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Abstract

Classical fisheries biology aims to optimise fisheries-level outcomes, such as yield or profit, by
controlling the fishing effort. This can be adjusted to allow for the effects of environmental stochas-
ticity, or noise, in the population dynamics. However, when multiple fishing entities, which could
represent countries, commercial organisations, or individual vessels, can autonomously determine
their own fishing effort, the the optimal action for one fishing entity depends on the actions of
others. Coupled with noise in the population dynamics, and with decisions about fishing effort
made repeatedly, this becomes an iterated stochastic game. We tackle this problem using the tools
of stochastic optimisation, first for the monopolist’s problem and then for the duopolist’s problem.
In each case, we derive optimal policies that specify the best level of fishing effort for a given
stock biomass. Under these optimal policies, we can calculate the equilibrium stock biomass, the
expected long-term return from fishing and the probability of stock collapse. We also show that
there is a threshold stock biomass below which it is optimal to stop fishing until the stock recovers.
We then develop an agent-based model to test the effectiveness of simple strategies for responding
to deviations by an opponent from a cooperative fishing level. Our results show that the economic
value of the fishery to a monopolist, or to a consortium of fishing agents, is robust to a certain level
of noise. However, without the means of making agreements about fishing effort, even low levels of
noise make sustained cooperation between autonomous fishing agents difficult.
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1. Introduction

Fish stocks are noisy [1, 2]. Sources of noise include: seasonality and variations in climatic condi-
tions [3, 4]; interspecific interactions [5]; variations in nutrient availability [6]; spatial heterogeneity
[7, 8]; differences in individual characteristics [9, 10]; and individual fecundity [11, 12]. Noise can
affect population sizes continuously throughout the growing season, and in discrete episodes such
as spawning events. Variability in recruitment is one the largest sources of noise [1, 6, 13].

A Markov decision process is a stochastic optimisation tool that couples a stochastic process with
a series of decisions and associated payoffs [14]. A solution to a Markov decision process is a policy,
which specifies the action to take as a function of the current state of the process, that maximises
the total expected payoff over the lifetime of the process [15, 16]. Markov decision processes have
been used to model optimal fishing efforts in the presence of environmental noise [17, 18]. These
have been applied to age- and sex-structured populations [19, 20], multi-species fisheries [21], and
in situations with incomplete information [22].

Classical fisheries biology is concerned with finding the fishing mortality rate that optimises fishery-
level outcomes [23]. This applies in a situation where fishing effort is centrally controlled by a single
regulator or a consortium of all relevant stakeholders. However, it does not apply in cases where
multiple fishing entities independently set their own fishing efforts to meet their own objectives
[24]. Fishing entities could be any unit with access to the fishery that has autonomy over its own
fishing effort, and could represent countries, commercial organisations, or vessels. Decision-making
by multiple fishing entities harvesting a shared stock is a game-theoretic problem because the state
of the stock, and therefore each entity’s catch, is affected by the actions of the other fishers.

McKelvey [25] contextualised multinational fisheries management as involving brief and intense fish
wars characterised by withdrawals from cooperative agreements, economic downturns in fishing
communities, and heavily depleted fish stocks. Non-cooperative game theory offers a route to
understanding such conflicts. Game theory has been used to investigate decisions about fishing
effort by two countries exploiting a shared or partially shared fish stock [25–28], and to evaluate
the allocation of spatio-temporal allocation of fishing [24, 29]. Martin-Herran and Rincón-Zapatero
[30] and Chiarella et al. [28] found conditions under which games representing fisheries have Nash
equilibria that are Pareto efficient. This is of interest because Pareto efficient solutions are socially
optimal and it is unusual for Nash equilibria to have this property. Game theoretic concepts have
also been used in models of small-scale fisheries with a population of autonomous fishing agents
[31, 32]. These studies showed that an approximate Nash equilibrium emerged among fishing agents
and produced a pattern of fishing selectivity that was well matched with the natural productivity
of ecosystem components. However, the open-access case, where there is no prescribed limit to
fishing effort, resulted in overfishing. The emergence of a Nash equilibrium among fishing agents is
analogous to the ideal free distribution of foraging theory [33, 34], which predicts that that foraging
effort is spatially distributed in proportion to resource productivity [35, 36]. This concept has also
been applied to fleet dynamics to quantify the spatial distribution of fishing effort [37–39].

Most modelling studies that take a game theoretic approach to decisions about fishing effort do not
explicitly account for the effects of noise in the fish stock. McKelvey [25] modelled an interception
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fishery, where the stock is harvested sequentially by two competing countries as it migrates through
their exclusive economic zones, but only included stochasticity in the payoff function, not in the
stock itself. Sobel [40] considered a stochastic game model of a fishery, which required that the
probability of the process transitioning to a given state could only depend on the current action
and not the current state. This is unrealistic for most fishing scenarios, where the spawning stock
biomass in one year is a significant determinant of biomass in subsequent years. The absence of noise
from most game theoretic models is an important limitation because noise not only has a major
effect on stock biomass, and therefore the likelihood of overfishing, but also on the information
available to fishing agents when deciding on their fishing effort.

