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Abstract

The application of machine learning algorithms to neuroimaging data shows

great promise for the classification of physiological and pathological brain states.

However, classifiers trained on high dimensional data are prone to overfitting,

especially for a low number of training samples. We describe the use of whole-

brain computational models for data augmentation in brain state classification.

Our low dimensional model is based on nonlinear oscillators coupled by the

empirical SC of the brain. We use this model to enhance a dataset consisting

of functional magnetic resonance imaging recordings acquired during all stages

of the human wake-sleep cycle. After fitting the model to the average FC of

each state, we show that the synthetic data generated by the model yields

classification accuracies comparable to those obtained from the empirical data.
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We also show that models fitted to individual subjects generate surrogates with

enough information to train classifiers that present significant transfer learning

accuracy to the whole sample. Whole-brain computational modeling represents

a useful tool to produce large synthetic datasets for data augmentation in the

classification of certain brain states, with potential applications to computer-

assisted diagnosis and prognosis of neuropsychiatric disorders.

Keywords: neuroimaging, dynamical systems, machine learning, data

augmentation, brain states.

1. Introduction

The discovery of non-invasive neuroimaging tools opened the way to the

inference of the hidden brain states that are associated with observable be-

haviors. For this purpose, techniques such as functional magnetic resonance

imaging (fMRI) provide high dimensional spatiotemporal data that can be used5

as the input for machine learning classifiers [1]. In these algorithms the pa-

rameters are learned from a training sample, and the resulting accuracy is then

estimated from out-of-the-sample data. A sufficiently large number of examples

is critical for successful training (i.e. avoiding overfitting), but the availability

of neuroimaging data can be limited for certain rare neuropsychiatric conditions10

and for classifiers aimed at distinguishing between several groups of patients.

While pooling data acquired in different laboratories can help alleviate this is-

sue, it has been shown that heterogeneous experimental conditions can reduce

the accuracy of the classifiers [2].

Data augmentation is a technique based on applying certain transformations15

to the available data with the objective of producing new surrogate training

examples. In the case of image classification, for instance, these transformations

may include rotations and shear mappings [3]. It is less obvious how to choose

transformations that produce meaningful surrogate examples in the case of high

dimensional spatiotemporal data, such as that provided by fMRI experiments.20

Faced with a similar problem, Tubaro and Mindlin recently proposed the use of
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low dimensional dynamical systems for data augmentation in deep learning [4].

Here, we have followed the analogous procedure of developing semi-empirical

models of whole-brain activity for data augmentation in the classification of

temporally extended brain states.25

The computational models we developed and implemented receive as in-

put several independent sources of empirical data, and can be optimized to

reproduce observables derived from fMRI recordings [5]. A low dimensional dy-

namical system can be assigned to each region within a brain parcellation, and

inter-regional coupling can be estimated from diffusion tensor imaging (DTI)30

data [6]. Using the normal mode of a Hopf bifurcation results in local dynamics

with a transition from a fixed point towards a limit cycle, and in global dy-

namics coupled by the density of long-range white matter tracts [7, 8]. Finally,

to reduce the dimension of the models, the local bifurcation parameters can be

constrained by different functionally coherent brain systems, known as resting35

state networks (RSN) [9].

In the following, we show that these models reproduce the empirical cor-

relation matrices between regional fMRI time series (also known as functional

connectivity [FC] matrices), and that surrogate instances of FC matrices can

be used for data augmentation in the problem of classifying the different stages40

of the human wake-sleep cycle. For this, synthetic time series were generated

from the low dimensional models fitted to average and individual FC, which

were used afterwards as input for multivariate random forest classifiers.

2. Material and Methods

Participants and experimental protocol. 63 healthy subjects participated in the45

original experiments (36 females, mean ± SD age of 23 ± 43.3 years). Written

informed consent was obtained from all participants. The experimental proto-

col was approved by the local ethics committee (Goethe-Universität Frankfurt,

Germany, protocol number: 305/07). The subjects were reimbursed for their

participation. All experiments were conducted in accordance with the relevant50

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.898999doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.898999
http://creativecommons.org/licenses/by-nc-nd/4.0/


guidelines and regulations, including the Declaration of Helsinki.

