
 

1 of 61 

Sequence, Structure and Context 

 Preferences of Human RNA Binding Proteins 

 

 

 

Daniel Dominguez§,1, Peter Freese§,2, Maria Alexis§,2, Amanda Su1, Myles Hochman1, 

Tsultrim Palden1, Cassandra Bazile1, Nicole J Lambert1, Eric L Van Nostrand3,4, Gabriel 

A. Pratt3,4,5, Gene W. Yeo3,4,6,7, Brenton R. Graveley8, Christopher B. Burge1,9,* 

1. Department of Biology, MIT, Cambridge MA 
2. Program in Computational and Systems Biology, MIT, Cambridge MA 
3. Department of Cellular and Molecular Medicine, University of California at San Diego, 

La Jolla, CA 
4. Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 
5. Bioinformatics and Systems Biology Graduate Program, University of California San 

Diego, La Jolla, CA 
6. Department of Physiology, Yong Loo Lin School of Medicine, National University of 

Singapore, Singapore 
7. Molecular Engineering Laboratory. A*STAR, Singapore 
8. Department of Genetics and Genome Sciences, Institute for Systems Genomics, 

Univ. Connecticut Health, Farmington, CT 
9. Department of Biological Engineering, MIT, Cambridge MA  

 

 
 
 
 
 
 * Address correspondence to: cburge@mit.edu  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/201996doi: bioRxiv preprint 

https://doi.org/10.1101/201996
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 of 61 

SUMMARY 
 
 
Production of functional cellular RNAs involves multiple processing and regulatory steps 

principally mediated by RNA binding proteins (RBPs). Here we present the affinity 

landscapes of 78 human RBPs using an unbiased assay that determines the sequence, 

structure, and context preferences of an RBP in vitro from deep sequencing of bound 

RNAs. Analyses of these data revealed several interesting patterns, including 

unexpectedly low diversity of RNA motifs, implying frequent convergent evolution of 

binding specificity toward a relatively small set of RNA motifs, many with low 

compositional complexity.  Offsetting this trend, we observed extensive preferences for 

contextual features outside of core RNA motifs, including spaced “bipartite” motifs, 

biased flanking nucleotide context, and bias away from or towards RNA structure.  

These contextual features are likely to enable targeting of distinct subsets of transcripts 

by different RBPs that recognize the same core motif.  Our results enable construction 

of “RNA maps” of RBP activity without requiring crosslinking-based assays, and provide 

unprecedented depth of information on the interaction of RBPs with RNA. 

 

. 

 
KEYWORDS: RNA binding protein, RNA recognition motif, KH domain, RNA 
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INTRODUCTION 
 

RNA binding proteins (RBPs) control the production, maturation, localization, 

modification, translation, and degradation of cellular RNAs.  Many RBPs contain well-

defined RNA binding domains (RBDs) that engage RNA in a sequence- and/or 

structure-specific manner. The human genome encodes at least 1500 RBPs that 

contain established RBDs, the most prevalent of which include RNA recognition motifs 

(RRM, ~240 RBPs), HNRNP K-homology domains (KH, ~60 RBPs) and C3H1 zinc-

finger domains (ZNFs, ~50 RBPs) (reviewed by (Gerstberger et al., 2014)). While RBPs 

containing RRM (Query et al., 1989) or KH domains (Siomi et al., 1993) were first 

described over two decades ago, the repertoire of RNA sequences and cellular targets 

bound by different members of these and other classes of RBPs are still largely 

unknown. 

Structural studies have revealed conserved residues that enable canonical RBP-

RNA interactions but have also uncovered non-canonical binding modes that have 

made it difficult to infer RNA target preferences from amino acid sequence alone 

(reviewed by (Cléry and Allain, 2013; Valverde et al., 2008)). For example, RRMs adopt 

a structure with an antiparallel four-stranded beta sheet packed onto two alpha helices, 

with the two central strands (RNP1 and RNP2) typically mediating interactions required 

for binding (reviewed by (Afroz et al., 2015)). However, crystallographic and NMR-

based studies have shown that certain RBPs bind RNA via the linker regions, loops, or 

the C- and N- terminal extremities of their RRMs rather than the canonical RNP1 and 

RNP2 strands (reviewed by (Daubner et al., 2013)). Similarly, KH domains form a 

hydrophobic binding cleft that is generally thought to accommodate a pyrimidine-rich 
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tetranucleotide motif, but specificity is often modulated by hydrogen bonding or 

additional interactions with the protein backbone (Grishin, 2001; Valverde et al., 2008). 

These variable RNA binding mechanisms in combination with the presence of multiple 

RBDs in most RBPs (Lunde et al., 2007) have motivated efforts to deeply interrogate 

the specificity of individual RBPs (reviewed by (Cléry and Allain, 2013)). 

Several methods exist for determining RBP binding sites in vivo, most notably 

RNA immunoprecipitation (RIP) and UV crosslinking followed by immunoprecipitation 

(CLIP), followed by sequencing (Gilbert and Svejstrup, 2006; Ule et al., 2003). While 

such techniques capture RBP-RNA interactions in their cellular contexts, it is often 

difficult to derive motifs from these experiments due to interactions with protein 

cofactors, high levels of non-specific background (Friedersdorf and Keene, 2014), and 

non-random genomic composition. Quantitative in vitro assays such as electrophoretic 

mobility shift assay (EMSA), surface plasmon resonance (SPR), and isothermal 

calorimetry (ITC) must be guided by a priori knowledge of putative RNA substrates, 

making them unsuitable for high-throughput motif discovery. Methods such as SELEX 

(systematic evolution of ligands by exponential selection) typically select for a few high-

affinity ‘winner’ sequences de novo, but generally do not reveal the full spectrum of RNA 

targets or their associated affinities (reviewed by (Cook et al., 2015)). RNAcompete is a 

high-throughput in vitro binding assay that captures a more complete specificity profile 

by quantifying the relative affinity of an RBP for a pre-defined set of ~250,000 RNA 

molecules (Ray et al., 2009). One limitation of this approach is that the designed RNAs 

present motifs in a relatively small range of predominantly unstructured contexts, 

restricting the analysis to short, mostly unpaired motifs. More recent approaches such 
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as RNA Bind-n-Seq (Lambert et al., 2014) and RNAcompeteS (Cook et al., 2017) 

perform high-throughput sequencing of bound RNAs selected from a random pool, 

yielding a more comprehensive profile of the sequence and RNA secondary structural 

specificity of an RBP. 

One or more of the de novo methods described above have been used to 

characterize the specificity of ~100 human RBPs (Giudice et al., 2016). However, 

integrated analysis and comparison of their specificities is made difficult by the diversity 

of techniques used.  To systematically explore the spectrum of RNA binding specificities 

represented by the human proteome at high resolution, we performed RBNS on a 

diverse set of 78 human RBPs, half of which had previously uncharacterized 

specificities. RBNS comprehensively and quantitatively maps the RNA binding 

specificity spectrum of an RBP using a one-step in vitro binding reaction using 

recombinant RBP incubated with a random pool of RNA oligonucleotides (Lambert et 

al., 2014). The assay was carried out for each RBP at five protein concentrations, for a 

total of 400 binding assays yielding over 6 billion protein-associated reads, which 

enabled detection not only of simple sequence motifs but also of preferred structural 

and contextual features (Fig. 1A). Analysis of sequence motifs yielded a surprising 

degree of overlap in the motifs recognized by unrelated RBPs, and a bias for low-

complexity motifs.  However, analysis of contextual features using custom software 

pipelines revealed extensive divergence among proteins with similar primary motifs in 

additional binding features such as RNA secondary structure, flanking nucleotide 

context, and bipartite motifs.  Thus, the diversity of regulatory targets recognized by 

human RBPs results from extensive reliance on features outside of core motifs. 
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RESULTS 
 

High-throughput RNA Bind-n-Seq Assay  

To determine the detailed binding preferences of a large set of human RBPs we 

developed a high-throughput version of RNA Bind-n-Seq (RBNS), an in vitro method 

capable of determining the sequence, structure and context preferences of RBPs. In 

this assay, randomized RNA oligonucleotides (20 or 40 nt) flanked by constant adapter 

sequences were synthesized and incubated with varying concentrations of an SBP-

tagged recombinant protein containing the RBD(s) of an RBP (Fig. 1A, constructs listed 

in Table S2). RNA-protein complexes were isolated with streptavidin-conjugated affinity 

resin, washed, and bound RNA was eluted and prepared for deep sequencing. Protein 

purification, binding assays, and sequencing library preparations were carried out in 96-

well format increasing scalability and consistency across experiments (Methods). A 

typical experiment yielded ~10-20 million unique reads at each protein concentration, 

which were compared to the input RNA pool sequenced to similar depth (Fig. S1A, 

Table S2). Inclusion of sequencing adapters flanking the randomized RNA region 

simplified library preparation, bypassing ligation steps which can introduce biases and 

preventing amplification of contaminating bacterial RNA carried over from protein 

purification (Lambert et al., 2014). Furthermore, as RBPs bind RNA motifs in a wide 

range of specific structural contexts in vivo (Fukunaga et al., 2014), RBNS presents 

RBPs with motifs spanning a broad spectrum of secondary structures, exceeding that of 

similar reported methods (Cook et al., 2015) (Fig. S1B). The high sequence complexity 

of the interrogated libraries enabled the fine dissection of RNA binding preferences, and 
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use of multiple protein concentrations increased reliability and enabled detection of 

lower-affinity motifs.  

 

Binding specificities of a diverse set of human RNA binding proteins 

 RBNS was performed on a fairly diverse set of 78 human RBPs containing a 

variety of types and numbers of RBDs (Fig. 1B).  The set of RBPs was chosen based 

on a combination of criteria, including: presence of well-established RBDs; evidence of 

role in RNA biology (though this was not required); and secondary criteria related to 

expression in ENCODE cell lines K562 and HepG2 and availability of validated 

antibodies for complementary eCLIP analysis (Sundararaman et al., 2016). Comparing 

all analyzed RBDs, the range of amino acid identity was similar to that of human RBPs 

overall (Fig. 1C). Together, this set captures a broad swath of proteins that is 

reasonably representative of human RBPs overall. 

 To assess the sequence specificity of each RBP, we developed a computational 

pipeline that calculates enrichment (“R”) values of kmers (for k in the range 3-8 nt), 

where R is defined as the frequency of a kmer in protein-bound reads over its frequency 

in input reads (Fig. 1A, top right). In most cases, R values of top kmers exhibited a 

unimodal profile with increasing protein concentration consistent with increased signal 

above noise at moderate versus low RBP concentration, and increased binding of 

lower-affinity motifs at higher versus moderate concentrations (Lambert et al., 2014). A 

mean Pearson correlation across 5mers of 0.96 was observed among experiments 

performed on the same RBP at different concentrations, indicating high reproducibility 

(Fig. 1D).  A comparison of previously reported binding specificities for 31 factors 
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assayed by (Ray et al., 2013) using an independent array-based assay revealed high 

correlation with our dataset (Fig. S1C,D, mean Pearson correlation = 0.72), with only 

four proteins showing correlations below 0.5. 

 

Overlapping specificities of RNA binding proteins 

 In order to visualize and compare the primary sequence specificities of the 

assayed RBPs, we derived sequence motif logos for each RBP by aligning enriched 

5mers (Z score ≥ 3, weighted by enrichment above input, using an iterative procedure 

that avoids overlap issues, Fig. 1A top right, Methods). For more than half of the RBPs 

(41/78), the enriched 5mers produced multiple distinct sequence logos, indicating 

affinity to multiple distinct motifs that may reflect different binding modes or binding by 

different RBDs (motif 5mers are listed in Table S3). Clustering of all RBPs by the 

similarity of their primary sequence logos revealed two clear trends: 1) the expected 

tight grouping of closely related paralogs (e.g., PCBP1/2/4, RBFOX2/3), (Conway et al., 

2016; Smith et al., 2013); and 2) the more unexpected clustering of some completely 

unrelated proteins, often containing distinct classes of RBDs (Fig. 2A). Overall, 15 

clusters of RBPs with highly similar primary motifs emerged (nine with three or more 

members) using a branch length cutoff chosen as described (Methods), while 18 RBPs 

with motifs more distinct from other profiled RBPs remained unclustered. Notably, eight 

of the 15 clusters contained two or more proteins with completely distinct types of RBDs 

(e.g., cluster 1 contained RRM-, KH- and ZNF-containing proteins as well as factors 

with multiple RBD types). 
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 To more rigorously assess the relatedness of RBP binding affinities, we 

generated a network map with edges connecting RBPs with significantly overlapping 

sets of top 6mers (at least two of the top fifteen 6mers, P = 0.001 hypergeometric test, 

Fig. 2B). While RBFOX2 and RBFOX3 were connected only to each other, other 

proteins were members of larger highly connected groups and the network overall was 

much more connected than expected (P < 10-5 relative to null distribution, Methods).  

Indeed, there were 27 overlaps among the #1 top 6mers of the 78 RBPs (collapsing to 

just 51 unique 6mers, Fig. 2C, red), compared to ~1 overlap expected by chance (Fig. 

2C, black).  A large excess of overlaps also occurred when considering the top fifteen 

6mers for each RBP. Furthermore, the large excess of overlaps remained when 

eliminating clear paralogs and any proteins with at least 40% amino acid identity in an 

RBD to any other analyzed RBP (Fig. S2A,B). To explore the network's connectivity 

further, we regenerated network maps with sets of 6mers of progressively decreasing 

affinities (e.g., 6mers ranked 2-16, 13-17, etc. for each RBP). A monotonic decrease in 

edges (overlaps of two or more) was observed with decreasing affinity categories, 

indicating that the connectivity of this RBP map is highest for 6mers with highest relative 

affinity (Fig. 2D). Together, these observations indicate that RBPs recognize a relatively 

small, particular subset of available sequence space. The pattern of clustering and 

overlap of motifs observed in Figures 2A-C, including many clusters of RBPs with 

distinct RBD types, implies that unrelated RBPs have evolved to bind similar RNA 

sequence motifs many times. 

