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ABSTRACT: Targeted quantitative mass spectrometry metabolite profiling is the workhorse of metabolomics research. Robust and 

reproducible data is essential for confidence in analytical results and is particularly important with large-scale studies. Commercial 

kits are now available which use carefully calibrated and validated internal and external standards to provide such reliability. 

However, they are still subject to processing and technical errors in their use and should be subject to a laboratory’s routine quality 

assurance and quality control measures to maintain confidence in the results. We discuss important systematic and random 

measurement errors when using these kits and suggest measures to detect and quantify them. We demonstrate how wider analysis 

of the entire dataset, alongside standard analyses of quality control samples can be used to identify outliers and quantify systematic 

trends in order to improve downstream analysis. Finally we present the MeTaQuaC software which implements the above concepts 

and methods for Biocrates kits and creates a comprehensive quality control report containing rich visualization and informative 

scores and summary statistics. Preliminary unsupervised multivariate analysis methods are also included to provide rapid insight 

into study variables and groups. MeTaQuaC is provided as an open source R package under a permissive MIT license and includes 

detailed user documentation. 

Targeted mass spectrometry profiling is the workhorse of 

metabolomics methods. Due to optimization and validation of 

a defined set of metabolites, it allows for comprehensive 

routine metabolomics applications such as the analysis of 

larger cohorts 1–4. By focusing on a defined set of metabolites, 

targeted methods enable both absolute quantification and carry 

a high potential for standardization by the use of kits validated 

for specific use cases and sample matrices. However, 

comprehensive studies require consistent processing and 

reliable instrumentation to minimize technical variance and 

interference. Furthermore systematic trends and deviations 

must be identified and should be quantified 5–7. 

While standardized methods such as the Targeted 

Metabolomics Kits of Biocrates 8 promise consistent, 

reproducible and comparable measurements, they are not fully 

resistant to external influences. These include sample to 

sample concentration differences, sample handling and 

processing errors, contamination, sample carryover, batch 

effects, intra-batch drift, edge effects, missing values of 

unknown origin and instrument condition 5,7,9–11. 

Consequently, multiple checks and controls are required to 

verify data quality, consistency and reproducibility (i.e. 

variance between technical replicates). In particular, 

comprehensive studies and routine applications benefit from 

the validation of consistent quality and quantity in and 

between batches. Standardized targeted kits are well validated 

and use multiple quality assurance features but vendor 

software often concentrates on single-analyte or single-sample 

validation, not harnessing the full quality control potential. For 

instance, Biocrates MetIDQ software mainly focuses on 

validation of single analyte accuracy and calibration standard 

samples (with respect to expected concentration) or single 

analyte overviews of, for instance, concentration, retention 

time, peak area (LC) and intensity (FIA). Time-dependent 

instrument performance monitoring is performed via QC 

trends and inter-kit measurement per analyte.  

Here we briefly outline some potential quality assurance and 

quality control procedures that can be implemented when 

using standardized kits for targeted studies. First, we identify 

various sources of measurement error and then propose 

methods to detect these errors. Our practical software 

implementation focuses on Biocrates kits that are widely used 
12–20. We introduce MeTaQuaC, an easy to use R-package 

which generates a comprehensive HTML report with 

interactive elements.  The software enables individuals to 

implement the proposed quality control checks quickly and 

easily. We envisage that such reports can become part of 

quality reporting for the community, e.g. as supplementary 

material in publications. 

QC Measures and MeTaQuaC Software 

Quality assurance (QA) and quality control (QC) are 

important processes to ensure robust data acquisition and to 

maintain confidence in analysis results. Their importance 
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gains increasing recognition in the metabolomics community 
5,21,22 and they are required for specific applications by 

governmental institutions such as the European Medicines 

Agency (EMA) and the U.S. Food and Drug Administration 

(FDA) who provide specific guidelines 23,24. Put simply, while 

QA defines processes planned and performed to fulfill defined 

quality requirements, QC comprises measures to report 

whether these quality requirements have been met. Here we 

focus on the later. 

Ignoring human error, all experimental uncertainty is due to 

either random errors or some kind of systematic error 

including biases and confounders. Random errors are 

statistical fluctuations (usually in either direction) in the 

measured data due to the intrinsic precision or other technical 

limitations of the measurement device or assay. Systematic 

errors, by contrast, are inaccuracies that occur consistently 

(usually in the same direction or some form of pattern). 