Participants entered the scanner in the evening (within half an hour of 7 PM)

and underwent a resting state fMRI session with simultaneous EEG acquisition

lasting for 52 minutes. Participants were not instructed to fall asleep, but were

asked to relax, close their eyes and not actively fight the onset of sleep. Lights55

were dimmed in the scanner room and subjects were shielded from scanner noise

using earplugs. The day of the study all participants reported a wake-up time

between 5 : 00 AM and 11 : 00 AM, and a sleep onset time between 10 : 00 PM

and 2 : 00 AM for the night prior to the experiment. Sleep diaries confirmed

that these values were representative of the 6 days prior to the experiment.60

Simultaneous fMRI and EEG data collection. An optimized polysomnographic

setting was employed to acquire electroencephalography (EEG) and electromyo-

graphy (EMG) for sleep staging. Scalp potentials measured with EEG deter-

mine the classification of sleep into 4 stages (wakefulness, N1, N2 and N3 sleep)

according to the rules of the American Academy of Sleep Medicine [10]. We65

selected a subset of 15 subjects who reached stage N3 sleep (i.e. deep sleep).

Previous publications based on this dataset can be referenced for further details

[11].

Structural connectivity. Structural connectivity (SC) was obtained applying dif-

fusion tensor imaging (DTI) to diffusion weighted imaging (DWI) recordings70

from 16 healthy right-handed participants (11 men and 5 women, mean age:

24.75 ± 2.54 years) recruited online at Aarhus University, Denmark. For each

participant, a 90x90 SC matrix was obtained representing the density of white

matter fiber tracts between regions of interest. The connectivity probability

from a seed voxel i to another voxel j was defined as the proportion of fibers75

passing through voxel i that reached voxel j (sampling of 5000 streamlines per

voxel) [12]. All the voxels in each region of the Automated Anatomical Label-

ing atlas (AAL [13]) were seeded (i.e. both grey and white matter voxels were

considered). The connectivity probability Pij from region i to region j was

computed as the number of sampled fibers in region i that connected the two80
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regions, divided by 5000 n, where n represents the number of voxels in region i.

The resulting matrices were computed as the average across voxels within each

region of interest in the AAL atlas, thresholded at 0.1 % (i.e. a minimum of

five streamlines) and normalized by the number of voxels in the region. Finally,

the data was averaged across all participants.85

Whole-brain models. We implemented a network of nonlinear oscillators cou-

pled by the SC. Each oscillator was modeled using a normal form of a Hopf

bifurcation and represents the dynamics at one of the 90 brain regions in the

AAL atlas. In this type of bifurcation the qualitative nature of the solutions

changes from a stable fixed point in phase space towards a limit cycle, allowing90

the model to represent the emergence of self-sustained oscillations. Thus, the

key neurobiological assumption is that dynamics of macroscopic neural masses

can range from fully synchronous to a stable asynchronous state governed by

random fluctuations. We also assume that fMRI can capture the dynamics from

both regimes with sufficient fidelity to be modeled by the equations.95

Without coupling, the local dynamics of brain region j were modeled by the

complex-valued equation:

dzj
dt

= (a+ iωj)zj − zj |zj |2

In this equation, z is a complex-valued variable (zj = xj + iyj ), and ωj is the

intrinsic oscillation frequency of node j. The intrinsic frequencies ranged from

0.04 − 0.07 Hz and were determined by the averaged peak frequency of the

bandpass-filtered fMRI signals of each individual brain region. The parameter

a is known as the bifurcation parameter, and controls the dynamical behavior100

of the system. For a < 0 the phase space presents a unique stable fixed point at

zj = 0, thus the system decays asymptotically towards this point. For a > 0 the

stable fixed point changes its stability, giving rise to a limit cycle and to self-

