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Abstract 
 
The nonlinear n-resource-consumer autonomous system with age-structured consumer population is studied. 
While the model of consumer population dynamics is described by a delayed transport equation, the dynamics 
of resource patches are described by ordinary differential equations with saturated intake rate. The delay models 
the digestion period of generalist consumer and is included in the calorie intake rate which impacts on con-
sumer’s fertility and mortality. Saturated intake rate models the inhibition effect from the behavioural change of 
the resource patches when they react on the consumer population growing or from the crowding effect of the 
consumer. The model is studied both analytically and numerically. Conditions for existence of trivial, semi-
trivial and non-trivial equilibria and their local asymptotic stability are obtained. Numerical experiments con-
firm and illustrate these theoretical results. 
 
Keywords: Age-structured model. Resource-consumer model. Saturated intake rate. Digestion period. Ap-
parent competition. 
 
1.  Introduction 

 
Competition between several food patches and a common generalist consumer was 

thoroughly studied in the ecological literature [2], [23] - [27], [30] - [32], [34], [43], [44]. 
Here, an increasing in biomass of one food patch causes increasing in generalist consumer 
population, thus a negative impact on other resources patch and vice versa. Thus, apparent 
competition is similar to exploitative competition [33] and can lead for reducing the number 
of coexisting resource patches. In traditional unstructured Lotka-Volterra ODE models of 
population dynamics, many details of life histories are neglected [16]. The more reasonable 
approach in population dynamics modelling is based on the physiologically structured mod-
els [8], [11], [13], [14], [16] - [21], [28], [29], [35], [36], [41], [42]. In this article the appar-
ent competition model of unstructured resource patches with age-structured consumer 
population is studied. This approach allows us to relate foraging to the life history and 
demographical characteristics of consumer population (fertility and mortality).  

The dynamic interaction between resources and consumers in predator-prey models is 
described by the consumer’s functional response. Beddington [10] and DeAngelis [15] intro-
duced and analysed the functional response with saturation which is often used now in ap-
plied models providing the more realistic description of predator-prey interaction [12], [22], 
[37], [40]. The functional response of such type, “saturated incidence rate”, was first intro-
duced in SIR epidemic model after studying the cholera epidemic spread in Bari [12] and 
was used later in the various epidemic models [22], [40]. The feature of saturated incidence 
rate is that it tends to saturation when the population of predator (or infectives in epidemic 
models, parasite in parasite-host model, consumers in resource-consumer models, etc.) gets 
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large and, as a consequence, it prevents the unboundedness of the contact rate between prey 
and predator. Since this functional response considers the behavioral change of prey (or 
hosts, susceptibles, resources in patches, etc.) as a reaction on the predator population 
growing or “crowding effect” of predator, the resource-consumer models with intake rates 
of such form are more reasonable in comparison with traditional Lotka-Volterra models. 
The resource consumption in biological and ecological models is often characterized also 
by the calorie intake rate which depends linearly from the amount of food resource taken by 
one consumer per unit of time from all patches. This function depends from the handling 
time, i.e. the time a consumer needs to handle and digest a unit of resource. This time peri-
od is included in model as a time delay parameter. Thus, the resulting model studied in this 
article consists of several unstructured resource patches and a single age-structured con-
sumer population that forages in these patches including the saturated intake rate, calorie in-
take rate and the digestion period of a generalist consumer as a time delay parameter. The 
model is formulated in Section 2. 

The conditions of existence of the trivial, semi-trivial and non-trivial equilibria of 
autonomous system are studied in Sections 3. The local asymptotic stability of all equilibria is 
considered in Section 4. Stability analysis is based on the traditional perturbation theory and lin-
earization of autonomous system and includes the study of impact of the time delay parameter 
on the asymptotic stability of equilibria [3], [8], [19], [36], [38], [39]. 

The recurrent algorithms obtained in the earlier works [4] - [6] are used in the Section 5 
for numerical analysis of dynamical regimes of autonomous system that were considered in the 
previous sections. In the first and second groups of experiments the local asymptotic stability 
of the trivial and semi-trivial (i.e., only resources exist at positive densities) equilibria for three 
resource patches with one generalist consumer is studied. Depending on the reproduction 
number of consumers, trajectories of system are unstable, oscillate in the vicinities of the trivial 
and semi-trivial equilibria or converge asymptotically to the semi-trivial equilibrium. The fur-
ther increasing of consumer’s basic reproduction number or time delay parameter leads to the 
consumer population outbreaks in form of pulse sequence, which are classified in the quantita-
tive population ecology as the populations with cyclical eruption dynamics [1], [7]. The results 
of simulations illustrated the properties of the outbreak solutions are presented in Section 5.2.  

The next group of experiments focuses on the study of asymptotic behaviour of solu-
tions in the vicinity of the non-trivial equilibrium with one non-depleted and two depleted re-
source patches (1st - 3th experiments), three non-depleted resource patches (4th experiment) and 
one non-trivial consumer population. The results of simulations confirm and illustrate the 
statements of theorems and exhibit the different dynamical regimes of system with unstable 
and asymptotically stable trajectories for the selected parameters of the model. Several con-
cluding remarks are given in the last Section 6. 
 

2 Model 
 

In this article we study an apparent competition food web module that consists of n  
resource patches and consumers that move freely between these patches. Resource density 
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of i -th patch is denoted as ( )iy t , 1,...,i n= . The resource dynamics in each patch is de-
scribed by the logistic model with constant growth rate 0ir > , and environmental carrying 
capacity 0>iK . The age-specific density of consumer population at age a  and time t  is 

denoted by ( , )w a t , the quantity of consumers in population is 0
0

( ) ( , )
da

W t w a t da= ∫  (where 

0>da  is the maximum consumer’s life-span) and a weighted quantity of consumers at the 

fixed time t  is 
0

ˆ ( ) ( ) ( , )
da

W t a w a t daγ= ∫  (where ( )aγ  is an age-specific consumer’s prefer-

ences in food resource, ( ) (0,1]aγ ∈ , 2( ) ([0, ])da L aγ ∈ ). The interaction strength between re-

sources and consumers is a product of the saturated intake rate ˆ( ) ( ( ))i iy t g W t , where 
ˆ( ( ))ig W t  evolves to a saturation level when ˆ ( )W t  gets large, i.e. 

( ) 1ˆ ˆ ˆ( ( )) ( ) 1 ( )i i ig W t W t W tβ α
−

= + . Functions ˆ( ( ))ig W t  have a form of the Beddington – 

DeAngelis type of functional responses [10], [15], [37] under assumption that handling 
time of predator is effectively zero (Eq. (12) in [10]). Constant 0iβ >  is a search rate of re-
source 1,...,i n= . Saturation coefficient 0iα ≥  is proportional to the rate of encounter be-
tween consumers, related both to their speed of movement and the range at which they 
sense each other and the time wasted by consumer per one encounter [10]. On the other 
hand, this coefficient can consider also the behavioral change of the food resource when 
consumer population grows (like in epidemic models for pair susceptibles-infectives [12], 
[22], [40]). The greater the coefficient iα , the greater the activity of the food resource in i -th 
patch and vice versa. When 0iα =  the saturated intake rate is a bilinear form of Lotka-Voltera 
functional response which considers the inactive food resource without behavioral reaction on 
the consumer population changes. For our convenience we introduce the food resource classi-

fication: the higher activity resource with 1
i i irα β−≥ , the lower activity resource with 

10 i i irα β−< <  and non-active resource with 0iα = . These assumptions lead to the following 
resource population dynamics 

 

( ) ( ) 11 ˆ ˆ( ) 1 ( ) ( ) ( ) 1 ( )i
i i i i i i i

dy
r y t y t K y t W t W t

dt
β α

−−= − − + ,  ( ]Tt ,0∈ , (1) 

 

Consumer population dynamics ( , )w a t  are governed by the delayed McKendrick-Von 
Foerster’s age-structured model [18], [20], [21]: 

 

( , ( )) ( , )
w w

s a C t w a t
t a

τ∂ ∂+ = − −
∂ ∂

,  Qta ∈),( , (2) 
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where ( ){ }],0[],,0[, TtaataQ d ∈∈= . Eqs. (1), (2) are completed by the following initial 

and boundary conditions: 
 

0( ) ( )
iiy t y t= ,  [ ]0,τ−∈t , (3) 

 

( ,0) ( ),w a aϕ=   ],0[ daa ∈ , (4) 
 

(0, ) ( , ( )) ( , )
m

r

a

a

w t a C t w a t daθ τ= −∫ , ( ]Tt ,0∈ , (5) 

 

where 0>ra  is an age of maturation, 0ma >  is a maximum age of reproduction and ( )aϕ  
is an consumer’s initial density. Functions ( , ( ))s a C t τ−  and ( , ( ))a C tθ τ−  are age- and 
calorie intake rate dependent consumer’s death and fertility rates, respectively. Consump-
tion of food resources by one consumer per unit of time is measured by calorie intake rate 

( )C t . This function is used in Eqs. (2), (5) with the time delay parameter 0>τ  which is a 
handling time, i.e. the time a consumer needs to handle and digest a unit of resource. We 
assume that the calorie intake rate is a linear function of the amount of food resource taken 
by one consumer per unit of time from all patches and is defined through the resource in-
take rate: 

 

( ) 1

1 1

ˆ ˆ ˆ( ( ), ( )) ( ( ), ( )) ( ) 1 ( )
n n

i i i i i i
i i

C y t W t C y t W t e y t W tβ α
−

= =
= = +∑ ∑ , (6) 

 

where 0iC ≥  is a calorie intake rate for i -th resource patch, 0ie >  is an efficiency with 
which the consumed resource i  is transformed to energy. We impose the following natural 
restrictions on the death and fertility rates: 
 

1
0( , ) ([0, ] )da C C a Rθ ≥∈ × , ( , ) 0a Cθ ≥ , ( ,0) 0aθ = , 0

C

θ∂ >
∂

, (7) 

 

1
0( , ) ([0, ] )ds a C C a R≥∈ × , ( , ) 0s a C > , 0

s

C

∂ <
∂

. (8) 

 

Equations (7), (8) means that decreasing of calorie intake rate corresponds to the critical 
foraging or starvation, and increasing of it corresponds to the sufficient foraging and satiation 
with increasing resource intake rate. Increasing of calorie intake rate provides also maximum 
comfortable conditions for reproduction of consumers that corresponds to increasing of 
birth rate, and decreasing of calorie intake rate provides the most poor and unfavourable 
conditions for reproduction of consumers, decreasing of birth rate. 

