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Abstract 
 
Autism Spectrum Disorder (ASD) is a common neurodevelopmental disturbance afflicting a variety of functions 

from perception to cognition. The recent computational focus suggesting aberrant Bayesian inference in ASD 

has yielded promising but conflicting results in attempting to explain a wide variety of phenotypes by canonical 

computations. Here we used a naturalistic visual path integration task that combines continuous action with 

active sensing and allows tracking of subjects’ dynamic belief states. Both groups showed a previously 

documented bias pattern, by overshooting the radial distance and angular eccentricity of targets. For both 

control and ASD groups, these errors were driven by misestimated velocity signals due to a non-uniform speed 

prior, rather than imperfect integration. We tracked participant’s beliefs and found no difference in the speed 

prior, but heightened variability in the ASD group. Both end-point variance and trajectory irregularities 

correlated with ASD symptom severity. With feedback, variance was reduced and ASD performance 

approached that of controls. These findings highlight the need for both more naturalistic tasks and a broader 

computational perspective to understand the ASD phenotype and pathology. 
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Introduction 
 
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with high prevalence (Xu et 

al., 2018). In response to its pervasiveness, researchers have recently turned their attention to computational 

and normative tools attempting to identify canonical computations underlying ASD symptomatology (e.g., 

Robertson & Baron-Cohen, 2018; Rosenberg et al., 2015). A promising candidate family is that of probabilistic 

inference (Doya et al., 2007), and indeed a large number of Bayesian accounts of ASD have recently been put 

forward – positing an anomaly in the strength of Bayesian priors (Pellicano and Burr, 2012; Friston et al., 

2013), the abnormal updating of these priors (Lawson et al., 2017; Lieder et al., 2019), the aberrant precision 

in sensory representations (Brock, 2012; Lawson et al., 2015; Zaidel et al., 2015; Karvelis et al., 2018), and the 

atypical weighting of sensory prediction error (Friston et al., 2013; Haker et al., 2016; van de Cruys et al., 

2016).  

 

Unfortunately, as for many other aspects of the ASD phenotype and pathology, there is yet no clear 

consensus. Remarkably, both attenuated (Karaminis et al., 2016; Noel et al., 2016) and intact (Pell et al., 2016; 

Croydon et al., 2017; Karvelis et al., 2018) priors have been reported, as well as normal (Manning et al., 2017) 

and abnormal (Lawson et al., 2017; Lieder et al., 2019) updating of these priors. These conflicting results may 

partially be due to a lack of quantification. Many studies have based their conclusions on a loose link to 

“reduced top-down modulation of sensory processing’’, “difficulties in accessing underlying statistical rules in 

an unstable context” or “impairment in predictive abilities” without any quantitative fit of the inference/predictive 

process (Croydon et al., 2017; Gonzalez-Gadea et al., 2015; Noel et al., 2016; Palmer et al. 2015; Pell et al., 

2006; Robic et al., 2015; Sinha et al., 2014; Skewes et al., 2015; Skewes & Gebauer, 2016; Turi et al., 2015, 

2016). A handful of studies have provided Bayesian model simulations (Karaminis et al., 2016; Powell et al., 

2016; Zaidel et al., 2015). To our knowledge, the only study that has computationally disentangled individuals’ 

likelihoods and priors (Karvelis et al., 2018) reported no difference in prior distributions between ASD and 

control groups.  

 

In addition to a lack of quantification, another contributing factor to conflicting conclusions may be the 

widespread use of constrained and data-poor tasks defined by binary behavioral outcomes. Separating 
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perception from action, for example, is a laboratory construct that has little to do with the challenges of 

everyday experiences. Furthermore, binary outcome tasks offer few data points to allow firm exploitation of 

complex computations, like fitting likelihoods and priors. We argue that, to understand the dynamic neural 

processes that mediate natural behavior – and deficits thereof - we must study recurrent neural computations 

by using continuous-time behavioral outcomes where actions influence sensory inflow — particularly when 

crucial variables cannot be directly observed such that the observer must draw inferences about those latent 

variables, as is often the case in ecological behaviors.  

 

Here we used a virtual reality navigation task that allows exploitation of brain computation in the naturalistic 

setting of continuous action and active sensing, as well as dynamic on-line inference about latent, task-relevant 

variables (Lakshminarasimhan et al., 2018). More specifically, we use a virtual navigation task that required 

control and ASD participants to use a joystick to actively acquire memorized targets by integrating visual 

motion cues (optic flow). This task is not only more natural in terms of the dynamic, closed-loop interactions 

between sensory inflow, internal beliefs, and actions, but also requires the continuous integration of visual 

motion cues – a process previously reported to be abnormal in ASD (Spencer et al., 2000; Milne et al., 2002; 

Pellicano et al., 2005), but recently suggested to reflect heightened sensitivity to noise (Zaidel et al., 2015). 

Further, our navigate-to-target task provides a rich and continuous dataset (i.e., two-dimensional movement 

trajectories extending for ~5 seconds/trial) permitting the tracking of belief states (Lee et al., 2014; 

Lakshminarasimhan et al., 2018), and efficient fitting of different components forming Bayesian computations 

(i.e., priors and likelihood functions).  

 
Results 

 
We asked ASD (n = 14) and matched control (n = 25, see Methods for detail) adolescents to use a joystick to 

virtually navigate toward and stop at the location of a briefly presented visual cue, a “firefly”. No landmarks 

were presented, only ground-plane triangular elements providing optic flow cues (Figure 1A). In the second 

half of trials participants were instructed in the task via feedback in the form of concentric circles indicating the 

location of the target, and a colored arrow (green if “rewarded” and red if “unrewarded”, Figure 1B). The 

portion of space “rewarded” was adaptively manipulated to become more restrictive with improved task 
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performance (see Methods). Targets were distributed randomly and uniformly (Figure 1C) within a range of r = 

1-6 meters (r, radial distance) and θ = ± 42.5° (θ, angular eccentricity) of visual angle relative to where the 

subject was stationed at the beginning of the trial. This radial distance is within the regime where humans are 

known to overshoot targets (Lakshminarasimhan et al., 2018; undershooting appears at and beyond 

approximately 20m). Indeed, visualizing exemplar target locations and trial trajectories (Figure 1C) during the 

block without feedback suggests that participants explored a larger space than that required by target 

locations. To further depict this trend, we expressed participants’ responses in polar coordinates (Figure 1D), 

with an eccentricity from vertical (angular response, 𝜃) and a radial distance (𝑟). In the example presented in 

Figure 1D (left), the error vector points radially outward and away from straight ahead. This pattern was 

consistent across trials for this particular subject, as shown in the vector field of errors (Figure 1D, right). This 

profile of errors implies consistent overshooting both in terms of absolute distance traveled and angular 

rotation. We initially focus on performance and impact of feedback on path integration for control subjects. 

Then, we assess baseline performance and the impact of feedback in individuals with ASD, as compared to 

neurotypical individuals.  

 
Typical Performance and Impact of Feedback 
 
To quantitatively assess the apparent under-estimation in self-position (and thus overshooting) during path 

integration, we separately compared the radial and angular error by performing a linear regression between 

target positions (𝑟, 𝜃) and responses (𝑟, 𝜃). Figures 1E and F show these regressions, respectively in the radial 

and angular dimension, for an exemplar control individual during the block without feedback. The linear fits 

account relatively well for the pattern of responses observed (Radial: R2 = 0.54; Angular: R2 = 0.92), while also 

evidencing considerable variability across trials, particularly in the radial dimension (Figure 1E, individual dots 

are single trials). Further, these data suggest that bias during path integration is multiplicative: the greater the 

distance traveled, the greater the error, as indicated by regression slopes over 1 (slope = 1 reflects no bias. 