sustained oscillations with frequency fj = ωj/2π and amplitude proportional to

the square root of a [7].105

The coordinated dynamics of the resting state activity were modeled by a

coupling term weighted by the SC. Nodes i and j were coupled by Cij (the
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i,j entry of the SC matrix). To ensure oscillatory dynamics for a > 0, the SC

matrix was scaled to a maximum of 0.2 (weak coupling assumption) [7]. In full

form, the coupled differential equations of the model are the following:

dxj
dt

= (a+−x2j − y2j )xj − ωjyj +G
∑

Cij(xi − xj) + βηj

dyj
dt

= (a+−x2j − y2j )yj + ωjxj +G
∑

Cij(yi − yj) + βηj

The parameter G represents a global factor that scales the SC equally for

all the nodes. These equations were integrated to simulate empirical fMRI

signals using the Euler-Maruyama algorithm with a time step of 0.1 seconds. ηj

represents additive Gaussian noise in each node and was fixed at 0.04. When

a is close to the bifurcation (a ≈ 0) the additive gaussian noise gives rise to110

complex dynamics as the system continuously switches between both sides of

the bifurcation.

Fitting the model to the empirical data. We used the group-averaged FC as the

empirical observable to be fitted by the model. The fMRI signal from each re-

gion in the AAL atlas was filtered in the 0.04–0.07 Hz frequency range since,115

when mapped to the gray matter, this frequency band was shown to contain

more reliable and functionally relevant information compared to other frequency

bands, and to be less affected by physiological noise [14]. Subsequently, the fil-

tered time series were transformed to z-scores. For each brain state, participants

were selected based on the presence of uninterrupted epochs of that state last-120

ing more than 200 samples, resulting in 15 participants. Afterwards, the FC

matrix was defined as the matrix containing the correlation coefficients between

the average fMRI signals from all pairs of regions of interest in the AAL atlas.

Fixed-effect analysis was used to obtain group-level FC matrices, meaning that

the Fisher’s R-to-z transform (z = atanh(R)) was applied to the correlation125

values before averaging across participants within each state of consciousness.

When applying the above described model to simulate the regional fMRI

signals, we incorporated an anatomical prior based on 6 major RSN [9] with

the objective of constraining how different groups of nodes could contribute to

6
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the local bifurcation parameters. In this way, we embedded the dynamics of the130

90 independent regions into a 6-dimensional parameter space. Each bifurcation

parameter was constructed as the linear combination of the 6 parameters asso-

ciated with the RSN. Note that regions could belong to more than one RSN,

and thus the bifurcation parameters could receive independent contributions

from multiple RSN. We simulated 200 time samples for each subject, and then135

repeated the procedure described above to compute the simulated average FC

matrices for each state. To simulate individual FC time series we increased

the number of time samples to 2000. The goodness of fit was determined by

the structure similarity index (SSIM) [15], an image similarity metric that fac-

tors both the similarity between the image means and between their covariance140

structures. The optimization procedure was based on genetic algorithms applied

to infer the 6 parameters that maximize the goodness of fit. Further details can

be found in previous work implementing the same model [16].

Multivariate machine learning classifiers and data augmented by the model. We

trained random forest classifiers [17] to distinguish sleep from wakefulness based145

on FC matrices, using a five-fold cross-validation procedure to estimate the

accuracy. Classifiers were trained to distinguish between wakefulness and a

certain sleep stage, and their accuracy was then tested in the classification

between wakefulness and the same as well as other sleep stages (i.e. transfer

learning accuracy).150

Random forest classifiers were implemented using scikit-learn (https://scikit-

learn.org/) [18]. Briefly, the random forest algorithm builds upon the concept

of a decision tree classifier, where samples are iteratively split into two branches

depending on the values of their features. For each feature, a threshold is

introduced so that the samples are separated in a way that maximizes a metric of155

the homogeneity of the class labels assigned to each branch. The algorithm stops

whenever a split results in a branch where all the samples belong to the same

class, or when all features were already used for a split. Since this procedure is

prone to overfitting, the random forest algorithm trains an ensemble of decision
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trees based on a randomly chosen subset of the features, and then computes the160

label prediction as the majority vote across all the individual trees.