 

RBPs preferentially bind low-complexity motifs   
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We noted that most of the RBP motifs identified were composed of just one or 

two distinct bases (Fig. 2A). To assess motif composition objectively, we measured the 

Shannon entropy of the nucleotide composition of each sequence logo, a scale which 

ranges from 0 bits (if motif composed 100% of one base) to 2 bits (25% each base). 

The entropies of actual RBP motifs were substantially lower than simulated motifs made 

from sampling columns from across RBPs (P < 10-4, Wilcoxon rank-sum test), indicating 

that RBP motifs are biased toward lower compositional complexity (Fig. 2E).  This trend 

applied generally to all compositions with low complexity, as mapping RBP motif 

compositions onto a 2-dimensional simplex revealed increased density at all four 

mononucleotide “corners”, as well as all 6 dinucleotide “margins” (A/C, A/U, and C/U 

most significant, Fig. 2F, Fig. S2C, all bootstrap P < 0.05).  

  

RNA maps from RBNS and knockdown RNA-seq data  

 Many human RBPs are involved in pre-mRNA splicing.  Therefore, it was not 

terribly surprising that ~35% of the 596 “RBNS 6mers” (those in the top 15 for any RBP) 

matched 6mer splicing elements identified previously in cell-based reporter screens 

(Fig. 3A, P = 1.7 × 10-4, hypergeometric test) (Ke et al., 2011; Rosenberg et al., 2015; 

Wang et al., 2012; 2013). In addition, the overlapping 6mers had stronger regulatory 

scores than non-RBNS 6mers (Fig. 3B left, P = 6×10-36, Wilcoxon rank-sum test), and 

higher RBNS enrichment (reflecting stronger binding) was associated with increased 

regulatory activity (Fig. 3B right for binned comparisons, overall Spearman ⍴ = 0.08, P < 

10-12). 
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 “RNA maps” for splicing factors have traditionally been built using in vivo binding 

data from CLIP-seq combined with genome wide assays of splicing changes in 

response to RBP perturbation (Witten and Ule, 2011).  To ask whether in vitro data 

could be used in place of CLIP data to derive such maps of inferred splicing activity, we 

integrated RBNS data with RNA-seq data from human K562 and HepG2 cells depleted 

of specific RBPs by shRNA (Van Nostrand et al., 2017). For example, depletion of 

RBM25 resulted predominantly in exclusion of cassette exons (Fig. 3C, left), and the G-

rich motifs bound by this factor in vitro are enriched and conserved near splice sites 

(Fig. S3A). Constructing an RNA map for this factor based on its G-rich motif near 

significantly changing exons revealed an enrichment of top RBNS 5mers in introns 

flanking exons that were excluded upon RBM25 knockdown (KD) relative to control 

intronic sequences (Fig. 3C, right). Together, these data support that RBM25 functions 

as a splicing activator when it binds intronic motifs near alternative exons, consistent 

with previous reports showing that RBM25 controls splicing of specific alternative exons 

(Carlson et al., 2017; Gao et al., 2011; Zhou et al., 2008) and illustrate the potential of 

RBNS and RNAi/RNA-seq to provide informative splicing maps. 

By performing this analysis on all 38 RBPs for which we had KD in at least one 

cell type with corresponding RBNS data, we observed that 27 of the 38 RBPs showed 

significant enrichment of their RBNS-derived 5mers in either activated or repressed 

exons or flanking introns, with enrichments often specific to intronic or exonic regions 

(Fig. S3B). Both splicing activation and splicing repression were inferred, involving for 

different RBPs both intronic and exonic regions (Fig. S3C). These RNA maps were 

consistent with previously reported roles of known splicing factors in many cases (e.g., 
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splicing activation by DAZAP1 (Choudhury et al., 2014) and PUF60 (Page-McCaw et 

al., 1999) and repression by HNRNPC (Choi et al., 1986) and PTBP1 (Singh et al., 

1995)), providing a fine-grained view of the position-specific nature of the RBP’s 

regulatory activity, bypassing the requirement for CLIP data. In some cases, RBPs not 

yet implicated in splicing regulation exhibited distinct motif enrichments in their RNA 

maps suggestive of function (e.g., ILF2 as a splicing activator). Of note, eight of the nine 

RBPs with G-rich motifs (FUS being the sole exception) exhibited splicing activator 

activity from at least one region (introns being most common), mirroring the G-rich cis 

regulatory sequences and candidate bound trans factors observed in unbiased screens 

for intronic splicing enhancers (Wang et al., 2012).  Thus, this approach can provide a 

tool for understanding patterns of splicing regulatory activity that augments existing 

CLIP-based RNA maps (Van Nostrand et al., 2017). 

 

Protein-bound sequences are associated with in vivo regulation of mRNA levels  

Besides splicing regulatory activity, we also observed significant overlap between 

RBNS 6mers and 6mers previously shown to modulate mRNA levels when inserted into 

reporter 3' UTRs (Oikonomou et al., 2014) (Fig. 3D, P = 3×10-5, hypergeometric test). 

As observed for splicing regulation, 3' UTR regulatory scores were higher for RBNS 

motifs (Fig. 3E left, P = 4×10-10, Wilcoxon rank-sum test), and regulatory scores 

increased for 6mers with higher RBNS enrichment (Fig. 3E right for binned 

comparisons, overall Spearman ⍴ = 0.19, P < 10-11). 

Again using RNAi/RNA-seq data, we examined RBNS motif density in 3' UTRs 

for genes significantly up- or down-regulated upon KD to generate 3' UTR RNA maps. 
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For example, TAF15 knockdown resulted in decreased levels of many mRNAs (Fig. 3F, 

left) and these mRNAs were enriched for TAF15 motifs in their 3' UTRs relative to 

control genes with unchanged expression upon KD (Fig. 3F, right). These data suggest 

that TAF15 stabilizes mRNAs by binding to G-rich sequences in 3' UTRs, mirroring 

expression changes observed upon TAF15 depletion in adult mouse brain and human 

neural progenitor cells (Kapeli et al., 2016). Just over half of the RBPs with 

corresponding KD data (20/38) had RNA expression maps that were consistent with a 

role in regulating mRNA levels (Fig. S3D), equally split between stabilizing and 

destabilizing activity. Interestingly, SRSF5 motifs were highly enriched in 3' UTRs (and 

the end of the upstream ORF) of genes up-regulated upon KD (Fig. S3E). SRSF5 

binding to 3' UTRs has been observed in cell types in which this RBP undergoes 

nucleocytoplasmic shuttling (Botti et al., 2017), and its role in gene expression levels 

may be related to its role in linking alternative mRNA processing to nuclear export 

(Müller-McNicoll et al., 2016). 

Sequence elements involved in post-transcriptional regulation are often more 

frequent and more evolutionarily conserved in transcript regions where they function 

(Lim et al., 2011; Xie et al., 2005). Considering the set of all 5mers that were bound by 

at least one factor, this set was more conserved than non-RBNS 5mers in intronic 

regions near splice sites (Fig. S4A, Methods). This effect was greater in introns near 

alternative exons and even stronger in introns flanking deeply conserved alternative 

exons (Fig. S4A, P < 0.05, Wilcoxon rank-sum test), consistent with the presence of 

many important regulators of alternative splicing among the assayed RBPs. Enrichment 

and conservation was also observed in other specific transcript regions (Fig. S3A) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/201996doi: bioRxiv preprint 

https://doi.org/10.1101/201996
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 of 61 

(Fairbrother et al., 2002; Goren et al., 2006; Voelker and Berglund, 2007). For example, 

the EIF4G2 RBNS motif was enriched and conserved only in the 5' UTRs of genes, 

consistent with its known role in translation initiation, while the motif of the splicing and 

stability factor TIA1 was enriched and conserved in both introns and 3' UTRs of 

transcripts, and many other cases of enrichment in transcript regions associated with 

known RBP functions were observed (Fig. S3A). Thus, for RBPs of unknown function 

the pattern of RBNS motif enrichment and conservation can also be used generate 

hypotheses about function. 

 

 

RBPs with similar motifs can target and regulate different events 

 As part of a larger analysis of ENCODE RBP data, we compared RBNS motifs to 

in vivo binding patterns assessed by eCLIP when such data were available (Van 

Nostrand et al., 2017). We observed strong agreement between eCLIP and RBNS 

motifs in most cases, with 17 of 28 proteins having significant overlap between RBNS 

5mers and 5mers identified de novo as enriched in eCLIP peaks (Fig. S4B, adapted 

from (Van Nostrand et al., 2017)). Furthermore, RBNS-enriched 5mers were more 

enriched in eCLIP peaks identified in multiple eCLIP replicates and in peaks identified in 

multiple cell types, which likely represent sites of more robust binding (Fig. S4C). 

Together, these observations support that RBNS-identified motifs drive the RNA binding 

specificity of most RBPs.   

In cells, RBPs appear to bind only a subset of cognate motifs in expressed 

transcripts (Taliaferro et al., 2016), and the extent to which RBPs with similar binding 
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motifs bind the same targets in vivo is incompletely understood. Analyzing eCLIP data 

for 131 RBPs, we observed somewhat elevated correlation of binding locations between 

highly similar paralogs (Fig. 3G), with mean Pearson correlation of 0.37, relative to 

correlations of ~0.2 between randomly chosen proteins, but far below that observed 

between replicate eCLIP experiments (mean correlation = 0.67).  However, despite the 

generally similar motif enrichments observed in vivo and in vitro, we observed 

surprisingly little correlation between binding locations of other pairs of RBPs that bound 

similar motifs in vitro (sharing at least two of their top five RBNS 5mers) (Fig. 3G), with 

a mean Pearson correlation of 0.20, not different from random pairs of RBPs. For 

example, while TIA1 and HNRNPC both have high affinity for U-tracts in vitro and in 

vivo, they bind distinct sites in many transcripts (example shown in Fig. S4D). 

The low correlation between in vivo binding sites of RBPs with similar motifs 

could result from various factors, including: i) differences in subcellular localization of 

RBPs resulting in differential access to transcripts; ii) differential participation in 

complexes with other factors that alter RNA specificity (e.g. (Damianov et al., 2016)); iii) 

occlusion of sites by one RBP leading to the exclusion of other RBPs (Zong et al., 

2014); iv) technical differences in efficiency of eCLIP capture of different regions by 

different RBPs; or v) subtler differences in binding specificities not well captured by 

conventional motif representations resulting in binding different subsets of motif 

instances. While all of these factors likely contribute to some extent, we focused here on 

exploring the fifth possibility, leveraging the depth and sensitivity of the RBNS data to 

explore binding determinants beyond canonical short RNA motifs. 
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RNA structural preferences of RBPs 

The RNA secondary structure of RNA motifs can impact RBP binding and 

regulation (Warf et al., 2009), modulate the efficacy of regulatory RNA sequences (Hiller 

et al., 2007), and improve in vivo RBP binding site prediction (Li et al., 2010). Since 

potential RBP binding sites in the transcriptome exist in a variety of structural 

conformations, we determined RNA secondary structure preferences for each RBP by 

computationally folding ~5 million input and compositionally-matched protein-bound 

reads for all 78 experiments at all concentrations (Methods). To assess the RNA 

secondary structure preferences of all RBPs assayed, we first calculated the base 

pairing probability (Ppaired) of occurrences of the top RBNS 6mer in pulldown libraries as 

well as positions flanking each motif occurrence (Fig. 4A). Individual factors displayed a 

range of structural preferences with most proteins disfavoring structure at most motif 

positions compared to flanking positions, with an average ~20% decrease in base 

pairing probability over the center of the motif relative to flanking sequences. Examining 

RBPs by motif similarity clusters as shown in Figure 2A, RBPs that bound AU-rich 

(clusters 1, 2) and A-rich (cluster 6) motifs disfavored structure most strongly, while 

factors binding U-rich motifs (clusters 9, 10) disfavored structure more moderately, and 

C-rich (cluster 12), G-rich (cluster 15), and CG-rich (cluster 11) motifs tended to be just 

as or more structured than their flanking positions. Most RBPs also preferred relatively 

unstructured occurrences of their motifs (pulldown Ppaired < input Ppaired, Fig. 4A, right 

bar), with just six preferring structure when averaging over the entire motif, with the 

strongest preference observed for ZNF326. 
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Many RBPs showed varying degrees of secondary structure preferences at 

different positions within the top 6mer (Fig. 4A). To explore this observation further, we 

calculated the mean base pair probability at each position within bound 6mers relative 

to that of the same 6mer in input libraries. For example, NUPL2, a protein that binds A6 

motifs, strongly disfavored structure at all positions (Fig. 4B, top), whereas PRR3 had a 

preference for positions 5 and 6 of its top AUAAGC motif to be paired but positions 1-4 

unpaired (Fig. 4B, bottom).  

To assess the effect of secondary structure on enrichment, we recomputed R 

values for all 6mers considering only occurrences of the 6mer in five contexts ranging 

from unstructured (average Ppaired < 0.2 over the 6 positions) to structured (average 

Ppaired ≥ 0.8) (Fig. 4C, Methods). Consistent with the notion that PRR3 prefers a 

partially structured motif while NUPL2 does not, PRR3’s top 6mer was most enriched in 

a moderately structured context (Ppaired 0.2-0.4, Fig. 4C, bottom) while NUPL2’s top 

6mer was most enriched in the least structured context (Ppaired 0-0.2, Fig. 4C, top). 

Furthermore, for PRR3 and NUPL2, the R values of the top 6mer were 3- and 4-fold 

higher, respectively, in the most enriched Ppaired bin relative to the least enriched Ppaired 

bin, underscoring the impact of RNA secondary structure on affinity. 