Radial: 𝑟 vs. 𝑟 slope = 1.51, Angular: 𝜃 vs. 𝜃 slope = 1.78). There is no notable distance-independent bias, 

which would have been expressed as regressions with non-zero intercepts. Figures 1G and H illustrate the 

relationship between target location and responses in the block with feedback (same participant as in Figures 
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1E-F), showing dramatic improvement in terms of both accuracy (𝑟 vs. 𝑟 slope = 0.99, 𝜃 vs. 𝜃 slope = 1.14) and 

precision of endpoints (Radial: R2 = 0.77; Angular: R2 = 0.98) compared to the block without feedback. 

 

The above findings were consistent across subjects, as illustrated in Figures 1I and J. In the absence of 

feedback, both radial (mean ± standard error of the mean (SEM): 1.10 ± 0.06, p = 0.045) and angular (1.49 ± 

0.05, p = 1.50 x 10-14) overshooting biases were appreciable. Similar to Lakshminarasimhan et al., 2018, the 

effect size was 4 to 5 times greater in the angular (50%) than radial (10%) dimension (78% vs. 19% in 

Lakshminarasimhan et al., 2018): all subjects show angular over-estimation, while not all show radial over-

estimation.  

 

The introduction of feedback completely eliminated overshooting in radial distance (0.97 ± 0.02, p = 0.6, 

Figure 1I) and reduced, but not completely eliminated, the angular bias (1.09 ± 0.02, p = 5.51 x 10-8; Figure 

1J). Interestingly, providing feedback at the end of each trial increased not only accuracy, but also precision 

(feedback – without feedback, ΔR2 Radial = 0.09 ± 0.02, p = 4.25 x 10-4; ΔR2 Angular = 0.01 ± 0.004, p = 

0.003: Figure 1K and L). Further, the introduction of feedback drove participants to faster trajectories, both in 

the radial (F = 125.0, p<0.001) and angular (F=24.0, p<0.001) dimension, and in turn to shorter trials (from 

5.42 ± 0.05 without feedback, to 3.70 ± 0.05 seconds with feedback, F=98.22, p<0.001; Figure S1).  
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Figure 1. Experimental Protocol and Normal Performance. A) Participants use a joystick to navigate to a flashed 
target (yellow disc, or “firefly”) using optic flow generated by ground-plane triangles. B) Example trajectory of a participant 
approaching the unseen target. In the feedback block, after participants have made their response, concentric circles and 
either a green (if “rewarded”) or red (if “unrewarded”) arrow appears indicating the true location of the target. C) 
Distribution of targets (left) and example trajectories from one experimental block (right). D) Left: Target and endpoints 
expressed in polar coordinates (angular distance: θ; radial distance: r). Right: Errors of the example trajectories. E-H) 
Scatter plots of radial and angular distance responses (y-axis) as a function of the respective target distance (x-axis) for a 
representative subject (Control Subject #3), shown separately without and with feedback. Individual dots are single trials. 
Solid lines: linear regression; Dashed lines: identity lines. I-L) Scatter plots of regression slopes (1 = no bias, <1 = 
undershooting, >1 = overshooting) for all participants individually (gray dots) and population average (error bars: ± SEM).  
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Path Integration Improves with feedback due to a reduction in self-motion uncertainty 
 
To further understand the root cause of participant’s overshooting of the target, and most importantly, the 

driving, latent, mechanism behind their improvement during trial-to-trial feedback, we instantiated two dynamic 

Bayesian observer models (first introduced in Lakshminarasimhan et al., 2018). Both models assume that 

subjects maintain estimates of both the mean and uncertainty associated with their location, and steer toward 

the target to maximize reward on each trial (see Lakshminarasimhan et al., 2018 and Methods). The 

trajectories generated by each model correspond to the subject’s beliefs about their distance to target 

throughout the trial. Thus, these models are fitted to the whole movement trajectory for each trial by 

maximizing the overlap between the posterior distribution over believed position and the target region at the 

end of each trial (see Methods). 

 

The first model hypothesizes that participants overshoot targets because they misestimate their speed due to a 

non-uniform prior that biases velocity estimates. In contrast, sensory evidence accumulation (path integration) 

is assumed to be lossless (Figure S2A; Hurlimann et al., 2002; Stocker & Simoncelli, 2006; Weiss et al., 2002; 

Petzschner & Glasauer, 2011). The inference of velocity estimates from optic flow signals depends on the 

shape of the observer’s prior distribution for velocity (Figure 2A, solid black line, 𝑎!  and 𝑎!  defining the 

exponential decay of the radial and angular velocity components, respectively), which is combined with a 

likelihood function (Figure 2A, dashed black line, 𝑏!  and 𝑏! , respectively, defining the linear relationship 

between velocity and the variance of the radial and angular likelihood, see Methods) to generate the final 

posterior estimate of velocity (Figure 2A, green). Unlike Lakshminarasimhan et al., 2018, here the exponents 

dictating the shape of the prior distribution (𝑎! and 𝑎!) were allowed to be negative or positive (allowing for 

both under- and over-estimation), given that participants are overall accurate during the feedback condition, 

and even in the block without feedback a subset of participants did not radially overshoot targets.  

 

The second, ‘leaky integration’ model (Figure S2B), hypothesizes that estimates of velocity are correct, and 

instead biases are due to imperfect integration of velocity into position estimates (Lappe et al., 2007, 2011; 

Mittelstaed & Glasauer, 1991). This assumes a flat prior (𝑎! = 𝑎! = 0), but a leaky integration. Integration is 

dictated by two independent leak time constants 𝜏! and 𝜏! that specify the timescale over which radial and 
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angular velocity are integrated. This ‘leaky integration’ model was refuted for neurotypical individuals by 

Lakshminarasimhan et al., 2018, but has been included here to compare between ASD and controls, given that 

one of the many ASD hypotheses claims deficient integration in this conditions (Iarocci & McDonald, 2006; 

Stevenson et al., 2014; Wallace et al., 2019). 

 

Both the speed prior and leaky integrator models have 4 free parameters; parameters 𝑏! and 𝑏! expressing 

how fast the squared spread (i.e., variance) of the likelihood functions scale with the magnitude of linear and 

angular velocity measurements, and either 𝑎! and 𝑎! (for the speed prior model) or 𝜏! and 𝜏! (for the leaky 

integrator model). To gauge the quality of model fits, we reasoned that a good behavioral model ought to 

believe that the participants should stop where they did stop. In other words, the model belief should 

demonstrate that participants stopped where they did because they believed to be near the target. In turn, if 

the model accounts well for participant’s beliefs, its position estimate should be concentrated near the true 

target. To evaluate this, we used the best-fit model parameters for each subject to reconstruct the subjects 

believed end position. There was no residual bias (i.e., bias after accounting for the subject’s best fit 

parameters), neither prior to nor after feedback, and neither in the radial nor angular dimension, when utilizing 

the speed-prior model (“residual” bias contrast to a slope of 1 – no bias – all p > 0.10; Figure S2A). On the 

other hand, under the architecture of leaky integration, all contrasts showed significant residual biases (all p < 

0.02; Figure S2B).  

