyping results produced by BioHansel v. 2.2.0 were compared with the genotyping 
results produced by Genotyphi (Holt, 2019; Wong et al., 2016, Britto et al., 2018, Rahman et al., 
2019) on the same set of 1,910 S. Typhi isolates used in the original publication (Wong et al., 
2016). BioHansel’s Typhi schema v. 1.2.0 was adapted from the SNPs identified by Wong et al. 
to include the 16 bases flanking each SNP in the reference genome CT18, for a total k-mer 
length of 33 bases (Wong et al., 2016). Both an inclusion and an exclusion k-mer was specified 
for each SNP location based on assignments by Wong et al. The nomenclature was adjusted 
to conform to the strict hierarchical format expected by BioHansel.  

Contamination Detection 

BioHansel and Snippy SNP-calling concordance on artificial contamination datasets 

In order to compare the mixed base-calling results between BioHansel and Snippy, we chose 
to maximize the number of positions that would yield an ambiguous base call by selecting two 
isolate sequences from the two most divergent genotypes in each of our five genotyping 
schemas (accession numbers are provided in Supplementary Table S6). Each sequence was 
assembled using Unicycler v. 0.47 (Wick et al., 2017) using the default settings. We used ART 
Illumina v. 3.11.14 (Huang et al., 2012) to generate from each of these sequences a synthetic 
paired-end Illumina read dataset with 500X coverage. We used the sample command from 
Seqtk v. 1.3 (Li, 2019) with a fixed seed of 100 to randomly subsample the reads from these 
datasets at various proportions and then merged them to generate our final contamination 
datasets with simulated contamination levels and coverages of 0% (0X), 1.67% (2X), 5% (6X), 
10% (12X), 13.33% (16X), 16.67% (20X), 33.33% (40X), and 50% (60X), with a total coverage 
of 120X for each mixed pair (see list of commands in Supplementary Worksheet 2).  

BioHansel v. 2.2.0 and Snippy v. 4.3 were run with their default settings on the artificial 
contamination datasets, and their SNP calling concordance was assessed for each SNP target 
in each of BioHansel’s five genotyping schemas. The contaminated datasets were analysed by 
Snippy with the reference sequences used to generate the genotyping schemas. The presence 
of a k-mer was used a surrogate for the presence of the corresponding SNP. Each position was 
assigned one of three states: ref (wild type), alt (variant), or no call (includes missed and 
ambiguous calls). The reference sequences and Python scripts used to extract the detected 
variants are provided in the Supplementary Materials.  

Contamination detection at different coverage cut offs 

To assess BioHansel’s ability to identify contamination, one representative dataset was selected 
for each of BioHansel’s five genotyping schemas from each of the 13 most abundant and fully 
resolved BioHansel genotypes present in the data deposited in the NCBI SRA as of December 
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2018. Unlike the concordance study above, the genotypes selected for this study included 
closely related lineages differentiated by very few target SNPs, representing the most likely 
mixed pairs that might be encountered when sequencing of these pathogens. Accessions are 
provided in Supplementary Tables S7–S11.  

Genome assemblies were generated using Unicycler version 0.4.7 using default settings. 
Synthetic reads were generated using ART Illumina v. 3.11.14 (Huang et al., 2012) to generate 
from each of these sequences a synthetic paired-end Illumina read dataset with 500X coverage. 
We used the sample command from Seqtk v. 1.3 (Li, 2019) with a fixed seed of 42 to randomly 
subsample the reads from these datasets in various proportions to generate our artificial 
contamination datasets. For each of the five schemas, 156 mixed datasets were generated 
(every possible pairing of the thirteen most abundant genotypes). For each mixed pair, a set of 
reads was generated with simulated contamination levels of 0%, 1.67% (2X), 5% (6X), 10% 
(12X), 13.33% (16X), 16.67% (20X), 33.33% (40X), and 50% (60X), with a final target genome 
coverage of 120X for the mixed pair. The scripts used to create the artificial contamination 
datasets are available in the Supplementary Materials. 