The basic reproduction number of age-structured model of consumer population dy-
namics [8], [16], [28], [35], [41] is a calorie intake rate depending function: 
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0
( ) ( , )exp ( , )

m

r

a a

a
R C a C s C d daθ ξ ξ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ . (9) 

 
3 Existence of stationary equilibria of autonomous system (1) – (5) 

 

We consider the equilibria * * *
1( ,..., )ny y y= , *( )w a  of autonomous system (1) – (5). It 

is easy to verify that trivial * (0,...,0)y = , *( ) 0w a ≡  and semi-trivial *
1( ,..., )ny K K= , 

1( ,..., )nK K K= , *( ) 0w a ≡ , equilibria of autonomous system (1) – (5) with coefficients 
(7), (8) always exist. In this section we study the conditions for existence of a nontrivial 
equilibrium where resource densities in the group of patches with indexes i I+∈  are posi-

tive and bounded *0 i iy K< < , while the remaining patches with indexes 0i I∈  are depleted 
* 0iy = , 0 { , 1,..., }I I i i N i n+∪ = ∈ = . The equilibrium consumer density is nonnegative 
*( ) 0w a ≥ , equilibrium consumer quantity and equilibrium weighted consumer quantity are 

positive * *
0

0
( ) 0

da

W w a da= >∫ , * *

0

ˆ ( ) ( ) 0
da

W a w a daγ= >∫ . Equilibrium *
iy , 1,...,i n= , satis-

fies equation: 
 

( ) ( ) 1* * 1 * *ˆ ˆ1 1 0i i i i i iy r y K W Wβ α
−−⎛ ⎞

− − + =⎜ ⎟
⎝ ⎠

. (10) 

 

Equation (10) has at most two nonnegative solutions: 
 

( ) 1* 1 * *ˆ ˆ1 1 0i i i i iy K r W Wβ α
−−⎛ ⎞

= − + >⎜ ⎟
⎝ ⎠

, only if * 1ˆ ( ) 1i i iW r β α− − < ,  (11) 

 

* 0iy = . (12) 
 

 

Hence, the nontrivial equilibrium of food web contains the nonempty set of nondepleted 

patches which necessarily satisfy condition * 1ˆ ( ) 1i i iW r β α− − <  with indexes 

{ }* 1ˆ1 , ( ) 1i i ii I i i n W r β α−
+∈ = ≤ ≤ − <  and the set (empty or not) of depleted patches which 

can satisfy or not the condition * 1ˆ ( ) 1i i iW r β α− − ≥  with indexes 0i I∈ : 

0 { , 1,..., }I I i i N i n+∪ = ∈ = , 0I I+∩ = ∅ . 

From Eq. (11) we obtain the positive equilibria *ˆ 0W > : 
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( ) ( )( ) 1
* * 1 1 * 1ˆ 1 1 0i i i i i i iW y K r y K constβ α

−− − −= − − − = > , for all i I+∈ , (13) 

 

or 

( ) ( )( ) 1
* 1 * 1 1 * 1

0
ˆ 1 1i i i i i i i

i I
W n y K r y Kβ α

+

−− − − −

∈
= − − −∑ , (14) 

 

where 0n  is a number of patches of set I+ ≠ ∅ , 01 n n≤ ≤ . Substituting Eqs. (11) and (13) in 
Eq. (6) we obtain the equilibrium calorie intake rate: 

 

( ) 1* * *ˆ1i i i i
i I

C e y Wβ α
+

−

∈
= +∑ . (15) 

 

The second equation of equilibrium is obtained from Eqs. (2), (5): 
 

*
* *( , ) ( )

dw
s a C w a

da
= − , (16) 

 

* * *(0) ( , ) ( )
m

r

a

a

w a C w a daθ= ∫ .

 

(17) 

 

Solution of (16), (17) satisfies the following integral equation: 
 

* * * *

0
( ) exp ( , ) ( , ) ( )

m

r

aa

a

w a s C d C w dυ υ θ υ υ υ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ . (18) 

 

Integrating Eq. (18) with respect to a  from 0 to da  we obtain the expression with *
0W : 

 

1
* * * *

0
0 0

( , ) ( ) exp ( , )
m d

r

a a a

a

C w d W s C d daθ υ υ υ υ υ
−

⎛ ⎞⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫ ∫ . (19) 

 

Multiplying both sides of Eq. (18) on ( )aγ , integrating them with respect to a  from 0 
to da  and substituting in obtained equation the left side of Eq. (19) yields: 

 

1
* * * *
0

0 0 0 0

ˆ exp ( , ) ( )exp ( , )
d da aa a

W W s C d da a s C d daυ υ γ υ υ
−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ ∫ ∫ . (20) 

 

By analogy with Theorem 1 from [29] formulated for harvesting problem, we obtain 
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Theorem 1. The system (1) – (5) possess a nontrivial equilibrium * 0iy >  (i I+∈ ), 

* 0iy =  ( 0i I∈ ), and *( ) 0w a ≥ , * *
0

0
( ) 0

da
W w a da= >∫ , if and only if there exists the positive 

solution *ˆ 0W >  of equation * * *ˆ ˆ( ( ( ), )) 1R C y W W =  with restrictions * 1ˆ ( ) 1i i iW r β α− − < , 

i I+∈ . The basic reproduction number *( )R C , equilibrium *
iy , i I+∈ , equilibrium calorie 

intake rate *C  and *
0W  are given by Eqs. (9), (11), (15), and (20), respectively. The equilib-

rium distribution of consumer’s density is: 
 

1
* * * *

0
0 0 0

( ) exp ( , ) exp ( , )
daa a

w a W s C d s C d daυ υ υ υ
−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ ∫ . (21) 

 

Proof. Multiplying both sides of Eq. (18) on *( , )a Cθ , integrating them with respect to a  

from ra  to ma  after a little algebra we arrive to the equation * * * *ˆ ˆ( ( ( ), )) 1R C y W W =  (see Eq. 

(9)). If this equation has solution *ˆ 0W >  satisfied * 1ˆ ( ) 1i i iW r β α− − <  (i I+∈ , see Eq. (11)), 
* 0iy =  ( 0i I∈ ), we can obtain *

iy , i I+∈ , (Eq.(11)), *C  (Eq.(15)) and *
0W  (Eq. (20)). Con-

versely, if equation * * *ˆ ˆ( ( ( ), )) 1R C y W W =  does not have solution *ˆ 0W >  satisfied 
* 1ˆ ( ) 1i i iW r β α− − < , i I+∈ , * 0iy = , 0i I∈ , the stationary solution of problem (11), (12), (18), 

(20) does not exist. 
Substituting the left-hand side of Eq. (19) in Eq. (18) we obtain the equilibrium dis-

tribution of consumer’s density (21). Theorem 1 is proved. 

Corollary 1. If some patches have higher activity resources with 1
i i irα β−≥ , condition 

* 1ˆ ( ) 1i i iW r β α− − <  holds for them and such patches always have positive equilibria * 0iy >  
defined by Eq. (11) (i.e. non-depleted patches). 