 

Given that the speed prior model (Figure 2A) accounted best for the observed data (both in the conditions with 

and without feedback), there are two putative mechanisms leading to enhanced performance in the block with 

feedback. The first is that during the block with feedback, the exponential prior for speed relaxes, becomes 

closer to a uniform prior (Figure 2A, bottom left). The second is that the scaling of the variance of the 

likelihood distribution with velocity becomes shallower (Figure 2A, bottom right). To distinguish between these 

possibilities we extracted the latent parameters of the best-fit model for each participant, which were then 

compared across feedback conditions. As shown in Figure 2B (top), there was no change with feedback in the 

exponent characterizing the prior for speed, neither in the radial (ΔRadial = 0.002 ± 0.002, p = 0.2) nor angular 

(ΔAngular = - 0.01 ± 0.014, p = 0.71) dimension. Of note, however, while the angular exponent was on 
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average (i.e., taking into account both the block with and without feedback) significantly smaller than zero (-

0.10 ± 0.02, p = 1.0 x 10-7), the radial one was not (-2.75 x 10-4 ± 0.001, p = 0.81), suggesting that the greater 

bias exhibited by participants in the angular than radial dimension in the block without feedback is driven by a 

stronger prior in the former dimension. 

 

On the other hand, the scaling of the likelihood variance with velocity decreased with feedback, both in the 

radial (ΔRadial = -9.69 ± 2.0, p = 9.9 x 10-5) and angular (ΔAngular = -3.81 ± 0.96 p = 7.30 x 10-4) dimension 

(Figure 2B, bottom). Together, the modeling results indicate that biases in path integration originate chiefly 

from biases in velocity estimates that are then appropriately integrated into position estimates. On the other 

hand, the improvement in path integration accuracy is driven by a reduction in the scaling of uncertainty with 

velocity, and not in a change in the prior. 

 
Figure 2.  Speed-Prior Dynamic Bayesian Observer Model of Path Integration. A) Biases in path integration originate 
from an underestimation of velocity, modeled as a posterior (in green) based on a prior for speeds (black solid line) and a 
likelihood distribution (black dashed line). The likelihood width is taken to scale with velocity, as shown by the 
superimposed gray likelihoods increasing with width. This velocity posterior is then integrated into an estimate of position. 
Improvement in performance may be due to either the prior relaxing (bottom left), or the scaling of likelihood width 
becoming shallower. B) Extraction of the parameters best accounting for participant trajectories suggests that the prior 
does not change with feedback, but instead the scaling of the likelihood width with velocity becomes shallower. 
 
 
Abnormal Uncertainty Prior to Feedback in Autism 
 
Next, we assess path integration abilities in individuals with ASD, and examine whether feedback improves 

their performance using a strategy akin to that employed by neurotypical individuals. We start with a model-

independent quantification of the behavior, and end with a direct comparison with Bayesian model fits. 
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Prior to feedback, the clinical group showed marked overshooting of targets, both in the radial (𝑟 vs. 𝑟 slope = 

1.10 ± 0.08, p = 0.048) and angular (𝜃 vs. 𝜃 slope = 1.52 ± 0.07, p = 1.3 x 10-5) dimension. The magnitude of 

this bias was not different than that of neurotypical controls (all p > 0.73, Figure S3, y-axis). Providing 

feedback at the conclusion of each trajectory improved their performance (feedback – without feedback, 

ΔRadial = -0.12 ± 0.08, p = 0.021; ΔAngular = -0.40 ± 0.07, p = 2.2 x 10-4), and the magnitude of this 

enhancement was similar across control and ASD groups (all p > 0.92; Figure S3, x-axis). Similar to the 

control subjects, during feedback individuals with ASD shortened their trial durations (p = 7.69 x 10-9) by 

increasing radial (p = 2.71 x 107) and angular velocities (p = 0.01, Figure S1). In fact, they employed this same 

strategy to a greater extent than their neurotypical counterparts (all p<0.045). Further, the trial-to-trial dynamics 

with which feedback improved end-point accuracy within these groups was ostensibly also similar, as 

suggested by the fact that the outer boundary of the “rewarded zone” decreased at the same rate (see Figure 

S4). 
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Figure 3. Increased Uncertainty in Autism. A, B) Goodness-of-fit (R2) of linear regression between response vs. target 
distance (from plots as in Fig. 1E-H) for ASD (red) and control (black) subjects without and with feedback. Data shown for 
individual subjects and group averages (+/-S.E.M.). C,D) Standard deviation of the end-point responses within specific 
target distance bins (x-axis) in the radial (left) and angular (right) dimension. E, F) Variance of the likelihood function 
(computed from the speed-prior model fit). G,H), Radial R2 correlate inversely with ASD symptomatology prior to feedback 
(solid colors and dashed lines): the larger the endpoint variability, the higher participants scored on the Autism Quotient 
and the Social Communication Questionnaire. Single dots are individual participants. 
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Contrary to the similarity in performance when average responses were considered, indexing of dispersion 

tendencies suggested that at baseline (i.e., prior to feedback) individuals with ASD exhibited a heightened 

degree of variability with respect to control individuals. Namely, prior to feedback, trial-to-trial variance in radial 

endpoints, as captured by R2-values of the linear regression fits, was larger in ASD than control individuals (p = 

1.3 x 10-6; Figure 3A). The introduction of feedback eliminated the deficit shown by the clinical group (p = 

0.61). A similar analysis contrasting the variability of angular responses during the no feedback block did not 

detect a significant difference between groups (p = 0.36, Figure 3B), possibly due to a ceiling effect (77 / 78 

R2-values > 0.92). To circumvent this problem, we also quantify uncertainty as the standard deviation of a 

select group of trials, split into equally sized quartiles based on target distance. This analysis showed that prior 

to feedback endpoint responses of ASD individuals were more variable than that of control participants (Figure 

3C, D) both in the radial (p = 0.030) and angular (p = 0.048) dimension. Further, uncertainty scaled with target 

distance (both p < 0.001), a scaling that was exacerbated in ASD for the radial dimension (p = 0.028). 

Feedback reduced variability (both p < 0.001), equating the clinical and control group (Figure 3C, D). 

Importantly, the correlation between target distance and increasing uncertainty – and the greater scaling of the 

latter with the former in the ASD group – was true when conducting partial correlations accounting for response 

distance, trial duration, movement duration, reaction time, and mean movement velocity (p < 0.05). Thus, the 

greater variance in ASD is not merely motor, where response duration or response distance would have 

accounted for the variance instead accounted by target distance. 

 

As in the case with the control individuals, we leveraged the full extent of movement trajectories in 2-

dimensions to track belief states by fitting the two abovementioned dynamic Bayesian Observer Models; one 

hypothesizing a prior for speeds leading to inaccurate velocity estimates, and the other hypothesizing an 

imperfect process of integration. As for the control subjects, the model that accounted best for participants’ 

trajectories was the speed prior (Figure S2). These results refute that ASD individuals are poorer than controls 

in integrating visual velocity signals over time (see Zaidel et al., 2015 for a similar conclusion using a passive 

visual motion integration task). Importantly, the best-fit estimated speed prior was equal in ASD and control 

groups both before (Linear, p = 0.61; Angular, p = 0.13) and after feedback (Linear, p = 0.42; Angular, p = 

0.89; see Figure S5). In contrast, and as expected from the R2 results, the best-fit parameters of the scaling of 
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the radial likelihood variance with velocity reflected a steeper dependence (i.e., uncertainty grew faster with 

velocity) in ASD than controls (p = 0.01, Figure 3E). The difference in radial likelihood scaling between ASD 

and controls disappeared after feedback (p = 0.64). While generally the scaling of the angular likelihood with 

velocity also decreased with feedback in the ASD group (p = 2.93 x 10-5), it did not do so differently than for 

neurotypical controls (all p > 0.67, Figure 3F).  