In this paper, we present a new method for calculating optimal fishing effort, both for a monopolist
and a duopolist, in noisy conditions. A fishing agent’s optimal effort in any given period is the
effort that maximises that agent’s total expected future net profits, given the current stock biomass.
First, we formulate the monopolist’s problem as a Markov decision process [14]. The state variable,
representing stock biomass, and the action variable, representing fishing effort, are both continuous.
A solution to this process is a policy that specifies the optimal fishing effort for any level of stock
biomass.

Secondly, we extend our analysis to the case of a duopolist by reformulating the model as a stochastic
Markov game [41]. A Nash equilibrium solution of the Markov game is a solution in which, in any
given period, both players are following a policy that is a best response to the other player’s policy.
Although finite Markov decision processes have a (possibly non-unique) stationary optimal policy
[14], this is not necessarily the case for Markov games [42, 43]. Most work on stochastic games has
focused on the zero-sum case, which does have a unique Nash equilibrium [42], whereas the problem
considered here gives rise to a non-zero-sum game. Methods used to solve non-zero-sum stochastic
games include value iteration [44], policy iteration [41, 45, 46], and reinforcement learning [47, 48].
Here, we use a method that is based on value iteration but makes use of the symmetry of the
problem. This method always converges to a solution known as a stationary open-loop equilibrium,
meaning that players’ actions depend on the current state of the process and the anticipated current
and future actions of the other player, but not the previous actions of the other player [49]. Open-
loop equilibria are analytically tractable, but restrict the type of strategies that fishing agents may
use. We therefore formulate an agent-based model to evaluate the effectiveness of simple closed-loop
strategies, in which players can modify their actions based on their beliefs about their opponent’s
previous actions [27].

We show that the decision problem faced by two autonomous agents (i.e. duopolists) that cannot
make binding agreements has the structure of prisoner’s dilemma. We show that the presence
of noise in the fish stock drastically reduces the potential for cooperation between duopolists.
Intuitively, this occurs because, in years when the biomass is lower than expected, it is impossible
for a duopolist to know whether this is caused by noise or by “cheating” (i.e. higher than mutually
optimal levels of fishing effort) by their opponent.
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2. Markov decision process model

2.1. Stock biomass model

The stock biomass model consists of two components: an ecological component representing the
change in population biomass due to natural mortality and recruitment from one year to the next;
a harvesting component representing reduction in biomass due to fishing. Generational spawning
is common in fish species, typically occurring annually [50–52], over short spawning seasons [53].
We therefore assume that recruitment occurs as discrete, annual events, whereas harvesting occurs
continuously throughout the year.

Firstly, for the ecological component, we use a Beverton–Holt function plus a normally distributed
noise term. The Beverton–Holt function is a classical stock–recruitment relationship, modelling
density-dependent adult spawning and larval survival [54]. The noise term represents stochasticity
in the recruitment process and is assumed to be independent from one year to the next. Under this
model, the biomass after recruitment in year n is given by

Rn =

{
f(xn) + Zn, xn > 0 & f(xn) + Zn > 0,
0, otherwise,

(1)

where xn is the biomass at the beginning of year n, Zn are independent, identically distributed
normal random variables N(0, σ2) and f is the Beverton–Holt function defined by

f(x) =
Kx

x+ (K − x)e−rT
, (2)

where r is the intrinsic growth rate and K is the carrying capacity. The parameter σ represents
the magnitude of the noise in the ecological dynamics. Note that if the biomass ever becomes non-
positive, it is assumed to remain at zero for all future time representing extirpation of the stock,
i.e. zero is an absorbing state of the stochastic process.

For the harvesting component of the model, we assume that in year n the total fishing mortality
rate Fn is constant throughout the year. For simplicity we assume that all other sources of mortality
are accounted for by the map in Eq. (1). This means that the biomass at the beginning of the
following year is

xn+1 = Rne
−FnT (3)

and the total yield extracted during year n is

Yn = Rn

(
1− e−FnT

)
. (4)

The harvesting component is assumed to be deterministic, i.e. there is no noise in either the fishing
mortality rate Fn or the yield Yn.

Combining Eqs. (1) and (3) gives a stochastic mapping from the biomass at the beginning of one
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Figure 1: Schematic diagram showing two possible ways of modelling the annual sequence of biomass observation,
recruitment and noise, and fishing. In (a), a fishing agent cannot distinguish the effects of noise from fishing by other
agent(s). In (b), a fishing agent can infer perfectly the total fishing mortality applied by the other agent(s) because
the combination of the biomass observation xn at the start of year n and the yield Yn in year n allow them to separate
the effects of noise and fishing mortality. To avoid fishing agents having perfect information, we model the sequence
as shown in (a).

year to the biomass at beginning of the next year:

xn+1 =

{
(f(xn) + Zn) e−FnT , xn > 0 & f(xn) + Zn > 0,
0, otherwise.