Theorem 1 imposes the restriction on the basic reproduction number of consumer 

population * *ˆ( ( , ))R C y W  at the equilibrium *y , *Ŵ  taking into account the impact of forag-

ing on the consumer fertility and mortality. The condition of existence of nontrivial balance 
between food resource growing and consumer demographical processes (nontrivial equilib-
rium) is given in the form of transcendental integral equation. Implementation of such con-
dition in biological applications is difficult from the technical point of view. In the next 
theorem we provide the sufficient conditions on coefficients of the system (1) - (5) that 
guarantee existence of the nontrivial equilibrium. 
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Theorem 2. Let the sets of indexes of the lower and higher activity resources of non-

depleted patches are { }1, i i iI i i I rα β−
+ += ∈ <
(

 and { }1, i i iI i i I rα β−
+ += ∈ ≥
)

, respectively, 

1 1ˆ min( )c i i i
i I

W r β α
+

− −
∈

= −
(

, 

 

( )
( )

1 1

1

ˆ ˆ1 (1 ) , ,

1 ( ) , ,

i i i c i c

i

i i i i

K r W W if i I and I
y

K r if i I and I

β α

α β

− −
+ +

−
+ +

⎧ − + ∈ ≠ ∅
⎪= ⎨
⎪ − ∈ = ∅
⎩

(

%
(

 (22) 

 

( ) ( )1 11 ˆ ˆ ˆ1 1 1 , ,

0, ,

i i i i i c i c i c
i

e K r W W W if i I and I
C

if i I and I

β β α α
− −−

+ +

+ +

⎧ ⎛ ⎞− + + ∈ ≠ ∅⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ ∈ = ∅⎩

(

%

(
 (23) 

 

and coefficients of system (1) - (5) satisfy Eqs. (7), (8). Then, for existence of at least one 

non-trivial solution of stationary problem (11), (12), (18) - equilibrium * *ˆ( ) ( , )i i iy W y K∈ % , 

i I+∈ , * 0iy =  ( 0i I∈ ), and *( ) 0w a ≥ , *
0 0W >  it is sufficient that *

sup( ) 1R C >  and 

*
inf( ) 1R C <  where the infimum and supremum of equilibrium calorie intake rate are: 

 

*
inf i

i I
C C

+∈
= ∑ % , *

sup i i i
i I

C e Kβ
+∈

= ∑ . (24) 

 

Proof. From Eq. (11) we obtain the partial derivative of *
iy , i I+∈ , at *ˆ 0W > : 

 

*
1 * 2

*
ˆ(1 ) 0

ˆ
i

i i i i
y

K r W
W

β α− −∂
= − + <

∂
, (25) 

 

**

* * *

ˆˆ 00

ˆsup ( ( )) lim (0)i i i
WW

y W y K
→>

= = . (26) 

 

For the higher activity non-depleted resources i I+∈
)

 equilibrium * *ˆ( )iy W  Eq. (11)) is 

positive at *ˆ 0W >  and its infimum is: 
 

( )
* *

* * * * 1

ˆ ˆ0

ˆ ˆinf ( ( )) lim ( ) 1 ( )i i i i i i
W W

y W y W K rβ α −

> →∞
= = − . (27) 

 

For the lower activity non-depleted resources i I+∈
(

 equilibrium * *ˆ( )iy W  is positive 

only at ( )* 1 1ˆ 0,( )i i iW r β α− −∈ −  and its infimum is: 
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( ) * 1 1* 1 1

* * * *

ˆˆ ( )0,( )

ˆ ˆinf ( ( )) lim ( ) 0
i i ii i i

i i
W rW r

y W y W
β αβ α − −− − → −∈ −

= = . (28) 

 

From Eqs. (26) - (28) we obtain the supremum of *Ŵ  for which the restriction 
* *ˆ( ) (0, )i iy W K∈  holds for all i I+∈

(

: 
 

1 1
*
sup

ˆ min( ) , ,
ˆ

, .

c i i i
i I

W r if I
W

if I

β α
+

− −
+

∈

+

⎧ = − ≠ ∅⎪= ⎨
⎪∞ = ∅⎩

(

(

(

 (29) 

 

From Eq. (29) we obtain the infimum of * *ˆ( )iy W , i I+∈ , for all non-depleted patches: 
 

( ) * ** *
supsup

* * * *

ˆ ˆˆ ˆ0,

ˆ ˆinf ( ( )) lim ( )i i i
W WW W

y W y W y
→∈

= = % . (30) 

 

Hence, from Eqs. (26), (30) it follows that * ( , )i i iy y K∈ % , i I+∈ . Substituting Eq. (11) in 
Eq. (15) we obtain the equilibrium calorie intake rate of the form: 
 

* * * * *ˆ ˆ ˆ ˆ( ( ), ) ( ( ), )i i i i i
i I i I

C C y W W C y W W e Kβ
+ +∈ ∈

= = =∑ ∑  (31) 

 

( ) ( )1 11 * * *ˆ ˆ ˆ1 1 1i i i ir W W Wβ α α
− −−⎛ ⎞

× − + +⎜ ⎟
⎝ ⎠

. 

 

The partial derivative of * *ˆ ˆ( ( ), )C y W W  at ( )* *
sup

ˆ ˆ0,W W∈  is: 
 

( )* 32 1 *
*

ˆ1
ˆ i i i i i

i I

C
e K r W

W
β α

+

−−

∈

⎛∂ = − +⎜
∂ ⎝

∑  (32) 

 

( ) ( )1 21 * * *ˆ ˆ ˆ1 1 1 0i i i i i i i ie K r W W Wβ α β α α
− −− ⎞⎛ ⎞

+ − + + <⎟⎜ ⎟
⎝ ⎠ ⎠

. 

 

Using Eqs. (29), (31), (32) and restriction * *ˆ ˆ( ( ), ) 0i iC y W W ≥  we can estimate the in-

fimum and supremum of *C : 
 

( ) * ** *
supsup

* * * * * * * * *
inf

ˆ ˆˆ ˆ0,

ˆ ˆ ˆ ˆinf ( ( ), ) lim ( ( ), )
W WW W

C C y W W C y W W
→∈

= =  (33) 
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* *
sup

* * * *

ˆ ˆ
ˆ ˆlim ( ( ), )i i i

W Wi I i I
C y W W C

+ +→∈ ∈
= =∑ ∑ % , 

 

( ) ** *
sup

* * * * * * * * *
sup

ˆ 0ˆ ˆ0,

ˆ ˆ ˆ ˆsup ( ( ), ) lim ( ( ), )
WW W

C C y W W C y W W
→∈

=  (34) 

 

*

* * * *

ˆ 0

ˆ ˆlim ( ( ), )i i i i i
Wi I i I

C y W W e Kβ
+ +→∈ ∈

= =∑ ∑ . 

 

where iC%  are given by Eq. (23). Taking into account the properties of death and fertility 

rates (7), (8), we obtain the derivative of basic reproduction number at ( )* * *
inf sup,C C C∈ : 

 

* *
* *

* * *
0 0

( , ) ( , )
exp ( , ) ( , ) 0

m

r

a a a

a

R a C s C
s C d a C d da

C C C

θ υυ υ θ υ
⎛ ⎞⎛ ⎞∂ ∂ ∂= − − >⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

∫ ∫ ∫ . (35) 

 

Hence, using Eqs. (33), (34), we can estimate the supremum and infimum of *( )R C : 
 

* * * * *
inf sup sup

* * *

0
sup ( ) lim ( , )exp ( , )

m

r

a a

aC C C C C

R C a C s C d daθ υ υ
< < →

⎛ ⎞⎛ ⎞
⎜= − ⎟⎜ ⎟⎜ ⎟ ⎟⎜ ⎝ ⎠ ⎠⎝

∫ ∫  (36) 

 

* * *
sup sup sup

0
( , )exp ( , ) ( ) 1

m

r

a a

a
a C s C d da R Cθ υ υ

⎛ ⎞
= − = >⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ , 

 

* * * * *inf sup inf

* * *

0
inf ( ) lim ( , )exp ( , )

m

r

a a

C C C aC C

R C a C s C d daθ υ υ
< < →

⎛ ⎞⎛ ⎞
⎜= − ⎟⎜ ⎟⎜ ⎟ ⎟⎜ ⎝ ⎠ ⎠⎝

∫ ∫  (37) 

 

* * *
inf inf inf

0
( , )exp ( , ) ( ) 1

m

r

a a

a
a C s C d da R Cθ υ υ

⎛ ⎞
= − = <⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ . 

 

Since * * *ˆ ˆ( ( ( ), ))R C y W W  and * * *ˆ ˆ( ( ), )C y W W  are continuous functions of 

( )* *
sup

ˆ ˆ0,W W∈ , from Eqs. (36), (37) it follows that equation * * *ˆ ˆ( ( ( ), )) 1R C y W W =  always 

has at least one positive solution *ˆ 0W >  for which * ( , )i i iy y K∈ % , i I+∈ , * 0iy = , 0i I∈ , 
*
0 0W > , and *( ) 0w a ≥ . Theorem 2 is proved. 
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Corollary 1. If all non-depleted patches have only lower activity resources with 1
i i irα β−< , 

when I+ = ∅
(

, from Eq.(23) it follows that the infimum of equilibrium intake rate 
*
inf 0i

i I
C C

+∈
= =∑ % , ( ,0) 0aθ =  (Eq.(7)) and, consequently, (0) 0R = . In this case condition 

*
inf( ) 1R C <  is always satisfied and can be omitted in Theorem 2. 