 

What is perhaps most notable is that the degree of trial-to-trial variability in radial endpoints before feedback 

was not only different across experimental groups, but also showed strong correlations with ASD 

symptomatology. The Autism Quotient (AQ; Baron-Cohen, 2001), measuring symptoms of autism spectrum in 

healthy populations, and the Social Communication Questionnaire (SCQ; Rutter et al., 2003), measuring 

communication skills and social functioning symptomatology, both negatively correlated with the R2-values of 

the linear regression between radial targets and responses prior to feedback (radial R2 and AQ, r = - 0.64, p = 

9.52 x 10-6; radial R2 and SCQ, r = - 0.68, p = 1.5 x 10-6; Figure 3G, H). Further supporting the association 

between greater variability and ASD symptomatology, the scaling of radial uncertainty with velocity extracted 

from the best-fit speed prior model also showed a positive correlation with both the AQ (r = 0.53, p = 4.63 x 10-

4) and SCQ (r = 0.55, p = 2.27 x 10-4; Figure S6). These findings consistently suggest that worsened 

symptomatology is associated with heightened variability in responses.  

 

The observed differences in uncertainty between ASD and control groups, as well as the association of this 

variability with ASD symptomatology also extended into finer grain inspection of the trajectory themselves. 

Namely, as expected given the fact that trials begin and end with null velocities, radial distance from origin as a 

function of time was very well described by sigmoidal functions (r = 0.99 ± 6.34 x 10-4; Figure 4A; see 

Methods). These trajectories, however, were smoother in control than ASD individuals (p=0.001; Figure 4A 

shows a handful of example trajectories in a control and ASD participant, blue arrows indicate moment of 

jerkiness). Notably, unlike end-point variability, the quality of this fit did not change with feedback for either 

group (p = 0.13; Figure 4B). But importantly, the smoothness of movement trajectories in virtual reality scaled 

with ASD symptomatology: higher AQ (r = -0.42, p = 0.007, Figure 4C) and SCQ (r = -.50, p = 8.63 x 10-4, 
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Figure 4D) scores were associated with larger deviations from perfectly sigmoidal trajectories both prior to and 

after feedback.  

 

 
 
Figure 4. Trajectory smoothness correlates inversely with ASD symptomatology. A) Radial distance from the origin 
as a function of time (solid lines) was fit with a sigmoidal function (dashed lines); shown for a handful of example 
trajectories from a control (black) and ASD (red) individual. Blue arrows mark examples of jerkiness in ASD trajectories. 
B) Scatter plot of R2 of the sigmoidal fit with and without feedback for ASD (red) and control (black) individuals (also 
shown are means +/- S.E.M). C,D) The R2-values of sigmoidal fits correlated with both the Autism Quotient (AQ) and 
Social Communication Questionnaire (SCQ), suggesting that the smoother a participant’s trajectory, the lower they scored 
on ASD-related symptomatology.. 
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the end of each trial. The initial bias seemingly stemmed from a speed prior (Stocker & Simoncelli, 2006; 

Petzschner & Glasauer, 2011; Lakshminarasimhan et al., 2018) biasing estimates of self-velocity, and not from 

the leaky integration of velocity into position estimates (Mittelstaedt & Glasauer, 1991; Lappe et al., 2007, 

2011). Thus, the first conclusion of this work is that, contrary to what has been suggested in some previous 

literature (e.g., Noel et al., 2018; Iarocci & McDonald, 2006), individuals with ASD do not appear to be 

particularly poor integrators, at least not within the cadre of a naturalistic task wherein the integration is across 

a sustained time-period on the order of 5-6 seconds. This finding is in line with Giovanni et al., 2009, who 

demonstrated no difference between children with ASD and control individuals in blindly navigating toward a 

briefly presented target, using nothing but proprioceptive and kinematic information (as opposed to visual flow 

here). This finding is also in line with Zaidel et al., 2015, who demonstrated that both visual motion integration 

and the (maximum likelihood estimation, Ernst & Banks, 2002) integration of visual and vestibular signals into a 

multisensory estimate of self-motion was optimal and no different across control and ASD individuals. Overall, 

the current findings question theories of ASD emphasizing marked deficits in information integration (Happe & 

Frith, 1996, 2006; Iarocci & McDonald, 2006).  

 

By fitting a dynamic Bayesian observer model across the entire trajectory, we were able to track participant’s 

belief states (Lee et al., 2014) and estimate likelihood functions and priors. The second conclusion of this work 

is that, contrary to the hypo-prior hypothesis of ASD (Pellicano & Burr, 2012), results showed no difference in 

the prior for self-motion speeds, neither in the radial nor angular dimension, and neither prior to or after 

feedback. Thus, the only two studies that have computationally disentangled individual subject’s likelihoods 

and priors found no difference in prior distributions between ASD and control groups (Karvelis et al., 2018; 

present study). These results contradict the hypothesis that hypo-priors can indeed represent a global property 

of ASD. Importantly, these results do not argue against the hierarchical Bayesian framework for ASD, rather 

they simply demonstrate that a canonical signature of ASD cannot be found in the rather superficial and 

simplistic hypo-prior explanation. 

  

On the other hand, results revealed heightened variability in the clinical population. Namely, whether 

uncertainty was quantified as the fitted width of likelihood functions in the Bayesian model, by summary 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2019. ; https://doi.org/10.1101/2019.12.28.890004doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.28.890004
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

statistics (i.e., R2), or by examining the finer-grain detail of trajectories, we found that individuals with ASD 

were more variable than their neurotypical counterparts. Further, we found that across multiple task-variables 

(i.e., target distance and movement velocity) variability scaled quicker in ASD than in controls. Importantly, the 

variability of path integration endpoints (quantified by either R2 or likelihood widths within a dynamic Bayesian 

Observer model), as well as the degree to which movement trajectories deviated from smooth sigmoids, were 

all associated with increased severity in ASD symptomatology, as measured both by the AQ and SCQ scores.  

 

Given the closed-loop nature of our task, this heightened variability can reflect either an impairment in filtering 

out noise on the sensory side or a decreased ability to generate consistent motor responses. The former 

explanation is in line with findings with simpler, open-loop tasks (Dinstein et al., 2012, Haigh et al., 2014; 

Bonneh et al., 2011; Milne, 2011; Zaidel et al. 2015). From a mechanistic standpoint, these widespread deficits 

in precision could emanate from a deficit in a global, brain-wide, computation. One of such canonical 

computations is divisive normalization (Carandini & Hegger, 2012), where neural firing is contextualized by a 

normalizing pool, effectively leading to a filtering operation. In fact, using neural network simulations, 

Rosenberg and colleagues (2015) demonstrated that anomalies in divisive normalization could account for an 

array of visual perception consequences reported in ASD, and more recently Coen-Cagli and colleagues 

(2019) showed that neurons that are more strongly normalized fire more reliably. 

 

An alternative, but not necessarily mutually exclusive explanation, is that the increased variability in path 

trajectories and end points does not reflect a heightened sensitivity to noise at the stage of encoding, but rather 

an increase volatility of beliefs. Specifically, it has recently been proposed that the core abnormality in ASD 

may reside in perceptual aberrations due to an imbalance in predictive coding (Haker et al., 2016; Van de 

Cruys et al., 2016). According to this hypothesis, individuals with ASD overestimate their sensory prediction 

errors, such that the world appears more volatile than it is. This expansion of the original hypo-prior hypothesis 

to predictive coding (Friston et al., 2013) is not only qualitative consistent with previous experimental findings 

but has also been recently supported experimentally by Lawson and colleagues (2017), who showed that 

adults with ASD over-estimate volatility in the face of environmental change. This comes at the expense of 

learning to build stable expectations that lead to adaptive surprise, and thus leads to over-reacting to 
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environmental change and being disproportionately receptive to sensory input. According to this framework, 

wrongfully precise prediction errors during inference would urge new learning that results in ‘noise’ as it is 

unlikely to repeat. Given the naturalistic, closed-loop action/perception/prediction nature of our task, where 

actions (driven by prediction errors) influence sensory inflow, such erroneous learning due to overestimated 

sensory prediction errors would lead to increased variability in actions, as observed here. With feedback, ASD 

performance matched that of control individuals, likely because feedback provided a veridical precision for 

sensory prediction errors. Thus, the present findings, which do not support the hypo-prior hypothesis, are 

qualitatively consistent with the sensory prediction error hypothesis. 