We trained random forest classifiers with 1000 decision trees and a random

subset of features of size equal to the (rounded) square root of the total number

of features. The quality of each split in the decision trees was measured using

Gini impurity, and the individual trees were expanded until all leaves were pure165

(i.e. no maximum depth). No minimum impurity decrease was enforced at each

split, and no minimum number of samples was required at the leaf nodes of

the decision trees (the classifier hyperparameters can be found in https://scikit-

learn.org/).

To assess the statistical significance of the accuracy values, we trained and170

evaluated a total of 1000 random forest classifiers using the same features (i.e.

FC matrices) but scrambling the class labels. We then constructed an empiri-

cal p-value by counting the how many times the accuracy of the classifier with

scrambled class labels was greater than that of the original classifier. All accu-

racies were determined as the area under the receiver operating characteristic175

curve (AUC). Subsequently, the generalizability of the classifiers to distinguish

other sleep states from wakefulness was evaluated by applying both the original

and scrambled classifiers, and constructing a p-value in a similar way.

We repeated the aforementioned procedure using data augmentation, given

by the output of the whole-brain computational model. The inclusion of ad-180

ditive noise in the model gives rise to different simulated time series for each

independent run, and consequently to different FC matrices. We optimized

model parameters using the average FC matrices as the targets, and used these

parameters to simulate 100 surrogate samples for each instance of random forest

classifier based on synthetic data.185

In this way, we obtained 100 synthetic samples for each stage. Based on these

surrogate samples, we trained classifiers to distinguish wakefulness from sleep

and measured the accuracy of these classifiers using the empirical data. We also

determined the transfer learning accuracy by evaluating the performance of the

classifiers trained with surrogate data of a certain sleep stage in the problem190
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of classifying empirical data corresponding to another sleep stage. Finally, we

randomly selected three subjects from the empirical dataset and repeated this

procedure using single subject FC matrices as optimization targets for the whole-

brain model.

3. Results195

The procedure we followed is outlined in Fig. 1. First, we combined three

different sources of empirical data to inform the computational model based on

coupled Hopf bifurcations, as explained in the Materials and Methods section.

Then, we trained and evaluated random forest classifiers to distinguish different

pairs of sleep stages based on empirical and synthetic fMRI data, as well as on200

single subject synthetic data.

9
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Figure 1: Outline of the procedure followed to generate the synthetic data and train the ma-

chine learning classifiers. Three sources of empirical data informed the computational model

based on coupled nonlinear oscillators. SC represented the coupling strength between oscilla-

tors, FC was used as the target function for parameter optimization with genetic algorithms,

and 6 RSN determined the anatomical priors constraining local contributions to bifurcation

parameters. The empirical FC was used both as input to the random forest classifiers (A)

and as target function (B) in the optimization procedure. After this step the model generated

surrogate samples to augment the training data.

The first row of Fig. 2 shows the average empirical FC matrices correspond-

ing to wakefulness and the three stages of NREM sleep (N1, N2, N3). In these

matrices, rows and columns correspond to one of the 90 regions in the AAL

atlas, and the correlation coefficient between fMRI time series is indicated by205

the color scale. The remaining rows show the FC matrices computed for three

randomly chosen subjects.

Fig. 3 contains the same information computed from the synthetic fMRI

data. The main difference between the empirical and simulated matrices ap-

peared in the contradiagonal, which corresponds to interhemispheric (or homo-210

topic) connections (i.e. connections between two regions symmetrically located

with respect to the midline), a difference consistent with the observation that

10
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DTI tends to underestimate long-range fiber tracts [19]. In general, the model

fit was better for the average FC compared to individual subjects (see Table 1).

W N1 N2 N3

Average 0.60 0.60 0.59 0.63

S1 0.73 0.72 0.76 0.79

S2 0.63 0.70 0.46 0.78

S3 0.58 0.70 0.61 0.73

Table 1: Goodness of fit (1-SSIM) between empirical and simulated FC matrices, both for the

average data and for the three individual subjects (S1, S2, S3).