(5)

According to Eq. (5), if the biomass at the beginning of year n is x and fishing mortality rate in
year n is F , then the probability density of having biomass y > 0 in year n+ 1 is

p(y|x, F ) =
eFT

σ
√

2π
exp

(
−
(
yeFT − f(x)

)2
2σ2

)
. (6)

The probability of having zero biomass in year n+ 1 is given by 1−
∫∞
0 p(y|x, F )dy.

Figure 1 illustrates the sequence of biomass observation, recruitment, noise and fishing. It is possible
to model this sequence in two different ways, either with recruitment and noise occurring before
fishing (Fig. 1a) or vice versa (Fig. 1b). Under the first model, fishing agents must decide on their
level of fishing effort before the stock biomass is affected by noise. Under the second model, fishing
agents can effectively observe the sign and magnitude of that year’s noise term before having to
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decide their fishing effort. This makes a small difference to the optimal policies that the model
produces because agents can better tune their effort levels to current environmental conditions.
However, in the duopolist case (see Sec. 2.3), having knowledge of the stock biomass immediately
before the fishing season begins means that each fishing agent can infer, with perfect accuracy,
the actions of their competitor via their own yield. To retain some realistic uncertainty in beliefs
about other agent’s actions, we therefore use the sequence shown in Fig. 1a. This means that
agents cannot observe the noise process directly and hence cannot distinguish the effects of noise
and competitor actions.

2.2. Monopolist problem

We first consider the optimisation problem faced by a single agent with the ability to observe the
biomass xn at the beginning of each year and subsequently determine the total fishing mortality
Fn to apply that year. This is a Markov decision process with continuous state variable x ≥ 0 and
continuous action variable F ≥ 0.

We assume that biomass extracted from the fishery has a unit price b so that the revenue in year
n is bYn, where Yn is the yield in year n as defined in Eq. (4). Similarly, we assume that there is a
cost c per unit fishing effort so that the expenditure in year n is cFn. Hence, if the biomass at the
beginning of the year is x, the fishing mortality rate is F , and the biomass at the beginning of the
following year is y then the net profit P is

P (x, y, F ) = by
(
eFT − 1

)
− cF. (7)

For generality, the profit function P is a function of the current state of the process (x), the action
taken (F ), and the subsequent state to which the process transitions (y). In this case, because of
the sequence shown in Fig. 1a, the profit is a deterministic function of the biomass at the end of
the fishing period, i.e. the subsequent state of the process y, independent of the current state x.

For a time horizon of N years, the monopolist’s problem is to choose a policy Qn(x), which specifies
the fishing mortality F to apply when the biomass is state x in year n (n = 1, . . . , N). An optimal
policy is one that maximises the expected value of the total discounted profit

Ptot =
N∑

n=1

δn−1P (xn, xn+1, Fn), (8)

where δ ∈ [0, 1] is the discount factor. This stochastic optimisation problem may be solved via
the Bellman equation [55] for the expected future discounted profit Vn(x), referred to as the value,
when the biomass is x in year n. The Bellman equation expresses the value recursively as the
expected profit in year n, plus the expected value in year n+ 1, maximised over all possible actions
in year n:

Vn(x) = maxF

∫ ∞
0

(P (x, y, F ) + δVn+1(y)) p(y|x, F )dy, n = 1, . . . , N, (9)
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The value VN+1(x) in year N + 1 is defined to be zero for all states x. This means that year N is
the last year in which any revenue may be extracted from the resource. Note that the value Vn(0)
of being in state x = 0 is zero for all n. This is because, if the process is in state x = 0 in year n,
it will remain in state x = 0 for all future years with probability 1, regardless of the actions taken.
Hence no current or future revenue can possibly be extracted. The Bellman equation reduces a
decision problem into smaller subproblems according to Bellman’s principle of optimality, which
states that “an optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision” [56].

We solve the Bellman equation by a method referred to as value iteration [14] as follows. Eq.
(9) with n = N and for a given value of x is a deterministic optimisation problem over the one-
dimensional action variable F . This allows calculation of the optimal policy, denoted Qmono

N (x),
and the value function VN (x) for year N . Once VN (x) is known, Eq. (9) with n = N − 1 can
be solved to find Qmono

N−1 (x) and VN−1(x), and so on. Hence, Eq. (9) can be solved by backward
induction in n to find the optimal policy Qmono

n (x) for n = 1, . . . , N .