 
4 Local asymptotic stability of equilibria of autonomous system (1) – (5) 
 
4.1. The asymptotic stability of trivial and semi-trivial equilibria 
 

Linearizing Eqs. (1) at the trivial equilibrium * 0iy = , *( ) 0w a = , *ˆ 0W = , we arrive 
to the equation for perturbations ( )i tζ : 

 

( )i
i i

d
r t

dt

ζ ζ= ,  1,...,i n= . (38) 
 

Since 0ir > , the trivial equilibrium is always unstable. Linearizing system (1) – (5) 

in the vicinity of the semi-trivial equilibrium *
i iy K= , 1,...,i n= , 1( ,..., )nK K K= , 

*( ) 0w a = , we arrive to system for the perturbations ( )i tζ  and ( , )a tξ : 
 

0
( ) ( ) ( , )

da
i

i i i i
d

r t K a a t da
dt

ζ ζ β γ ξ= − − ∫ ,  1,...,i n= , (39) 

 

( , ) ( , )s a K a t
t a

ξ ξ ξ∂ ∂+ = −
∂ ∂

, (40) 

 

(0, ) ( , ) ( , )
m

r

a

a
t a K a t daξ θ ξ= ∫ . (41) 

 

We consider solutions of system (39) – (41) in the form ( ) exp( )i it tζ ζ λ= % , 

( , ) ( )exp( )a t a tξ ξ λ= % : 
 

( )
0

( ) ( ) 0
da

i i i ir K a a daλ ζ β γ ξ+ + =∫% % ,  1,...,i n= ,
 

(42) 

 

0
( ) exp( )exp ( , ) ( , ) ( )

m

r

aa

a

a a s K d K dξ λ υ υ θ υ ξ υ υ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫% % . (43) 
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Multiplying Eq. (43) on ( , )a Kθ  and integrating it with respect to a  from ra  to da  we 
arrive to the integral characteristic equation for unknown λ : 

 

0
( , )exp( )exp ( , ) 1

m

r

a a

a

a K a s K d daθ λ υ υ
⎛ ⎞

− − =⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ . (44) 

 

From Eq. (44) it follows that if the consumer’s reproduction number ( ) 1R K < , char-

acteristic Eq. (44) has only negative root 0* <λ . In this case perturbations ( , ) 0a tξ → , and, 

consequently, ( ) 0i tζ →  (see Eq. (39)). The semi-trivial equilibrium *
i iy K= , *( ) 0w a =  is 

locally asymptotically stable. 

If ( ) 1R K = , Eq. (44) has only trivial root 0* =λ  and the semi-trivial equilibrium is 
neutrally stable [38] (that is all solutions from the vicinity of semi-trivial equilibrium are 
unstable, but they do not have a form of asymptotic exponential growth). Finally, if 

( ) 1R K > , the root of Eq. (44) is always positive 0* >λ  and the semi-trivial equilibrium is 
unstable. Since Eqs. (42) - (44) do not depend from delayed parameter, the results obtained 
in this section are valid for all 0>τ . Now we can formulate the following theorem. 

 

Theorem 3. 

(i) The trivial equilibrium * 0iy = , 1,...,i n= , *( ) 0w a ≡  of system (1) – (5) is unstable 
for all 0>τ . 

(ii) The semi-trivial equilibrium of food resource *
i iy K= , 1,...,i n= , with *( ) 0w a ≡  is 

unconditionally (i.e. for all 0>τ ) locally asymptotically stable if the consumer’s basic re-
production number ( ) 1R K <  whereas it is unstable for all 0>τ  if ( ) 1R K ≥ . 

Remark 1. If consumer population is fully extinct and cannot renew the reproduction 
Eq. (43) has only the trivial solution ( ) 0% aξ ≡ . The roots of Eq. (42) are always negative 

* 0irλ = − < , that is the perturbations ( ) 0i tζ →  and the semi-trivial equilibrium is locally 
asymptotically stable. The examples of the nonlinear age-structured models of population 
dynamics with full extinction in the form of a single pulse population outbreak were ob-
tained in works [6], [7]. 

 
4.2. Local asymptotic stability of nontrivial equilibrium 
 

Linearizing system (1) – (5) at the nontrivial equilibrium * 0iy >  (i I+∈ ), * 0iy =  

( 0i I∈ ), and *( ) 0w a ≥ , *
0 0W > , *ˆ 0W >  with perturbations ( ) exp( )i it tζ ζ λ= %  for *

iy , 
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( , ) ( )exp( )a t a tξ ξ λ= %  for *( )w a , and ( ) exp( )t tψ λ ψ= %  for *Ŵ , where 
0

( ) ( )
da

a a daψ γ ξ= ∫ %

% , 

we arrive to the system: 
 

( ) ( ) 2* 1 * *ˆ1 exp( ) 0i i i i i i ir y K y Wλ ζ β α λτ ψ
−−+ + + − =%

% ,  i I+∈ , (45) 
 

( ) 1* *ˆ ˆ1 0i i i ir W Wλ β α ζ
−⎛ ⎞

− + + =⎜ ⎟
⎝ ⎠

% ,  0i I∈ , (46) 

 

* *

1
( ( , )) ( ) ( )exp( )

ˆ

n

j
jj

s C C
s a C a w a

a C y W

ξ λ ξ λτ ζ ψ
=

⎛ ⎞∂ ∂ ∂ ∂= − + − − +⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∑

%

% %

% , (47) 

 

* *

1
(0) ( , ) ( ) exp( ) ( )

ˆ

m m

r r

a a n

j
jja a

C C
a C a da w a da

C y W

θξ θ ξ λτ ζ ψ
=

⎛ ⎞∂ ∂ ∂= + − +⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠
∑∫ ∫% % %

% . (48) 

 

Integrating the linear ODE (47) with initial condition (48) we obtain the Fredholm in-
tegral equation of second type for ( )aξ% : 

 

( )* *

0
( ) exp ( , ) ( , ) ( )

m

r

aa

a
a s C d C dξ λ υ υ θ υ ξ υ υ

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫% % exp( )λτ+ −  (49) 

 

1
( , ) ( , )

n

j j
j

Q a G aζ λ ψ λ
=

⎞⎛
⎟× +⎜

⎜ ⎟
⎝ ⎠
∑ %

% , 

where 

( )* *

0
( , ) exp ( , ) ( )

m

r

aa

j
j a

C
Q a s C d w d

y C

θλ λ υ υ υ υ
⎛ ⎛ ⎞∂ ∂⎜= − +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠⎝

∫ ∫  (50) 

 

( )* *

0
( )exp ( , )

a as
w s C d d

C η
η λ υ υ η

⎞⎛ ⎞∂ ⎟⎜ ⎟− − +
⎜ ⎟∂ ⎟
⎝ ⎠ ⎠

∫ ∫ , 

 

( )* *

0
( , ) exp ( , ) ( )

ˆ

m

r

aa

a

C
G a s C d w d

CW

θλ λ υ υ υ υ
⎛ ⎛ ⎞∂ ∂⎜= − +⎜ ⎟⎜ ⎟⎜ ∂∂ ⎝ ⎠⎝

∫ ∫  (51) 
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( )* *

0
( )exp ( , )

a as
w s C d d

C η
η λ υ υ η

⎞⎛ ⎞∂ ⎟⎜ ⎟− − +
⎜ ⎟∂ ⎟
⎝ ⎠ ⎠

∫ ∫ . 

 

First, we analyse the existence of trivial root 0λ =  of linear system (45), (46), (49). 

Multiplying both sides of Eq. (49) on *( , )a Cθ , integrating them with respect to a  from ra  

to da  and excluding *( ) 1R C =
 

from obtained expression yields: 
 

* *

1
( , ) ( ,0) ( , ) ( ,0) 0

m m

r r

a an

j j
j a a

a C Q a da a C G a daζ θ ψ θ
=

+ =∑ ∫ ∫%

% . (52) 

 
We arrive to the homogeneous linear system (45), (46), (52) of 1n +  order for the 

functions iζ%  and ψ% . The determinant of this system is: 
 

 
 
 
 
 
D  = 

1a  0 … 0 1b  

0 2a  0 0 2b  

… 0 … 0 … 

0 0 0 na  nb  

1c  2c  … nc  d  

(53) 

 

Here 
 

* 1
i i i ia r y K −= , i I+∈ ;  ( ) 1* *ˆ ˆ1i i i ia r W Wβ α

−
= − + + , 0i I∈ ; (54) 

 

( ) 2* *ˆ1i i i ib y Wβ α
−

= + , i I+∈ ;  0ib = , 0i I∈ ; (55) 
 

*( , ) ( ,0)
m

r

a

i i
a

c a C Q a daθ= ∫ , 1,...,i n= ;   *( , ) ( ,0)
m

r

a

a
d a C G a daθ= ∫ . (56) 

 

Equating to zero determinant 0D =  (53) we arrive to the characteristic equation: 
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( ) 21 * * *ˆ1 ( , ) ( ,0) ( , ) ( ,0)
m m

r r

a a

i i i i i
i I a a

r K W a C Q a da a C G a daβ α θ θ
+

−−

∈

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

∑ ∫ ∫  (57) 

 

( )
0

1* *ˆ ˆ1 0i i i
i I

r W Wβ α
−

∈

⎛ ⎞
× − + + =⎜ ⎟

⎝ ⎠
∏ . 

 

In Eq. (57) we assume that if equilibrium does not contain the depleted patches 
( 0I = ∅ ) the second multiplier of equation is omitted. If 0I ≠ ∅  this multiplier equals zero 

only if there exists at least one depleted patch satisfied condition * 1ˆ ( ) 1i i iW r β α− − = , 

0i I∈ . In this case 0λ =  is a root of characteristic equation and the nontrivial equilibrium 
is unstable. 