Figure 2: Empirical FC matrices containing the correlation coefficients (R) between fMRI

time series from all pairs of regions in the AAL atlas. The first row displays the average FC

matrices for wakefulness, N1, N2 and N3 sleep. The other rows contain the same information

for three randomly chosen individuals.
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Figure 3: FC matrices containing the correlation coefficients (R) between synthetic fMRI

time series from all pairs of regions in the AAL atlas. The first row displays the optimal

simulated FC matrices for wakefulness, N1, N2 and N3 sleep. The other rows contain the

same information for three randomly chosen individuals.

Panel A of Fig. 4 shows the histograms of AUC values representing the215

transfer learning accuracy for random forest classifiers trained using 100 syn-

thetic wakefulness samples and 100 synthetic N1/N2/N3 sleep samples, and

evaluated in the empirical data. Each column and row indicates the sleep stage

used for training and testing, respectively. For instance, the second plot of the

first row contains the AUC histograms obtained in the classification between220

the empirical FC matrices from wakefulness and N2 sleep (N = 15 subjects),

using the classifier trained to distinguish wakefulness from N1 sleep based on

synthetic fMRI data (N = 100 surrogates). The histograms in red correspond

to the AUC values obtained using the real data, while the histograms in blue

indicate the AUC values obtained after shuffling the data labels. Label shuffled225

is used as a null model to obtain the p-values shown in the insets.

The matrices in Panel B of Fig. 4 summarize the average AUC obtained for

12
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all training-generalization pairs. It is clear from observing these matrices that

machine learning classifiers presented the highest transfer learning accuracy

when generalizing between N2 and N3 sleep. This result was obtained using230

both synthetic (left) and empirical (right) data for training. The scatter plot

compares the entries of both matrices, showing a positive correlation which

supports the similarity between the empirical and simulated AUC matrices.

13
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Figure 4: A) Histograms of AUC values for the random forest classifiers trained to distinguish

wakefulness vs. the sleep stages indicated in the rows, and tested in the classification of

wakefulness vs. the sleep stages indicated in the columns. All classifiers were trained using

synthetic FC matrices fitted to the average FC matrices (N = 100 surrogates) and evaluated

using the empirical data (N = 15). B) Matrices containing the average AUC values obtained

for the random forest classifiers trained using the empirical (left) and the synthetic (right)

data. The scatter plot contains the entries of the “empirical data” vs. the “model data”

matrices.

14
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Fig. 5 shows that data augmentation based on single subject FC matrices can

be used to train machine learning classifiers that present significant accuracy in235

the classification of wakefulness from N2 and N3 sleep. The rows correspond to

random forest classifiers trained using data generated by computational models

fitted to the empirical FC of S1, S2 and S3 (N = 100 surrogates). The columns

indicate the sleep stage to be distinguish from wakefulness. All histograms con-

tain AUC values obtained from the evaluation of these models on the empirical240

data (N = 15 subjects), both with unshuffled (red) and shuffled (blue) class

labels. The resulting p-values indicate that classifiers trained using synthetic

data from individual subjects can successfully generalize to the whole sample in

the classification of wakefulness vs. N2 and N3 sleep, but not vs. N1 sleep.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.898999doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.898999
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Histograms of AUC values for random forests classifiers trained to distinguish N1,

N2 and N3 from wakefulness. Classifiers were trained using synthetic FC matrices based

on data from individual subjects (N = 100 surrogates) and evaluated on empirical samples

(N = 15 subjects). Histograms in red correspond to data without label shuffling, while blue

indicates AUC after label shuffling. Insets contain the mean AUC ± SD and the associated

p-values.