As particular RNA structures are known to affect RBP binding in pre-mRNA 

splicing (Warf and Berglund, 2010), mRNA decay (Goodarzi et al., 2012), and mRNA 

localization (Rabani et al., 2008), we classified each RNA base as being part of a stem, 

hairpin loop, interior loop, or multiloop (Kerpedjiev et al., 2015). Averaging over all 78 

proteins, we found that in pulldown sequences, top RBNS 6mers were present in hairpin 

loops about twice as often as all 6mers and in stems approximately half as often (Fig. 
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4D, top). Correspondingly, the top 6mers of many individual RBPs were more enriched 

in a loop context (Fig. 4D, bottom), including GU-binders (clusters 7, 8), CG-binders 

(cluster 11), RBFOX2/3 (cluster 14), and almost all G-rich binders (cluster 15). Fewer 

RBP motifs were preferentially enriched in a bulged stem (9 RBPs) or stem (8 RBPs) 

context, with generally more modest enrichments than seen for hairpin loops (all 

enrichments reported in Table S4). Among the strongest bulged stem and stem-

preferring RBPs were the core spliceosomal protein RBM22 (Fig. 4E) – which binds 

catalytic RNA structural elements in the spliceosome and makes direct contacts with the 

U6 snRNA Internal Stem Loop and intron lariat (Rasche et al., 2012; Zhang et al., 2017) 

– and the zinc-finger protein ZNF326 (Fig. 4F). Unlike most other RBPs, the motifs for 

these two proteins showed uneven distributions along sequence reads, with increased 

frequency at the 5' end of the random sequence, and were commonly predicted to 

basepair with the 5' sequencing adapter (Fig. S5A). Thus, it seems probable that 

RBM22 and ZNF326 primarily recognize RNA secondary structures, with specific motifs 

enriched because they can form these structures by basepairing with the sequencing 

adapters used, but not conferring sequence specificity in other contexts. 

Analyzing the structural preferences of RBPs containing different RBD types, the 

most striking pattern was an enrichment of hairpin loops in sequences bound by RBPs 

containing KH domains (Fig. 4G). This enrichment was observed for 10/13 KH-

containing RBPs, including all of those assayed except the three members of the FUBP 

family that bind U-rich sequences. Given that most (7/10) of these RBPs contain more 

than one KH domain, it is possible that relatively large hairpin loops allow binding of 
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multiple KH domains to the RNA as has been observed in a crystal structure of NOVA1 

(Teplova et al., 2011) and in SELEX analysis of PCBP2 (Thisted et al., 2001). 

For RBPs for which we had corresponding eCLIP data (n = 27), we observed a 

high correlation between RNA secondary structure preferences in vitro and in vivo (Fig. 

S5B). While most RBPs disfavored structure in both assays, RBPs that were found to 

prefer structured or partially structured motifs in RBNS, such as RBM22 and SFPQ, 

showed this same preference in vivo. 

One puzzle raised by our observation above that human RBPs preferentially bind 

a small subset of motifs is why this particular subset of motifs has been chosen.  

Analyzing RNA folding in the input RNA pool consisting of essentially random RNAs, we 

noted that top RBNS motifs tend to be less structured even in input reads than are other 

6mers. Furthermore, 6mers with higher RBNS enrichment were even less structured 

(Fig. 4H for binned comparisons, overall Spearman correlation = –0.39, P < 10-13).  

Given that most RBPs prefer binding to unstructured motif instances, as observed 

previously and above (e.g., Fig. 4A), this observation suggests that many RBPs have 

evolved specificity for motifs that are intrinsically less structured, perhaps to enable 

binding to a larger fraction of motif occurrences in the transcriptome. 

 

RNA binding proteins interact with short spaced motifs 

Although structural studies have described a variety of ways that RBDs engage 

RNA, it is generally thought that a single RBD (e.g., an RRM or KH domain) makes 

contacts with 3-5 contiguous RNA bases (Auweter et al., 2006). Of the factors in this 

study, more than half contained multiple RBDs (Fig. 1B) or multiple types of RBDs, 
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raising the possibility that these RBPs can interact with pairs of small motifs spaced one 

or more bases apart, hereafter referred to as ‘bipartite motifs’. For example, NMR 

structures of MSI1’s individual RRMs revealed they bound GUAG and UAG 

respectively, leading to a structural model where both RRMs bind the sequence 

UAGN(0-50)GUAG together (Iwaoka et al., 2017). 

RBNS is well suited for the unbiased identification of bipartite motifs due to the 

complex sequence space and depth of sequencing, as longer spaced kmers are well 

represented. We computed enrichments for motifs composed of two cores of length 3  

bases separated by spacers of length 0-10 (Fig. 1A, Methods) (where spacing 0 

represents a traditional contiguous 6mer motif). No preference for spaced motifs relative 

to linear motifs was detected in control experiments using this method (Fig. S6A), 

indicating that bipartite and linear motifs of equal information content but different 

lengths can be directly compared. 

This analysis yielded many RBPs enriched for bipartite motifs with varying 

spacing preferences. For example, we found that the dual RRM-containing DAZAP1 

protein preferred AUA followed by another AUA-containing core spaced by 1-3 

nucleotides, with no particular preference for any of the four bases in the spacer (Fig. 

5A). The three RRM protein RBM45 bound two AC cores, separated by a spacer of 1-3 

nucleotides, with a bias against Gs in the spacer (Fig. 5B). Analysis of all 78 factors 

revealed that almost one third of RBPs bound bipartite motifs with similar or greater 

affinity than linear 6mers, with 17 RBPs showing a significant preference for a spaced 

over linear motif at a 5% FDR (Fig. 5C, Methods). 
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Many RBPs with multiple RRMs that bound bipartite motifs preferred a short 

spacer of 1-4 nucleotides, consistent with the RNA spacer lengths of solved structures 

of tandem RRMs with a single RNA, such as CELF1 and Sex-lethal (Afroz et al., 2015; 

Kanaar et al., 1995; Teplova et al., 2010). As expected, preference for spacing was 

higher for factors that contained more than one known RBD (Fig. S6B, P < 0.023, t-

test), although several exceptions were observed. For example, KHDRBS2 showed the 

greatest preference for a bipartite motif even though it only has just one KH domain 

(Fig. S6B). However, KHDRBS2 includes an N-terminal QUA1 (Quaking-1) domain, a 

domain which has been shown to promote homodimerization of some STAR (Signal 

Transduction and Activation of RNA) family proteins (Beuck et al., 2012; Meyer et al., 

2010), suggesting that KHDRBS2 may bind bipartite motifs as a homodimer. 

We also observed several proteins whose affinity for RNA increased with longer 

spacings, exhibiting greatest enrichment at the maximal allowed spacing of ten bases 

(e.g., TAF15 and ESRP1 in cluster 9 of Fig. 5C, Fig. S6C). One potential explanation 

may be RNA-dependent multimerization. For example, FUS, a factor that displayed 

increasing enrichments as a function of spacing, has a C-terminal RG-rich domain that 

has been shown to promote cooperative binding to RNA (Schwartz et al., 2013). 

Notably, EWSR1, a FUS paralog that is a member of the FET (FUS, EWSR1, TAF15) 

family and has a similar domain composition (Schwartz et al., 2015), displayed the 

same preference for increased spacing, suggesting it may also multimerize through low-

complexity domains. 

We noted that the two RNA cores bound by MSI1 were nearly identical, and  

MSI1’s two RRMs were highly similar at the amino acid level (~47% identity), while 
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SFPQ favored a motif consisting of two very different RNA cores, and it’s RBDs were 

much less similar (~22% identical). Expanding this observation to all RBPs that 

preferred spaced motifs and contained at least two RRM, KH, or ZF domains, we 

observed a fairly strong positive correlation between the percent identity of sibling RBDs 

within a protein and the similarity of the bipartite motif RNA cores (Fig. 5D, Pearson 

correlation = 0.64, P < 0.01).  These observations support the model that most binding 

of bipartite motifs in the set of RBPs analyzed involves engagement of RNA by more 

than one RBD. 

 

RNA sequence context enhances RBP binding 

It has previously been observed that binding of certain transcription factors may 

be enhanced by particular nucleotide composition(s) adjacent to a high-affinity motif 

(Jolma et al., 2013) and that such flanking nucleotide biases are also seen around 

motifs within ChIP-seq peaks (Wei et al., 2010). We hypothesized that adjacent 

nucleotide context could play a role in modulating RBP specificity by potentially altering 

local RNA secondary structure or creating additional interactions with the RBP. One 

such example is Argonaute-2, which preferentially binds miRNA target sites in an AU-

rich context, a feature often used to predict miRNA targeting efficacy (Agarwal et al., 

2015; Grimson et al., 2007; Nielsen et al., 2007). For each RBP, we computed the 

enrichment of each nucleotide at all positions in reads surrounding a high-affinity motif, 

using only those reads containing one of the top five 5mers and no secondary motifs 

(Methods). We found 28 proteins with a significant preference for a particular flanking 

nucleotide context (mean log2(enrichment) > 0.1, P < 10-3 by Wilcoxon rank-sum test, 
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Methods). For example, NOVA1 preferred to bind its motif in a C-rich context (Fig. 5E) 

while FUBP3 preferred to bind its motif in a U-rich context (Fig. 5F). We noted an 

enrichment for RBPs with KH domains within this set (P < 10-3, Fisher’s exact test), as 

seen for factors that prefer binding to RNAs within hairpin loops (Fig. 4H). While 

particular flanking nucleotide compositions may be correlated with the presence of large 

hairpin loops, we observed a majority of these flanking nucleotide context preferences 

even after controlling for the secondary structure context of the motif, suggesting that 

nucleotide context effects and secondary structure both contribute to binding (Fig. 

S6D). In most cases, this nucleotide preference was dependent on the presence of a 

motif in the read, suggesting that flanking sequence promotes or stabilizes RBP binding 

to a primary motif. However, some RBPs showed these same nucleotide preferences in 

the absence of a high-affinity motif (e.g., FUS, IGF2BP1, Fig S6E), suggesting that 

these factors have some affinity for degenerate sequences with biased nucleotide 

content. 

To formalize these observations and test cases in which biased sequence 

composition might better describe an RBP’s specificity than a linear motif, we calculated 

enrichments for degenerate patterns with biased nucleotide composition. For example, 

HNRNPK, one of the RBPs that showed a preference for C bases in the absence of a 

high-affinity kmer, had greater enrichment for the degenerate pattern 

CNCNCNCNNNCC (enrichment=2.9) than the corresponding contiguous  6mer 

CCCCCC (enrichment=1.11) with identical information content of 12 bits. In fact, 

HNRNPK showed greater or equal enrichments for various permutations of the above 

degenerate pattern (6 Cs with 6 interspersed Ns) relative to the most highly enriched 
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linear 6mers (Fig. 5H). We generalized this observation by calculating enrichments for 

all degenerate patterns composed of 6 fixed bases and 6 Ns for each RBP (Methods) 

and found that HNRNPK had higher enrichment for many C-rich degenerate patterns 

than for its best linear kmers of equal information content, whereas most other RBPs 

such as RBFOX2 strongly preferred specific linear sequences over degenerate patterns 

(Fig. S6F). 

We selected a highly enriched degenerate pattern that was predicted to bind 

HNRNPK (CCNCNCNNNNCC). Substituting U at the N positions  in order to avoid 

creating RNA secondary structure or other potential motifs, we validated that HNRNPK 

specifically bound to RNAs containing this pattern using a filter binding assay (Fig. 5I). 

These degenerate patterns were also enriched more than two-fold relative to linear 

6mers in HNRNPK eCLIP peaks, supporting binding in vivo (Fig. S6G). In all, we 

identified 17 RBPs whose binding was well described by degenerate patterns, 14 of 

which bound spaced motifs in Fig. 5C and were often enriched for patterns similar to 

the identified bipartite motifs (e.g., CELF1, Fig. S6H). However, some RBPs showed 

enrichment for patterns with no more than 2 contiguous specified bases (e.g. FUBP1, 

Fig. S6H). These patterns may therefore represent degenerate bi- or tri-partite motifs, 

where binding of multiple RBDs, each specifically contacting just 1 or 2 RNA bases, 

results in a flexible binding pattern allowing the RBP to recognize an unusually broad 

range of RNA targets. Bipartite motifs and nucleotide context preferences for all 78 

RBPs are listed in Table S5. 

 

Towards a more complete characterization of RBP specificities  
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Our observation of common preferences for bipartite motifs, flanking nucleotide 

context and secondary structural features led us to hypothesize that RBPs that favor 

similar motifs may often diverge in their preferences for these other features in order to 

impact different subsets of targets. For example, PCBP1 and RBM23 (cluster 12) both 

bind C-rich sequences even though they have distinct RBD composition (3 KH domains 

versus 2 RRMs). Our analysis indicated that PCBP1 disfavors structure over its motif, is 

capable of binding the bipartite motif CCCNNCCC, and is enriched for flanking C bases. 

In contrast, RBM23 has no structural preference over its motif and favors a contiguous 

C-rich motif with no flanking nucleotide context preference.  Thus, PCBP1 and RBM23 

are likely to bind distinct populations of C-rich sites in transcripts. 

 In order to systematically compare the contributions of these features, we 

calculated "feature-specific" R values by calculating the top motif's R value as a function 

of: i) Ppaired of the 6mer; ii) the average base pairing probability of the sequence flanking 

the 6mer (Pflank); or iii) the nucleotide frequencies surrounding the 6mer (Methods). 

Since bipartite motif enrichment does not require presence of a linear motif, feature-

specific R values for bipartite motifs were calculated based on the pattern of preference 

for spacings between the split motif cores (analogous to Fig. 5C, Methods). We then 

measured an information-theoretic distance between feature-specific R value profiles for 

pairs of RBPs within the same motif cluster (Fig. S7A, Fig. 6A). Intra-cluster pairwise 

distances were significantly higher than distances calculated between replicate RBNS 

experiments at different RBP concentrations for Ppaired, context and bipartite motifs.  

This observation suggests that RBPs with similar primary motifs are often differentially 

affected by contextual features (Fig. 6A). 
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To visualize protein preferences for each of the four features among RBPs within 

the same cluster, we placed RBP markers (consisting of paired semicircles) on a 

coordinate system according to their structural preferences Ppaired  and Pflank  and then 

colored each RBP marker based on its flanking nucleotide preferences, and separated 

the semicircles based on the bipartite spacer preferences (Methods). This visualization 

of RBPs within the AU-rich cluster 1 revealed that no two RBPs are superimposed in 

this multidimensional affinity space (Fig. 6B), and divergences were observed within 

most other clusters as well (Fig. S7B). Overall, we found that 9/15 clusters diverged 

significantly in at least one feature, and 5/15 diverged in more than one feature with the 

most common significant feature being bipartite motif spacing (Table S6). 