We used BioHansel v 2.2.0 to genotype all the artificial contamination datasets with 3X, 6X, and 
8X minimum coverage cut offs. The percent fail reported by BioHansel was interpreted as 
equivalent to the percentage of artificial contamination datasets successfully detected by the 
BioHansel QA/QC module (e.g., 90% fail = 90% success at detecting contamination).  

BioHansel compute performance 

We benchmarked BioHansel for computing speed and memory usage. We used 1,017 S. 
Enteritidis WGS datasets listed in Supplementary Table S12. Additional benchmarking was 
conducted using 1,000 publicly available read datasets for each of the Salmonella serovars (SE, 
SH, ST, and Typhi). Reads were selected and assembled as described above (see Salmonella 
Typhi WGS dataset construction). Accessions for all datasets are provided in Supplementary 
Tables S13–S16. We used the reference sequences used to generate the genotyping schemas 
(accessions are provided in the Supplementary Materials) as templates to generate synthetic 
sequencing reads. Synthetic paired-end Illumina read datasets were generated with ART 
Illumina v. 3.11.14 (Huang et al., 2012) from each of these sequences using a fixed seed of 42. 
The final coverage level was set at 10X, 50X, 100X, and 1,000X. 

BioHansel v 2.2.0 was benchmarked for runtime and memory against Snippy v. 4.3. Both 
BioHansel and Snippy were run on unassembled WGS reads using a Linux workstation running 
Ubuntu 16.04.6 LTS with dual-socket 2.00 GHz Intel(R) Xeon(R) E5-2660 v. 4 CPUs (14 cores 
per socket), 256 GB RAM, and a Samsung SSD 860 EVO 4 TB hard drive. The benchmarking 
procedure is available as a NextFlow workflow in the Supplementary Materials. BioHansel was 
designed to run in parallel so it can be deployed in high performance compute clusters, but can 
also be run on a regular laptop. To demonstrate this, we ran BioHansel on a modern laptop 
running Ubuntu 18.04.2 LTS x86_64 with a 3.20 GHz Intel i5-6500 (4) CPU and16 GB RAM. 
Additional benchmarking results are provided in the Supplementary Materials. 

Results and Discussion 

Traditional SNP-based phylogenomics workflows are highly discriminatory, accurate, and 
reproducible, but are computationally intensive, must be recomputed to incorporate newly 
sequenced isolates, and require expert knowledge to generate and interpret. These limitations 
have impeded their uptake by health authorities for infectious disease surveillance activities. 
Gene-by-gene methods, which can also be expensive to initially compute, need typically be 
computed only once; they also report their results as simple genotypes, which are familiar to 
epidemiologists, microbiologists, and the broader health profession. For these reasons, gene-
by-gene methods serve as a ready drop-in replacement for existing infectious disease 
diagnostic and surveillance programs. Gene-by-gene methods were among the first WGS 
methods to be operationalized for infectious disease surveillance, most notably by the PulseNet 
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International network for foodborne disease surveillance, which has largely replaced its 
traditional pulsed-field gel electrophoresis-based molecular surveillance with core-genome and 
whole-genome MLST (Nadon et al., 2017). BioHansel is a hybrid of the SNP and gene-by-gene 
approaches: it employs a fast k-mer matching algorithm to identify diagnostically informative 
SNPs in a hierarchically structured schema to rapidly and efficiency genotype isolates from raw 
or assembled WGS datasets, allowing it to accurately place an isolate within a pathogen’s 
population structure. Like gene-by-gene methods, BioHansel relies on a predefined schema in 
order to assign a genotype. The principal advantages of BioHansel over gene-by-gene methods 
are its speed, its minimal computing requirement, its simplicity, its ability to work with both raw 
reads and assembled contigs, the stability of its schema design, and its inherent ability to identify 
intra-species contamination.  