 

While normative computational frameworks are certainly well positioned to account for the panoply of cognitive 

and perceptual abnormalities present in ASD, the recently promoted Bayesian approaches (Lawson et al., 

2014, 2017; Palmer et al., 2017; Karvelis et al., 2018) are only a narrow view of a larger and more complex 

story. Notably, whether priors are weak (Pellicano & Burr, 2012) or too volatile (Lawson et al., 2014; Lieder et 

al., 2019), these theories emphasize anomalies that act exclusively at the decoding level – but this is but a 

small component of brain computation. To our knowledge, other aspects of statistical inference have so far 

been ignored; i.e., how likelihood functions are constrained by priors (i.e., efficient coding; Wei & Stocker, 

2015). Our closed-loop task involves both encoding and decoding in an intertwined, naturalistic way, which 

may adhere better to ASD symptomatology of everyday experiences. We argue for the use of more 

naturalistic, dynamic tasks (e.g., where sensory processing, perceptual inference, and actions/decisions are 

not artificially segregated in laboratory tasks) and normative modeling to understand how the neural 

computation in individuals with ASD has gone awry. 

 

Collectively, both studies that have explicitly fitted priors and likelihoods to participants’ behavior (Karvelis et 

al., 2018; present study) have demonstrated that the source of the computation that has gone awry in ASD is 

not the prior. Instead, a broader aberrant learning and inference may be the core component of maladaptive 

cognition within the condition. Maladaptive inference in ASD can arise from alterations in one of several core 

components (beyond priors and likelihoods of an extremely simplified Bayesian model) that span a multi-

dimensional computational space (Haker et al., 2016). The hypothesized fundamental mechanism affected in 
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ASD, hierarchical Bayesian learning, is much broader than just the simple equation argued in recent 

publications (Posterior = Prior x Likelihood). Sensory encoding, efficient coding (where the prior is an inherent 

component of sensory encoding; Wei & Stocker, 2015), action-oriented predictive coding (Clark, 2013; Friston 

2009; Friston et al., 2010), all constitute critical components of cognitive computations that must be 

quantitatively explored in ASD. Although not exhaustive, the space of possibilities for how the phenotypic and 

clinical variability of ASD patients could arise from different impairments of hierarchical Bayesian inference is 

multidimensional. In other words, different autistic phenotypes could arise from different impairments in the 

computation of multiple key variables, which may qualitatively (but erroneously) appear as priors and 

likelihoods. A few years ago, a computational perspective on Autism was rare. Now, it is growing in appeal. 

However, we should not underestimate the complexity of both the brain and the ASD phenotype, particularly in 

light of the highly constrained experimental tasks and models we use.  

 
Methods 

 
Participants  
 
Thirty-nine subjects completed the firefly catching task. Fourteen were individuals diagnosed within the Autism 

Spectrum Disorder (ASD; N = 14, mean ± sd; age = 14.5 ± 2.1 years; AQ = 32.7 ± 7.3; SCQ = 17.8 ± 4.2) by 

expert clinicians. The rest were age-matched neurotypical individuals (Control; N = 25, mean ± sd; age = 14.8 

± 2.14 years; AQ = 14.0 ± 5.5; SCQ = 5.6 ± 3.2). Participants had normal or corrected-to-normal vision, and no 

history of musculoskeletal or neurological disorders. Prior to partaking in the study, all participants completed 

the Autism Spectrum Quotient (AQ; Baron-Cohen, 2001) and the Social Communication Questionnaire (SCQ; 

Rutter al., 2003). The Institutional Review Board at Baylor College and Medicine approved this study, and all 

participants gave their written informed consent and/or assent. 

 
Materials and Procedures 
 
Participants were tasked with virtually navigating to the location of a briefly presented target (i.e., the ‘firefly’) 

via an analog joystick with two degrees of freedom (linear and angular speed). Participants were seated facing 

a large projection screen (width x height: 149 x 127 cm) positioned 67.5cm in depth with respect to their eyes, 

and wore a seatbelt in order to restrain trunk movements. Visual stimuli were rendered as a red-green 

anaglyph and subjects wore goggles fitted with Kodak Wratten filters (red #29 and green #61) to view the 
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stimulus. The virtual world comprised a ground plane whose textural elements were isosceles triangles (base x 

height = 8.5 x 18.5cm) that were randomly positioned and re-oriented at the end of their lifetime (lifetime = 

250ms; floor density = 2.5 elements/m2; Figure 1A). This floor texture had a limited lifetime and was re-

oriented at each presentation in order to allow them to provide optic flow information, but not serve as 

landmarks. The ground plane was circular with a radius of 70 meters (near and far clipping planes at 5cm and 

4000cm, respectively), and the subject was positioned at the center of this virtual world at the beginning of 

each trial. On each trial the target was a circle of radius 20cm whose luminance was matched to the ground 

texture elements, blinked at 5Hz and appeared at a random location between θ = ± 42.5° of visual angle and at 

a distance of r = 1 – 6m relative to where the subject was stationed at the beginning of the trial. After one 

second, the target disappeared, which cued subjects that they could use the joystick to navigate to the location 

of the target. The maximum linear and angular speeds were respectively limited to 𝑣!"# = 2 𝑚/𝑠  and 

𝑤!"# = 90°/𝑠. Upon arriving at the location where they thought the firefly was present, participants pressed a 

button to indicate their response.  

 

The experiment consisted of 2 blocks, each block consisting of 150 trials. In the second block participants were 

given visual feedback. This feedback was in the form of a bull’s-eye pattern rendered on the virtual floor 

(Figure 1B). This pattern consisted of six concentric circles, with the radius of the outermost circle being 

continuously scaled (up or down by 5%) according to the 1-up-2-down staircase procedure. Additionally, an 

arrowhead indicating the target location was presented on the ground with either green or red color, depending 

on whether the participant’s final response was within or outside the outermost “rewarded” concentric circle 

(Figure 1B). The two blocks of trials (without and with feedback) were separated by at least 5 minutes rest.  

 

All stimuli were generated and rendered using C++ Open Graphics Library (OpenGL) by continuously 

repositioning the camera based on joystick inputs to update the visual scene at 60 Hz. The camera was 

positioned at a height of 1 m above the ground plane. Spike2 software (Cambridge Electronic Design Ltd.) was 

used to record and store the subject’s linear and angular velocities (r, θ), target locations (r, θ), and all event 

markers for offline analysis at a sampling rate of 833.3 Hz. Further details of the experimental setup and task 

can be found in Lakshminarasimhan et al. (2018). 
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Data Analyses  
 
The location of randomly presented targets (Figure 1C, left), participants’ trajectory (Figure 1C, right) and final 

position responses were expressed in polar coordinates as a radial distance (target = r; response = 𝑟) and an 

angular eccentricity (target = θ; response = 𝜃; arbitrarily, straight ahead = 0°; Figure 1C). When visualizing 

responses as a function of target location (Figure 1D, right), it was apparent that a linear model with 

multiplicative gain scaling accounted well for the observed data (see Results, Figure 1D, error was greater at 

the farthest locations tested). Thus, we used the slopes of the corresponding linear regressions as a measure 

of bias. Note that in this schema a slope of 1 indicates no bias, while slopes larger than 1 indicate overshooting 

(either in radial distance or angle). For each subject we extract R2 values of the linear fit of radial/angular target 

vs. response as an indication of trial-to-trial variability. Lastly, virtual path trajectories were fit with a sigmoidal 

function (given that participants started and ended their trajectories at velocity v = 0; parameter dictating the 

location and steepness of the non-linearity were left as free parameters, the saturation points were taken to be 

the minimum and maximum observed in data). Trajectories were down-sampled to 83.33Hz prior to sigmoidal 

fitting.  