Using a relative entropy measure (Methods) we quantified the amount of 

information conveyed about a motif’s context by the knowledge that it is bound by a 

given RBP, allowing comparison of all features on the same scale within and between 

proteins. As shown in Fig. S7C, relative entropy values for the structure of the motif, the 

structure flanking the motif, the core spacing of bipartite motifs, and the nucleotide 

context for each RBP varied from zero for features that did not differ between pulldown 

and input motifs to ~0.6 bits for the Ppaired context of ZNF326, which strongly prefers 

binding to a stem (Fig. 4F). Considering the AU-binding RBPs of cluster 1 as an 

example, the context feature with greatest effect on PRR3 binding was structure 

flanking the UAAUUA motif (Fig. 6C), with motifs in pulldown reads having much less 

flanking secondary structure than input occurrences (Fig. S7D).  This and other context 

effects impact the overall specificity of this and other RBPs in the cluster significantly 

(Fig. 6C, left; Fig. S7C, top). In summary, we find that the specificity of most RNA 
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binding proteins is conferred not only through canonical primary sequence elements but 

also by a variety of contextual properties of the local RNA sequence environment. 
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DISCUSSION 

Towards a parts list of RNA regulatory sequence elements and trans-acting 

proteins.  

 Over the past decades a large body of work has aimed to catalog functional RNA 

elements and their interacting proteins to gain a more complete and mechanistic 

understanding of RNA processing in cells. For example, analysis of kmer frequency and 

evolutionary conservation in specific regions of the genome has led to the appreciation 

that many cis sequences are associated with specific types of regulation  (Fairbrother et 

al., 2002; Ke et al., 2011), even if the underlying trans-acting RBPs that bind them are 

not always known. Here, we characterized 78 human RBPs using a high-throughput 

version of RNA Bind-N-Seq, a one-step in vitro binding assay that assesses the 

spectrum of RBP binding specificities along with features that influence binding such as 

secondary structure, flanking nucleotide context and bipartite motifs.   

RBPs recognize a small subset of the available sequence space 

 Considering a diverse set of 78 factors, we find that many RBPs bind a relatively 

small, defined subset of primary RNA sequence space rich in low-complexity motifs 

primarily composed of one or two bases. This trend was seen independently for RRM 

and KH domains that do not share common ancestry, suggesting the existence of 

evolutionary pressures on RBPs to recognize these kinds of motifs. These findings are 

consistent with previous studies implicating AU-, U-, and G-rich sequences as functional 

elements that regulate stability and splicing (Fu and Ares, 2014; Wu and Brewer, 2012). 

Previous studies have shown certain mono- and dinucleotide rich sequences occur in 

clusters to mediate their effects on RNA processing (Barreau et al., 2005; Cereda et al., 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/201996doi: bioRxiv preprint 

https://doi.org/10.1101/201996
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 of 61 

2014). These sequences exhibit greater robustness to mutation than more complex 

sequence motifs. For example, RBPs in cluster 9 bind more than 50% of 5mers that 

differ by one from their top U5 motif whereas unclustered RBPs bind only 15-20% of 

5mers that differ by one from their highest-affinity 5mer. Furthermore, these sequences 

also have lower propensity for strong secondary structures both in random sequence 

(Fig. 4H) and in the transcriptome, which may contribute to their choice as common 

RBP targets. Mechanisms involving sliding of RBPs along RNA may also favor low 

complexity motifs. For example, HNRNPC was shown to bind runs of uridines with a 

potential to slide along different registers within the RNA (Cienikova et al., 2014). Such 

a sliding model would be most feasible for mono- or dinucleotide repeat motifs because 

more complex motifs would likely require the RBDs to completely dissociate from the 

RNA to find another motif occurrence. 

 A similar analysis of DNA-binding proteins and transcription factors (not shown) 

revealed that they do not show the same inherent propensity to target low complexity 

sequences, perhaps due to differences in the size of the search space and differences 

in DNA and RNA structure and the biochemical mechanism of binding (Jolma et al., 

2013). While the overlapping specificity across these RBPs is high we find that 18 of the 

78 profiled RBPs have motifs dissimilar from that of any other RBP assayed (e.g., 

SNRPA), suggesting presence of a subset of RBPs that may have evolved to recognize 

a more specialized set of RNA targets. Indeed, these 18 RBPs tended to have broader 

expression profiles than RBPs within motif clusters (Fig. S7E), while RBPs with motifs 

shared by other RBPs are more likely to be tissue-specific.  Thus, tissue specificity may  

reduce the number of RBPs targeting similar motifs present in any particular cell type or 
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state.  Even so, coexpression of many members of a cluster appears widespread, and 

this is likely to contribute in important ways to the function of post-transcriptional gene 

regulatory networks. 

 

RBP binding specificities harbor hidden complexity 

 Closer analysis of the complexity of RBNS data revealed that linear sequence is 

often insufficient to fully capture RBP binding specificities, with most factors having 

information gain when incorporating sequence features beyond short motifs (Fig. S7C). 

We find that nearly all RBPs have strong secondary structure preferences and ~50% of 

RBPs favor noncontiguous patterns. While the most common representation of RBP 

binding sites is a single position weight matrix (PWM), our data suggest that in many 

cases RBP specificity may be better described by pairs of short PWMs with variable 

spacing, and sometimes by PWMs describing structural preferences. We hypothesize 

that these subtle differences may be general features that allow RBPs that bind very 

similar motifs to select distinct targets in cells, a paradigm that has been put forth for 

pairs of RBPs (Smith et al., 2013). 

 In assaying a number of RBPs containing RRM, KH, and zinc finger domains, we 

noted several commonalities across RBPs with similar RBDs. For example, RRMs and 

ZFs bound to motifs rich in all four mononucleotides while KH domains did not bind any 

G-rich motifs, in agreement with previous crystallographic studies showing that G-

recognition by KH domains is rare (reviewed by (Nicastro et al., 2015)). Further, while 

many motif clusters included RBPs from all three domain types (Fig. 2A), kmer 

enrichments were more highly correlated among RBPs with the same RBD type relative 
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to RBPs with different RBD types, even after excluding paralogs (Fig. S7F). This 

observation suggests that RBPs with the same fold still harbor traces of a shared 

evolutionary history in RNA target recognition. We also noted domain-specific trends 

among preferences for contextual features. For example, while most RBPs 

overwhelmingly preferred unstructured motifs both in our assay (Fig. 4A) and in vivo 

(Fig. S5B), ZFs bound motifs encompassing a wide range of secondary structure 

contexts including those with greater stem content (Fig. S7G), and RBPs containing 

ZFs showed greater variability in their Ppaired preferences than did RBPs without ZFs 

(Fig. S7H). These observations are consistent with a recent study finding that more 

than 20 ZF-containing proteins selectively bind highly-structured pre-miRNAs (Treiber et 

al., 2017). Proteins with KH domains in turn shared numerous properties, including a 

preference for binding to large hairpin loops, flanking nucleotide context preferences 

and the ability to bind to spaced motifs. Notably, all but one KH-containing RBP (SF1) 

have more than one KH domain or known homodimerization domains, suggesting that 

RBPs with KH domains may show a greater extent of RNA-binding cooperativity 

compared to other domain types. 

RBP target selection in cells can be modulated by sequence and/or structure 

preference, but also by differential subcellular localization, expression, post-translational 

modifications, protein isoforms, and protein-protein interactions. Ultimately, all of these 

factors are likely to work together to specify post-transcriptional gene regulatory 

programs.  
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FIGURE LEGENDS 
 
Figure 1. Overview of the high-throughput RNA Bind-n-Seq assay and 
computational analysis pipeline 
 
A. Schematic of RBNS assay and pipeline. Recombinant RBPs are incubated with a 
pool of random RNA (black) flanked by adaptor sequences (gray). RBP-RNA complexes 
are isolated with streptavadin magnetic beads and bound RNA is sequenced. 
Computational analysis of pulldown and input reads reveals linear sequence 
specificities, secondary structure preferences, and complex binding modes of RBPs. 
B. Number of RBPs with one or more of the three most common RBD types assayed. 
C. Cumulative distribution of the RBD identity between each RBP and its most similar 
RBNS RBP. Distributions are calculated separately for the set of RBPs that has been 
assayed by RBNS and all other human RBPs (sampled to match RBNS domain 
distributions). Only domains with 5+ RBPs assayed by RBNS are included (RRM, KH, 
Zinc finger CCCH-type). 
D. Histogram of Pearson correlations between RBNS assays of the same RBP at 
different protein concentrations. Inset: correlation of 5mer R values of HNRNPL at 20 
nM (most enriched concentration) and 80 nM. 
 
Figure 2. RBPs bind to a small subset of the sequence space, characterized by 
low-entropy motifs. 
 
A. From left to right: Dendrogram of hierarchical clustering of RBPs by sequence logo 
similarity and 15 demarcated clusters by branch length cutoff (dashed line); protein 
name; colored circles representing nucleotide content of RBP motif (one circle if motif is 
>66% one base, two half-circles if motif is >33% two bases); top motif logo for each 
protein; protein RBD. Each logo represented an average of seven 5mers.   
B. Network map connecting RBPs with overlapping specificities (sharing at least two of 
the top 15 RBNS 6mers). Line thickness increases with number of overlapping 6mers. 
Node outline displays RBD type of each protein. 
C. Number of unique top 6mers among subsamplings of the 78 RBNS experiments 
versus randomly selected 6mers. 
D. Edge count between nodes for network maps as shown in B, drawn using groups of 
15 6mers with decreasing ranks. 
E. Entropy of nucleotide composition of RBNS motifs vs. simulated motifs (Methods). 
P-value determined by Wilcoxon rank-sum test. 
F. Enrichment of RBNS motifs over simulated motifs among partitions of a 2D simplex 
of the motif nucleotide composition (Methods). Significance along margins was 
determined by bootstrap Z-score (number of asterisks = Z-score). 
 
Figure 3. RBNS-derived motifs are associated with regulation of mRNA splicing 
and stability in vivo. 
A. Overlap of RBNS 6mers and 6mers with splicing regulatory activity (P-value 
determined by hypergeometric test). 
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B. Comparison of splicing regulatory scores of, left: RBNS 6mers (top 15 of any RBNS, 
“RBNS”) and all other 6mers (“non-RBNS”); right: all 6mers binned by their maximum R 
value Z-score across all RBNS experiments (P-values determined by Wilcoxon rank-
sum test). Overall Spearman correlation between R Z-score and splicing regulatory 
score was 0.08 (P < 10-12). 
C. Left: Number of alternative exons regulated by RBM25 as determined by RNA-seq 
after RBM25 knockdown in HepG2 cells. Right: Proportion of events covered by RBNS 
5mers in exonic and flanking intronic regions near alternative exons excluded upon 
RBM25 KD (red), included by RBM25 KD (blue), and a control set of exons (black). 
Positions of significant difference from control exons upon KD determined by Wilcoxon 
rank-sum test and marked below the x-axis. 
D. Overlap of RBNS 6mers and 6mers with 3’ UTR regulatory activity (P-value 
determined by hypergeometric test among 1303 6mers with sufficient coverage for 
representation). 
E. Comparison of 3’ UTR regulatory scores of, left: RBNS 6mers (top 15 of any RBNS, 
“RBNS”) and all other 6mers (“non-RBNS”), P-value determined by Wilcoxon rank-sum 
test; right: all 6mers binned by their maximum R value Z-score across all RBNS 
experiments. Overall Spearman correlation between R Z-score and 3' UTR regulatory 
score was 0.19 (P < 10-11). 
F. Left: Number of gene expression changes after knockdown of TAF15 in HepG2 cells. 
Right: Frequency of TAF15 RBNS 5mers along a meta-3’ UTR of genes whose 
expression is decreased (blue), increased (red) or unchanged (black) by TAF15 
knockdown. Positions of significant difference from control genes upon KD determined 
by Wilcoxon rank-sum test and marked below the x-axis. 
G. Pearson correlations of eCLIP densities across 100nt windows of 3’ UTRs for all 
pairs of eCLIP experiments. Pairs of experiments are grouped by category, with all pairs 
not belonging to “Replicates”, “Paralogs”, or “Similar motifs” (sharing two of top 5 
5mers) placed in “Other”. P-value determined by Wilcoxon rank-sum test, ***P<5x10-4, 
N.S.=P>0.05. 
 
Figure 4. RNA secondary structural preferences of RBPs 
 
A. Top: Ppaired over each position averaged over the 78 RBPs; 95% confidence interval 
is shadowed. Bottom: Mean Ppaired in the most enriched pulldown library over the top 
6mer plus 10 flanking positions on each side; RBPs are grouped by motif clusters in 
Fig. 2A. Right: Mean change (log2) in pulldown vs. input Ppaired averaged over the top 
6mer. 
B. Mean change (log2) in Ppaired over each position of the top 6mer at different 
concentrations of NUPL2 (top) and PRR3 (bottom) relative to the input library. 
C. Enrichment of the top 6mer of NUPL2 (top) and PRR3 (bottom) in 5 bins into which 
all 6mers were assigned based on their average Ppaired. 
D. Top: Three types of structural contexts considered and the percentage of all 6mers 
and RBNS 6mers (top 6mer for each of 78 RBPs) found in each context in pulldown 
reads. Bottom: Log-fold change of the top 6mer's recalculated R among 6mers 
restricted to each structural context relative to the original R.  
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E, F: Left: Percentage of each position of the top 6mer found in the four structural 
elements for RBM22 (E) and ZNF326 (F) in pulldown reads. Structure logo for top 6mer 
is shown above. Right: Representative MFE structures of the top 6mer pairing with the 
5’ sequencing adapter (gray) for 6mers found at the most enriched positions within the 
random 20mer (RBM22, position 5; ZNF326, position 6). 
G. Enrichment of the percentage of pulldown vs. input reads containing hairpin loops of 
various lengths, separated by RBPs that contain (n=13) vs. do not contain (n=65) at 
least one KH domain. Lengths with significant differences determined by Wilcoxon rank-
sum test (P<0.05). 
H. Average Ppaired in input libraries for all 6mers binned by maximum R value Z-score 
across all RBNS experiments (***P<10-22 by Wilcoxon rank-sum test; Spearman 
correlation =-0.4, P < 10-15). 
 