4. Discussion245

One of the main limitations for the training of machine learning classifiers is

the amount of available data. Training is generally successful provided sufficient

data and informative features, but overfitting can drastically reduce generaliza-

tion performance if only few training samples are available. Data augmentation

techniques can attenuate this problem by introducing certain transformations250

(such as shear mappings and rotations, in the case of images); however, it is not
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clear how complex spatiotemporal data should be transformed to create mean-

ingful surrogate samples. Following recently published work [4], we showed

that low dimensional dynamical systems fitted to empirical observables can be

successfully applied for data augmentation with the purpose of brain state clas-255

sification. We note that surrogate time series can be produced by methods not

based on dynamical systems (e.g. [20]). However, models such as the one we

employed can represent advantages in terms of interpretation and conceptual

clarity. They can also be tailored to train classifiers using synthetic samples

deviating in useful ways from the available experimental data. Finally, their260

semi-empirical nature facilitates the transition towards the single subject level.

In the following, we discuss these advantages in the context of the present work.

The computational models we used to generate synthetic data did not strive

for biological realism, instead, we decided to focus on the simplest dynamics

that could present the kind of behavior needed to provide the classifiers with265

representative surrogates for training. Based on this data, the classifiers were

capable of inferring the optimal separation boundary between classes and pre-

sented significant transfer accuracy for the generalization between N2 and N3,

which was expected considering the high behavioral and physiological similar-

ities between these stages compared to N1 sleep [10]. The classifier transfer270

learning accuracy matrices obtained from synthetic and empirical data were

very similar, supporting the conceptual validity of our simple model for whole-

brain dynamics, which could be expected from previous work based on similar

dynamics [7, 8, 16]. Low complexity models can simultaneously preserve the

informativeness of the surrogates while allowing the exploration of a small set275

of interpretable parameters.

The classification of brain states based on fMRI recordings is a promising

tool for the automated diagnosis and prognosis of certain neuropsychiatric pa-

tients [21], however, this promise is frequently undermined by small sample sizes

[22]. Building databases of fMRI recordings can be costly and time consuming280

for diseases that are rare or difficult to investigate with neuroimaging. Also,

developing algorithms for differential diagnosis requires multilabel classifiers,
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which further reduces the number of samples per class. A possible solution to

this issue is gathering data from multiple research groups; however, different

scanners and imaging sequences can be critical confounds for machine learning285

classifiers [2]. As an alternative, we proposed that adequate data augmenta-

tion techniques based on computational modeling can contribute to overcoming

these limitations. We note that these are not mutually exclusive solutions, for

instance, models could be use to explore parametrically how classifiers are con-

founded by factors related to variability in the experimental conditions.290

The outcome of our model depends upon a relatively low number of pa-

rameters, which could be explored to train classifiers with surrogate samples

including perturbations that represent the hypothesized outcome of certain in-

terventions. For instance, the outcome of surgical brain resection in certain

forms of epilepsy could be modeled by localized SC changes [23]. By artificially295

inducing these changes in the model parameters (including the structural cou-

pling between nodes) it could be possible to produce synthetic data useful to

train classifiers that can be applied to estimate the likelihood of success after the

intervention. The same logic could be applied to other kinds of treatments, such

as pharmacological interventions and non-invasive brain stimulation protocols,300

as well as to train machine learning classifier with data that simulates specific

lesions, such as those arising from stroke and traumatic brain injury.

We have shown that data augmentation using models fitted to single subject

FC matrices also allowed the classifiers to distinguish between wakefulness and

sleep. As such, our results represent an encouraging proof of concept, but care305

should be exercise when attempting to generalize this result to other brain states.

Since sleep is a physiological process and our population consisted of healthy

participants, we expected that individual subjects could provide enough infor-

mation to develop classifiers accurate at the group level. However, this cannot

be taken for granted in surrogates obtained from models fitted to individual310

patients, where higher inter-subject variability may arise from abnormalities in

brain structure and function. Since these limitations could be informative of

such abnormalities, low dimensional whole-brain models should be further ex-
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plored in the context of reproducing single subject FC from the individual SC

of the patients [24].315

In conclusion, we have shown that dynamical systems constitute a valuable

tool for generating synthetic spatiotemporal data based on a small number of

examples, a tool that can be naturally applied for data augmentation when

training automated classifiers using fMRI data. Future work should study the

possibility of overcoming data scarcity in other systems that can be modeled320

by simple dynamics, contributing to the fruitful cross-fertilization of artificial

intelligence and physics.
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