If * 1ˆ ( ) 1i i iW r β α− − >  for all 0i I∈  the second multiplier in Eq. (57) is always negative 
and we have to analyse the first multiplier in brackets. The partial derivatives of the calorie in-

take rate (6) at the equilibrium *y , *Ŵ  are: 
 

( ) 1*

* *

ˆ1 0

ˆ ˆ,

i i i
i

i i

C
e W

y
y y W W

β α
−∂ = + >

∂
= =

, i I+∈ , (58) 

( ) 2* *

* *

ˆ1 0
ˆ

ˆ ˆ,

i i i i i
i I

i i

C
e y W

W
y y W W

β α α
+

−

∈

∂ = − + ≤
∂

= =

∑ . (59) 

In Eq. (59) the partial derivative 0
ˆ

C

W

∂ =
∂

 if all resources of non-depleted patches are 

non-active, i.e. 0iα =  for all i I+∈ . From assumptions (7), (8) and Eqs. (50), (51), (58), (59) 
it follows that for 0λ =  the auxiliary functions have the properties: 
 

( ,0) 0G a ≤ , ( ,0) 0iQ a > , i I+∈ . (60) 
 

Then, the first multiplier (in brackets) in Eq. (57) is always positive, the left side of the 
equation is negative, and 0λ =  is not a root of characteristic equation (57). Thus, 0λ =  can 
be a root of Eq. (57) if and only if there exists at least one depleted patch with a lower activi-

ty resource for which 1
i i irα β−<  ( 0i I∈ ) and * 1 1ˆ ( )i i iW r β α− −= − . 

Second, if 0≠λ  we can multiply both sides of integral equation (49) on *( , )a Cθ , 
integrate them with respect to a  from ra  to ma  and substituting the obtained expression in 
Eq. (49) obtain the final solution of this equation: 
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( )1 * *

1 0
( ) exp( ) ( )exp ( , ) ( , ) ( , )

m

r

aan

j j
j a

a A s C d C Q dξ λτ ζ λ λ υ υ θ υ υ λ υ−

=

⎛ ⎛ ⎛ ⎞
⎜ ⎜= − − +⎜ ⎟⎜ ⎟⎜ ⎜ ⎝ ⎠⎝⎝

∑ ∫ ∫% %

 

(61) 

 

( )1 * *

0
( , ) ( )exp ( , ) ( , ) ( , ) ( , )

m

r

aa

j
a

Q a A s C d C G d G aλ ψ λ λ υ υ θ υ υ λ υ λ−
⎞⎛ ⎞⎞ ⎛ ⎞
⎟⎜ ⎟+ + − + +⎟ ⎜ ⎟⎜ ⎟⎟ ⎟⎜ ⎟⎝ ⎠⎠ ⎝ ⎠⎠

∫ ∫% , 

 

( )* *

0
( ) 1 ( , )exp ( , )

m

r

a a

a

A a C s C d daλ θ λ υ υ
⎛ ⎞

= − − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ . (62) 

 

If 0≠λ  coefficient ( ) 0A λ ≠  and solution (61) exists. For 0λ >  function 

( )( ) 0,1A λ ∈ . Multiplying both sides of Eq. (61) on ( )aγ , integrating them with respect to 

a  from 0 to da  yields: 
 

( )
1

exp( ) ( ) exp( ) ( ) 1 0
n

j j
j

Z Bλτ ζ λ ψ λτ λ
=

− + − − =∑ %

% . (63) 

 

where the auxiliary functions ( )jZ λ  and ( )B λ  are: 
 

( )1 * *

0
( ) ( ) ( , ) ( , ) exp ( , ) ( )

m m

r r

a a a

j j
a a

Z A C Q d s C d a daλ λ θ υ υ λ υ λ υ υ γ− ⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫  (64) 

 

( , ) ( )
m

r

a

j
a

Q a a daλ γ+ ∫ , 

 

( )1 * *

0
( ) ( ) ( , ) ( , ) exp ( , ) ( )

m m

r r

a a a

a a
B A C G d s C d a daλ λ θ υ υ λ υ λ υ υ γ− ⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫  (65) 

 

( , ) ( )
m

r

a

a
G a a daλ γ+ ∫ , 

 

and the auxiliary functions ( , )jQ a λ , ( , )G a λ , ( )A λ  are given by Eqs. (50), (51), (62), re-

spectively. We arrive to the homogeneous linear system of 1n +  order (45), (46), (63) for 
the functions iζ%  and ψ% . The determinant D  of this system is given by (53), where 
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* 1
i i i ia r y Kλ −= + , i I+∈ ;  ( ) 1* *ˆ ˆ1i i i ia r W Wλ β α

−
= − + + , 0i I∈ ; (66) 

 

( ) 2* *ˆ1i i i ib y Wβ α
−

= + , i I+∈ ;  0ib = , 0i I∈ ; (67) 
 

exp( ) ( )i ic Zλτ λ= − , 1,...,i n= ;   exp( ) ( ) 1d Bλτ λ= − − . (68) 
 

The characteristic equation of the system (45), (46), (63) is: 
 

( ) ( ) ( )
2* * * 1ˆexp( ) 1 ( ) 1 exp( ) ( )i i i i j j j

i I j I
j i

y W Z r y K Bλτ β α λ λ λτ λ
+ +

− −

∈ ∈
≠

⎛
⎜

− + + + − −⎜
⎜⎜
⎝

∑ ∏  (69) 

 

( ) ( )
0

1* 1 * *ˆ ˆ1 0i i i i i i
i I i I

r y K r W Wλ λ β α
+

−−

∈ ∈

⎞
⎛ ⎞⎟× + − + + =⎜ ⎟⎟
⎝ ⎠⎟

⎠

∏ ∏ . 

 

If 0I ≠ ∅ , Eq. (69) has the real roots 
 

( ) ( )( )1 1* * 1 * *ˆ ˆ ˆ ˆ1 1 ( ) 1i i i i i i i ir W W r r W Wλ β α β α α
− −−= − + = − − + , ( 0i I∈ ).  (70) 

 

If at least one depleted patch has higher activity resource: 1
i i irα β−≥ , 0i I∈ , the corre-

sponding root 0λ >  for any *ˆ 0W >  and the nontrivial equilibrium is unstable. 

If all depleted patches have lower activity resources: 1
i i irα β−<  for all 0i I∈ , and 

equilibrium ( )
0

1* 1ˆ max i i i
i I

W r β α
−−

∈
≤ − , at least one of these roots 0λ ≥  and the nontrivial 

equilibrium is unstable.  

If 1
i i irα β−<  and ( )

0

1* 1ˆ max i i i
i I

W r β α
−−

∈
> − , all roots in Eq.(70) are negative 0λ < , 

and for analysis of unstable equilibria we have to consider the others roots of Eq. (69) in the 
first brackets (non-depleted patches with i I+∈ ). We have to include in this analysis also the 
case with only non-depleted patches, when 0I = ∅ . 
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If Eq. (69) has a root * 1 0i i ir y Kλ −= − <  for some i I+∈ , the nontrivial equilibrium is 

asymptotically stable. Further we will assume that * 1
i i ir y Kλ −≠ −  for all i I+∈ . Dividing the 

first brackets of Eq. (69) on ( )* 1
i i i

i I
r y Kλ

+

−

∈
+∏  and equating it to zero we have: 

( ) ( )2 1* * * 1ˆexp( ) 1 ( ) ( ) 1i i i i i i i
i I

y W Z r y K Bλτ β α λ λ λ
+

− −−

∈

⎛ ⎞
⎜ ⎟− + + − = −
⎜ ⎟
⎝ ⎠
∑ . (71) 

 

Since the partial derivatives of the calorie intake rate satisfy Eq. (58), (59) all auxil-
iary functions in Eq. (71) possess the properties: 
 

( ) 0A λ > , ( , ) 0G a λ ≤ , ( ) 0B λ ≤ , 0),( >λaQi , 0)( >λiZ ,  i I+∈ , 0λ > . (72) 
 

Hence, the left side of Eq. (71) is always positive for any time delay 0>τ  and 0λ > , 
and Eq. (71) does not have the real positive roots. 