Figure 5. Many RBPs bind bipartite motifs or prefer flanking nucleotide contexts 
 
A, B. Top: Sequence logos of bipartite motifs for DAZAP1 (A) and RBM45 (B). Bottom: 
Nucleotide composition of the spacer between both motif cores (left) and enrichment as 
a function of the spacing between cores (right). 
C. Core spacing preferences of all RBPs. Each row indicates the relative enrichment as 
a function of the spacing between cores for a given RBP (i.e., enrichments normalized 
to the maximum in each row). A box indicates the spacing with maximal enrichment for 
that RBP, and * to the right of the RBP name signifies the non-zero spacing is 
significantly preferred over the best linear 6mer. RBPs are grouped by motif clusters in 
Fig. 2. 
D. Pearson correlation between the maximum similarity of RBDs of the same type within 
an RBP and the similarity between the core motifs of the best bipartite motif. Only RBPs 
with a significant preference for spacing greater than 0 in C and those with at least two 
RBDs of the same type were used. 
E, F. Flanking nucleotide context preferences surrounding the top five NOVA1 (E) and 
FUBP3 (F) 5mers. Reads with no secondary motifs were centered around the top 5mer 
and the enrichment for each nucleotide in protein-bound reads relative to input reads 
was calculated (Methods). Inset: mean enrichments across all positions flanking the 
motif for each of the four nucleotides. 
G. Flanking nucleotide context preferences of all RBPs. Each row displays the 
enrichment or depletion for each nucleotide surrounding the RBP’s top five 5mers. 
Boxes indicate significant enrichment or depletion (|log2(enrichment)|>0.1 and P<0.001, 
Methods). 
H. Enrichments of HNRNPK’s top 10 linear 6mers (right) and top 10 degenerate 
sequences of length 12 with 6 Ns (left). 
I. Filter assay validation of HNRNPK binding to the oligo UUU(CCUCUCUUUUCC)UUU 
(blue) and the oligo U12 (black) as a negative control (Methods). Dot-blot of filter assay 
shown on top with fraction of RNA bound quantified below. 
 
Figure 6. RBPs that bind similar motifs diverge in sequence context preferences 
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A. Pairwise distances (1-Pearson) of feature-specific R values for pairs of RBPs within a 
motif cluster (“Intra-cluster”) compared to distances between controls (“Reps”), where 
controls are replicate assays of the same RBP done on different days and at different 
protein concentrations. P-values determined by Wilcoxon rank-sum test (*< 0.05, 
**0.005, ***0.0005).  
B. Overall dispersal of specificities between cluster 1 RBPs for UAAUUA. x- and y- axes 
represent the degree to which secondary structure over (x) and flanking (y) the motif 
affect UAAUUA R values. Coloring of circle denotes whether the protein displayed a 
significant enrichment for flanking nucleotide context, with gray denoting none. Split 
circles indicate whether the protein had significant preference for a bipartite motif over a 
linear motif with the distance between the half-circles reflecting the preferred spacing of 
the cores. 
C. For cluster 1 RBPs: Left: The maximum R value (the greater of the best linear or 
bipartite motif) for each RBP. Right: The relative entropy of the distribution of pulldown 
vs. input top 6mer occurrences in five context bins for each of the context features 
(Ppaired, Pflank, core spacing, and flanking nucleotide context). 
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SUPPLEMENTARY FIGURE LEGENDS: 
 
Figure S1. RBNS assay and comparison to RNAcompete, Related to Figure 1. 
 
A. Histogram of the number of unique reads sequenced in all RBNS Input and Pulldown 
libraries, with the ~250,000 RNAcompete oligo sequences marked for comparison. 
B. 10th-90th percentile range of the mean base pairing probability (Ppaired) for all 5mer 
occurrences (averaged over all five positions) in RBNS input libraries and the 
RNAcompete custom array. The 1,024 5mers are sorted along the x-axis by increasing 
median RBNS Ppaired. 
C. Dendrogram of clustered RBNS (red) and RNAcompete (black) experiments for the 
31 RBPs that were assayed by both methods. Clustering was performed via the hclust 
function in R (with method=“average”) on the pairwise Pearson correlations of 5mer R 
Z-scores, for the set of 306 5mers that were enriched (Z≥3) in any of the 62 
experiments.  
D. Histogram of Pearson correlations of RBNS and RNAcompete for the 31 RBPs 
assayed by both methods as described in C. 
 
Figure S2. Overlapping specificities of RBPs, Related to Figure 2. 
 
A. Number of unique top 6mers among random subsamplings of the RBNS experiments 
versus randomly selected 6mers (similar to Fig. 2C), for the subset of 78 RBNS 
experiments that excludes any paralogs (left) or any RBPs that share at least 40% 
identity among any RBDs (right). 
B. Similar to Fig. 2C and Fig. S2A, but for the top 15 6mers of each RBNS experiment 
instead of just the top 6mer. Black line determined from sets of 15 6mers in which the 
top 6mer was chosen at random, with the remaining 14 6mers matching the Hamming 
distance/shifts relative to the top 6mer observed among actual RBNS experiments 
(Methods). 
C. Mapping of the four nucleotide frequencies in motif logos onto a 2D simplex, for both 
the actual 78 RBNS motifs (left), simulated RBNS motifs (center), and the resulting 
enrichment of RBNS versus simulated motifs in each simplex partition (right) 
(Methods). Gray boxes denote that none of the 78 RBNS motif frequencies mapped to 
that partition. Significance along margins of the enrichment simplex was determined by 
bootstrap Z-score (number of asterisks = Z-score). The data in the top and bottom rows 
is the same, with the A and C corners of the simplex switched so that each of the six 
dinucleotide combinations (AC, AG, AU, CG, CU, GU) is included along an edge in at 
least one of the two mappings. Upper right simplex is the same as Fig. 2F. 
 
Figure S3. RBNS motifs in the transcriptome and RBNS-derived splicing and 
stability RNA maps, Related to Figure 3. 
 
A. From left to right: Dendrogram of hierarchical clustering of RBPs by sequence logo 
similarity and 15 demarcated clusters by branch length cutoff (dashed line); protein 
name; top motif logo for each protein (up to here same as in Fig. 2A); schematic heat 
map representation of motif frequency (top half) and conservation (bottom half) within 
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indicated human transcript regions; filled boxes indicating whether ≥3 of the top 15 
RBNS 6mers for each protein overlap with splicing regulatory elements and 3’ UTR 
regulatory elements. Figure key at bottom. 
B. Summary of RBNS regulatory activity inferred by enrichment of the top 10 RBNS 
5mers in skipped exons (SEs) and flanking introns of exons significantly included or 
excluded in RNA-seq after RBP knockdown. Left: All RBPs assayed by both RBNS and 
KD/RNA-seq, ordered from top to bottom by RBNS motif (same ordering as in Fig. 2A), 
with KD in HepG2 and/or K562 denoted by orange/yellow bars. To the right: the top 
RBNS motif logo as in Fig. 2A, follow by a bar denoting whether there were significantly 
more SEs included upon KD (pink) or excluded upon KD (blue), where significance was 
determined by binomial proportion test P<0.05 with at least a 60%/40% bias (total 
number of SEs changing in each direction upon KD in bar plot on far right). Center: The 
inferred RBNS regulatory activity of the RBP over the SE and upstream and 
downstream 250nt of flanking intron, with strength of RBNS splicing regulatory activity 
of significant regions noted by color according to the green (ESE/ISE, significantly 
greater RBNS motif density for exons excluded upon KD) or red (ESS/ISS, significantly 
greater RBNS motif density for exons included upon KD) heat map. Exonic regions 
deemed significant if at least 20 of their 100 positions had significantly increased RNBS 
density (example for RBM25 in HepG2 and its significant positions for each direction of 
SEs shown in Fig. 3C), and upstream/downstream introns were deemed significant if 50 
of their 250 intronic positions had significantly increased RNBS density. If an RBP was 
deemed to have significant RBNS regulatory activity in that region, the ratios of 
log2(RBNS density over changing SEs/RBNS density over control SEs) of all significant 
positions in that region were summed, and the maximum value was normalized to 1 
over all RBPs. 
C. Quantification of the proportion of intronic and exonic regions that show significant 
enrichment of RBNS motifs that enhance (top) or silence (bottom) splicing in B. 
D. Similar to B, but for inferred RBNS regulatory activity on gene expression levels 
based on RBNS motif density in the 3’ UTRs of genes significantly up- or down-
regulated upon KD. Each RBP was deemed to have significant RBNS regulatory activity 
if 10 of the 100 positions of the meta-3’ UTR had increased RBNS density as shown for 
the TAF15 example in Fig. 3F (Destab.=increased RBNS density in 3’ UTRs of genes 
up-regulated upon KD; Stab.=increased RBNS density in 3’ UTRs of genes down-
regulated upon KD). 
E. Similar to Fig. 3F, but for SRSF5 KD in K562 (left) and HepG2 (right) cells. 
 
Figure S4. Conservation of RBNS motifs in the transcriptome and in vivo binding 
of RBPs, Related to Figure 3. 
 
A. Cumulative distribution of phyloP conservation Z-scores for RBNS 5mers and non-
RBNS 5mers in exons and upstream and downstream flanking introns. Distributions are 
shown separately for constitutive, alternative, and ancient alternatively spliced exons. 
B. Comparison of RBNS and eCLIP motifs for RBPs assayed by both techniques 
(reproduced with permission from (Van Nostrand et al., 2017)). The top RBNS and 
eCLIP motif are shown for each RBP (Methods), clustered by RBNS motif as in Fig. 
2A. 17 of the 26 RBPs with significant overlap in the 5mers comprising the RBNS and 
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eCLIP logos (P<0.05, hypergeometric test) marked with a star to the right of the eCLIP 
logo. 
C. Left: Enrichment of RBNS 5mers (averaged among all RBNS 5mers with Z-score≥3) 
in eCLIP peaks that occur in both replicates (peaks overlap by at least 1 position) 
relative to peaks that occur in only one replicate. Right: Enrichment of RBNS 5mers 
(averaged among all RBNS 5mers with Z-score≥3) in eCLIP peaks that occur in both 
HepG2 and K562 (peaks overlap by at least 1 position) relative to peaks that occur in 
only one cell type. 
D. Genome browser snapshot of a portion of the 3’ UTR of the STOM gene and eCLIP 
densities (normalized to input) for TIA1 and HNRNPC bound to two different locations in 
this region. Tracks show instances of U5 motifs in this region (red, top) and eCLIP peaks 
are marked in black below each density track. Motifs derived from RBNS and eCLIP 
peaks for each RBP shown on the left. 
 
 
Figure S5. Distribution of enrichments along reads and in vivo structural 
preferences of RBPs, Related to Figure 4. 
 
A. The frequency of the top RBNS 6mer at each position of the random region, relative 
to a uniform distribution at all positions (RBPs with random 20mers, top; random 
40mers, bottom). Difference from uniform denoted by the green heat map bar to the 
right, calculated as the KL-divergence of the observed frequency at each position 
relative to a uniform distribution; RBPs are sorted by decreasing divergence. RBPs and 
their top 6mers noted on left, with ZNF326 and RBM22 marked as the 1st and 3rd most 
unequal distributions across 20mers, respectively. 
B. Correlation of R value profiles of the top 5mer across five bins of increasing Ppaired for 
RBPs assayed by both RBNS (x-axis) and eCLIP (y-axis). For each assay, R was 
calculated in each of the 5 Ppaired bins and the monotonicity of R over the 5 bins was 
calculated (-10 monotonicity = 5 bins monotonically decreasing R with increasing Ppaired; 
10 monotonicity = 5 bins monotonically increasing R with increasing Ppaired). 
 
Figure S6. Bipartite core spacing, flanking nucleotide context, and degenerate 
pattern binding preferences, Related to Figure 5. 
 
A. Enrichment as a function of spacing in 0nM protein controls. Top 10 pairs of 3mers 
are shown for each experiment at each spacing. 
B. Relative preference for spacing (ΔF, Methods) grouped by whether RBPs have a 
single RBD, multiple RBDs, or show a potential to multimerize (based on literature 
references and RBP regions cloned in our assay). 
C. Enrichment as a function for spacing for the RBPs that show an increase in 
enrichment as a function of spacing in Fig. 5C. Experiments done with protein 
concentrations that are lower or equal to the concentration with maximum enrichment 
are shown. 
D. Flanking nucleotide context preferences for RBPs with KH domains, with and without 
controls for RNA secondary structure. “Match pPaired” represents motif occurrences 
that are sampled to have the same mean base pairing probability in the input and 
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pulldown libraries. “Motifs in hairpins” represents motif occurrences that have the 5-
letter code “HHHHH” in the minimum free energy structure in both the input and 
pulldown libraries. 
E. Enrichment for particular nucleotides in reads with no high-affinity motifs for FUS 
(left), IGF2BP1 (right). 
F. Enrichments for degenerate patterns of length 12 with 6 fixed bases shown for 
HNRNPK (left), RBFOX2 (right). Only the top 5% of degenerate patterns are shown and 
the red lines indicate the enrichment of the linear 6mers. For HNRNPK, degenerate 
patterns where 5 out of the 6 fixed positions are Cs are in blue. 
G. Enrichment of HNRNPK motifs in eCLIP data. Linear: top 10 6mers; bipartite: top 10 
spaced 6mers; context: top 10 degenerate 12mers with 6 Cs (those shown in Fig. 5H 
left). 
H. Bar plot of enrichments for top 10 degenerate kmers of length 12 with 6 Ns for 
CELF1 (top) and FUBP1 (bottom). 
 
 
Figure S7. Sequence context effects on RBP binding, Related to Figure 6. 
 