If the optimal policy converges such that Qmono
n (x) = Qmono

n+1 (x), it is referred to as a stationary
optimal policy. Since the one-stage profits P (x, y, F ) are bounded, a stationary optimal policy is
guaranteed to exist (though may not be unique) [14]. In this case, we can calculate the stationary
state distribution π(x) under the optimal policy via the eigenproblem:

λπ(x) =

∫
p (x|y,Qmono(y))π(y)dy. (10)

Here, 1−λ is the probability per year that the process enters the absorbing state x = 0, meaning that
the stock is extirpated, when it is in the stationary distribution and under the stationary optimal
policy. If the value function also converges such that Vn(x) = Vn+1(x), we can also calculate the
expected long-term discounted return from fishing V . This is given by the expected value of V (x)
when the process is in its stationary distribution:

V =

∫
V (x)π(x)dx. (11)

2.3. Duopolist problem

We now consider the situation in which two agents must independently decide the fishing mortality

to apply each year. The total fishing mortality in year n is Fn = F
(1)
n + F

(2)
n , where F

(i)
n is the

fishing mortality applied by agent i ∈ {1, 2} in year n. In this case, the total yield is still determined
by Eq. (4), but is now split between the two agents according to their relative fishing mortality
rates. If the biomass at the beginning of the year is x, agent i applies fishing mortality F (i), and
the biomass at the beginning of the following year is y, then the net profit P (i) for agent i is

P (i) (x, y,F) =
byF (i)∑
F (j)

(
e
∑

F (j)T − 1
)
− cF (i) (12)
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Description Symbol and value

Stock biomass at the start of year n (relative to carrying capacity) xn
Fishing mortality F
Policy specifying the fishing mortality in year n at biomass x Qn(x)
Value to fishing agent in year n of having biomass x Vn(x)
Transition probability function p(y|x, F )
Stationary distribution of biomass π(x)
Probability of survival per year in stationary distribution λ
Expected value in stationary distribution V

Noise level relative to carrying capacity σ (varied)
Intrinsic population growth rate r = 1 yr−1

Time period between recruitment events T = 1 yr
Cost per unit effort relative to unit price c = 0.25
Discount factor δ = 0.9

Table 1: Model variables and parameter values.

where F =
[
F (1), F (2)

]
and all summations are over j = 1, 2.

The duopolist’s problem can also be formulated as a Bellman equation, conditional on knowing
what action the other agent will take when the process is in a given state. Suppose that agent j
applies fishing mortality F (j). Then the Bellman equation for agent i in year n is:

V (i)
n (x) = maxF (i)

∫ ∞
0

(
P (i)(x, y,F) + δV

(i)
n+1(y)

)
p
(
y|x,

∑
F (j)

)
dy, n = 1, . . . , N, (13)

The optimal fishing mortality for agent i when the process is in state x will depend on the fishing

mortality applied by j. We call a pair of policies Q
(i)
n (x) (i = 1, 2) in year n optimal policies if they

are best responses to each other, i.e. F (i) = Q
(i)
n (x) is the solution of Eq. (13) when F (j) = Q

(j)
n (x).

By symmetry, there must be a pair of optimal policies that are the same for both agents, i.e.

Q
(i)
n = Q

(j)
n . This constraint can be used to to reduce Eq. (13) to a single-variable optimisation

problem in each year (see Appendix A for details of solution method). As with the monopolist
problem, the optimal policies are found via backward iteration in n. We denote the duopolist’s
optimal policy in year n by Qduo

n (x). If the duopolist’s optimal policy converges to a stationary
policy, we can calculate the stationary distribution, the probability of extirpation, and the expected
long-term return from fishing via equations analogous to Eq. (10) and (11).

We set the carrying capacity to be K = 1 and the unit price to be b = 1. This does not affect the
generality of the model and effectively means that biomass x and the noise σ are measured as a
proportion of the carrying capacity, and the cost per unit effort parameter c is a ratio of cost to
unit price. Other parameter values are shown in Table 1.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.09.901025doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.901025
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Solutions to the Markov decision process over a N = 40 year period for: (a,b) a monopolist (c,d) and
duopolist. (a,c) show the optimal policy in the final year (yellow), penultimate year (red), and preceding years
(black) for which the optimal policy has converged to a stationary policy in both cases. (b,d) show the value function
in the final year n = N (lightest shade) through to the first year n = 1 (darkest shade) at 5 year intervals. Noise
level σ = 0.1. Other parameter values shown in Table 1
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2.4. Results

Figure 2 shows the monopolist’s and duopolist’s optimal policy and value function for a N = 40 year
period when σ = 0.1, i.e. the standard deviation of annual noise is 10% of the carrying capacity.
The monopolist’s optimal policy in the final year (yellow curve in Fig. 2a) maximises net profit in
a single, fixed time period without regard to the biomass remaining at the end of this period. As
expected, the optimal policy is always an increasing function of biomass, so it is optimal to fish
harder when the stock biomass is high. As the process iterates backwards in time, the optimal
policy quickly converges to a stationary policy: the policies in all years except the final year (black
curve in Fig. 2a) are almost identical. In any given year, there is a threshold biomass below which
it is optimal to cease fishing because the cost of fishing would exceed the revenue generated. In the
final year (n = N), the optimal fishing mortality is higher, and the threshold biomass for fishing is
lower, than in preceding years (n ≤ N −1). This is because in the final year there is no incentive to
protect the stock for future periods. The value function increases as the process iterates backwards
in time (darker curves in Fig. 2b) and eventually converges towards a stationary value, but this
takes longer than convergence of the optimal policy.

