
Structural colours reflect individual quality: a meta-analysis 1	

Thomas E. White1,2 2	

1School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia 2106 3	

2 Corresponding author. 4	

 5	

E-mail: thomas.white@sydney.edu.au 6	

Keywords: condition dependent, honest signal, communication, iridescence, sexual selection 7	

Word count (excluding abstract): 2489 8	

Number of figures: 1 9	

Number of tables: 1 10	

Supplementary material: Supplementary figures and table 11	

 12	

 13	

	14	

	15	

	16	

	17	

 18	

 19	

	20	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2020. ; https://doi.org/10.1101/2020.01.01.892547doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.01.892547


Abstract 21	

Ornamental colouration often communicates salient information to mates, and theory predicts 22	

covariance between signal expression and individual quality. This has borne out among pigment-23	

based signals, but the potential for ‘honesty’ in structural colouration is unresolved. Here I 24	

synthesised the available evidence to test this prediction via meta-analysis and found that, 25	

overall, the expression of structurally coloured sexual signals is positively associated with 26	

individual quality. The effects varied by measure of quality, however, with body condition and 27	

immune function reliably encoded across taxa, but not age nor parasite resistance. The 28	

relationship was apparent for both the colour and brightness of signals and was slightly stronger 29	

for iridescent ornaments. These results suggest diverse pathways to the encoding and exchange 30	

of information among structural colours, while highlighting outstanding questions as to the 31	

development, visual ecology, and evolution of this striking adornment. 32	
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Introduction 42	

 Colour is a ubiquitous channel of communication in nature and is showcased at an 43	

extreme in the service of mate choice [1,2]. A central hypothesis in evolutionary biology is that 44	

sexual selection has driven the elaboration of ornamental colouration into reliable indicators of 45	

individual quality [3], with empirical tests guided by indicator and handicap models [4,5]. These 46	

models argue that conspicuous displays are selectively favoured because their production is 47	

differentially costly (handicap) and/or constrained (index) between individuals of varying 48	

quality, and so encode honest information to potential mates. A prediction common to honesty-49	

based models is that signals should show heightened condition-dependent expression, and the 50	

most robust support to date among ornamental colouration is found in carotenoid-based signals 51	

[6,7]. As pigments that cannot be synthesised de novo, all carotenoids must ultimately be 52	

acquired via diet before being incorporated into signals directly or following bioconversion. This 53	

offers ample opportunity for selection to favour mechanistic links between foraging, metabolic 54	

performance, and sexual signal expression (that is, the combined perceptual features of hue, 55	

saturation, and brightness), which is now well established, at least among birds [8,9]. Relative to 56	

our knowledge of pigment-based colouration, however, the potential for structural colours to 57	

signal individual quality remains both understudied and poorly resolved. 58	

 Unlike pigments, which are selectively absorbent, structural colours result from the 59	

selective reflectance of light by nano-structured tissues [10,11]. Accumulating evidence also 60	

suggests that the development of these structures is driven by self-assembly — such as the phase 61	

separation of keratin and cytoplasm in nascent feather barbs [12-14] — rather than the active 62	

(and 'expensive') cellular processes that underlie some pigmentary colour production [8]. Three 63	

general arguments have been articulated around their potential for honesty among structural 64	
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colouration in sexual signalling. One is that if sufficient material is required to produce nano-65	

architectures then it will establish a trade-off with other physiological needs that may be 66	

differentially met among individuals of varying 'quality', as consistent with a handicap 67	

explanation [4,6]. A non-exclusive alternative builds on the observation that features of the 68	

macro-scale expression of signals relies on the precision with which the underlying structures are 69	

organised [15,16]. If individuals heritably vary in their capacity to achieve such organisation as a 70	

result of, for example, physiological constraints on signal production, or the behavioural 71	

acquisition of stable developmental environments, then signals may serve as an index of 72	

underlying genetic quality [5]. Finally, the lack of obvious ecologically relevant material to 73	

trade-off against during signal construction, together with the self-assembly inherent in structural 74	

colours noted above, has motivated arguments against any general expectations for condition 75	

dependence sensu lato [12]. Though experimental work is able to partition these hypotheses in 76	

some contexts [17], most empirical studies to date have focused on the overarching question of 77	

honesty by examining the predicted covariance between fitness-related traits and signal 78	

expression. This has provided valuable insight into the central question, but diversity in signal 79	

designs, measures of ‘quality’, and taxonomy have presented a challenge for qualitative 80	