A. Example of the distance between feature-specific R value profiles for PCBP2 and 
RBM23 for Ppaired. 
B. Dispersal of specificities as in Fig. 6B for all other clusters. 
C. Top: The maximum R value (the greater of the best linear or bipartite motif) for each 
RBP. Bottom: The relative entropy of the distribution of pulldown vs. input top 6mer 
occurrences in five context bins for each of four context features (Ppaired, Pflank, core 
spacing and flanking nucleotide context). The top 6mer used for each of the 15 clusters 
marked to the left of each cluster. 
D. Distribution of UAAUUA motif counts among pulldown reads for cluster 1 proteins for 
three context features (Ppaired, Pflank and flanking nucleotide context) used to calculate 
the relative entropy in Fig. 6C. Ppaired and Pflank bins were set empirically for each RBP 
such that 20% of input UAAUUA occurrences were in each bin; nucleotide context bins 
were set as described in Methods. The 7 RBPs were clustered (dendrogram shown on 
left) according to their context preferences over the entire 15 different context bins. 
E. Tissue specificity of gene expression profile in 40 human tissues from the GTEx 
consortium for RBPs within a motif cluster versus those unclustered. P-value 
determined by Wilcoxon rank-sum test. 
F. Distribution of Pearson correlations of the R Z-scores of top 5mers for RBPs within 
the same motif cluster, separated by RBP pairs that have different RBD types (left) or 
the same RBD type (all RBPs: right; no paralogs: center). The R Z-score of the top 18 
5mers for each RBP pair were used (the median number of enriched 5mers), and RBPs 
with only 1 RBD type were included. **P<0.05 by Wilcoxon rank-sum test. 
G. Increase in stem content (fstem,PD x log2(fstem,PD/fstem,IN), where fstem,PD is shown for 
RBM22 and ZNF326 in Fig. 4E,F) averaged over the top 6mer of each RBP, separated 
by RBPs that do vs. do not contain a ZF. P-value determined by Wilcoxon rank-sum 
test. 
H. Comparison of differences in Ppaired preferences among pairs of RBPs (|Ppaired 
ratio,RBP1 - Ppaired ratio,RBP2|, where Ppaired ratio is Ppaired, PD/Ppaired, IN averaged over the 
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top 6mer as shown in the right bar of Fig. 4A), separated by RBPs that do vs. do not 
contain a ZF. P-value determined by Wilcoxon rank-sum test. 
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METHODS  
 
Cloning of RNA binding protein domains 
In most cases, RBPs were selected from a curated set of high-confidence annotations 
consisting of factors with well-defined RNA binding domains or with previous 
experimental evidence of RNA binding (Van Nostrand et al., 2017). Regions of each 
protein containing all RBDs plus ~50 amino acids flanking the RBD were cloned into the 
pGEX6 bacterial expression construct (GE Healthcare). A list of all constructs generated 
and primer sequences used is shown in Table S2. 
 
Bacterial expression and protein purification 
Transformed Rosetta Cells (Novagen) were cultured in SuperBroth until optical density 
reached 0.6, cultures were transferred to 4° C and allowed to cool. Protein expression 
was induced for 14-20 hrs with IPTG at 15° C. Cells were pelleted, lysed (Qproteome 
Bacterial Protein Prep Kit, Qiagen) for 30 min in the presence of protease inhibitor 
cocktail (Roche), sonicated and clarified by centrifuging at >8,000 rpm, passed through 
a .45 µM filter (GE) and purified using GST-sepharose in either column format (GST-
trap FF, GE) or 96-well format (GSTrap 96-well Protein Purification Kit, GE). Generally, 
250mL bacterial cultures used for column purifications and 50mL for 96-well plate 
purifications (note: 8 wells of a 96-well plate were used per protein so that up to 12 
proteins were purified per plate at a time). Eluted proteins were concentrated by 
centrifugation (Amicon Ultra-4 Centrifugal Filter Units) and subjected to buffer exchange 
(Zeba Spin Desalting Columns, 7K MWCO, Life Technologies) into Final Buffer (20mM 
Tris pH 7, 300mM KCl, 1M DTT, 5mM EDTA, 10% glycerol). Proteins were quantified 
using Bradford Reagent (Life Technologies) and purity and quality of protein was 
assessed by PAGE followed by Coomassie staining (all gels are available at 
https://www.encodeproject.org/search/?type=Experiment&assay_title=RNA+Bind-N-
Seq&assay_title=RNA+Bind-n-Seq).  
 
Production of random RNAs by in vitro transcription 
Single-stranded DNA oligonucleotide and random template were synthesized 
(Integrated DNA Technologies) and gel-purified as previously described (Lambert et al., 
2014). Synthesis of random region of the template DNA oligo was “hand-mixed” to 
achieve balanced base composition. An oligo matching T7 promoter sequence was 
annealed to the random template oligo by mixing in equal parts bringing to 70° C for 2 
min and allowing to cool by placing at room temperature.  
T7 Template: 5’ 
CCTTGACACCCGAGAATTCCA(N)20GATCGTCGGACTGTAGAACTCCCTATAGTGAG
TCGTA 
T7 oligo:  
5’ TAATACGACTCACTATAGGG 
RNA was synthesized by transcribing 6uL of 25uM annealed template and T7 oligo in a 
100 µL reaction (Hi-Scribe T7 transcription kit, NEB) according to manufacturer’s 
protocol) or with a custom protocol usting T7 polymerase (NEB) for larger-scale preps. 
RNAs were then DNAse-treated with RQ1 (Promega) and subjected to phenol-
chloroform extraction. RNA was suspended in nuclease free water and resolved on a 
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6% TBE-Urea gel (Life Technologies). RNA was excised and gel-extracted as 
previously reported (Lambert et al., 2014). RNA was aliquoted and stored at -80° C. 
 
RNA Bind-n-Seq Assay 
All steps of the following binding assay were carried out at 4° C. Dynabeads MyOne 
Streptavidin T1 (Thermo) were washed 3X in binding buffer (25mM tris pH 7.5, 150 mM 
KCl, 3mM MgCl2, 0.01% tween, 500 ug/mL BSA, 1 mM DTT). 60 uL of beads per 
individual protein reaction were used. 60 uL RBP diluted (see below for protein 
concentrations used) in binding buffer were allowed to equilibrate for 30 minutes at 4°C 
in the presence of 60 uL of washed Dynabeads MyOne Streptavidin T1. After 30 min of 
incubation, 60 uL of random RNA diluted in binding buffer was added bringing the total 
reaction volume to 180 uL. The final concentration per reaction of each of the 
components was 1uM RNA; 5, 20, 80, 320 or 1300 nM of RBP; and 60uL of Dynabeads 
MyOne Streptavidin T1 stock slurry washed and prepared in binding buffer. Each 
reaction was carried out in a single well of a 96-well plate. After 1 hr, RBP-RNA 
complexes were isolated by placing 96-well plate on a magnetic stand for 2 min. 
Unbound RNA was carefully removed from each well and the bound RNA complexes 
were washed with 100 uL of wash buffer (25mM tris pH 7.5, 150 mM KCl, 0.5 mM 
EDTA, 0.01% tween). Immediately after adding wash buffer the plate was placed on the 
magnet and wash was removed after ~1min. This procedure was repeated 3 times. 
RBP-RNA complexes were eluted from Dynabeads MyOne Streptavidin T1 by 
incubating reaction at room temperature for 15 minutes in 25 uL of elution buffer (4mM 
biotin, 1x PBS), the eluate was collected, the elution step was repeated, and eluates 
were pooled. RNA was purified from elution mixture by adding 40 uL AMPure Beads 
RNAClean XP (Agencourt) beads and 90 uL of isopropanol and incubating for 5 
minutes. 96-well plate was placed on a magnetic stand and supernatant was discarded. 
Beads were washed 2X with 80% ethanol, dried, and RNA was eluted in 15 uL of 
nuclease-free water. The extracted RNA was reverse transcribed into cDNA with 
Superscript III (Invitrogen) according to manufacturer’s instructions using the RBNS RT 
primer. To prepare the input random library for sequencing, 0.5 pmol of the RBNS input 
RNA pool was also reverse transcribed. To make Illumina sequencing libraries, primers 
with Illumina adapters and sequencing barcodes were used to amplify the cDNA by 
PCR using Phusion DNA Polymerase (NEB) with 10-14 PCR cycles. PCR primers 
always included RNA PCR 1 (RP1) and one of the indexed primers as previously 
reported (Lambert et al., 2014). PCR products were then gel-purified from 3% agarose 
gels and quantified and assessed for quality on the Bioanalyzer (Agilent). Sequencing 
libraries for all concentrations of a the RBP as well as the input library were pooled in a 
single lane and sequenced on an Illumina HiSeq2000 instrument. 
 
RNA Bind-n-Seq data processing and motif logo generation 
RBNS kmer enrichments (R values) were calculated as the frequency of each kmer in 
the pulldown library reads divided by its frequency in the input library; enrichments from 
the pulldown library with the greatest enrichment were used for all analyses of each 
respective RBP. Mean and standard deviation of R values were calculated across all 4k 
kmers for a given k to calculate the RBNS Z-score for each kmer. 
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RBNS motif logos were made from following iterative procedure on the most enriched 
pulldown library for k=5: the most enriched kmer was given a weight equal to its 
enrichment over the input library (=R–1), and all occurrences of that kmer were masked  
in both the pulldown and input libraries so that stepwise enrichments of subsequent 
kmers could be used to eliminate subsequent double counting of lower-affinity ‘shadow’ 
kmers (e.g., only GGGGA occurrences not overlapping a higher-affinity GGGGG would 
count towards its stepwise enrichment). All enrichments were then recalculated on the 
masked read sets to obtain the resulting most enriched kmer and its corresponding 
weight (=stepwise R-1), with this process continuing until the enrichment Z-score 
(calculated from the original R values) was less than 3. All kmers determined from this 
procedure were aligned to minimize mismatches to the most enriched kmer, with a new 
motif started if the kmer could not be aligned to the most enriched kmer in one of the 
following 4 ways: one offset w/ 0 mismatches (among the 4 overlapping positions); 1 
offset w/ 1 mismatch; no offset w/ 1 mismatch; 2 offsets w/ 0 mismatches. The 
frequencies of each nucleotide in the position weight matrix, as well as the overall 
percentage of each motif, were determined from the weights of the individual aligned 
kmers that went into that motif; empty unaligned positions before or after each aligned 
kmer were given pseudocounts of 25% each nucleotide, and outermost positions of the 
motif logo were trimmed if they had had unaligned total weight >75%. To improve the 
robustness of the motif logos, the pulldown and input reads were each divided in half 
and the above procedure was performed independently on each half; only kmers 
identified in corresponding motif logos from both halves were included in the alignments 
to make the final motif logo (weight of each kmer averaged between the two halves). In 
Fig. 2A, only the top RBNS motif logo is shown if there were multiple (all motifs 
displayed on the ENCODE portal within the "Documents" box of each experiment, with 
the proportion of each motif logo determined by computing the relative proportion of 
each motif's composite kmer weights). Motif logos were made from the resulting PWMs 
with Weblogo 2.0 (Crooks et al., 2004). In addition to those displayed for 5mers with a 
Z-score=3 cutoff, for comparison motif logos were also made using: 5mers with Z-
score=2 cutoff, 6mers with Z-score=2 cutoff, and 6mers with Z-score=3 cutoff; 
additionally, different rules of when to start a new logo vs. add to an existing one were 
tried. Logos for 5mers with Z-score=3 cutoff and the rule mentioned above appeared to 
strike the best balance of capturing a sufficient number of kmers to accurately represent 
the full spectrum of the RBP’s binding specificity but did not create a number of 
secondary, largely similar motifs and thus were chosen to use across all 78 RBPs. 
 
 
The RBNS pipeline is available at: https://bitbucket.org/pfreese/rbnspipeline 
 
Clustering of RBNS motifs 
A Jensen-Shannon divergence (JSD)-based similarity score between each pair of top 
RBNS motif logos was computed by summing the score of the j overlapping positions 
between RBP A and RBP B: 
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where infoA,i is the information content in bits of motif A at position i and ACGUA,i is the 
vector of motif A frequencies at position i (vectors sum to 1.) 
 
This score rewards positions with higher information content (scaled from positions 
positions with 100% one nucleotide given maximum weight to degenerate positions with 
25% each nucleotide given zero weight) and more aligned positions (more positions j 
contributing to the summed score). 
 
This similarity score was computed for each possible overlap of the two logos (subject 
to at least four positions overlapping, i.e., j≥4), and the top score with its corresponding 
alignment offset was used. The matrix of these scores were normalized to the maximum 
score over all RBP pairs and clustered using the linkage function with centroid method 
in scipy.cluster.hierarchy to obtain the dendrogram shown in Fig. 2A, with the 15 RBP 
groupings derived from a manually-set branch length cutoff. This branch length cutoff 
was chosen to balance the competing interests of maximizing the number of paralogous 
proteins within the same cluster (more stringent cutoffs eliminated PCBP4 from the  
cluster containing PCBP1 and PCBP2; it also did not include RBM4 and RBM4B to be 
in a cluster) and minimizing differences between primary motifs within the same cluster 
(less stringent cutoffs included the distinct UAG-containing MSI1/UNK/HNRNPA0 motifs 
within the same cluster as the AU-rich RBPs, for example). 
 
 
Comparison with RNAcompete 
5mer scores were derived from publicly available 7mer Z-scores by computing the 
mean across all 7mers containing a given 5mer 
(http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/). 
Correlations between RBNS and RNA-compete experiments were computed by taking 
the Pearson correlation of Z-scores for all 5mers which had a Z-score ≥ 3 for at least 
one of the 31 RBPs in common between both assays. 
 
 
Analysis of RBNS motif frequency and conservation in the transcriptome 
Frequency and conservation of an RBP’s motif (Fig. 2A) were calculated for each RBP 
by taking a weighted average of all its motif logo 5mers as reported in Table S3. 
 