While tools and pipelines exist that can assign lineages from SNP data, such as Genotyphi 
(Holt, 2019; Wong et al., 2016), TB-Profiler (Coll et al., 2015) and MTBseq (Kohl et al., 2018), 
they are developed for—and are tied to—the specific pathogen schemas that they use to call 
SNPs and assign genotypes, whereas BioHansel is designed to genotype any pathogen that 
has an appropriately constructed SNP schema. Existing tools also lack unambiguous 
determination of mixed strains. Another major advantage of BioHansel over these programs is 
the ability to genotype directly from WGS reads, which avoids costly genome assembly and 
performs better quality assurance and quality control by taking into account the SNP coverage 
present in the sequence read data.  

BioHansel quickly and accurately genotypes isolates from WGS data 

We designed BioHansel to rapidly and accurately genotype bacterial pathogens using a 
hierarchically structured SNP-based genotyping schema and nomenclature. To demonstrate 
BioHansel’s genotyping ability, we used 59 sporadic and outbreak-associated S. Heidelberg 
sequences that were previously analysed using SNVPhyl, a traditional SNP-based 
phylogenomic pipeline that has been validated for the analysis of foodborne disease pathogens 
(Bekal et al., 2016). In addition to performing the whole-genome SNP comparison, we also 
compared the isolates by wgMLST using the BioNumerics software platform and the Salmonella 
wgMLST schema used by PulseNet Canada for outbreak detection. The results are presented 
in Figure 2 and in the Supplementary Materials.  

BioHansel classified the three outbreaks as three distinct genotypes. For all three outbreaks, 
BioHansel correctly grouped the outbreak strains together, but did include some closely related 
sporadic strains differing from the outbreak strains by fewer than 15 SNPs (Figure 2B, 
Supplementary Table S21) or 14 alleles (Figure 2C). BioHansel rapidly classifies the isolates 
and allows users to place the outbreak isolates in the context of the whole population (Figure 
2A). For example, it is difficult to assess how closely related the tree branches are in Figures 
2B and 2C without the context provided by the pathogen’s broader population structure. 
Comparing the BioHansel genotype assignments with the whole S. Heidelberg population 
structure (Figure 2A) shows that the isolates in genotype 1 and those in genotype 2.2.2.2.1.2 in 
Figures 2B and 2C are separated by a genomic distance that practically spans the whole 
diversity of S. Heidelberg and thus are relatively distantly related.  

BioHansel’s genotyping results have high concordance with traditional SNP 
calling workflows 

To evaluate BioHansel’s SNP-detection accuracy, we compared its concordance with Snippy 
(Seemann, 2015), a traditional SNP-detection workflow. We chose to compare BioHansel with 
Snippy as it is popular, built for speed, and has demonstrated accuracy that compares 
favourably to other traditional SNP-detection workflows (Whaley et al., 2018).  

Unlike traditional SNP genotyping workflows that identify SNPs by mapping reads to a 
reference, BioHansel uses a fast, exact k-mer matching algorithm to search reads or assembled 
contigs for a predefined set canonical SNPs targeted by k-mers contained in a hierarchically 
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structured schema. BioHansel computes the number of times an exact match is found for each 
of the k-mers in the schema and reports an average k-mer coverage based on the number of 
times each k-mer target was found. As BioHansel only considers the SNPs targeted by the k-
mers contained within a given schema, we used an existing S. Typhi SNP schema developed 
by Wong et al. for our concordance assessments (Wong et al., 2016). The dataset consisted of 
1,000 high-quality sequences drawn from the EnteroBase, a publicly available database of 
enteric pathogen genomes (Alikhan et al., 2018). BioHansel average k-mer coverage correlated 
well with the Snippy mean read mapping coverage (r Pearson= 0.99), but was approximately 73% 
of the mean mapping read coverage (Figure 3 and Supplementary Table S22). When comparing 
the read mapping coverage obtained using Snippy at each target SNP position, the average 
BioHansel k-mer coverage also showed consistent correlation with the Snippy mapping 
coverage with very few exceptions (r Pearson= 0.97, Figure 3B). The lower k-mer coverage 
estimate results from BioHansel’s detection algorithm, which identifies only exact matches to 
the target k-mers. BioHansel’s ability to make an exact k-mer match depends on the size of the 
target k-mers, the genomic diversity in the supplied sequence data (i.e., the presence of 
additional mutations within the genome sequences targeted by the k-mers), its GC content, and 
the level of sequencing error.  