Systematic errors may be due to a problem which persists 

throughout an entire experiment, or which affects only a single 

batch or subset of samples. Systematic errors can include 

biases (e.g. due to collection site) in the data collection or 

trends such as changes in temperature of a laboratory over the 

course of the day. 

 The primary aim of quality control measures is to 

determine that measurements are precise, accurate and 

reproducible. One necessary consideration is to check for both 

potential systematic errors as well as unusually large random 

fluctuation or suspicious measurement ranges. Due to the 

complexity of the technologies and analyses pipelines, this 

cannot be achieved by just calculating and thresholding a few 

key indicators. Thus, we designed a workflow around a 

comprehensive set of descriptive statistics and visualizations 

of potential indicators for quality with a specific focus on 

systematic deviations as well as inspections of calibration and 

normalization across different runs and batches and data 

consistency in general. 

Spotting systematic error takes a lot of care and effort, 

especially if the error does not occur in a linear fashion. 

Systematic error should both be minimized where possible 

(through instrument maintenance, careful experimental design 

and laboratory monitoring) and be quantified. Correction of 

systematic error may be possible in a downstream analysis if 

reliable quantification was possible. E.g. many batch-

correction algorithms exist which use data-driven, internal 

standards (IS)-based or quality control samples (QC)-based 

normalization 5,25–28. Random errors should be statistically 

quantified by analysis of suitably defined replicates 

throughout a study, batch or run. This has been used to 

exclude variables where the technical variation is greater than 

the biological signal 5,27. However, analysis of technical 

replicates can be used for additional purposes including 

estimates of technical variability (between sample, run, batch, 

etc.), which are an essential input for power calculations given 

expected effect sizes. For MS based metabolite measurements, 

the high frequency of missing values pose an additional 

challenge and must be carefully evaluated in the QC. 

Beside biological samples and compounds of interest, a 

viable targeted method employs several supporting samples as 

well as supporting analytes as quality assurance measures. 

Internal standards (IS), i.e. additional compounds, added in 

known amounts to the samples, allow for IS-based 

normalization which can assist in correcting for spray intensity 

or other analysis differences and thus promote comparable 

analysis independent of instrument or lab. Pooled QC samples 

created by mixing a number of representative biological 

samples support the assessment of data quality within and 

potentially between batches and studies 5,29. Reference QC 

samples consisting of standard reference materials with known 

concentrations may additionally support inter-study and inter-

laboratory analysis 5. While reference QC samples provide the 

benefit of evaluating compound accuracy (with respect to 

expected concentrations), pooled QC samples have the benefit 

of matching the same chemical matrix of the samples to be 

analyzed, thus enabling an assessment of matrix effects. Both 

enable the evaluation of compound measurement 

reproducibility (repeatability precision) 5 and can be used to 

correct for systematic errors via QC-based normalization. 

Calibration standard samples of varying known compound 

concentrations allow calculation of calibration curves and thus 

enable absolute quantification of compounds in other samples 

(with due regard for any differences in matrix effects if sample 

matrices are different to the EDTA plasma that Biocrates was 

developed for). 

Biocrates adopts a combination of liquid chromatography-

mass spectrometry (LC-MS) analysis and flow injection 

analysis-mass spectrometry (FIA-MS, also known as direct 

infusion mass spectrometry or DIMS) for their kits. For the 

LC-MS analysis, Biocrates uses isotopic variants of their 

target compounds as internal standards with analogous 

analytical performance which allows for compound-specific 

normalization within each sample (IS-based normalization). 

Seven calibration standard samples are available to enable 

absolute quantification of several compounds (varying with 

the kit). However, FIA-MS measurements are limited to 

normalization by internal standards alone (referred to as one-

point calibration). Furthermore, Biocrates’ MetIDQ software 

optionally allows for additional computational batch 

normalization with respect to mean or median concentrations 

of repeated “quality control samples” (QC-based 

normalization). To avoid confusion with nomenclature, we use 

the term “reference QC” to refer to this standardized quality 

control (QC) sample provided by Biocrates as part of their 

kits, and “pooled QC” to refer to our own pooled sample QC. 

We utilize multiple measures to assess data quality and to 

identify discrepancies (Figure 1 - Quality Control). We start 

with histograms of the number of samples per type, 

compounds per class as well as measurement statuses (Figure 

1 - Status Profiling) as an initial overview of the data set. The 

number of missing values per sample is visualized via 

histograms for different sample types to confirm consistent 

distribution and reasonable superiority of QC samples in terms 

of detection rate. Frequencies of missing values per compound 

are visualized with respect to class, sample type and even 

study groups (if known) to assess differences in occurrences. 