The duopolist’s optimal policy (Fig.2c) follows a similar shape to the monopolist’s but, in all except
the final year, specifies a higher fishing mortality for a given biomass x, and has a lower threshold
biomass required for fishing. The value function for a duopolist (Fig.2d) is less than half that of
the monopolist, indicating that the economic performance of the fishery as a whole is reduced when
exploited by two non-cooperative agents. The duopolist’s optimal policy converges to a stationary
policy within 2 years of the final time period and, as in the monopolist case, the value function
converges but more slowly. For the remainder of the paper, we focus on the stationary solution to
the Markov decision process (i.e. long time horizon) found by solving the Bellman equation over a
N = 40 year period and examining the solution in year n = 1.

Figure 3 shows the monopolist’s and duopolist’s stationary optimal policy and value function,
and the stationary biomass distribution, for a range of noise levels σ. When noise is small, the
stationary biomass distribution under a monopolist (Fig. 3c) is tightly peaked, meaning there
is little variation from year to year. The mean of the biomass distribution is slightly below the
equilibrium biomass at maximum economic yield (BMEY) under the deterministic version of the
model (vertical dotted line). This reference point is calculated by maximising the net profit when
the biomass is at equilibrium and there is no noise (σ = 0). The slight discrepancy is because the
classical MEY solution does not discount future profits (although it can be adjusted to do so), so
it is optimal to main stock biomass at a slightly higher level. The value of the resource to the
monopolist with low noise (dark blue curve in Fig. 3b) also matches with the MEY prediction.

In the case of a duopoly, the optimal fishing mortality for each agent is higher than for a monopolist
at the same stock biomass, and the threshold required for fishing is lower than for a monopolist
(Fig. 3d). The mean of the stationary biomass distribution (Fig. 3f) is approximately half that
under a monopolist, and the value is less than half that of the monopolist (Fig. 3e). This shows
that two non-cooperative fishing agents will deplete the stock below optimal levels and receive
sub-optimal returns.
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Figure 3: Effect of noise on the stationary optimal policy, value function and biomass distribution for: (a-c) a
monopolist and (d-f) a duopolist. Noise levels σ = 0.02 (dark blue), 0.1 (red), 0.3 (yellow), 0.5 (purple). Panels
(a,d) show the stationary optimal policy; (b,e) show the stationary value function; (c,f) show the stationary biomass
distribution. Dotted lines show the equilibrium biomass, fishing mortality and value corresponding to the maximum
economic yield (MEY) in the deterministic monopolist case. Parameter values shown in Table 1
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As noise increases, the shape of the optimal policy changes slightly and the threshold biomass
required for fishing decreases (Fig. 3a,d). This reflects a detrimental consequence of noise on the
bioeconomic dynamics. When noise is small, agents will avoid fishing in years when the biomass
is low in order to protect future profits. However, when noise is larger, there is more uncertainty
to future profits, so less of an incentive to protect them. Increasing noise also decreases the value
function (Fig. 3b,e). This shows that higher profits in high biomass years do not offset the reduction
in expected long-term profits due to the risk of extirpation of the stock.

3. Closed-loop strategies

The stochastic optimisation framework developed in Sec. 2 allows for open-loop strategies, in which
agents can base their choice of action on the current state of the process, and the inferred current
and future actions of their competitor, but not on previous actions or states [49]. This means
that agents cannot directly response to deviations by other agents from an equilibrium strategy.
Closed-loop strategies, where an agent’s actions may depend in part on their beliefs about the
past actions of other agents, are less tractable analytically. Hence, in this section, we develop a
stochastic agent-based model to investigate simple closed-loop strategies. We simulate the decision
problem faced by a duopolist using an agent-based model with two agents.

3.1. Agent-based model

The optimal policy for the duopolist found by solving Eq. (13) is an open-loop Nash equilibrium.
In other words, in a given year and for a given biomass, neither agent can increase their expected
discounted profit, over the time horizon of the process, by unilaterally changing to a different fishing
mortality. In contrast, a Pareto efficient strategy set is one where it is impossible to increase one
agent’s expected return without decreasing the other agent’s expected return. In our model, any
combination of agent fishing mortalities such that F (i) + F (j) = Qmono

n (x) is Pareto efficient. For
simplicity, we focus only on the symmetric Pareto efficient solution, i.e. F (i) = F (j) = Qmono

n (x)/2.

The existence of a Nash equilibrium and a Pareto efficient solution means that the duopolist’s
decision problem shares some characteristics of an iterated prisoner’s dilemma. In reality, agents
can choose from a continuum of fishing mortalities F (i) ≥ 0. However, for simplicity, in this section
we assume that each year they make a binary choice of either: (i) fishing according to the Pareto
efficient solution F (i) = Qmono

n (x)/2; or (ii) fishing according the Nash equilibrium F (i) = Qduo
n (x).