synthesis. Modern quantitative methods, however, provide robust tools for controlling for and 81	

capitalising on such variation (e.g via mixed-effects models and meta-regression), and so can 82	

offer substantive answers to longstanding questions [18].  83	

 Here I used phylogenetically controlled meta-analysis and meta-regression to examine 84	

whether structural colour signals encode salient information on individual quality. Specifically, I 85	

synthesised estimates of correlations between measures of individual quality and signal 86	
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expression to test the prediction of condition dependence, before examining methodological and 87	

theoretically derived mediators of effect-size variation among studies. 88	

Methods 89	

Literature search and study selection 90	

 I conducted a systematic literature search using Web of Knowledge and Scopus databases 91	

for publications up to September 2019, using the query ((colour OR color OR pigment) AND 92	

signal AND (quality OR condition OR condition dependent OR condition dependence OR 93	

ornament) OR honest*), as well as searching the references of included texts. This produced 94	

3482 unique studies, from which 41 were ultimately suitable for quantitative synthesis following 95	

the screening of titles and abstracts (where n = 3430 were excluded for clear irrelevance), and 96	

full texts (see Fig. S1 for PRISMA statement). I used the R package ‘revtools’ v0.4.1 for title and 97	

abstract screening [19]. I included all experimental and observational studies that quantified the 98	

relationship between intersexual structural colour signal expression (via the measurement of hue, 99	

saturation, or brightness, or a composite thereof) and any one of age, body condition (size, size-100	

corrected mass, or growth rate), immune function (oxidative damage, PHA response, circulating 101	

CORT or testosterone) or parasite resistance as a measure of individual quality. I excluded 102	

studies that conflated the structural and pigmentary contributions to signal expression during 103	

measurement or manipulation, only studied sexually immature juveniles, focused exclusively on 104	

intrasexual signalling, used human-subjective assessments of colouration (such as colour 105	

swatches or viewer rankings), or which did not provide adequate data in the form of raw effect 106	

sizes, or summary statistics or figures from which effect sizes might be estimated. 107	
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Effect size calculation 108	

 I used the correlation coefficient, Pearson’s r, transformed to Fisher’s z (given its 109	

preferable normalizing and variance-stabilizing qualities) as the effect size describing the 110	

relationship between colouration and individual quality for meta-analysis. These effects were 111	

extracted directly from text or figures, using the R package ‘metadigitise’ v1.0 [20], where 112	

possible (n = 102), or was otherwise converted from available test statistics or summary data (n = 113	

84). 114	

Meta-analyses 115	

 I ran both phylogenetic multi-level meta-analytic (intercept-only, MLM) and multi-level 116	

meta-regression (MLMR) models, using the package ‘metafor’ v2.1-0 [21] in R v3.5.2 [22]. 117	

Almost all studies reported multiple effects through the estimation of several colour metrics or 118	

multiple measures of individual quality, so I included both a study- and observation-level 119	

random effect in all models. From my MLM model I estimated a meta-analytic mean (i.e., 120	

intercept) effect size, which describes the overall support for the honesty of structural colour 121	

signals. I accounted for phylogenetic non-independence between effect sizes in all models by 122	

estimating relationships among species using the Open Tree of Life database [23], accessed via 123	

the R package ‘rotl’ v3.0.10 [24]. Given the resulting tree topology, I estimated a correlation 124	

matrix from branch lengths derived using Grafen’s method [25] assuming node heights raised to 125	

the power of 0.5. Though this does not account for evolutionary divergence, it grants an 126	

approximate estimate of relatedness by accounting for phylogenetic topology (Fig. S2). 127	

 I then used separate MLMR models to examine the effects of moderators, both theoretical 128	

and methodological, which may be expected to alter the strength of the signal/quality 129	
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relationship. These included the measure of individual quality used—body condition, age, 130	

immune function, or parasite resistance (as defined above)—since ‘quality’ is multivariate 131	

(discussed below). There is a suite of metrics available for measuring colour, though they 132	

typically center on quantifying the perceptually relevant features of hue (the unique colour), 133	

saturation (spectral purity), and brightness, or a composite thereof [26]. I therefore classified 134	

every measure as such in order to test which, if any, signal features contain salient information 135	

on mate quality. In broad terms, the greater nano-structural organisation and/or material required 136	

to generate more saturated and (to a lesser extent) brighter signals predicts a positive correlation 137	

between these features and individual quality. Signal hue, by contrast, is a directionless measure 138	

in the sense that there is no clear biophysical reason for predicting consistent among-individual 139	

shifts toward longer or shorter wavelengths as a function of individual quality across taxa, and so 140	