Sample measurements (such as concentration, intensity, area, 

etc.) are summarized to establish general sample behavior in 

(multi-) batch contexts and in particular to identify systematic 

errors: Visualizing total sample concentration (or missing 

values) with respect to acquisition order (Figure 1 - Sequence 

Progression) enables the identification of temporal errors and 

trends such as batch drifts and carryovers, confirmation of 

potential corrections such as IS- and QC-based normalization 

and calibration as well as  systematic comparison of batches. 
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Figure 1: MeTaQuaC quality control workflow. The workflow illustrates the main stages of MeTaQuaC including data import, 

configurable preprocessing, overview and quality control. It only features a representative extract of overview and quality visualizations, 

with many more being available in the actual report. 

Statistical analysis of linear model coefficients supports the 

evaluation of drifts within batches and differences between 

batches. Compound variability in the form of (relative) 

standard deviation plotted with respect to average 

concentrations (Figure 1 - Compound Variability) enables 

confirmation of the essential separation between technical and 

biological variance. Additional statistical analysis of linear 

model coefficients is used to confirm the separation. Finally, 

unsupervised multivariate analysis such as hierarchical 

clustering, correlation and principal component analysis 

(Figure 1 - Sample Clustering, Sample Correlation and Sample 

PCA) represent additional informative methods to further 

validate conformity within and differentiation between 

different sample types as well as to provide preliminary 

insight into study variables and groups. 

In addition to and in preparation for QC analysis, our 

workflow applies several optional but recommended 

preprocessing steps (in the described order and as shown in 

Figure 1). First, unreliable measurements are discarded based 

on Biocrates status flags (as default, only "Valid" 

concentrations are retained) and considered as missing values 

(“Status-based Rejection”). Then, unreliable compounds may 

be removed based on the ratio of missing values (“Filtering by 

Detection Rate in Reference QCs”) and relative standard 

deviation in QC samples (kits' QC Level 2, “Filtering by 

%RSD in Reference QCs”), while underrepresented 

compounds may be filtered by ratio of missing values in 

biological samples (“Filtering by Detection Rate in Biol. 

Samples”), with defaults of 30%, 15% and 30%, resp., 

according to Broadhurst et al. 5. Furthermore, missing value 

imputation based on median may be applied but is only 

recommended after rigorous filtering. In general, subsequent 

analyses do not always rely on all preprocessing steps (Figure 

1) but as many as technically necessary (e.g. a PCA requires a 

complete dataset and thus requires full preprocessing). 

 

 

Results and Discussion 

We designed the MeTaQuaC R package to implement the 

proposed QC and processing measures, among others, for 

targeted data acquired using Biocrates kits and present them in 

an extensive HTML report based on R Markdown. Figure 1 

depicts the QC workflow for processing targeted 

metabolomics data as implemented with MeTaQuaC. It 

includes a parser for Biocrates’ MetIDQ data, data 

restructuring including batch merging, overview 

visualizations, data preprocessing including filtering and 

various quality control visualization and evaluations. 

Restructured, preprocessed and other intermediary data may 

be accessed from the report (as csv) and can be exported for 

further statistical analysis. MeTaQuaC currently supports 

Biocrates' AbsoluteIDQ® p400 HR Kit and MxP® Quant 500 

Kit. 

We demonstrate the application of the proposed measures 

and of the MeTaQuaC software on two genuine but 

anonymized data sets. Data set one consists of 240 biological 

samples and was measured with Biocrates AbsoluteIDQ p400 

HR Kit on an Agilent 1290 UHPLC Infinity column and 

Thermo Fischer Q Exactive Plus mass spectrometer in four 

batches. The results have been processed with the Biocrates’ 

MetIDQ software version 7.11.5-DB108-Nitrogen-2834, and 

the corresponding data files can be found in the supplement 

(files: data_p400.zip). The complete MeTaQuaC reports are 

also provided as supplement (file: qc_p400.zip). Data set two 

consists of eight biological samples and was measured with 

Biocrates MxP Quant 500 Kit on an Agilent 1290 UHPLC 

Infinity column and Sciex 5500 mass spectrometer in one 

batch. The results have been processed with the Biocrates 

MetIDQ software version 7.11.5-DB108-Nitrogen-2834, and 

the corresponding data files can be found in the supplement 

(file: data_q500.zip). The complete MeTaQuaC reports are 

also provided as supplement (file: qc_q500.zip). Each report 

contains a multitude of different plots, interactive tables and 

statistical measures. The computation and generation of the 
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reports takes just a few minutes on a modern desktop 

computer. 