In keeping with the terminology of a prisoner’s dilemma, we label these two actions “cooperate”
and “defect” respectively.

We compare three simple strategies: always cooperate (ALLC), always defect (ALLD), and tit-for-
tat (TFT). In the classic iterated prisoner’s dilemma, each player can directly infer the action of
their opponent in the previous round. TFT specifies that the player should cooperate in the first
round and, in subsequent rounds, take the same action that their opponent took in the previous
round [57]. This is known as a memory-one strategy as it requires the player to have memory
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of their opponent’s action one round previously. In our model, fishing agents cannot accurately
infer the fishing mortality applied by the other agent in the previous round, because of noise.
Nevertheless, agent i can calculate the anticipated yield in year n under the assumption their

opponent cooperated, denoted Y
(i)
coop, and under the assumption their opponent agent defected,

denoted Y
(i)
def :

Y (i)
coop = f(xn)

F
(i)
n

F
(i)
n +Qmono

n (xn)/2

(
1− exp

(
−
(
F (i)
n +Qmono

n (xn)/2
)
T
))

(14)

Y
(i)
def = f(xn)

F
(i)
n

F
(i)
n +Qduo

n (xn)

(
1− exp

(
−
(
F (i)
n +Qduo

n (xn)
)
T
))

(15)

The agent then observes their actual yield Y
(i)
n and we assume that they believe their opponent

cooperated if Y
(i)
n > (Y

(i)
coop + Y

(i)
def )/2, otherwise they believe their opponent defected.

For simplicity, we assume that the time-horizon is sufficiently long that the monopolist’s and
duopolist’s optimal policies are stationary. Hence, for a given biomass x, the fishing mortalities
corresponding to the cooperate action and the defect action are the same every year. A realisation
of the agent-based model is simulated as follows:

1. Initialise the process by setting n = 1, xn = K and B(i) = 1 (i = 1, 2).
2. Both agents observe xn. Determine each agent’s fishing mortality F (i) according to xn and

the strategy they are following. An agent i playing TFT will cooperate if B(i) = 1 and defect
if B(i) = 0.

3. Calculate xn+1 via the stochastic map in Eq. (5).

4. Calculate each agent’s yield Y
(i)
n and net profit P

(i)
n via Eq. (12).

5. For an agent playing TFT, calculate the anticipated yield under assumption the other agent

cooperated (Y
(i)
coop), and under the assumption the other agent defected (Y

(i)
def ) via Eqs. (14)

and (15). Update agent’s belief by setting B(i) = 1 if Y
(i)
n > (Y

(i)
coop + Y

(i)
def )/2 and B(i) = 0

otherwise.
6. Increase n by 1 and repeat steps 2–6 until n = nmax or xn = 0.

An initial burn-in period of n0 years is discarded. For each realisation, we calculate each agent’s
total discounted profit,

P
(i)
tot =

nmax∑
n=1

δn−1P (i)
n , (16)

We also calculate the average probability of extirpation of the stock per year. These outputs are
averaged over M independent realisations of the process. Any realisation in which the stock is
extirpated before the end of the burn-in period is discarded.

3.2. Results

We simulated the agent-based model in three cases: both agents playing ALLC; both agents playing
ALLD; and both agents playing TFT. Figure 4 compares agent-based model simulations with results
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Figure 4: Comparison of Markov decision process solutions (solid curves) with agent-based model simulations (points):
(a,c) probability of extirpation per year 1 − λ; (b,d) expected value (i.e. average long-term return from fishing).
Discount factor in (a,c) δ = 0.9; (b,d) δ = 0.7. Blue curves show the results from the Markov decision process
at the Pareto efficient solution F (i) = Qmono

n (x)/2; blue points show the agent-based simulation results for two
agents playing ALLC. Red curves show the results from the Markov decision process under the Nash equilibrium
F (i) = Qduo

n (x); red points show the agent-based simulation results for two agents playing ALLD. Green points
show the agent-based simulation results for two agents playing TFT. The agent-based model was simulated for a
n0 = 20 year burn-in period which was discarded, followed by a nmax = 100 year period, and results are averaged
over M = 500 independent realisations, discarding any realisation in which the stock is extirpated before the end of
the burn-in period. Parameter values shown in Table 1

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.09.901025doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.901025
http://creativecommons.org/licenses/by-nc-nd/4.0/


from the Markov decision process from Sec. 2. With cooperative behaviour (ALLC, blue), the
agent-based model agrees well with the Markov decision process under the monopolist’s optimal
policy. With uncooperative behaviour (ALLD, red), simulations agree with the results of the
duopolist’s Nash equilibrium. In both cases, noise levels below around 10% of carrying capacity do
not appreciably affect the expected value (i.e. the average long-term return from fishing). This is
because the probability of extirpation is negligible at these noise levels and, in the long run, the
increased profit in high biomass years balances the reduced profit in low biomass years. However,
increasing noise above around 10% of carrying capacity increases the probability of extirpation and
therefore reduces the expected value. The probability of extirpation is higher under uncooperative
behaviour than under cooperative behaviour, because the aggregate fishing mortality is higher and
the equilibrium average biomass is lower, as shown by Fig. 3.