The genotyping results obtained by BioHansel were compared with those of Snippy at 3X, 6X, 
and 8X minimum coverage thresholds (Table 1 and Supplementary Tables S23–24). Both tools 
detected the same base > 99.9% of the time for the genotyping SNP sites with zero cases of 
discordant majority bases calls (Table 1), demonstrating that BioHansel produces results that 
are highly concordant with traditional SNP-calling methods.  

For all three of the coverage thresholds evaluated, Snippy was able to detect slightly more 
bases than BioHansel. The most substantial differences were observed at the 3X coverage cut 
off (Table 1). (At this coverage level, a target k-mer need only be present in three reads in order 
meet the coverage threshold.) Both tools identified both inclusion and exclusion k-mer targets 
for some of the SNP sites defined in the Typhi schema; these were considered mixed calls. 
There are cases where BioHansel was able to identify a base unambiguously, whereas Snippy 
reported a mixed call, and vice-versa (Table 1). This discrepancy is likely due to some degree 
of low-level contamination in the WGS datasets, systematic sequencing errors, or random 
sequencing errors in areas of high coverage. There are very few differences between the tools 
at the higher cut off thresholds (Table 1). Notably, the number of mixed calls by both tools drops 
sharply as the minimum coverage threshold is increased from 3X to 8X, while the number of 
missing bases stays relatively constant. These results demonstrate that using the BioHansel 
default minimum coverage of 8X effectively eliminates the noise from the results without unduly 
compromising SNP detection at the total sequence coverage levels typically generated for these 
pathogens, and that the BioHansel SNP calls are in excellent agreement with those of Snippy 
at this threshold.  

We also compared our BioHansel genotyping results with the results from the Genotyphi 
companion tool for S. Typhi genotyping that, like BioHansel, uses a hierarchical SNP schema 
(Holt, 2016). Since our Typhi schema is adapted from this work, we are able to perform a 
straightforward comparison. We tested the same 1,910 isolates (Supplementary Table S25) 
used in the original Genotyphi publication (Wong et al., 2016). Of these, 1,894 (99.16%) passed 
BioHansel’s QC checks while 16 failed QC (Supplementary Table S26). Both BioHansel and 
Genotyphi generated identical genotypes for all isolates that passed QC. For the samples failing 
QC, BioHansel’s QC module provides us with some insight into why this may be the case. One 
of the isolates was not a true Typhi but the outgroup strain Paratyphi A. another isolate was 
missing a target defining an intermediate hierarchy level in the final subtype (poor quality, low 
coverage). Three isolates gave mixed results and were missing > 5% of the k-mer targets for 
the contaminant genotype. Considering that these three isolates had > 150X average k-mer 
coverage, it is hard to tell if this is noise or real contamination, as the detected contaminant 
genotypes are closely related to the dominant genotypes. The other 11 isolates that failed 
BioHansel QC gave mixed results; of these, 2 appear genuinely mixed as multiple targets were 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902056doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902056
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

 

detected that support 2 genotypes. For the other 9, only one “contaminant” k-mer target was 
detected, likely due to excessive noise detected at the 8X QC threshold. (Notably, 4 out of the 
9 isolates had an average k-mer coverage above 100X.) A detailed analysis of these BioHansel 
results is provided in the Supplementary Materials. These results showing that even in the 
samples that failed QC, k-mers matching the S. Typhi genotype previously identified by 
Genotyphi were also detected by BioHansel. Based on these results, we conclude that 
BioHansel successfully identified all genotyping targets using the adapted Typhi schema and, 
compared to Genotyphi, provides additional QC information about k-mer target abundances 
when analysing read data. 