We highlight the benefit of proposed quality control 

measures with two exemplary visualizations from the analysis 

of data set one: Figure 2 compares the concentration and total 

area of LC measurements of each sample in acquisition 

sequence order. This visualization allows the inspection of 

several key characteristics of the data: First, it demonstrates 

the overall total effect of normalizations and calibration. A 

successful normalization and calibration will result in total 

concentrations of all QC samples to be on the same level. This 

leads to horizontal regression lines in the plot (Biocrates 

provided QC Level 2 samples = green; User-provided pooled 

samples = orange, if available). Intra-batch differences show 

as deviations from the horizontal line and are easily spotted in 

the plot as well as quantitatively described by regression 

model parameter given in the report. Second, the same feature 

directly indicates whether different batches are comparable (as 

expected) or subject to major discrepancies (inter-batch 

differences visualized by offsets between the regression lines 

and quantified by the regression coefficients). Another way of 

double checking normalization performance is provided by the 

visualization of the standard samples (left hand side of plots in 

Figure 2). A successful normalization maps standards with 

equal concentrations closer to each other (with typical higher 

variance in higher concentrated samples) and clearly separates 

them from other concentrations. Finally, strong single outliers 

may be easily spotted (here none). For the data set at hand we 

conclude satisfactory calibration and normalization 

performance.  

 

Figure 2: Selected visualization from MeTaQuaC report for data 

set one comparing intra- and inter-batch consistency of LC data 

using total analyte peak area (lower plot) and total concentration 

(upper plot). Data is plotted in sequence of acquisition to visualize 

and identify potential intra-batch drift and validate normalization 

and calibration. 

Figure 3 visualizes the occurrence of missing values of FIA 

measurements in each sample with respect to well plate 

position. It allows for an easy detection of patterns from 

spatially adjacent samples, which are hard to recognize in the 

sequential visualization. In this example, a slight increase of 

missing values can be observed in the connected samples at 

row A, column 3 to 7 in batch one, indicating an edge effect 

(e.g. due to lateral drying). Furthermore, the visualization 

confirms the expected low number of missing values in kit-

based QC samples as well as the expected high number in 

blank and zero samples. 

 

Figure 3: Selected visualization from MeTaQuaC report for data 

set one comparing spatial distribution of missing values across the 

well plate for FIA data (hence no calibration standard samples). 

Samples are plotted per well plate position to visualize positional 

pattern.  

Applying a host of different visualizations and statistics 

enables changes in perspective and thus often helps to confirm 

observed conditions, to validate assumptions or to detect or 

highlight distinct issues. To this end, MeTaQuaC implements 

various QC measures beyond the once presented. The 

highlighted examples only cover a small selection of the 

provide QC measures, but clearly demonstrate the possibility 

to quickly and efficiently detect a wide range of complex 

systematic errors and outliers. Furthermore they may aid 

validating critical processes such as calibration or 

normalizations. While we compute and visualize many 

different QC measures and reject measurements, compounds 

and samples based on user defined thresholds for further 

downstream QC and potentially statistical analysis, we 

intentionally do not suggest any thresholds for rejecting or 

accepting individual batches or whole data sets. To our 

experience these thresholds depend critically on the individual 

study, e.g. exploratory versus confirmatory. However, we 

encourage labs and individual users to select and define their 

own set of most informative visualizations, measures and 

acceptance ranges for the different use cases in targeted 

metabolomics. 

Conclusions 

The increasing amounts of studies and data due to 

advancements in technology demands a shift towards 

automated and thus robust, reproducible and reportable quality 

control. The metabolomics community has already recognized 
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the need for more quality assurance and control in 

metabolomics studies. Community-wide collaborations such 

as the Metabolomics Quality Assurance and Quality Control 

Consortium (mQACC) 21 further highlight the need and 

interest in quality control by creating a forum to discuss and 

implement community-wide procedures and standards for 

quality assurance and quality control. mQACC is providing 

education and is developing standard reference material with 

focus on discovery-based (i.e. untargeted) methods. Our 

software complements these efforts with easy to apply 

measures for target studies in a readily usable, consistent and 

reproducible manner. Although currently limited to Biocrates 

kits, it can be generalized for generic targeted metabolomics 

data in the future. MeTaQuaC is available as an open source R 

package under a permissive MIT license. Source code, 

documentation and issue tracking can be found at 

https://github.com/bihealth/metaquac. 
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