I ignored the sign of correlations for estimates of hue alone. I also tested the effect of signal 141	

iridescence (i.e. the presence/absence of iridescent colouration), which I coded according to 142	

information presented in-text or via secondary sources (including personal observation). The 143	

rationale was twofold. For one, all iridescence arises from coherent light-scattering [27]. All 144	

things being equal, coherent light-scatterers demand a level of architectural organisation beyond 145	

that of incoherent scatterers (i.e. white colours) and possibly non-iridescent colours too, and so 146	

offers an indirect test of the hypothesised link between the demands of nano-scale organisation 147	

and signal honesty [14,16]. Second, iridescence is an inherently temporal feature of visual 148	

communication which may provide an additional or alternate conduit of information to potential 149	

mates, above and beyond that which is possible using non-iridescent signals (17,28,29; though 150	

this possibility remains unexplored directly). In both cases the prediction is a stronger correlation 151	

between colouration and quality among iridescent, as opposed to non-iridescent, ornaments. 152	
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Finally, and following the above, I secondarily examined the effects of both quality measures 153	

and colour metrics within each of the four taxonomic classes represented across the literature. I 154	

focused on these two moderators alone because potential taxonomic variation in the mechanistic 155	

links between colouration and individual quality are most likely to manifest via these 156	

moderators, and because the limited available data precludes the testing of all moderators on a 157	

per-class basis (note that even within these moderators, estimates were not possible across all 158	

taxonomic groups).  159	

 With respect to methodology I considered study type, given my inclusion of both 160	

experimental and observational studies, as well as the sex of focal animals. I also coded whether 161	

studies included measurements of non-sexual traits as controls in tests of heightened condition-162	

dependence (see discussion). The prediction being that that studies including non-sexual controls 163	

may report larger effects than those without, given that many traits will scale with condition to 164	

some extent [30]. Note that both signal iridescence and the presence of controls were coded as 165	

binary (0/1) for simplicity in testing their respective predictions.  166	

Publication bias 167	

 I explored evidence for publication bias by visually inspecting funnel plots of effect sizes 168	

versus standard errors (Fig. S3) and using an Egger’s test on an intercept-only MLMA that 169	

included the random effects described above [31]. 170	

Data availability 171	

 All data and code are available via GitHub (https://github.com/EaSElab-18/ms_metacol) 172	

and are persistently archived through Zenodo (https://dx.doi.org/10.5281/zenodo.3718617). 173	
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Results 174	

 The final dataset comprised 186 effect sizes, across 28 species, from 41 studies [6, 17, 175	

32-71]. Of those 186 effects, 117 were drawn from birds, 22 from insects, 28 from reptiles, and 176	

11 from arachnids (Table S1; Fig. S2). As predicted, I found a positive overall correlation (i.e. 177	

meta-analytic mean effect) between individual quality and structural colour signal expression (Z 178	

= 0.1573, 95% CI = 0.084 to 0.231; Fig. 1; Table 1). The heterogeneity of effect sizes — that is, 179	

the variation in effect size estimates after accounting for sampling error — was high (I2 = 180	

80.42%, 95% CI = 77.26 to 83.01), as is typical of meta-analytic data in ecology and 181	

evolutionary biology [72]. A small amount of heterogeneity was explained by among-study 182	

effects (I2 = 14.21%, 95% CI = 8.97 to 20.20), and only a very weak phylogenetic signal was 183	

evident (I2 = 2.17%, 95% CI = 1.18 to 3.47). 184	

 Of the measures of quality considered, body condition and immune function were 185	

reliably positively correlated with structural colour expression, while age and parasite resistance 186	

were not (see Table 1 for all corresponding numerical results henceforth). This varied slightly 187	

across taxa, however, with a robust effect of condition on colouration apparent across all groups, 188	

while effects of age and parasite resistance we apparent among insects and bird, respectively 189	