Under tit-for-tat (TFT, green), the expected value gets close to the cooperative outcome when
noise is very small. However, as noise increases, the expected value rapidly drops and ends up
approximately midway between the cooperative and non-cooperative outcomes. Interestingly, noise
impacts the performance of TFT relative to the Pareto efficient ALLC before it affects the expected
value from ALLC itself. This shows that even small amounts of noise make sustained cooperation
more difficult.

The results in Figure 4(a,b) are for a discount factor of δ = 0.9. For comparison, we also solved the
Markov decision process and simulated the agent-based model for discount factors of 0.7 and 0.95.
When the discount factor is high, agents fish at slightly lower levels to protect biomass and therefore
profits in future years. However, the effect of noise is similar to that seen in Fig. 4(a,b). When
the discount factor is low (δ = 0.7, Fig. 4(c,d)), agents attach less value to profits in future years.
This greatly reduces the effect of noise on the expected value, because extirpation at some future
time is less important from the point of view of a short-sighted agent. However, the probability of
extirpation is higher than the δ = 0.9 case, as a consequence of the higher average fishing mortality.

The model can also be used to simulate two agents playing different strategies. At low noise
levels, the results of this are as expected from the classical iterated prisoner’s dilemma: ALLC vs
ALLD results in a large advantage for the defector; ALLC vs TFT results in both agents always
cooperating; ALLD vs TFT results in both agents always defecting. As noise increases, the actions
of an agent playing TFT become increasingly determined by noise in the biomass signal and less
sensitive to the actions of their opponent. This is the core reason why TFT ceases to be effective
in the presence of noise.

4. Discussion

We have developed a stochastic optimisation framework for determining the optimal fishing effort for
either a monopolist or duopolist operating in a noisy environment. A solution to the monopolist’s
Markov decision process is a type of harvest control rule. This is an increasingly used fisheries
management tool that specifies biomass reference points at which increasingly strict controls on
fishing are imposed [58]. Our model assumes that fishing agents or managers can accurately observe
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the stock biomass once during the annual cycle of recruitment and fishing. Biomass estimates are
often inaccurate due to a lack of data [21] or to measuring proxy variables such as catch per unit
effort rather than biomass itself. Real fisheries have many other sources of noise operating in
both the population dynamics and the harvesting process. We have studied the effect of including
density-independent, normally distributed noise in a single model component, the annual stock-
recruitment relationship. Our model provides a natural framework for including other sources
of variability, such as uncertainty in biomass observations [58], noise in fishing mortality due to
spatial heterogeneity or variations in catchability, or density-dependent noise [19]. Nevertheless,
considering noise in annual recruitment is a reasonable starting point as this is the largest single
source of unexplained variability in most fish stocks [13, 23, 54].

In both the monopolist and duopolist case, our results show that there is a threshold stock biomass
below which it is optimal to stop fishing until the stock recovers. This threshold is lower for
a duopolist than for a monopolist. Correspondingly, the stock has a lower equilibrium average
biomass and a higher probability of extirpation under a duopolist than under a monopolist. The
duopolist solution is optimal in the sense of being a Nash equilibrium, that is neither player can
increase their expected profit by unilaterally changing their fishing effort. However, this solution
is not Pareto efficient, meaning that both players could obtain a higher profit by cooperatively
reducing their fishing effort. Thus the duopolist’s decision problem contains the structure of an
iterated prisoner’s dilemma.

We used an agent-based model to test the effectiveness of a simple, strategy based on punishment
of a player who defects from a cooperative solution, also known as a threat policy [27]. Our
results quantify the likelihood of punishment being triggered by environmental noise and the long-
term effect on fisheries-level outcomes. Although this strategy is effective in maintaining mutual
cooperation when noise is very small, its performance rapidly drops as the noise level increases and
swamps the player’s ability to discern any accurate information about their opponent’s actions. This
shows that, unless players are able to make enforceable agreements about fishing effort, sustaining
cooperation in a noisy environment is difficult.

Other punishment-based strategies exist, such as a grim trigger, where a single perceived defection
by an opponent triggers the player to defect for the remainder of the process, or generous tit-for-
tat, which has some probability of forgiving a perceived defection. More complex strategies could
also be developed that have memory of more than one round, or have a more nuanced punishment
regime than just a binary choice between the Nash equilibrium and Pareto efficient fishing efforts.
These could be simulated using our agent-based model.