For each protein-coding gene, the most highly expressed Gencode version 19 transcript 
in HepG2 or K562 cells was used to determine 5' and 3’UTR regions. Exon sequences 
were all internal exons between the 5’ and 3’UTRs. The upstream intron sequences 
were -130 to -30 of each of these exons and the downstream intron sequences were +9 
to 109 (i.e., 100 nt regions flanking internal exons excluding the splice sites). The 
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frequency of all 1,024 5mers was computed in each of these regions, and the frequency 
shown in Fig. S3A is: (RBP’s weighted average frequency in the region) x 45. 
 
Conservation of all 1,024 5mers was computed in each of the aforementioned regions 
by taking the average 46-way phyloP conservation over the 5mer. The mean and 
standard deviation (over the 1,024 5mers) was computed separately in each region, and 
the conservation shown in Fig. S3A is the Z-score of the RBP’s weighted conservation 
in the region. 
 
Overlap of RBNS 6mers with splicing and stability regulatory elements 
Splicing regulatory elements were taken from: ESS and ESE: (Ke et al., 2011) and 
(Rosenberg et al., 2015); ISE: (Wang et al., 2012); ISS: (Wang et al., 2013). For 
classification of proteins as overlapping we first generated a set of ISS, ISE, ESS, or 
ESE 6mers. 6mers derived from 10mers screened by ISE: (Wang et al., 2012); ISS: 
(Wang et al., 2013) were used as ISE and ISS elements. For ESE and ESS elements, 
the top 400 ESS and ESE reported in the Supplementary Table 1 of (Ke et al., 2011) 
(“ESRseqScore”) and the top 400 ESS and ESE derived from the 5’splice site selection 
reported by (Rosenberg et al., 2015) as indicated in their manuscript were combined. A 
protein was classified as binding to ISSs, ISEs, ESSs, or ESEs if 3 of its top 15 6mers 
overlapped the ISS, ISE, ESS or ESE 6mers (As is shown in Fig. S3A, black and white 
boxes). For analysis of 6mer splicing regulatory scores (Fig. 3B) the reported 
“ESRseqScores" from (Ke et al., 2011) were used. 
 
3’UTR regulatory 6mers were derived from (Oikonomou et al., 2014). Only 6mers with 
≥100 occurrences across all designed sequences were used (totaling 1303 6mers) in 
order to derive a mean 6mer score with sufficient coverage in different contexts. 6mer 
repressor and activator scores were obtained by averaging scores (log2 frequency as 
described in the original manuscript) across all oligos containing that 6mer in the low 
(L10) and high (H10) Dual-reporter Intensity Ratio bins, respectively. Activator and 
repressor scores were averaged across both replicates (Libraries A and B). 6mers with 
an overall score ≥ 0.25 were used, where regulatory score=|log2(repressor score)-
log2(activator score)|. 
 
Analysis of eCLIP for motif discovery, regulation and overlapping targets 
 
eCLIP datasets were produced by the Yeo Lab through the ENCODE RBP Project and 
are available at 
https://www.encodeproject.org/search/?type=Experiment&assay_title=eCLIP. 
 
For all analyses, only eCLIP peaks with an enrichment over input ≥ 2 were used. Peaks 
were also extended 50 nucleotides in the 5’ direction as the 5' start of the peak is 
predicted to correspond to the site of crosslink between the RBP and the RNA. 
 
To produce eCLIP logos in a similar manner for comparison with RBNS logos, an 
analogous procedure to creating the RBNS motif logos was carried out on the eCLIP 
peak sequences: the two halves of the RBNS pulldown reads were replaced with the 
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two eCLIP replicate peak sequences, and the input RBNS sequences were replaced by 
random regions within the same gene for each peak that preserved peak length and 
transcript region (5’ and 3’ UTR peaks were chosen randomly within that region; intronic 
and CDS peaks were shuffled to a position within the same gene that preserved the 
peak start’s distance to the closest intron/exon boundary to match sequence biases 
resulting from CDS and splice site constraints). The enrichment Z-score threshold for 
5mers included in eCLIP logos was 2.8, as this threshold produced eCLIP logos 
containing the most similar number of 5mers to that of the Z=3 5mer RBNS logos. Each 
eCLIP motif logo was filtered to include only 5mers that occurred in both corresponding 
eCLIP replicate logos. eCLIP motif logos were made separately for all eCLIP peaks, 
only 3’UTR peaks, only CDS peaks, and only intronic peaks, with the eCLIP logo of 
those 4 (or 8 if CLIP was performed in both cell types) with highest similarity score to 
the RBNS logo shown in Fig. S4B, where the similarity score was the same as 
previously described to cluster RBNS logos. To determine overlap significance of RBNS 
and eCLIP, a hypergeometric test was performed with the 5mers in all (not just the top) 
logos for: RBNS logo 5mers, eCLIP logo 5mers (for peaks in the region with highest 
similiarity score to the RBNS logo), and 5mers in their intersection among the 
background of all 1,024 5mers; overlap was deemed significant if P<0.05. 
 
All eCLIP/RBNS comparisons were for the same RBP with the following exceptions in 
which the eCLIP RBP was compared to its paralogous RBNS protein: KHDRBS2 
(KHDRBS1 RBNS); PABPN1 (PABPN1L RBNS); PTBP1 (PTBP3 RBNS); PUM2 
(PUM1 RBNS); and RBM15 (RBM15B RBNS). 
 
For Fig. 3G, the Pearson correlation between eCLIP experiments was assessed by 
computing the mean eCLIP coverage across 3’UTRs of all genes. 3’UTRs were split 
into windows of ~100 nucleotides and the mean base-wise coverage (eCLIP coverage 
divided by input coverage) was calculated in each window. Pairs of RBPs were 
assigned as paralogs according to their classification in Ensembl. Pairs of RBPs were 
assigned as having overlapping motifs if at least 2 of their 5 top 5mers overlapped; 
RBPs with specificities determined from RBNS and RNAcompete were pooled (Ray et 
al., 2013). 
 
 
Analysis of RNA-seq datasets for regulation and RBNS Expression & Splicing 
Maps 
 
RNA-seq after shRNA knockdowns of individual RBPs in HepG2 and K562 cells (two 
KD and two control RNA-seq samples per RBP) were produced by the Graveley Lab 
through the ENCODE RBP Project and are available at: 
https://www.encodeproject.org/search/?type=Experiment&assay_title=shRNA+RNA-
seq. 
 
Splicing changes upon KD were quantified with MATS (Shen et al., 2012), considering 
only skipped exons (SEs) with at least 10 inclusion + exclusion junction-spanning reads 
and a ψ between 0.05 and 0.95 in the averaged control and/or KD samples. SEs that 
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shared a 5' or 3’ splice site with another SE (i.e., those that are part of an annotated 
A3’SS, A5’SS, or Retained Intron) were eliminated. If multiple pairs of upstream & 
downstream flanking exons were quantified for an SE, only the event with the greatest 
number of junction-spanning reads was used. SEs significantly excluded or included 
upon KD were defined as those with a P-value < 0.05 and |∆ψ| ≥ 0.05. Control SEs 
upon KD were those with a P-value=1 and |∆ψ| ≤ 0.02. 
 
Differentially expressed genes upon KD were called from DEseq2  (Love et al., 2014), 
considering genes that had a ‘baseMean’ coverage of at least 1.0 and an adjusted P-
value < 0.05 and |log2(FC)| ≥ 0.58 (1.5-fold up or down upon KD). Candidate control 
genes upon KD were taken from those with a P-value > 0.5 and |log2(FC)| ≤ 0.15; from 
this set of genes, a subset matched to the deciles of control (i.e., before KD) gene 
expression levels of the differentially expressed genes was used. The last 50nt of each 
gene’s ORF and 3’UTR sequence were taken from the Gencode version 19 transcript 
with the highest expression in the relevant cell type (HepG2 or K562). 
 
‘RBNS splicing maps’ were made by taking the three sets of SEs included, excluded, or 
control upon KD and extracting their exonic and upstream/downstream flanking 250nt 
sequences. At each position of each event, it was determined whether the position 
overlapped with one of the top 10 RBNS 5mers for that RBP in any of the five registers 
overlapping the position. Then to determine if the RBNS density was significantly higher 
or lower for included/excluded SEs at a position relative to control SEs at that position, 
the number of positions in a 20bp window on each side (total 41 positions) covered by 
RBNS motifs was determined for each of the events, with significance determined by P-
value<0.05 in a Wilcoxon rank-sum test on the control vs. changed events in the desired 
direction upon KD. Exonic regions were deemed to have ESE or ESS RBNS regulatory 
activity if 20 of the 100 exonic positions among SEs excluded or included upon KD, 
respectively, had significantly higher RBNS motif coverage than control SEs. The 
upstream and downstream intronic regions were each individually deemed as ISE or 
ISS regions if 50 of the 250 intronic positions had significantly higher RBNS motif 
coverage. 
 
‘RBNS stability maps’ were made in an analogous manner, but for genes up- or down-
regulated compared to control genes upon KD. The 3’UTR sequence was divided into 
100 segments of roughly equal length and the proportion of positions covered by RBNS 
motifs in each segment were used for each bin of the meta-3’UTR. An RBP was 
deemed to have significant RBNS regulatory activity if 10 of the 100 positions of the 
meta-3’UTR for up- or down-regulated genes had increased RBNS density relative to 
control genes. 
 
Generation of random sets of ranked 6mer lists with edit distances to top 6mer 
matching RBNS 
 
Because the ranked lists of top enriched kmers (e.g., the top 15 6mers) are highly 
constrained depending on what the most enriched kmer is (e.g., 6mers 2-15 are 
typically Hamming distance of 1 and/or shifted by 1 from the top 6mer), as background 
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sets for comparison to actual RBNS 6mer lists we sought to create groups of 6mers that 
matched the observed RBNS patterns of Hamming distances and shifts from the top 
6mer for any given randomly selected kmer. To do this, for each of the 78 RBNS 
experiments we first calculated the edit distance from 6meri to 6mer1, where 6mer1 is 
the most enriched 6mer and i=2, …, 15 is the ith enriched 6mer (e.g., 6mer8 might have 
a mismatch at position two compared to 6mer1 and then be shifted to the right by 1 
position). Then, for all 4,096 starting 6mers, we created 78 ranked lists of 15 6mers, 
each of which matched the observed edit distances to the top 15 list of an actual RBNS 
experiment. The expected number of network edges in Fig. 2B, and the ‘random' 
number of edges in Fig. 2D were performed by selecting random lists from these 
4,096*78 possibilities. 
 
RBNS RBP groups without paralogs or RBPs with any RBD pair sharing 40% 
identity 
 
No Paralogs (n=52):  
A1CF, BOLL, CELF1, CNOT4, CPEB1, DAZ3, EIF4G2, ELAVL4, ESRP1, EWSR1, 
FUBP1, HNRNPA2B1, HNRNPC, HNRNPK, HNRNPL, IGF2BP1, ILF2, MBNL1, 
NUPL2, PABPN1L, PRR3, PTBP3, PUM1, RBFOX2, RBM15B, RBM22, RBM23, 
RBM24, RBM25, RBM4, RBM41, RBM45, RBM47, RBM6, RBMS2, RC3H1, SF1, 
SFPQ, SNRPA, SRSF10, SRSF11, SRSF2, SRSF4, SRSF8, TARDBP, TIA1, TRA2A, 
TRNAU1AP, UNK, ZCRB1, ZFP36, ZNF326 
 
No RBPs sharing >40% identity among any RBDs (n=47): 
A1CF, BOLL, CELF1, CNOT4, CPEB1, EIF4G2, ELAVL4, EWSR1, FUBP3, HNRNPA0, 
HNRNPCL1, HNRNPDL, HNRNPH2, HNRNPL, IGF2BP1, ILF2, KHDRBS3, MBNL1, 
NOVA1, NUPL2, PABPN1L, PCBP2, PRR3, PTBP3, PUF60, PUM1, RBFOX3, 
RBM15B, RBM22, RBM24, RBM25, RBM41, RBM45, RBM4B, RBM6, RBMS2, SFPQ, 
SNRPA, SRSF11, SRSF8, SRSF9, TARDBP, TIA1, TRA2A, TRNAU1AP, ZFP36, 
ZNF326 
 
Pairwise RBD alignments were performed using ClustalW2 (Larkin et al., 2007) and 
percent identities (as shown in Fig. 1C and 5D) were calculated as the percentage of 
identical positions relative to the number of ungapped positions in the alignments. 
 
Network map of overlapping affinities  
The lists of top 15 6mers for each RBP were intersected to get the number in common - 
those with 2 or more were deemed significant and connected by an edge (P<0.05 by 
Hypergeometric test, as well as by simulations based on the empirical distribution from 
random sets of ranked 6mer lists with edit distances to top 6mer matching RBNS as 
described above). The resulting network was visualized with Cytoscape (Shannon et al., 
2003). 
 
Motif entropy analysis 
To construct a set of ‘shuffled’ motifs that matches the overall nucleotide composition of 
the 78 RBNS motifs but removes any positional correlations within a motif, individual 
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columns of each RBNS motif (including all motifs for an RBP if there was more than 
one) were pooled to be sampled from. A ‘shuffled’ motif was constructed by randomly 
sampling 5 or 6 columns (with probability 2/3 and 1/3, respectively, to roughly match the 
lengths of RBNS motifs) from this pool and concatenating them, repeated to construct 
100,000 shuffled motifs. 
 