(table S2; though these estimates are based on limited within- and between-taxa samples). Both 190	

the hue and brightness of signals were similarly informative channels on-whole, while 191	

chromaticity was not consistently associated with individual quality across taxa (though this 192	

varied by taxa; table S2), nor was any correlation apparent when composite measures of 193	

colouration were used. Iridescent signals were subject to slightly stronger positive correlations 194	

than non-iridescent signals across all measures of condition. Signal honesty was apparent among 195	

males only though the weak, borderline effect and much smaller sample among females (n = 196	
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29/186 versus 146/186 for males) suggests a male bias in the literature similar to that in related 197	

fields [73], which may have partly driven this outcome. Experimental studies tended to report 198	

marginally stronger correlations than observational assays, which most likely reflects slightly 199	

exaggerated experimental manipulations of condition relative to natural variation [30]. Finally, 200	

the majority of studies (n = 36) did not include measurements of non-sexual control traits in tests 201	

of heightened condition dependence, though I found no clear difference in effect-size estimates 202	

between those that did and did not. 203	

Publication bias 204	

 Visual inspection of the funnel plot showed little asymmetry (Fig. S3), as supported by 205	

non-significant Egger’s tests (t184 = -0.5535, p = 0.5806), which suggests a minimal influence of 206	

missing data on effect size estimates. 207	

Discussion 208	

 Ornamental colouration may be a reliable conduits of information on mate quality, 209	

though evidence for the predicted covariance between signal expression and mate quality among 210	

structural, as opposed to pigmentary, signals is equivocal. Here I found meta-analytic support for 211	

this link in the form of a positive correlation between structural colour expression and individual 212	

quality (Fig. 1), consistent with honesty-based models of sexual signal evolution [4,5]. The 213	

strength of the overall correlation, though moderate [74], was commensurate with meta-analytic 214	

estimates from pigment-based sexual signals [8,9,75], and suggests that structural colouration 215	

may similarly serve a reliable indicator of individual quality.  216	
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 Quality is a multivariate feature of individuals, and this is reflected in the effect-size 217	

variation between measures. Both condition (as narrowly defined above), and proxy measures of 218	

immune system integrity were on-average positively correlated with signal expression across all 219	

taxa in which those relationships have been examined. This is consistent with experimental work 220	

showing that body mass and immune function are responsive to ecologically salient stressors, 221	

with consequences for colour production. Among birds, for example, disease and dietary stress 222	

produce abnormalities in the keratin barbules that contribute to colouration [16,76,77], while in 223	

butterflies the organisation of wing-scale architectures is disrupted by nutritional and 224	

environmental stress during pupal (hence, wing-structure) development [36,78]. In contrast, 225	

neither age nor parasite resistance were consistently informative of mate quality, though this 226	

varied slightly across taxa. These latter measures are often predicated on, or susceptible to, the 227	

mechanical degradation of structures post-development. Thus, the inherently heightened 228	

variability of sexual signals combined with parasite-induced damage (ectoparasite, in particular) 229	

and/or accumulated wear with age, combined with varied mechanisms of colour production of 230	

across animal classes, may compound to render the signals less accurate predictors on balance 231	

[59,79,80]. Curiously, the near inverse relationship was recently identified in a meta-analysis of 232	

carotenoid-based signalling. Weaver et al. [8] examined correlations across similar categories of 233	

quality as those used here but found no consistent relationship between signals and either of 234	

body condition or immune function. Given the fundamental optical and developmental 235	

differences between structural and pigmentary colour production (described above) the potential 236	

exists for each to signal unique aspects of individual mate quality, as is suggested by the totality 237	

of this work. This has also been directly supported by limited empirical work [65] and may hold 238	
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more broadly as an explanation for the often-integrated use of structural and pigmentary 239	

mechanisms in sexual colouration. 240	

 Colour is often assumed to be the central conduit of information exchange given its 241	

relative stability under variable natural illumination [81,82], though my results suggest both the 242	

colour and brightness of signals are similarly informative, considering the evidence to date (Fig. 243	

1; Table S2). Furthermore, I identified slightly stronger condition dependence among iridescent, 244	

as opposed to non-iridescent, patches. While the underlying architecture varies across taxa, all 245	

iridescent colouration arises from coherent light interference and so may demand a level of 246	

architectural organisation beyond that of incoherent scattering [11,27], as well as non-iridescent 247	

coherent scattering (though evidence for the latter possibility is limited; [14]). Iridescence also 248	

introduces temporal structure to signals since the colour appearance depends on the precise 249	

arrangement of signals, viewers, and light sources. These combined features may render 250	

iridescent colouration particularly suitable as bearers of information [29] and so contribute to the 251	

ubiquity of the phenomenon [83,84]. Though only indirectly considered here, as few studies 252	

quantify between-individual variation in iridescence itself, this idea has found more immediate 253	

support via condition-dependent variation in signal angularity [17], and a predictive relationship 254	

between iridescence and mating success [85]. Empirically unravelling the function and 255	

perceptual significance of iridescence in the context of sexual signalling—where the effect is 256	

seen at its most extreme—remains an active challenge [28]. More generally, these results affirm 257	

the view that the extended spectral and temporal repertoire available to structural colours may 258	

facilitate the exploration of distinct ‘signalling niches’, with tangible evolutionary consequences 259	