Our finding that sustained cooperation of autonomous fishing agents is difficult is an example of
Hardin’s tragedy of the commons [59]. This appears to be an argument in favour of centralised
controls on fishing mortality, and there are certainly many cases where these are necessary to prevent
overfishing [60]. However, there are also documented cases where community management has been
effective [61], particularly in small-scale fisheries [62]. We acknowledge that game theoretic models
that assume selfish economic rationality do not always capture the nuances of human behaviour
[63, 64].
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Our models assumes that players have symmetric costs, prices and information for players. Re-
laxing some of these assumptions would be an interesting extension would to the study. In many
asymmetric situations, side-payments become part of the optimal policy, for example an agent with
a higher price to cost ratio will pay another agent to reduce their fishing effort [25, 26]. Other
potential model extensions include a multi-species fishery, harvesting by multiple agents, and age-
or size-structured populations.
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Appendix A. Solution of the Bellman equation

The Bellman equation takes the form

Vn(x) = maxFL(x, F ), (A.1)

where, for the monopolist problem, using Eq. (7) gives

L(x, F ) = −cF + b
(
1− e−FT

)
µ(x) + δ

∫ ∞
0

Vn+1(y)p(y|x, F )dy, (A.2)

where µ(x) is the expected value of the stochastic Beverton–Holt map defined by Eq. (1), given by

µ(x) =
f(x)

2

(
1 + erf

(
f(x)√

2σ

))
+

σ√
2π
e−

f(x)2

2σ2 . (A.3)

Note that if the variable x were unconstrained, the expected value of the stochastic map would
just be the deterministic Beverton–Holt map f(x). However, because Eq. (1) constrains x to take
non-negative values, µ(x) is greater than f(x).

Differentiating L(x, F ) with respect to the action variable F gives

∂L

∂F
= −c+ bTe−FTµ(x) + δ

∫ ∞
0

Vn+1(y)q(y|x, F )dy, (A.4)

where

q(y|x, F ) =
∂

∂F
p(y|x, F ) =

TeFT

σ
√

2π

(
1−

yeFT
(
yeFT − f(x)

)
σ2

)
exp

(
−
(
yeFT − f(x)

)2
2σ2

)
(A.5)

It can be shown that ∂2L/∂F 2 < 0. Hence, for a given x, there are two possibilities: (i) if
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limF→0 ∂L/∂F > 0 then the optimal fishing mortality is the unique positive root of ∂L/∂F = 0;
(ii) if limF→0 ∂L/∂F < 0 then the optimal fishing mortality is F = 0.

The same approach can be taken to the multi-agent version of the problem. In the general case
with m agents, the Bellman equation takes the form

V (i)
n (x) = maxFL

(i) (x,F) , (A.6)

where F =
[
F (1), . . . , F (m)

]
.

L(i) (x,F) = −cF (i) +
bF (i)

(
1− e−

∑
F (j)T

)
µ(x)∑

F (j)
+ δ

∫ ∞
0

V
(i)
n+1(y)p

(
y|x,

∑
F (j)

)
dy, (A.7)

where all summations are over j = 1, . . . ,m unless otherwise specified.

Differentiating L with respect to the action variable F (i) gives

∂L(i)

∂F (i)
= −c+ bµ(x)

((
1− e−

∑
F (j)T

) ∑
j 6=i F

(j)(∑
F (j)

)2 +
TF (i)e−

∑
F (j)T∑

F (j)

)

+δ

∫ ∞
0

V
(i)
n+1(y)q

(
y|x,

∑
F (j)

)
dy, (A.8)

where q(y|x, F ) is given by Eq. (A.5) as previously. By symmetry, the optimal policy must be the
same for each agent i. Therefore we require a solution of ∂L(i)/∂F (i) = 0 satisfying F (i) = F (j) = F
for all i, j. Thus the optimal fishing mortality for an agent when the biomass is x in year n is given
by the root F of M(x, F ) = 0 where:

M(x, F ) = −c+ bµ(x)

((
1− e−mFT

) (m− 1)

m2F
+
Te−mFT

m

)
+ δ

∫ ∞
0

V
(i)
n+1(y)q (y|x,mF ) dy. (A.9)

It can be shown that ∂M/∂F < 0, so again there are two possibilities: (i) if limF→0M(x, F ) > 0
then the optimal fishing mortality is the unique positive root of Eq. (A.9); (ii) if limF→0M(x, F ) <
0 then the optimal fishing mortality is F = 0. The duopolist’s optimal policy is found by setting
m = 2.

Numerical methods

Solutions of the Bellman equation are calculated numerically by truncating the state variable x at
x = xmax = 2 and discretising with step size δx = 0.0025.

In year n and for each xk, the value of limF→0M(xk, F ) is calculated. If this negative, then the
optimal policy Qn(xk) is 0, otherwise Qn(xk) is the unique positive root of Eq. (A.9), which is
found using Matlab’s single-variable root-finding routing fzero. Once the optimal policy is known,
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the value function Vn(xk) is calculated according to Eq. (A.7) with F (j) = Qn(xk) for all agents j.
This means that the value function is tabulated at x = xk and so the integrals in Eqs. (A.7) and
(A.9) are evaluated using the trapezium rule with step size δx.

The value of xmax = 2 is sufficiently large that, for the noise levels considered, there is a very small
probability that the biomass exceeds this. Reducing the step size to δx = 0.001 had a negligible
effect on the results.
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