 
 Dynamic Bayesian Observer Model 
 
To account for the pattern of behavioral results, we considered an observer model comprised of a Bayesian 

estimator that uses noisy measurements 𝑚! and 𝑚! to decode linear and angular self-motion velocities 𝑣 and 

𝑤. These internal velocity beliefs were then temporally integrated to dynamically update the subject’s position 

in the virtual world. We parameterized the model by making the following three assumptions. First, we chose 

an exponential function to describe the priors over both linear and angular velocities: 𝑝 𝑣 =  𝑒!!|!|  and 

𝑝 𝑤 =  𝑒!!|!|. Second, likelihood functions 𝑝 𝑚!|𝑣  and 𝑝 𝑚!|𝑤  were assumed to be Gaussian, centered on 

the respective measurements 𝑚! and 𝑚!. That is, likelihoods were unbiased. The variance of these likelihood 

functions scales proportional to the magnitude of velocity measurements: 𝑉𝑎𝑟 𝑚! =  𝑏!  𝑚!  and 𝑉𝑎𝑟 𝑚! =

 𝑏!  𝑚! . Under these conditions, it can be shown that the means and variances of the maximum a posteriori 

estimates v and w are given by (Stocker & Simoncelli, 2006; Lakshminarasimhan et al., 2018): 

 
𝐸 v 𝑚! =  (1 +  𝑎!𝑏!)𝑚!   (Eq. 1) 
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𝑉𝑎𝑟 v 𝑚! =  (1 +  𝑎!𝑏!)! 𝑉𝑎𝑟(𝑚!)   (Eq. 2) 
 
and correspondingly for 𝑤. A flat prior corresponds to an exponent of zero yielding an unbiased estimate, while 

negative/positive values of the exponents would result in under/overestimation of the speeds.  

 

The third and final building block of the model pertains to the integrator computing position from velocity. We 

assume that the integrative process is dictated by two independent leak time constants 𝜏! and 𝜏! that specify 

the timescales of integration of estimated linear and angular speeds to compute distance (𝑑) and heading (𝜑). 

In turn:  

 
𝑑 =  − ! !

!!
+ 𝑣(𝑡)  (Eq. 3) 

 
 

𝜑 =  − ! !
!!

+ 𝑤(𝑡)  (Eq. 4) 

 
The average distance and heading at each time point can be determined by convolving the mean velocity 

estimates with an exponential kernel 𝐸 𝑑 𝑡 =  𝑒!!/!!  ∙  𝐸 [𝑣 (𝑡)] and 𝐸 𝜑 𝑡 =  𝑒!!/!!  ∙  𝐸 [𝑤 (𝑡)], where the 

expectations are taken over the corresponding posterior probability distributions. Likewise, if the noise in the 

velocity measurements is temporally uncorrelated, the variance of the distance and heading estimates can be 

expressed in terms of the variances of the velocity estimates; 𝑉𝑎𝑟 𝑑 𝑡 =  𝑒!!/!!  ∙  𝑉𝑎𝑟 [𝑣 (𝑡)] and 𝑉𝑎𝑟 𝜑 𝑡 =

 𝑒!!/!!  ∙  𝑉𝑎𝑟 [𝑤 (𝑡)]. Hence, in this case, both mean and variance of the integrated estimates will share the 

same temporal dynamics. Note that the mean estimates 𝐸 𝑑 𝑡  and 𝐸 𝜑 𝑡  will be accurate with large time 

constants, but will be misestimated if these constants are comparable with travel time, 𝑡. Since position is 

determined jointly by the time course of distance and heading, it follows that the subject’s mean estimate of 

their linear and angular positions 𝑟 and 𝜃 will also be different from their veridical values when 𝜏 ≈ 𝑡. 

 
Model Fitting 
 
In a prior study our group (Lakshminarasimhan et al., 2018) demonstrated that a slow-speed prior model (i.e., 

with a negative 𝑎! and 𝑎! exponent), with perfect integration (𝜏! and 𝜏! set to infinity), best accounted for 

overshooting observed in this path integration task. Differently form Lakshminarasimhan et al., 2018, however, 

we allow for 𝑎! and 𝑎! to be either negative or positive (or zero; flat prior). In addition, as many (Rinehart et al., 
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2000; Iarocci et al., 2006; Robertson et al., 2012; Stevenson et al., 2014; Noel et al., 2018) claim that 

individuals with ASD are poor integrators, we also fit a leaky integrator model, where the prior was held flat (𝑎! 

= 𝑎! = 0), yet 𝜏! and 𝜏! were free parameters. Both the slow-speed prior model and the leaky integrator model 

have 4 free parameters; width parameters 𝑏! and 𝑏! expressing how fast the spread of the likelihood functions 

scale with the magnitude of linear and angular velocity measurements, and either 𝑎! and 𝑎! (for the speed 

prior model) or 𝜏! and 𝜏! (for the leaky integrator model).  

 
Since subject’s position estimates are probabilistic, we fit model parameters by taking both mean and 

uncertainty of position into account; this was done by maximizing the expected reward, that is, the probability 

that the subjects believed themselves to be within the target at the end of each trial. Model parameters were 

optimized utilizing MATLAB’s fmincom function, constraining time-constants (where applicable) and likelihood 

widths to be non-negative, and by initializing a total of 100 random seeds. For further detail see 

Lakshminarasimhan et al., 2018.  

 
Acknowledgements 
 
We thank Jing Lin and Jian Chen for programming the experimental stimulus. This work was supported by the 
Simons Foundation, SFARI Grant 396921 and  Grant 542949-SCGB, as well as R01 DC014678. 
 
Author contributions  
 
DEA and KL designed experiments. HP collected data. JPN analyzed data. DEA and JPN wrote manuscript. 
 
Competing Interest Statement 
 
The authors have no competing interests to disclose. 
 
 
References 

American Psychiatric Association. (2013) The Diagnostic and Statistical Manual of Mental Disorders: DSM-
5 (American Psychiatric Publishing, Washington, DC) 

Baron-Cohen S. (1989). The autistic child's theory of mind: a case of specific developmental delay. J Child 
Psychol Psychiatry, 30(2):285-97. 

Baron-Cohen, S. Wheelwright, S.,   Skinner, R., Martin, J., Clubley, E. (2001). The autism-spectrum quotient 
(AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and 
mathematicians J. Autism Dev. Disord., 31 (1), pp. 5-17 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2019. ; https://doi.org/10.1101/2019.12.28.890004doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.28.890004
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 23	

Baron-Cohen, S., Ashwin, E., Ashwin, C., Tavassoli, T., & Chakrabarti, B. (2009). Talent in autism: Hyper-
systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal 
Society B: Biological Sciences, 364(1522), 1377–1383. 

Bonneh, Y. S., Levanon, Y., Dean-Pardo, O., Lossos, L., and Adini, Y. (2011). Abnormal speech spectrum and 
increased pitch variability in young autistic children. Front. Hum. Neurosci. 4:237. 
doi:10.3389/fnhum.2010.00237 

Brock J. (2012). Alternative Bayesian accounts of autistic perception: comment on Pellicano and Burr. Trends 
Cogn Sci; 16(12):573-4 

Carandini M, Heeger DJ (2012) Normalization as a canonical neural computation. Nat Rev Neurosci 13(1):51–
62. 