[1,54]. 260	
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 By integrating the development of signal structure and fitness-related traits, structural 261	

colours may serve as informative signals during mate choice. A holistic understanding, however, 262	

awaits progress on several fronts. Most significant is the inclusion of appropriate non-sexual 263	

controls. Given that many traits will scale with overall condition, the ultimate evidence for 264	

handicap models lies in the demonstration of heightened condition-dependence among sexual 265	

traits. Though I found no clear difference in effect size estimates between studies with and 266	

without such controls the small sample size was limiting, and moreover represents a conceptual 267	

limitation that remains pervasive [30]. Partitioning indicator and handicap models of signal 268	

evolution and understanding the nature of direct and/or indirect benefits being signalled, are key 269	

challenges which requires both experimental and quantitative-genetic study [17]. The 270	

development of structural colours during ontogeny is also a central front for progress, and studies 271	

among invertebrates (which offer benefits in terms of tractability) would be invaluable in 272	

complementing the excellent work accumulating on birds [12-14]. Finally, signalling ecology 273	

should remain front-of-mind as accumulating evidence, consistent with that presented here, 274	

continues to highlight the inherent spatio-temporal complexity of signals and visual systems [86-275	

88]. This offers exciting opportunities for integrative studies of signal development, production, 276	

and perception, which will fuel a richer view of this pervasive adornment of the natural world. 277	
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Table 1: Full parameter estimates from MLM and MLMR models of the mediators of the 524	
correlation between structural colour signal expression and individual quality. Shown are 525	
sample sizes, mean Fisher's z values and lower and upper 95% confidence intervals, and 526	
heterogeneity. Estimates whose 95% confidence intervals do not overlap zero are indicated in 527	
bold.	 Note	 that	 iridescence	 and	 the	 inclusion	 of	 controls	 are	 coded	 as	 binary	 (0/1),	 and	 so	528	
represent	a	test	of	difference	in	effect-sizes	between	their	counterpart	categories	(see	main	text). 529	

 530	

 531	

 532	

 533	

 534	

 535	

Model	 n	 Mean	(Zr)	 Lower	CI	 Upper	CI	 I2	(%)	
Overall	(intercept-only)	 186	 0.157	 0.084	 0.231	 80.42	
Quality	measure	 	 	 	 	 79.96	
age	 37	 0.015	 -0.119	 0.148	 	
body	condition	 102	 0.190	 0.099	 0.282	 	
immune	function	 11	 0.353	 0.126	 0.580	 	
parasite	resistance	 36	 0.114	 -0.023	 0.252	 	

Component	 	 	 	 	 80.32	
hue	 50	 0.224	 0.123	 0.345	 	
saturation	 57	 0.076	 -0.029	 0.181	 	
brightness	 60	 0.171	 0.079	 0.264	 	
composite	 19	 0.120	 -0.056	 0.296	 	

Sex	 	 	 	 	 80.78	
female	 29	 0.131	 -0.004	 0.267	 	
male	 146	 0.161	 0.080	 0.241	 	
not	distinguished	 11	 0.183	 -0.046	 0.413	 	

Study	type	 	 	 	 	 80.39	
experimental	 52	 0.216	 0.104	 0.329	 	
observational	 134	 0.128	 0.058	 0.199	 	

Optics	 	 	 	 	 82.64	
			iridescent	(vs	not)	 67	 0.150	 0.009	 0.291	 	
Control	
included	(vs	not)	

	
28	

	
0.071	

	
-0.117	

	
0.260	

	
83.28	
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Figure 1: Forest plot of the mediators of the correlation between structural colour signal 554	
expression and individual quality. Shown are Pearson's correlations back transformed from 555	
Fisher's z, with 95% confidence intervals about the mean. Sample sizes are displayed on the 556	
right. 'Composite' refers to measures that conflate hue, saturation, and brightness (such as 557	
PCA), while 'not distinguished' refers to studies in which the sex of focal animals was either not 558	
specified, or males and females were pooled. Note that iridescence and the inclusion of controls 559	
are coded as binary (0/1), and so represent a test of difference in effect-sizes between their 560	
counterpart categories (see main text). 561	
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