BioHansel detects intra-species contamination 

BioHansel’s hierarchically structured schemas lend themselves naturally to the detection of 
intra-species contamination, a novel functionality not provided by other SNP-based genotyping 
tools. BioHansel identifies contamination in WGS datasets in two ways: 1) detection of 
heterozygous SNPs and 2) the presence of SNPs with conflicting genotype assignments. We 
assessed the ability of the BioHansel QC module to identify contamination in artificially 
constructed WGS datasets by mixing two distantly related genotypes of the same pathogen 
together in different proportions. We also examined how the minimum coverage threshold for 
SNP detection affected BioHansel’s ability to detect contamination.  

In the first experiment, the effect of contamination on the detection of SNPs was examined by 
running Snippy and BioHansel on artificial contamination datasets generated using the most 
divergent genotypes for each of the five schemes currently implemented in BioHansel. The 
comparative analysis between the results from the two tools was restricted to the SNP positions 
used by BioHansel for genotyping each pathogen. By mixing synthetic WGS data of isolates 
from different BioHansel genotypes, it is expected that base-calling conflicts will occur at one or 
more of these target SNP positions for each of the artificial contamination datasets. The selected 
strains are listed Supplementary Table S5 and schema-specific results are available in the 
Supplementary Tables S27–S29. A graph showing the results obtained with the artificial 
contamination datasets at 15 different contamination ratios for all five schemes is presented in 
Figure S3. Both tools reported unambiguous base calls in 92.85% of the 16,185 target SNP 
bases considered across all contamination levels (Supplementary Table S30). There were no 
cases where both tools reported unambiguous, but conflicting variants. As expected, as the 
coverage of the contaminated genome increased, both tools reported increased ambiguous 
base calls (Figure S3). Both tools show a similar distribution in calling bases that the other tool 
did not call (Figure S3). In total, BioHansel unambiguously detected 97 variants where Snippy 
was ambiguous (0.6% of all base calls), whereas Snippy unambiguously detected 66 where 
BioHansel was ambiguous (0.4% of all base calls; see supplementary Table S30). Taken 
together, these results indicate that BioHansel readily detects contamination k-mers above the 
default threshold of 8X depth of coverage in isolates and confirms that differences observed 
between the tools are the result of ambiguity in identifying variants and not from the detection 
of conflicting variants.  

In a second experiment, we mixed publicly available sequence data for the 13 top genotypes 
identified for each of the 5 pathogens, regardless of the evolutionary distance between them, in 
order to replicate the types of contamination that a sequencing laboratory might encounter. The 
results presented in Figure 4 show that BioHansel successfully detected all contaminated 
datasets at all coverage thresholds tested when the contamination level is above 16% (Figure 
4 and Supplementary Tables S31–S35). The results also show that the tool’s ability to detect 
low levels of contamination (< 10%) increases with the use of lower coverage thresholds, 
however, this comes at a cost. When using the lowest k-mer coverage threshold of 3X (i.e., the 
k-mer was detected in a minimum of 3 reads), the SH, SE, & Typhi schemas (which use multiple 
targets to assign a genotype) reported contamination when no contamination was present 
(Figure 4 and Supplementary Tables S31–S32; S34). Under these conditions (i.e. using 3X 
coverage threshold), between ~8%–23% of the uncontaminated datasets falsely identified 
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sequence error as contamination, in contrast to the results obtained using 6X or 8X thresholds 
where the sequence error was below these coverage thresholds and did not trigger a false 
contamination QC error in the uncontaminated datasets. We conclude that the higher coverage 
cut offs at or above 6X eliminate the “background noise” caused by the presence of sequencing 
errors in uncontaminated datasets, but will also mask low levels of contamination (< 10%). We 
used these findings to set BioHansel’s default values, which are intended for high quality 
Illumina WGS data and for assembled contigs, but may need to adjusted for users with custom 
schemas or when analyzing sequence data with high error rates, such as long-read sequence 
data. 

BioHansel’s ability to detect contamination in WGS datasets also improves with increasing 
numbers of k-mer targets used to assign a genotype (Figure 4). The MTB and Typhi schemas, 
which use only a single canonical SNP to assign a genotype, require slightly higher levels of 
contamination to be detected by BioHansel (Figure 4). This is particularly evident from our 
analysis of data sets with low levels of contamination, since the schemas that performed better 
at these levels had a larger number of targets and more redundancy for those genotypes. This 
makes intuitive sense, since at low levels of contamination fewer target k-mers will be detected 
above the minimum read coverage threshold.  