Clark, A. (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Brain 
and Behavioral Sciences 36(3):181–253 

Coen-Gagli, R., Solomon, SS. (2019). Relating divisive normalization to neuronal response variability. Journal 
of Neuroscience, 39 (37), 7344-7356 

Croydon, A., Karaminis, T., Neil, L., Burr, D., Pellicano, E. (2017). The light-from-above prior is intact in autistic 
children. Journal of Experimental Child Psychology 161:113–125. 

Doya, K., Ishii, S., Pouget, A. & Rao, R. P. N. Bayesian Brain: Probabilistic Approaches to Neural Coding (The 
MIT Press, 2007). 

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal 
fashion. Nature, 415(6870), 429-433. doi: 10.1038/415429a 

Fletcher, P. C. and Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive 
symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1): 48-58.  

Friston K. J., Lawson R., Frith C. D. (2013). On hyperpriors and hypopriors: comment on Pellicano and 
Burr. Trends Cogn. Sci. 17, 1 10.1016/j.tics.2012.11.003 

Friston, K. (2009) The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences 
13(7):293–301. 

Friston, K. J. (2010) The free-energy principle: A unified brain theory? Nature Reviews Neuroscience 
11(2):127–38 

Giovannini, L., Jacomuzzi, A. C., Bruno, N., Semenza, C., Surian, L. (2009). Distance perception in autism and 
typical development. Perception 38, 429–441. doi: 10.1068/p6266 

Gonzalez-Gadea ML, Chennu S, Bekinschtein TA, Rattazzi A, Beraudi A, Tripicchio P, 9 Moyano B, Soffita Y, 
Steinberg L, Adolfi F, Sigman M, Marino J, Manes F, Ibanez A 10 Predictive coding in autism spectrum 
disorder and attention deficit hyperactivity disorder. 11 J Neurophysiol 114, 2625-2636 

Haigh SM, Heeger DJ, Dinstein I, Minshew N, Behrmann M, (2014) Cortical variability in the sensory-evoked 
response in autism. J Autism Dev Disord doi:10.1007/s10803-014-2276-6 

Haker H, Schneebeli M, Stephan KE. Can Bayesian Theories of Autism Spectrum Disorder Help Improve 
Clinical Practice? Front Psychiatry. 2016;7:107.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2019. ; https://doi.org/10.1101/2019.12.28.890004doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.28.890004
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24	

Happé F, Frith U (2006) The weak coherence account: Detail-focused cognitive style in autism spectrum 
disorders. J Autism Dev Disord 36(1):5–25. 

Happé, F.G.E. (1996). Studying weak central coherence at low levels: Children with autism do not succumb to 
visual illusions. Journal of Child Psychology and Psychiatry, 37(1996), pp. 873-877 

Hurlimann, F., Kiper, D.C., and Carandini, M. (2002). Testing the Bayesian model of perceived speed. Vision 
Res. 42, 2253–2257. 

Iarocci G, McDonald J (2006) Sensory integration and the perceptual experience of persons with autism. J 
Autism Dev Disord 36(1):77–90 

Kanner, L. (1943). Autistic disturbances of affective contact Nervous Child, 2, 217-250 

Karaminis, T., Cicchini, G. M., Neil, L., Cappagli, G., Aagten-Murphy, D., Burr, D., & Pellicano, E. (2016). 
Central tendency effects in time interval reproduction in autism. Scientific Reports, 6, 28570 

Karvelis, P., Seitz, A., Lawrie, S., Series, P. (2018). Autistic traits, but not schizotypy, predict overweighting of 
sensory information in Bayesian visual integration, eLife, 7:e34115.  

Lakshminarasimhan KJ, Petsalis M, Park H, DeAngelis GC, Pitkow X, Angelaki DE. (2018). A dynamic 
Bayesian observer model reveals origins of bias in visual path integration. Neuron 99: 194 –206.e5, 
doi:10.1016/j. neuron.2018.05.040. 

Lawson RP, Mathys C, Rees G (2017) Adults with autism overestimate the volatility of the sensory 
environment. Nat Neurosci 20:1293–1299 

Lawson RP, Rees G, Friston KJ (2014). An aberrant precision account of autism. Front Hum Neurosci 8:302 

Lee, D.D., Ortega, P.A., and Stocker, A.A. (2014). Dynamic belief state representations. Curr. Opin. Neurobiol. 
25, 221–227. 

Lieder, I., Adam, V., Frenkel, O., Jaffe-Dax, S., Sahani, M., & Ahissar, M. (2019). Perceptual bias reveals slow-
updating in autism and fast-forgetting in dyslexia. Nature Neuroscience, 22(2), 256. 

Lord, C., Risi, S., Lambrecht, :, Cook, E.H., Leventhal, B.L., DiLavore, P.C., Pickles, A., Rutter, M. (2000). The 
autism diagnostic observation schedule-generic: a standard measure of social and communication deficits 
associated with the spectrum of autism. J. Autism Dev. Disord. 30, 205–223 
 
Manning, C., Kilner, J., Neil, L, Karaminis, T., Pellicano (2017). Children on the autism spectrum update their 
behavior in response to a volatile environment. Developmental Science 20, e12435 
 
Milne E, et al. (2002) High motion coherence thresholds in children with autism. J Child Psychol Psychiatry 
43(2):255–263.  

Milne, E. (2011). Increased intra-participant variability in children with autistic spectrum disorders: Evidence 
from single-trial analysis of evoked EEG. Frontiers in Psychology, 2, 51. doi: 10.3389/fpsyg.2011.00051. 

Mittelstaedt, M.L., Glasauer, S. (1991). Idiothetic navigation in gerbils and humans. Zool. Jahrbucher-Abteilung 
Fur Allg. Zool. und Physiol. der Tiere 95, 427–435. 

Noel, J. P., De Niear, M. A., Stevenson, R., Alais, D. & Wallace, M. T. (2016). Atypical rapid audio-visual 
temporal recalibration in autism spectrum disorders. Autism Res. 10, 121–129 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2019. ; https://doi.org/10.1101/2019.12.28.890004doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.28.890004
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25	

Noel, J.P., Stevenson, R.A., Wallace, M.T., (2018). Atypical audiovisual temporal functioning autism and 
schizophrenia: similar phenotype, different cause. Eur. J. Neurosci. 47,1230–1241. 

Palmer, C.J., Lawson, R.P. & Hohwy, J. (2017). Bayesian approaches to autism: towards volatility, action, and 
behavior. Psychol. Bull. 143, 521–542  

Pell, P. J., Mareschal, I., Calder, A. J., von dem Hagen, E. A., Clifford, C. W., Baron-Cohen, S., & Ewbank, M. 
P. (2016). Intact priors for gaze direction in adults with high-functioning autism spectrum conditions. Molecular 
Autism, 7,25 
 
Pellicano E, Gibson L, Maybery M, Durkin K, Badcock DR (2005) Abnormal global processing along the dorsal 
visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia 
43(7):1044–1053 

Pellicano, E. & Burr, D. (2012).  When the world becomes 'too real': a Bayesian explanation of autistic 
perception. Trends Cogn. Sci. 16, 504–510 

Petzschner, F.H., and Glasauer, S. (2011). Iterative Bayesian estimation as an explanation for range and 
regression effects: a study on human path integration. J. Neurosci. 31, 17220–17229. 