We have to analyse further the existence of complex roots of Eq. (69) with nonnegative 
real part when characteristic equation does not have real nonnegative roots, i.e. when 0I ≠ ∅  

and ( )
0

1* 1ˆ max j j j
j I

W r β α
−−

∈
> − , 1

j j jrα β−< , or when 0I = ∅ . We seek the pure imaginary 

roots ωλ i=  (neutral stability state [38], where 0ω ≠  is unknown real parameter) for which 
there exists the non-trivial solution of system (45), (46), (63). Substituting iλ ω=  in Eq. (46) 
and separating real and imaginary parts yields ( 0j I∈ ): 

 

( ) 1* *ˆ ˆ1 0j j j jr W Wβ α ζ
−⎛ ⎞

− + =⎜ ⎟
⎝ ⎠

% , (73) 

 

0jωζ =% . (74) 
 

Since ( )
0

1* 1ˆ max j j j
j I

W r β α
−−

∈
> −  and 1

j j jrα β−< , from Eq. (73) we obtain only the 

trivial solution for perturbations 0jζ =% , 0j I∈  (the same result, when 0I = ∅ ). Substituting 

iλ ω=  with 0jζ =% , 0j I∈ , in Eq. (48) and separating real and imaginary parts yields: 
 

* *

1
(0) ( , ) ( ) cos( ) ( ) 0

ˆ

m m

r r

a a n

j
jja a

C C
a C a da w a da

C y W

θξ θ ξ ωτ ζ ψ
=

⎛ ⎞∂ ∂ ∂− − + =⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠
∑∫ ∫% % %

% , (75) 

 

*

1
sin( ) ( ) 0

ˆ

m

r

a n

j
jja

C C
w a da

C y W

θωτ ζ ψ
=

⎛ ⎞∂ ∂ ∂+ =⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠
∑∫ %

% . (76) 
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From Eqs. (7) and (76) it follows that nontrivial solution jζ% , j I+∈ , ψ%  exists only if 

sin( ) 0ωτ = . Indeed, if this is not true, we have 
 

1
0

ˆ

n

j
jj

C C

y W
ζ ψ

=

∂ ∂+ =
∂ ∂

∑ %

% . (77) 

 

Substituting iλ ω=  in Eq. (47) and separating real and imaginary part yields: 
 

*

1
( ) cos( ) ( )

ˆ

n

j
jj

s C C
a w a

a C y W

ξ ωξ ωτ ζ ψ
=

⎛ ⎞∂ ∂ ∂ ∂= − − +⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∑

%

% %

% , (78) 

 

*

1
( ) sin( ) ( ) 0

ˆ

n

j
jj

s C C
a w a

C y W
ωξ ωτ ζ ψ

=

⎛ ⎞∂ ∂ ∂− + + =⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠
∑% %

% . (79) 

 

Multiplying Eq. (79) on ( ) 0aγ >  and integrating it with respect to a  from 0 to da , after 
a little algebra we arrive to the equation: 

 

* *

10 0
sin( ) ( ) ( ) sin( ) ( ) ( ) 0

ˆ

d da a n

j
jj

C s s C
a w a da a w a da

C C yW
ω ωτ γ ψ ωτ γ ζ

=

⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟− + + =
⎜ ⎟∂ ∂ ∂∂⎝ ⎠

∑∫ ∫ %

% . (80) 

 

Substituting 
1

ˆ

n

j
jj

C C

y W
ζ ψ

=

∂ ∂= −
∂ ∂

∑ %

%  from Eq. (77) in Eq. (80) we arrive to the equation 

with unique trivial solution: 
 

0ωψ− =% . (81) 
 

Hence, the nontrivial solution ψ% , jζ% , j I+∈ , can exist only if Eq. (77) is not valid and 

sin( ) 0ωτ = , cos( ) 1ωτ = . Substituting iλ ω=  in Eq. (45) and separating real and imaginary 
parts yields ( j I+∈ ): 

 

( ) 2* 1 * *ˆcos( ) 1 0j j j j j j jr y K y Wζ ωτ β α ψ
−− + + =%

% , (82) 
 

( ) 2* *ˆsin( ) 1 0j j j jy Wωζ ωτ β α ψ
−

− + =%

% . (83) 
 

Since sin( ) 0ωτ = , cos( ) 1ωτ = , from Eqs. (75), (76), (78), (79), (82), (83) it follows 
that nontrivial solution can exist only if 0ω = , i.e. the neutral stability state is not reachable 
and characteristic Eq. (61) does not have complex root λ  with non-negative real part. Thus, 
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if 0I ≠ ∅  and ( )
0

1* 1ˆ max j j j
j I

W r β α
−−

∈
> − , 1

j j jrα β−< , or if 0I = ∅  the nontrivial equilib-

rium is unconditionally (i.e. for all 0>τ  [38]) locally asymptotically stable. 
We can conclude that the digestion period of generalist consumer (time delay τ ) does 

not cause local asymptotical instabilities of consumer population in the vicinity of nontrivial 
equilibria as one could expect. The results considered above are summarized in the follow-
ing theorem. 

 
Theorem 4. Let coefficients of the system (1) – (6) satisfy conditions (7), (8), the 

nontrivial equilibrium * 0iy >  (i I+∈ ), * 0iy =  ( 0i I∈ ), *( ) 0w a ≥ , *
0 0W > , *ˆ 0W >  of 

autonomous system (1) - (5) is a solution of equation * * *ˆ ˆ( ( ( ), )) 1R C y W W =  with restrictions 
* 1ˆ ( ) 1i i iW r β α− − <  (i I+∈ ) satisfied Eqs. (11), (12), (20), (21).  

This equilibrium is unstable for all 0>τ  if 0I ≠ ∅  and 

(i) 0i I∃ ∈  for which 1
i i irα β−≥ , or  

(ii) 1
i i irα β−<  for all 0i I∈ , and ( )

0

1* 1ˆ max i i i
i I

W r β α
−−

∈
≤ − . 

This equilibrium is unconditionally locally asymptotically stable (for all 0>τ ) if  

(iii) 0I ≠ ∅ , 1
i i irα β−<  for all 0i I∈  and ( )

0

1* 1ˆ max i i i
i I

W r β α
−−

∈
> − , or  

(iv) 0I = ∅ . 
Digestion period of generalist consumer τ  does not cause local asymptotical instabilities 

of consumer population at the nontrivial equilibria. 
Remark 1. According to the statement (iv) of Theorem 4 the nontrivial equilibrium 

with non-depleted food patches ( 0I = ∅ ) is always locally asymptotically stable. That means 
that there exists the balance between resource growing, demographical process of consumer 
population and their consumption regime (within framework of the considered model) which 
guarantees the steady coexistence of all non-depleted resource patches with non-trivial con-
sumer population. The local asymptotic stability of nontrivial equilibria of nonlinear age-
structured models with density dependent fertility and death rates is well predicted by the 
partial derivative of basic reproduction number ([8], [13]). Such stability indicator of non-
trivial equilibrium with non-depleted patches of system (1) – (6) has the form: 

 

* * * * *
* *

* * *
0 0

ˆ ˆ( ( ), ) ( , ) ( , )
exp ( , ) ( , )

ˆ

m

r

a a a

a

R y W W a C s C
s C d a C d da

W C C

θ υυ υ θ υ
⎛ ⎞⎛ ⎞∂ ∂ ∂= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

∫ ∫ ∫  (84) 

 

( ) ( )2 12 1 * *

1

ˆ ˆ1 1
n

i i i i i i i i i i
i

e K r W W e Kβ α α β α
− −−

=

⎛
× + + +⎜

⎝
∑  
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( ) ( )1 21 * * *ˆ ˆ ˆ1 1 1 0i i i ir W W Wβ α α
− −− ⎞⎛ ⎞

× − + + <⎟⎜ ⎟
⎝ ⎠ ⎠

. 

 

The negative value of this expression indicates the local asymptotic stability of the non-
trivial equilibrium (see [8], [13]) with non-depleted patches that confirms the statement (iv) of 
Theorem 4. Since we could not adapt this indicator for analysis of local asymptotic stability of 
nontrivial equilibria with depleted patches (cases (i), (ii), (iii) of Theorem 4), anywhere further 
we will use the conditions of local asymptotic stability given in Theorem 4. 

 
5. Numerical experiments 
 
5.1. Parameterization of autonomous system (1) – (5) 
 

We assume that the consumer fertility rate is an increasing with saturation monotone 
function and death rate is a decreasing with extinction monotone function of calorie intake rate 
satisfied Eqs. (7), (8). They are defined on the parametrized classes of algebraic functions: 

 

( )1
0( , ( )) 0.5 0.5 arctan(4( )) 4exp( 4 ( ))ms a C t s a a C tπ −= + − + − , [ ]0, da a∈ ,  (85) 

 

( )0( , ( )) 1 exp( 0.5 ( ))a C t C tθ θ= − − , [ ],r ma a a∈ , (86) 
 

where 0s , 0θ  are given constants. The generalist consumer population is partitioned into three 
age-structured groups with young, matured and senile individuals with a number of individuals 

in each group 
0

( ) ( , )
ra

rW t w a t dt= ∫ , ( ) ( , )
m

r

a

m
a

W t w a t dt= ∫  and ( ) ( , )
d

m

a

d
a

W t w a t dt= ∫ , respec-

tively. We use the following piece-constant function of resource intake weighted coefficient 
among age-structured groups ( 2( ) ([0, ])da L aγ ∈ ): 

[ ]
[ ]
[ ]

, 0, ,

( ) , , ,

, , .

r r

m r m

d m d

if a a

a if a a a

if a a a

γ
γ γ

γ

⎧ ∈
⎪

= ∈⎨
⎪ ∈⎩

 (87) 

 

where 0 1r d mγ γ γ< < < <  - the set of constant dimensionless weights of resource intake for 
young, senile and matured consumers, respectively. The biggest value of mγ  in comparison 
with dγ  and rγ  means that one matured consumer takes more resource biomass than young or 
senile consumer. 