Interpreting BioHansel’s QA/QC reports 

BioHansel generates a QA/QC report that can be straightforwardly interpreted by non-experts 
for both the genotyping results and the detection of intra-species contamination. When 
performing whole genome assembly or genome mapping, intra-species contamination 
manifests as an increase in ambiguity of some SNP positions. Interpreting these results as 
contamination from a VCF output file requires time and expertise, which is not readily or widely 
available. As demonstrated, the ability of BioHansel to detect low levels of contamination in 
unassembled WGS datasets is related to the number of k-mers used to define each genotype: 
the higher the number of k-mer targets included in the schema, the more likely they are to 
generate informative contamination signal from conflicting genotyping results. The interpretation 
of these results is performed automatically by BioHansel’s QA/QC module and reported for each 
dataset.  

BioHansel’s speed and memory performance compare favourably to traditional 
SNP-calling pipelines.  

Runtime and memory usage for genotyping from assembled contigs 

The Aho–Corasick algorithm maps k-mers to genomic data in linear time. We confirmed this 
relationship using four of our five schemas (two schemas had approximately the same number 
of k-mer targets). Assembled genomes were genotyped by BioHansel in batches of 1,000 using 
a single CPU core for each genotyping schema. We observed an average runtime of between 
6.8–8.5 minutes, corresponding to between 0.41–0.51 seconds per assembly (Supplementary 
Figure S4). The runtime increased linearly with the number of k-mer targets in the schema 
(Supplementary Figure S4). Similarly, the memory usage also increased linearly with the 
number of k-mer targets in the genotyping schema (Supplementary Figure S5). When run on a 
personal computer using only a single CPU core (i.e., one thread) BioHansel runtime averaged 
0.23–0.31 seconds per assembly (Supplementary Figure S6). These results highlight the 
extreme rapidity in which BioHansel can genotype assembled genomes, using minimal 
computing resources—schemas could easily extend to thousands of targets without appreciably 
affecting genotyping performance. 

Runtime and memory usage for genotyping from read data 

One of the major strengths of BioHansel is that it can genotype pathogens from both assembled 
contigs and raw sequence reads. We evaluated the performance of BioHansel using Illumina 
sequencing reads as input and found that the runtime increased linearly according to the 
number of k-mer targets included in the schema (Figure 5, Supplementary Table S36). The 
runtime for BioHansel scaled well with increasing sequence coverage of the isolates (Figure 6). 
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These results highlight that within the normal sequence coverage levels for bacterial WGS 
datasets, BioHansel provides extremely rapid genotyping information.  

To provide context on BioHansel’s speed, its runtime was compared to Snippy, a traditional 
SNP-calling workflow. Since Snippy is designed for speed (Seemann 2015) it should provide a 
lower bound estimate of runtimes for traditional SNP-calling workflows. As with most SNP calling 
workflows, Snippy reports all the SNPs detected in the genome relative to a given reference 
strain, whereas BioHansel considers only the SNPs required for genotyping. BioHansel and 
Snippy were used to analyze artificially constructed datasets at different levels of sequence 
coverage. BioHansel’s runtime at 10X coverage ranged from 11–14 seconds compared to 65–
72 seconds for Snippy, which represents a nearly six-fold reduction in runtime (Supplementary 
Table S35). Further gains were observed increasing sequence coverage levels with 
approximately a fourteen-fold reduction in compute time at 50X coverage. With a recommended 
minimum genome coverage of 60X to detect all the SNPs in a bacterial genome (Kozyreva et 
al., 2017), this represents a substantial time savings.  