Rinehart NJ, Bradshaw JL, Moss SA, Brereton AV,., Tonge BJ. (2000) Atypical interference of local detail on 
global processing in high-functioning autism and Asperger’s disorder. J Child Psychol Psychiatry.  

Robertson, C. E. & Baron-Cohen, S. (2018). Sensory perception in autism. Nature Reviews Neuroscience, 
18(11), 671. 

Robic S., Sonié S., Fonlupt P., Henaff M.A., Touil N., et al. (2015). Decision‐making in a changing world: a 
study in autism spectrum disorders. Journal of Autism and Developmental Disorders, 45, 1603–1613 

Rosenberg A, Patterson JS, and Angelaki DE (2015) A computational perspective on autism. Proceedings of 
the National Academy of Sciences, 112(30): 9158-9165 

Rutter M, Bailey A, Lord C. (2003). The social communication questionnaire: manual. Western Psychological 
Services 

Sinha P., Kjelgaard M.M., Gandhi T.K., Tsourides K., Cardinaux A.L., et al. (2014). Autism as a disorder of 
prediction. Proceedings of the National Academy of Sciences, USA, 111, 15220–15225 
 
Skewes, J. C., & Gebauer, L. (2016). Brief report: Suboptimal auditory localization in autism spectrum disorder: 
support for the Bayesian account of sensory symptoms. Journal of Autism and Developmental Disorders, 
46(7), 2539–2547 

Skewes, J. C., Jegindø, E.-M., and Gebauer, L. (2015). Perceptual inference and autistic traits. Autism doi: 
10.1177/1362361313519872 
 
Spencer J, et al. (2000) Motion processing in autism: Evidence for a dorsal stream deficiency. Neuroreport 
11(12):2765–2767.  

Stevenson, R.A., Siemann, J.K., Schneider, B.C., Eberly, H.E., Woynaroski, T.G., Camarata, S.M. & Wallace, 
M.T. (2014). Multisensory temporal integration in Autism Spectrum Disorders. The Journal of Neuroscience, 
34(3), 691-697 

Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed 
perception. Nature neuroscience, 9(4), 578. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2019. ; https://doi.org/10.1101/2019.12.28.890004doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.28.890004
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 26	

 
Turi M., Karaminis T., Pellicano E., Burr D. (2016). No rapid audiovisual recalibration in adults on the autism 
spectrum. Scientific Reports 6, Article number: 21756 pmid:26899367 
 
Turi, M., Burr, D. C., Igliozzi, R., Aagten-Murphy, D., Muratori, F., & Pellicano, E. (2015). Children with autism 
spectrum disordershow reduced adaptation to number.Proc Natl Acad Sci USA,112(25), 7868e7872 

Van de Cruys, S., Van der Hallen, R. & Wagemans, J. Disentangling signal and noise in autism spectrum 
disorder. Brain Cogn. 112, 78–83 (2016). 

Wallace, M., Woynaroski, T, Stevenson, RA (2019). Multisensory integration as a window into orderly and 
disrupted cognition and communication. Annual review of Psychology, 71 

Wei, X.-X., & Stocker, A. A. (2015). A Bayesian observer model constrained by efficient coding can explain 
’anti-Bayesian’ percepts. Nature Neuroscience, 18(10), 1509-1517. DOI:10.1038/nn.4105 

Weiss, Y., Simoncelli, E.P., and Adelson, E.H. (2002). Motion illusions as optimal percepts. Nat. Neurosci. 5, 
598–604. 

Xu, G., Strathearn, L., Liu, B., O’Brien, M., Kopelman, T. G., Zhu, J., … Bao, W. (2018). Prevalence and 
treatment patterns of autism spectrum disorder in the United States, 2016. JAMA Pediatrics, 173(2), 153–159. 
https://doi.org/10.1001/jamapediatrics.2018. 4208 

Zaidel A, Goin-Kochel RP, Angelaki DE (2015) Self-motion perception in autism is compromised by visual 
noise but integrated optimally across multiple senses. Proc Natl Acad Sci USA 112(20):6461–6466. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2019. ; https://doi.org/10.1101/2019.12.28.890004doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.28.890004
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 27	

 
 
 
Supplementary Materials 
 

 
Figure S1. Trial duration decreases and mean velocity increases during feedback. Both ASD (red) and control 
(black) participants seemingly adopt a similar strategy in the blocks with feedback; they shorten their trials by increasing 
velocity. Statistics in main text, error bars are ± 1 SEM. 
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Figure S2. Dynamic Bayesian Observer Models. A) In the speed prior model, it is postulated that target overshoots are 
driven by a prior for speeds biasing velocity estimates. This prior (solid black) is combined with a sensory likelihood 
(dashed black and gray) to form a posterior estimate of velocity (green). This velocity estimate is estimated at each time-
point (as likelihoods change) and integrated to yield an estimate of self-position.  B) In the leaky integration model, it is 
assumed that velocity estimates are accurate (middle panel: purple line overlaps dashed line), but instead imperfectly 
integrated to form a position estimate. The correct model should account for subjects stopping where they did, believing 
they had reached the firefly. Fitting the former model and using extracted parameters to generate subjects’ believed 
trajectories shows residual biases (bias in model estimates) near 1 (i.e., no bias; A, lower panels). In contrast, the leaky 
integration model predicts large residual biases (B, lower panels), particularly failing to account for radial biases. 
Performance of the two models is comparable for ASD (red) and control (black) subjects, indicating that ASD subjects can 
perform sensory (path) integration as well as controls. Speed prior model: all residual biased, p > 0.15; leaky integration 
model: all biases significant except for angular bias with feedback, p < 0.02; No contrast in residual bias between 
experimental groups was significant (all p > 0.14) 
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Figure S3. Effect of feedback in bias. Bias in path integration along the radial (left) and angular (right) dimension, 
without (y-axis) and with feedback (x-axis), and in control individuals (black) as well as individuals with ASD (red). As 
reported in the main text, both radial and angular dimensions showed significant overshooting (as shown by the average 
bias being above 1). Biases were reduced after feedback (as indicated by the averages being above the identity line). 
Importantly, prior to feedback radial (t-test ASD vs. control: p = 0.94) and angular (p = 0.62) biases were similar across 
the ASD and control groups. Similarly, the reduction in bias during the block with feedback was equal across groups, both 
for radial (t-test change in bias ASD vs. control: p = 0.945) and angular bias (p = 0.928). Error bars indicate ± 1 SEM. 
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Figure S4. Trial-to-trial dynamics of the boundary demarking the rewarded zone during the feedback session. 
During the block with feedback, the “reward boundary size” decreased adaptively, starting at 2 meters. This boundary 
decreased with similar dynamics for both the ASD (red) and control (black) subjects. The decrease in the zone rewarded 
was far from the upper boundary of performance – the gray curve demonstrates the boundary of the rewarded zone if a 
participant were to fall within this zone on every trial (scales down by 5% upon two consecutive rewarded trials).  
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Figure S5. Speed Prior Parameter Estimates. The parameter dictating the shape of the exponential describing the prior 
over radial (A) and angular (B) velocity did not differ between experimental groups (ASD = red, control = black), nor 
feedback conditions. Exponential coefficients were not different from zero in the radial dimension, but negative (stronger 
overshooting biases) in the angular dimension.  
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Figure S6. Likelihood scaling without feedback correlates with ASD symptomatology. Correlation between the 
estimated scaling of uncertainty with motion velocity according to the speed prior Bayesian dynamic observer model and 
ASD symptomatology. Both AQ (left) and SCQ (right) are higher for participants showing the greatest scaling of 
uncertainty with velocity in the block without feedback (solid filled symbols), but not after feedback (shaded symbols).  
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