For illustration of theoretical results obtained in Theorems 3 and 4, we consider the 
minimal set of three food resource patches in all experiments in the vicinities of stationary 
equilibria: 
1) trivial and semi-trivial equilibria with small 0,001 daτ =  (Theorem 3); 
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2) trivial and semi-trivial equilibria with time delay from interval 0,001 daτ = , …, 
0,03 daτ = , (Theorem 3); 

3) positive equilibrium with one non-depleted patch, less active and more active depleted 
patches (statement (i) of Theorem 4); 
4) positive equilibrium with one non-depleted patch and two less active depleted patches 

with ( )
0

1* 1ˆ max i i i
i I

W r β α
−−

∈
≤ −  (statement (ii) of Theorem 4); 

5) positive equilibrium with one non-depleted patch, two less active depleted patches with 

( )
0

1* 1ˆ max i i i
i I

W r β α
−−

∈
> −  (statement (iii) of Theorem 4); 

6) positive equilibrium with three non-depleted patches and nontrivial consumer population 
(statement (iv) of Theorem 4). 

The values of coefficients of Eqs. (1), (6) and initial values (3), (4) vary in each ex-
periment depending on the conditions of Theorems 3, 4. 

 

5.2. The trivial and semi-trivial equilibria 
 

The numerical algorithm based on the method of characteristics ([4] - [6]) is used 
here for study the dynamical regimes of autonomous system (1) – (5) in the vicinities of all 
equilibria considered in section 4. 

In the first group of experiments we study the asymptotic behaviour of solutions in 
the vicinity of the trivial and semi-trivial equilibria with fixed small value of time delay 

0,001 daτ = . The dynamics of mean resource density 1

1
( ) ( )

n

i
i

Y t n y t−

=
= ∑ , the quantity of 

consumers 0
0

( ) ( , )
da

W t w a t da= ∫  and the basic reproduction number ( )R t  are shown in Figs. 

1a – 1c. The numerical simulations illustrate the statements of Theorem 3: 
(i) the trivial equilibrium is unstable (all curves in Figs.1.a – 1.c), )(tY  and 0 ( )W t  evolve to 
the semi-trivial equilibrium (curves 1 in Figs.1.a – 1.b, consumer population becomes ex-
tinct while the resource biomass in all patches saturates, ( ) 1R K < ) or evolve to the nontriv-
ial equilibrium (curves 2 and 3 in Figs.1.a – 1.b, ( ) 1R K > ); 
(ii) the semi-trivial equilibrium is asymptotically stable with ( ) 1R K <  (curves 1 in Fig.1.a - 

1.c) whereas it is unstable with ( ) 1R K >  (graphs 2 in Figs.1.a – 1.c).  
For the very large basic reproduction number ( ) 1R K >>  obtained with large value of 

0θ  (Eq.(86)) we observe the oscillatory regime of the system with asymptotic convergence 
of solution to the steady state (curve 3 in Figs.1a – 1c). The existence of such periodic solu-
tions of some Lotka-Volterra prey-predator models was proved in theoretical work [45] and 
was observed in numerical experiments in [6], [7]. 
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a b 

  
 
 
 

c 

 
Fig.1. Graphs of asymptotic convergence of solutions with ( ) 1R K <  (curve 1),  

( ) 1R K >  (curve 2), ( ) 1R K >>  (curve 3). 

 
Further increasing of basic reproduction number by parameter 0θ  causes the con-

sumer population outbreaks (special dynamical regimes of population, see [1], [7], [9]). The 
pulse sequence or sequence of outbreaks (Figs. 2a – 2c) of consumers population and re-
source densities describe the quasi-periodic dynamical regime in the vicinities of the trivial 
and semi-trivial equilibria. The fast growing of consumer population is accompanied by the 
huge resource consumption, and as a consequence, by resource extinction and following 
decreasing of consumer population density to the minimal but not critical values. System 
moves to the trivial equilibrium from the vicinity of unstable semi-trivial equilibrium 
( ( ) 1R K >> , statement (ii) of Theorem 2). But, since the trivial equilibrium is unstable too 
(statement (i) of Theorem 2), and the minimal number of consumers is sufficient for the 
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following renewal of population, system moves to the semi-trivial equilibrium again. This 
process is repeated at quasi-periodic time intervals and results in the pulse sequence of con-
sumer population and resource densities. The same regimes were obtained in work [6] for 
the nonlinear age-structured model of population dynamics with density-dependent delayed 
death rate only for the big values of delay parameter and/or for the periodic time-dependent 
death and fertility rates. Since in this experiment the impact of the time delay parameter is 
insignificant and all coefficients of model are time-independent the dynamical regimes of 
periodic outbreaks are result of the repeating dynamical interaction between total resource 
consumption and its renewing from the one hand and consumer population growth and ex-
tinction from the other hand. 

Further increasing of parameter 0θ  leads to the consumer population outbreaks of the 
single pulse form (Figs. 3a, 3b). The same rapid consumer population growth like in the pre-
vious experiment is accompanied by the huge resource consumption and resource extinction 
but with following decreasing of consumer population density up to the critical values when 
population is not able to renew the reproduction and becomes fully extinct (see Remark 1 to 
Theorem 3). The food resources in all patches saturate with time and system evolves eventu-
ally to the asymptotically stable semi-trivial equilibrium (Figs. 3a). 

 
 
 

a b 
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c 

 
Fig.2. Graphs of periodic population outbreaks with ( ) 1R K >> , 0,001 daτ = . 

 

a b 

  
Fig.3. Graphs of population single outbreak and extinction, 0,001 daτ = . 

In the second group of experiments we study the dynamical regimes of autonomous 
system (1) - (5) in the vicinity of the trivial and semi-trivial equilibria with different values 
of time delay from interval da001,0=τ , …, 0,03 daτ = , and large basic reproduction num-
ber ( ) 1R K >> . Solution of autonomous system (1) – (5) remains stable oscillated with 
bounded magnitude in the vicinity of the semi-trivial equilibrium in all experiments with 
different value of time delay (Figs.4 – 6). For the small value of 0,001 daτ =  the 
trajectories of system have the magnitude with exctincted oscillations and converge to the 
positive equilibrium (curve 3 in Figs.1a-1c). The bigger value of 0,005 daτ =  causes the 
periodic dynamics of )(tY  and 0 ( )W t  with bigger magnitudes, shown in Figs. 4a, 4b. 
Further increasing of time delay leads to the periodic outbreakes of )(tY  and 0 ( )W t  with 

0,015 daτ =  (Figs.5a, 5b) and single outbreak of 0 ( )W t  with saturating )(tY  with 
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0,03 daτ =  (Figs.6a, 6b). The graphs shown in Figs.4 and 5 correspond to the regimes of 
population outbreaks obtained in the previous experiments (Figs. 2, 3). Similar dynamical 
regimes were obtained and described in works [6], [7] for the age-structured model with 
density-dependent delayed death rate and discussed in work [8] for the two-compartment 
age-structured model of locust population dynamics. 

The results of this group of experiments illustrate also that digestion period of general-
ist consumer τ  does not lead to the high-frequency oscillations of solution in the vicinity of the 
semi-trivial equilibrium known as deterministic chaos. 

 
a b 

  
 

Fig.4. Graphs of periodic dynamics of )(tY  and 0 ( )W t , 0,005 daτ = . 

 
a b 

  
 

Fig.5. Graphs of periodic outbreaks of )(tY  and 0 ( )W t , 0,015 daτ = . 
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a b 

  
 

Fig.6. Graphs of asymptotic saturation of )(tY  (a), of single outbreak of 0 ( )W t 0,03 daτ = . 

 
 
5.3. The nontrivial equilibria 
 
The third group of numerical experiments focuses on the study of asymptotic behav-

iour of solutions in the vicinity of the non-trivial equilibrium where some patches are de-

pleted, i.e. * 0iy >  ( 0,...,1 ni = ), * 0iy =  ( 0 1,...,i n n= + ), 0n n≤ , *( ) 0w a ≥ , *
0 0W > . In all 

experiments 3n = , but 0n  varies in each experiment depending from the condition of Theo-
rem 4. For the fixed values of n , 0n  the root of transcendental equation 

* * *ˆ ˆ( ( ( ), )) 1R C y W W =  is defined numerically by bisection method with restrictions 
* 1ˆ ( ) 1i i iW r β α− − < , i I+∈ . The equilibrium values *

iy , *
0W , *( )w a , are defined by Eqs. 

(11), (20), (21) respectively. The value of *Ŵ  is used also in figures for illustration of as-
ymptotic convergence of trajectories to the equilibrium. 

In first experiment 0 1n = , 1
1 1 1rα β−< , 1

2 2 2rα β−> , 1
3 3 3rα β−> . In equation 

* * *ˆ ˆ( ( ( ), )) 1R C y W W =  we use *
1 0y > , *

2 0y = , *
3 0y = , for which * 1

1 1 1
ˆ ( ) 1W r β α− − < , 

* 1
2 2 2

ˆ ( ) 1W r β α− − < , * 1
3 3 3

ˆ ( ) 1W r β α− − <  (case (i) of Theorem 4). The dynamics of re-

source densities ( )iy t  ( 1,2,3i = ) and consumer weighted quantity ˆ ( )W t  are shown in Figs. 

7a, 7b. The density of first food patch 1( )y t  does not evolve to the equilibrium *
1y  (curve 1 

in Fig. 7a), patches 2 ( )y t  and 3( )y t  are not depleted (curves 2 and 3 in Fig. 7a) and 

consumer weighted quantity ˆ ( )W t  does not evolve to the equilibrium *Ŵ  (Fig. 7b), i.e. the 
nontrivial equilibrium is unstable. 
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a b 

  
 

Fig.7.a. Case (i). Resource densities ( )iy t  ( 1,2,3i = ). b. Weighted number of consumers ˆ ( )W t . 
 