To exemplify the difference in runtime and memory usage between the tools in a typical public 
health laboratory setting, we have compared the tools using 96 public datasets of S. Enteritidis 
on a personal laptop computer (Figure 6). The results show that the BioHansel runtime is over 
an order of magnitude lower than that of Snippy. Increasing the number of threads (cores) 
significantly reduced runtime for both tools (Figure 6A), while the memory usage increased 
linearly for both tools (Figure 6B). When comparing the analysis of individual datasets, we 
observed that the file size, a proxy for the number of reads, does not have as much of an effect 
on BioHansel’s runtime as it does on Snippy, which increased sharply with file size (Figure 6C). 
Snippy’s memory usage also increased with file size while BioHansel’s memory usage remained 
constant (Figure 6D). We note the runtimes recorded for Snippy do not take into account the 
time required to build the subsequent phylogenetic tree; given the number of isolates typically 
required to contextualize an outbreak, and the tree building algorithm used, this process can 
take hours to days.  

Conclusions 

BioHansel was designed to address the need for genotyping pathogens in a fast, flexible, and 
readily interpretable manner without the need for high performance computing or specialized 
scientific expertise. We demonstrated that BioHansel rapidly and accurately genotypes 
Mycobacterium tuberculosis and four prevalent subtypes of Salmonella. BioHansel’s SNP 
detection is highly concordant with Snippy, a traditional SNP-calling pipeline, and Genotyphi, a 
SNP-based genotyping pipeline for Salmonella Typhi. We conclude that BioHansel readily 
identifies SNP targets with high concordance to traditional SNP-calling workflows, while 
additionally providing phylogenetically informative genotyping codes to typed isolates.  

We also demonstrated BioHansel’s ability to leverage read data to identify intra-species 
contamination. BioHansel’s quality assurance routines can also identify poor quality sequence 
data as well as sequence data with insufficient read coverage. BioHansel’s use of SNP-targeting 
k-mers increases the specificity of the SNPs detected and vastly reduces the effects of 
sequence contamination from other organisms (Goig et al., 2018).  

We provide schemas for Mycobacterium tuberculosis and four prevalent subtypes of 
Salmonella, since these are highly clonal organisms and are amenable to genotyping with 
hierarchically structured canonical SNP schemas. BioHansel’s ability to genotype less clonal 
organisms is an open question. BioHansel can genotype with SNPs contained in a pathogen’s 
accessory genome, although it is not currently configured to accommodate SNP profiles 
acquired through recombination—this remains a topic of active study in our lab as we work to 
extend BioHansel’s genotyping approach to other priority pathogens.  

BioHansel’s genotyping accuracy is a function of the clonality of the target pathogen and the 
discriminatory power of its canonical SNPs. Traditional gene-by-gene and SNP-based methods 
that exploit the full diversity of sequenced pathogen isolates will naturally provide the highest 
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resolution genotypes and phylogenies. BioHansel trades resolution for speed, but as we 
demonstrate with as little as 68 canonical SNP targets, still retains sufficient resolution to rapidly 
identify and discriminate outbreak-related strains from all but the most highly related sporadic 
circulating strains. Thus, BioHansel may be applied to rapidly generate an initial genotype for 
rapid response while slower, more compute intensive methods work to capture the full genomic 
diversity and assign a more specific genotype. BioHansel’s demonstrated ability to type WGS 
data quickly on computing resources as modest as a modern laptop makes it especially well-
suited for use in smaller labs and labs in developing nations that might not have ready access 
to the high performance computing resources required for traditional WGS-based workflows for 
surveillance and outbreak investigation. 

BioHansel is designed to accept custom schemas allowing users to extend existing schemas or 
develop novel schemas, although manual schema creation process requires considerable 
expertise and time investment. Schema development requires bioinformatics and organism 
expertise to ensure the selection of high quality k-mer targets that can reliably genotype target 
pathogens. In order to overcome this limitation, future work will focus on the automation of 
schema development, updating existing schemas with new genotypes, and the generation of 
new schemas for other priority pathogens. The ability to accommodate recombination will be 
explored, and the addition of an alternate workflow geared towards the analysis of 
metagenomics datasets will also be explored, as the k-mer-based strategy used by BioHansel 
makes it well suited for fast characterization of the pathogen signature sequences in these 
datasets. 
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Figures and tables 

 

 

 