The frequency of the four bases in each logo was calculated by averaging over all 
positions in the motif. This frequency vector (=[fA, fC, fG, fU], fA+fC+fG+fU=1) was mapped 
onto a square containing corners at [+/-1, +/-1] using two different orderings of the 4 
corners, which together contain all 6 dinucleotide combinations (AC, AG, AU, CG, CU, 
GU) as edges: 
 
1. Purine/Pyridine diagonals: 
 
A U 
 
C G 

 
 
 
 
 
 
 
 
 

 
2. Purine/Pyridine edges: 
 
C U 
 
A G 

 
 
 
 
 
 
 
 

 
To map the frequency vector to its coordinates (u, v) within the unit circle, the frequency 
vector was normalized to the largest component: 
 
F = [FA, FC, FG, FU] = [fA/fmax, fC/fmax, fG/fmax, fU/fmax], where fmax = max(fA, fC, fG, fU) 
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and (u, v) was computed as: 
 
 
 
 

 
 
The elliptical grid mapping was used to convert the (u, v) coordinates within the unit 
circle to the corresponding position (x, y) within a square containing corners at [+/-1, +/-
1]: 
 

 
 
 
 

 
 
The simplex grid shown was divided into 11 equal parts along both dimensions, and the 
density in each of the 121 squares was computed for the 78 RBNS motifs and 100,000 
shuffled motifs to get enrichments 
 
To determine significance via bootstrapping, 1,000 different shuffled motif distributions 
over the grid were computed. In each of the 1,000 bootstraps, the 100,000 shuffled 
motifs were drawn from a different starting pool of motif columns: rather than all 78 
RBPs’ motifs contributing once to the pool, a random sampling (with replacement) of the 
78 RBPs was performed, and those motifs’ columns served as the starting pool for the 
100,000 shuffled motifs. The mean and standard deviation of these 1,000 bootstraps 
were computed for each box, row, and column, and rows/columns of the grid for which 
the density of the 78 RBNS motif logos had a Z-score greater than 2 were marked 
(number of asterisks = Z-score, rounded down). 
 
 
RNA secondary structure analysis  
 
The RNA base pairing probability was extracted from the partition function of RNAfold: 
“RNAfold -p --temp=X”, where X was 4° or 21°C depending on what temperature the 
binding reaction was conducted at (See Table S3) (Lorenz et al., 2011). For each 
pulldown library, reads were randomly selected to match the distribution of C+G content 
among input reads; all enrichments were recalculated for these C+G-matched pulldown 
reads for Fig. 4 and Fig. 6. Reads were folded with the 5’ and 3’ adapters (24 and 21 nt, 
respectively), resulting in folded sequences of length 65 and 85 for 20mer and 40mer 
RBNS experiments, respectively. 
 
Secondary structural element analyses were performed by using the forgi software 
package (Kerpedjiev et al., 2015). For each read, to mirror the partition function rather 
than relying solely on the Minimum Free Energy structure, 20 random suboptimal 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/201996doi: bioRxiv preprint 

https://doi.org/10.1101/201996
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

51 of 61 

structures with probabilities equal to their Boltzmann weights were sampled and 
averaged over (“RNAsubopt --temp=X —stochBT=20”). In Fig. 4D, 6mers counting 
toward: ’loop’ were: H6, M6, I6; ‘stem' was S6; ‘bulged stem’ were 6mers matching the 
pattern SXXXXS, where XXXX contained 1-3 S. 
 
Bin limits for the motif structure analyses (Ppaired) were: 0-0.2 (bin 1); 0.2-0.4 (bin 2); 0.4-
0.6 (bin 3); 0.6-0.8 (bin 4); and 0.8-1.0 (bin 5). Bin limits for flanking structure analyses 
(Pflank) were: 0-0.3 (bin 1); 0.3-0.45 (bin 2); 0.45-0.6 (bin 3); 0.6-0.75 (bin 4); 0.75-1.0 
(bin 5). Ppaired was calculated as the average over the six positions of the 6mer; Pflank 
was calculated as the average over all other positions in the read. The continuous 
measures of preference for motif and flanking preference displayed in Fig. 6B,C were 
computed as: 
-2 * log2(Rbin 1/Roriginal) - 1 * log2(Rbin 2/Roriginal) + 0 * log2(Rbin 3/Roriginal) + 1 * log2(Rbin 

4/Roriginal) + 2 * log2(Rbin 5/Roriginal). 
 
RBNS structure profiles were compared to eCLIP structure profiles in the region with the 
greatest number of eCLIP peaks. Bound RBNS motifs were selected from the 
transcriptome region that showed the highest enrichment for the number of peaks 
(5’UTR/3’UTR/introns/CDS). Motifs that were not bound were selected from the same 
gene regions as bound motifs and matched for the same genes. Motifs were folded with 
50 nucleotides of flanking sequence on both sides using RNAfold (Lorenz et al., 2011). 
Motifs (both bound and not bound) were then binned by their mean base pairing 
probability (same bins as RBNS) and the fraction of bound motifs in each bin was then 
computed. The monotonicity of R over Ppaired bins for RBNS and eCLIP was computed 
by taking all 10 comparisons over the 5 bins, adding 1 if R was greater in the higher 
Ppaired bin or subtracting 1 if it was lower in the higher Ppaired bin. 
 
 
Determination of bipartite motifs  
Enrichments were computed for all pairs of the top 10 enriched 3mers, with a spacer of 
length i=0-10 (in total: 10*10*(i+1) combinations), where the enrichment was defined as 
the fraction of pulldown reads with a motif relative to the fraction of input reads with a 
motif. The enrichment for each spacing was computed as the mean enrichment of the 
10 most enriched combinations of that particular spacing (Fig. 5A-B). Nucleotide 
composition of the spacer (as shown in Fig. 5A-B) was the mean nucleotide frequency 
across positions between both motif cores, relative to the corresponding nucleotide 
frequency between the same motif cores the input libraries. Preference for spacing (Fig. 
S6B) was computed as the change in the mean enrichment for the top 10 spaced 
combinations (i > 0) relative to the mean enrichment of the top 10 non-spaced 
combinations (i = 0, i.e. top 10 6mers): log2(enrichmentspaced/enrichmentlinear). 
Significance was determined by setting a False Discovery Rate (FDR) using no-protein 
control libraries as follows: samples of 10 3mer cores were repeatedly drawn and the 
observed relative enrichments were used to set an FDR at each spacing s. Motif cores 
were sampled such that the relationships between sampled 3mers were the same as 
the relationship observed for that particular protein’s enriched cores.  
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Assessment of flanking nucleotide context  
For a given RBP, we only considered (protein-bound and input) reads that: a) contained 
one of the top 5 enriched 5mers; b) contained no additional secondary motifs, where 
secondary motifs were the top 50 enriched 5mers or all 5mers with an R-value >= 2, 
whichever set was larger. The remaining protein-bound and input reads were then 
subsampled to match the distribution of motifs and the positions of those motifs along a 
read. These reads were further subsampled to match the distribution of mean base 
pairing probabilities over the motif (bins used were [0-0.1),[0.1-0.2),…,[0.9,1.0]). For the 
analysis in Fig. S6D, protein-bound and input reads were instead subsetted only to 
reads where the motif was in a hairpin configuration (H5 in the MFE). The flanking 
nucleotide enrichment was then determined by centering these reads on the motif and 
computing the relative enrichment (log2( fpulldownNT / finputNT )) for each nucleotide at 
each position relative to the motif. We excluded the two nucleotides immediately 
adjacent to the motif on either side (to avoid capturing the extension of a core motif) as 
well as the first and last position of the random region in order to avoid certain 
nucleotide biases that can occur due to the presence of adaptor sequences. The overall 
enrichment (Fig. 5G) is the mean enrichment across all assessed positions, with 
significance assessed by a Wilcoxon rank-sum test. 
 
Binding to mono- or dinucleotide rich sequence (Fig. S6E) in absence of a motif was 
done analogously, except only using reads that did not contain any of the top 50 5mers 
or 5mers with R >= 2. Enrichments for degenerate patterns were calculated as the 
mean of the 10 best degenerate kmers matching that pattern (e.g. mean of top 10/4096 
12mers matching CCNNNCCNNNCC in the example in Fig. 5H, S6H). We first 
calculated enrichments for patterns where the fixed positions (e.g. CCCCCC in the 
previous example) contained only one or two nucleotides to assess which RBPs were 
biased towards binding to degenerate nucleotide-rich sequences, but later performed 
exhaustive searches where the fixed kmer was allowed to cover the entire sequence 
space (i.e. 4096 possible sequences in fixed positions × 210=(10 choose 4) patterns 
with 6 fixed positions and 6 internal Ns). 
 
Filter binding assay  
Filter binding assay was performed with the oligo UUU(CCUCUCUUUUCC)UUU, i.e. 
the pattern CCNCNCNNNNCC flanked by Us and with Ns substituted with Us (in order 
to avoid creating high-affinity motifs and ensure the oligo was void of secondary 
structure). The negative control oligo used was U12. Custom RNA oligonucleotides were 
synthesized by IDT (Integrated DNA Technologies) and RBPs were purified as 
described earlier (see Cloning of RNA binding protein domains). RNA was end-labeled 
with 32P by incubating with Polynucleotide Kinase (NEB) according to manufacturer 
protocol. The assay was done following the protocol described in (Rio, 2012) for use 
with a 96-well dot-blot apparatus (Biorad). RBP and radio-labelled RNA were incubated 
in 50 uL binding buffer (500 uL 2M KCl, 10 uL 1M DTT, 400 uL 40% glycerol, 200 uL 1M 
Tris in 10 mL) for 1 hour at room temperature. Final concentration of RNA was 1nM and 
protein concentration ranged from 10nM-10uM (three-fold serial dilutions spanning this 
range). 
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Calculation of feature-specific R values and relative entropy of context features 
 
Feature-specific R values were calculated by assigning all 6mers into their respective 
bin for the feature under consideration for both the pulldown and input libraries, 
converting the counts into frequencies within each bin for both libraries, and computing 
the R value for the 6mer under consideration using the pulldown and input bin 
frequencies.  
 
For Fig. 6A-B, bins used to compute feature-specific R values for each feature were the 
following: 
Ppaired: bin 1=0-0.2; bin 2=0.2-0.4; bin 3=0.4-0.6; bin 4=0.6-0.8; bin 5=0.8-1.0 
Pflank: bin 1=0-0.3; bin 2=0.3-0.45; bin 3=0.45-0.6; bin 4=0.6-0.75; bin 5=0.75-1.0 
Core spacing: bin 1=0 nt spacing; bin 2 = 1 nt spacing; … ; bin 11 = 10 nt spacing, 
where the spacing corresponds to the spacing between the two cores of a bipartite 
motif. 
Nucleotide context: 16 bins, where the first four bins are quartiles of the percentage of A 
content flanking a 6mer based on the composition of input reads (bins 5-8, 9-12, and 
13-16 are analogous for C, G, and U content, respectively). Each 6mer occurrence was 
therefore counted 4 times, into the corresponding bin for each of the four nucleotides. 
 
Feature-specific R values within each bin were compared to the overall R value of the 
6mer without binning (i.e. log2(Rbin/Roriginal) ) to create the feature-specific enrichment 
profile for a particular context feature (example for Ppaired for two RBPs in Fig. S7A). 
 
For Fig. 6C and Fig. S7C, in order to compute the relative entropy of all context 
features on approximately the same scale, five bins as close to uniform in input as 
possible were created for each feature (if these five bins were exactly uniform, the 
maximum relative entropy would be log2(no. of bins) = log2(5) for each feature). The 
Ppaired and Pflank bins were set individually for each RBP such that the five bins were 
equally populated for the 6mer under consideration for the given input library. 
Nucleotide context bins were created using the empirical distribution of nucleotide 
flanking contents for reads with the same 6mer in the input according to: bin 1) “high A” 
(flanking A content in the 75th percentile of input reads with the other three nucleotides 
each in their lower 50th percentile); bins 2), 3) and 4) “high C”, "high G”, and “high U” 
(analogous to high A for the respective nucleotides); bin 5) “other" (all nucleotides 
between the 30th and 50th percentile). Reads that did not fit into any of these 
categories were discarded. The five bins used for split motif spacing were: bin 1) 
spacing of 0 nt; bin 2) spacing of 1-2 nt; bin 3) 3-4 nt; bin 4) 5-7 nt; bin 5) 8-10 nt. 
 
The relative entropy was then calculated for the probability distributions over the 5 bins 
for each of the four context features as:  
DKL(f6merPD || f6merIN), where DKL is the Kullback-Leibler Divergence and f6merPD and 
f6merIN are length 5 vectors that sum to 1 as described by the bins above. 

Tissue specificity of RBP gene expression 
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Tissue specificity was measured as the information content deviation from a uniform 
distribution among all tissues as in (Gerstberger et al., 2014). For each RBP, the 
log2(TPM+1) was calculated for each of the 40 GTEx tissues (GTEx Consortium, 2013), 
and the tissue specificity was computed as the difference between the logarithm of the 
total number of samples (N=40) and the Shannon entropy of the expression values for 
an RBP: 

S = Hmax - Hobs = log2(N) - Σi=1…N pi x log2(pi), 

Where pi = xi / Σi=1…N  xi 

for xi = log2(TPMi + 1) in sample i. 

The data used for the analyses were obtained from dbGaP accession number 
phs000424.v2.p1 in Jan. 2015. TPMs were measured using kallisto (Bray et al., 2016) 
on the following samples: Adipose-Subcutaneous: SRR1081567; AdrenalGland: 
SRR1120913; Artery-Tibial: SRR817094; Bladder: SRR1086236; Brain-Amygdala: 
SRR1085015; Brain-AnteriorCingulateCortex: SRR814989; Brain-
CaudateBasalGanglia: SRR657731; Brain-CerebellarHemisphere: SRR1098519; Brain-
Cerebellum: SRR627299; Brain-Cortex: SRR816770; Brain-FrontalCortex: SRR657777; 
Brain-Hippocampus: SRR614814; Brain-Hypothalamus: SRR661179; Brain-
NucleusAccumben: SRR602808; Brain-SpinalCord: SRR613807; Brain-
SubstantiaNigra: SRR662138; Breast-MammaryTissue: SRR1084674; Cervix: 
SRR1096057; Colon: SRR1091524; Esophagus: SRR1085211; FallopianTube: 
SRR1082520; Heart-LeftVentricle: SRR815517; Kidney-Cortex: SRR809943; Liver: 
SRR1090556; Lung: SRR1081283; MinorSalivaryGland: SRR1081589; Muscle-
Skeletal: SRR820907; Nerve-Tibial: SRR612911; Ovary: SRR1102005; Pancreas: 
SRR1081259; Pituitary: SRR1077968; Prostate: SRR1099402; Skin: SRR807775; 
SmallIntestine: SRR1093314; Spleen: SRR1085087; Stomach: SRR814268; Testis: 
SRR1081449; Thyroid: SRR808886; Uterus: SRR820026; Vagina: SRR1095599. 
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