In second experiment 0 1n = , 1
1 1 1rα β−< , 1

2 2 2rα β−< , 1
3 3 3rα β−< . In equation 

* * *ˆ ˆ( ( ( ), )) 1R C y W W =  we use *
1 0y > , *

2 0y = , *
3 0y = , for which * 1

1 1 1
ˆ ( ) 1W r β α− − < , 

* 1
2 2 2

ˆ ( ) 1W r β α− − < , * 1
3 3 3

ˆ ( ) 1W r β α− − >  (case (ii) of Theorem 4). The density of first 

food patch 1( )y t  does not evolve to the equilibrium *
1y  (curve 1 in Fig. 8a), second patch is 

not depleted ( 2 ( )y t , curve 2 in Fig.8a), 3( )y t  converges to the trivial equilibrium and be-

comes depleted (curve 3 in Fig.8a) and consumer weighted quantity ˆ ( )W t  does not evolve 

to the equilibrium *Ŵ  (Fig. 8b), i.e. the nontrivial equilibrium of food web is unstable. 
 

a b 

  
 

Fig.8.a. Case (ii). Resource densities ( )iy t  ( 1,2,3i = ). b. Weighted number of consumers ˆ ( )W t . 
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a b 

  
 

Fig.9.a. Case (iii). Resource densities ( )iy t  ( 1,2,3i = ). b. Weighted number of consumers ˆ ( )W t . 
 

a b 

  
 

Fig.10.a. Case (iv). Resource densities ( )iy t  ( 1,2,3i = ). b. Weighted number of consumers ˆ ( )W t . 
 

In third experiment 0 1n = , 1
1 1 1rα β−< , 1

2 2 2rα β−< , 1
3 3 3rα β−< . In equation 

* * *ˆ ˆ( ( ( ), )) 1R C y W W =  we use *
1 0y > , *

2 0y = , *
3 0y = , for which * 1

1 1 1
ˆ ( ) 1W r β α− − < , 

* 1
2 2 2

ˆ ( ) 1W r β α− − > , * 1
3 3 3

ˆ ( ) 1W r β α− − >  (case (iii) of Theorem 4). The density of first 

food patch 1( )y t  in this case evolves to the positive equilibrium *
1y  (curve 1 in Fig. 8a), the 

densities of the other patches 2 ( )y t  and 3( )y t  evolve to the trivial equilibrium ( *
2 0y = , 

*
3 0y = ), and become depleted (curves 2 and 3 in Fig. 8a). Consumer weighted quantity 

ˆ ( )W t  evolves to the positive equilibrium *Ŵ  (Fig. 8b), i.e. the nontrivial equilibrium with 
one non-depleted patch and two depleted patches is locally asymptotically stable. 
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In the last forth experiment 0 3n = , 1
1 1 1rα β−< , 1

2 2 2rα β−< , 1
3 3 3rα β−< . In equation 

* * *ˆ ˆ( ( ( ), )) 1R C y W W =  we use *
1 0y > , *

2 0y > , *
3 0y > , for which * 1

1 1 1
ˆ ( ) 1W r β α− − < , 

* 1
2 2 2

ˆ ( ) 1W r β α− − < , * 1
3 3 3

ˆ ( ) 1W r β α− − <  (case (iv) of Theorem 4). The densities of food 

patches ( )iy t  evolve to the corresponding positive equilibria *
iy , ( 1,2,3i = ) (curves 1, 2, 3 in 

Fig. 10a), consumer weighted quantity ˆ ( )W t  evolves to the positive equilibrium *Ŵ  (Fig. 10b), 
i.e. the nontrivial equilibrium with all non-depleted patches is locally asymptotically stable.  

The numerical results of third and fourth experiments illustrate the statements (iii) 
and (iv) of Theorem 4. In third experiment the nontrivial equilibrium with one non-depleted 
patch and two depleted patches ( 0I ≠ ∅ ) and in forth experiment the nontrivial equilibrium 
with three non-depleted patches ( 0I = ∅ ) are locally asymptotically stable (Figs.9, 10). 
Overall, we can conclude, that all statements of Theorem 3 and Theorem 4 correctly predict 
the asymptotic stability or instability of trivial, semi-trivial and non-trivial equilibria of sys-
tem (1) – (5) in all numerical experiments. 

 
6 Conclusions and discussions 
 
In this work it was studied an autonomous system – a resource-consumer model in a 

heterogenous environment consisting of several food patches with active resource. Food re-
sources do not disperse between patches, while consumers do disperse. The model of food 
resources is unstructured while the model of consumer population is age-structured. The 
relationship between the consumed food resource and consumer demographic parameters 
(fertility and death rates) is modelled by means of a calorie intake rate that describes the 
amount of energy obtained by consumer at a given age from all food patches per unit of 
time. In biological applications calorie intake rate can be obtained from the observations, or 
foraging experiments focusing on age-structured consumer behaviour. The consumer calo-
rie intake rate is proportional to the saturated intake rate (where the coefficient of saturation 
is a behavioural parameter of food resource) and depends from the time period a consumer 
needs to handle and digest a unit of resource (delayed parameter). Thus, the model consid-
ered in this paper extends the classic apparent competition models [24] – [27], [30] to a 
structured consumer population with time delay and active food resources. 

All types of possible equilibria: trivial, semi-trivial (with saturated food resource 
densities and extinct density of consumer population), and non-trivial equilibria with de-
pleted and non-depleted patches and positive density of consumer population were studied. 
In all theorems, it was used a new condition of sign-preserving partial derivatives of calorie 

intake rate-dependent fertility and mortality rates of consumer: 0
C

θ∂ >
∂

, 0
s

C

∂ <
∂

. The trivial 

and semi-trivial equilibria of the nonlinear autonomous system always exist while the non-
trivial equilibria exist if and only if the basic reproduction number of the consumer popula-
tion 1=R  (Theorem 1). On the basis of this result it was obtained in Theorem 2 new and 
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constructive sufficient conditions on coefficients of the autonomous system (on the basis of 
ideas and results from [14]) for existence of nontrivial equilibria with depleted and non-
depleted foraging patches and positive density of consumer population. 

The conditions of local asymptotic stability/instability of trivial and semi-trivial equilib-
rium obtained in Theorem 3 were formulated in terms of the consumer’s basic reproduction 
number. Stability analysis of non-trivial equilibria was carried out on the basis of perturbation 
theory and linearization method. Unfortunately, the well-known stability indicator of equilibria 
of nonlinear age-structured models – partial derivative of density-dependent basic reproduction 
number of consumer population ([8], [13]) cannot be used for stability analysis of nontrivial 
equilibria of resource-consumer model with depleted patches. Instead of it the explicit condi-
tions on coefficients of system were obtained in Theorem 4 for instability/local asymptotic sta-
bility of nontrivial equilibria with several or without depleted resource patches. In all theorems 
it was rigorously proved that the time-delay parameter - the consumer’s digestion period does 
not cause local asymptotical instabilities of consumer population at the trivial, semi-trivial and 
nontrivial equilibria. 

The dynamical regimes of autonomous system with the different values of time-delay 
parameter were studied in numerical experiments for illustration of results obtained in theo-
rems. In the 1-st and 2-nd groups of experiments the local asymptotic stability/instability of 
the trivial and semi-trivial equilibria, consumer population outbreaks, extinct and nonex-
tinct quasi-periodic dynamic regimes were obtained for the different values of the time de-
lay parameter. The processes of resource handle and food digestion are inherent for all bio-
logical organisms, although the value of handling and digestion period can significantly dif-
fer among species. Numerical experiments showed that digestion period of generalist con-
sumer τ  does not cause the local asymptotical instabilities or high-frequency oscillations 
(deterministic chaos) of consumer population in the vicinity of semi-trivial equilibrium. All 
numerical experiments were carried out in correspondence with the conditions formulated 
in Theorems 1 - 3. 

In the 3-rd and 4-th groups of experiments we study the local asymptotic stabil-
ity/instability of the nontrivial equilibria of system with one non-depleted and two depleted re-
source patches (3-rd group) and three non-depleted resource patches (4-th group) and one gen-
eralist consumer that illustrated four statements of Theorem 4. The most important in practice 
theoretical conclusion of Theorem 4 confirmed by numerical results is that if there exists the 

non-trivial equilibrium - positive solution of equation * * *ˆ ˆ( ( ( ), )) 1R C y W W = , which satisfies 

condition * 1ˆ ( ) 1i i iW r β α− − ≥  for all depleted patches ( 0i I∈ ) and * 1ˆ ( ) 1i i iW r β α− − <  for all 
non-depleted patches (i I+∈ ) such equilibrium is always locally asymptotically stable. The co-
efficient of saturation (behavioural characteristic of a food resource) iα  plays an important role 

in this criterion: if 1
i i irα β−>  the corresponding i -th patch cannot be depleted in the asymp-

totically stable equilibrium of food web. Thus, the numerical results illustrated and confirmed 
all statements of Theorems 1 – 4 obtained in this paper. 
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