Figure 1. BioHansel workflow. BioHansel accepts raw reads or genome assemblies as input, 
along with a corresponding genotyping schema. The tool uses k-mers in the genotyping schema 
to find canonical SNPs in the pathogen sequence data and assign the highest-resolution 
genotype specified by the matching SNP profile. BioHansel performs quality assessment by 
computing the detected SNP coverage (for read data), checking the consistency of the detected 
SNPs with the population structure defined in the SNP schema, and checking for possible 
contamination. BioHansel then creates one or more output result files as specified by the user; 
examples of each output file type are provided in Supplementary Table S2. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902056doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902056
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902056doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902056
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 

 

 

Figure 2. Analysis of retrospective S. Heidelberg outbreaks and sporadic and historical cases 
from 2008 to 2014 in Quebec, Canada. The BioHansel genotypes for the retrospective dataset 
strains are shown in red font in all panels. Panel A: Backbone of the population structure of 
S. Heidelberg showing the genotypes defined in the SH schema v. 0.5.0. The tree was 
generated the 202 canonical SNPs used in the SH schema (see Supplementary Table S20). 
The scale bar is equivalent to a distance of ~2 SNPs. Panel B: Phylogenetic tree produced 
by the SNVPhyl pipeline (Petkau et al., 2017) for the 59 S. Heidelberg isolates. The scale bar 
is equivalent to a distance of ~3 SNPs. Panel C: UPGMA tree from wgMLST analysis 
generated using BioNumerics v. 7.6.3 on 4,396 alleles. The scale bar at the top indicates the 
allelic distance (0–80 alleles).  
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Figure 3. SNP coverage correlations between BioHansel and Snippy. A. Scatterplot of the 
average BioHansel k-mer coverage using the Typhi schema with 68 SNP targets, against the 
mean read mapping coverage of Snippy for 1,000 public S. Typhi genomes. B. Scatterplot of 
the BioHansel k-mer coverage against the Snippy read mapping coverage at the 68 SNPs 
targeted by the Typhi genotyping scheme (n = 1,000 genomes). The blue lines represents the 
line of best fit. SNP coverages calculated by BioHansel are consistently around 73% of the 
Snippy sequence mapping coverage.  
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Figure 4. Contamination Detection Performance. 156 contamination datasets were 
constructed for each pathogen. Each graph represents the percentage of contamination 
datasets detected by BioHansel (Y axis) among all the artificially generated datasets tested 
for each contamination levels (X axis). The minimum SNP detection thresholds tested are 
shown in the legend. 
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Figure 5. BioHansel runtime for one synthetic Illumina Miseq dataset with increasing genome 
coverage and numbers of k-mer targets. Each data point represents the average BioHansel 
runtime on 10 different datasets of SH, Typhi, SE or ST, at the genome coverages depicted.  
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Figure 6. Runtime and memory usage comparison between BioHansel and Snippy for 
unassembled Illumina WGS datasets from S. Enteritidis. Panels A and B: Runtime and 
memory usage for 96 WGS datasets with increasing numbers of parallelized compute threads. 
Panels C and D: Runtime and memory usage for single unassembled WGS datasets of 
increasing size (n = 96) using a single CPU core. The shading in the graphs represents the 
95% confidence interval with 1,000 bootstraps using a mean aggregation estimation. 
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Table 1: Genotyping results from BioHansel and Snippy using 68 SNP targets with 1,000 S. 
Typhi genomes at three coverage thresholds (n = 68,000 comparisons at each genome 
coverage level). 

Minimum 
Coverage 

Cut Off 

Calls 
Agree 

Discordant  
Majority 

Calls 

Missed 
Calls, 
Both 

Mixed 
Calls, 
Both 

Missed 
Calls, 

Snippy  

Mixed 
Calls, 

Snippy 

Missed 
Calls, 

BioHansel 

Mixed 
Calls, 

BioHansel 

3X 67,912 0 22 43 22 92 32 72 

6X 67,975 0 23 5 23 19 34 5 

8X 67,985 0 24 0 24 4 35 0 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902056doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902056
http://creativecommons.org/licenses/by-nc-nd/4.0/

