
Donor specific transcriptomic analysis of Alzheimer's disease associated 
hypometabolism highlights a unique donor, microglia, and ribosomal proteins 
 
Abstract 
Alzheimer’s disease (AD) starts decades before clinical symptoms appear. Low glucose 
utilization in regions of the cerebral cortex marks early AD and is clinically useful. To 
identify these regions, we conducted a voxel-wise meta-analysis of positron emission 
tomography studies that compared AD patients with healthy controls. This 
meta-analysis included 27 studies that assayed glucose utilization in 915 AD patients 
and 715 healthy controls. The resulting map marks hypometabolism in the posterior 
cingulate, middle frontal, angular gyrus, middle and inferior temporal regions. Using the 
Allen Human Brain Atlas, we identified genes with expression patterns associated with 
this hypometabolism pattern in the cerebral cortex. Of the six brains in the Atlas, one 
demonstrated a strong spatial association with the hypometabolism pattern. Previous 
neuropathological assessment of this brain from a 39-year-old male noted a 
neurofibrillary tangle in the entorhinal cortex. Using the transcriptomic data, we estimate 
lower proportions of neurons and more microglia in the hypometabolic regions when 
compared with the other five brains. Within this single brain, signal recognition particle 
(SRP)-dependent cotranslational protein targeting genes, which primarily encode 
cytosolic ribosome proteins, are highly expressed in the hypometabolic regions. 
Analyses of human and mouse data show that expression of these genes progressively 
increases across AD-associated states of microglial activation. In addition, genes 
involved in cell killing, chronic inflammation, ubiquitination, tRNA aminoacylation, and 
vacuole sorting are associated with the hypometabolism map. These genes suggest 
disruption of the protein life cycle and neuroimmune activation. Taken together, our 
molecular characterization of cortical hypometabolism reveals a molecular link to AD 
associated hypometabolism that may be relevant to preclinical stages. 
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Introduction 
Alzheimer’s disease, one of the most prevalent neurodegenerative diseases, is thought 
to affect approximately 5% of those aged 60 years and above worldwide ​[1]​. It is the 
most common form of dementia, which is clinically characterized by a severe decline in 
cognitive functioning and defined neuropathologically by the emergence and 
topographical progression of amyloid plaques, neurofibrillary tangles, and neuronal 
loss ​[2]​.  

Currently, fluorodeoxyglucose positron emission tomography (FDG-PET) is a primary 
frontline tool for the diagnosis of dementia and its subtypes. FDG-PET uses a 
radioactive tracer - [ ​18​F] fluorodeoxyglucose - to measure glucose metabolism within the 
brain ​[3]​, with altered cerebral glucose metabolism indicating AD with high sensitivity 
and specificity ​[4]​. Importantly, patterns of hypometabolism can be seen in at-risk 
individuals decades before the development of symptoms ​[5–9] ​. This timing supports 
the concept that AD exists on a spectrum or continuum of pathologies that includes 
stages of subtle cognitive decline, mild cognitive impairment, and dementia ​[10,11] ​. 
Despite the clear link between metabolic changes measured by FDG-PET and risk for 
AD, it remains unclear which etiopathological mechanisms are responsible for driving 
these changes. 

Using the Allen Human Brain Atlas, we sought to characterize the pattern of regional 
hypometabolism found in patients with AD. By integrating this atlas with a meta-analytic 
map of FDG-PET differences, we identified genes with spatial patterns similar to that of 
the lower glucose metabolism in the human brain. These genes that were associated 
with hypometabolism in the cerebral cortex were further tested for expression changes 
across AD-associated states.  
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Materials and methods 
Meta analysis of Alzheimer’s FDG-PET studies 
We performed a meta-analysis of FDG-PET studies that compared, at rest, Alzheimer's 
patients with healthy controls. To compile a list of studies, a literature search was 
conducted on studies from January 1985 to January 2012. We used the following 
search query: [FDG-PET OR positron emission tomography OR fluorodeoxyglucose OR 
glucose metabolism] AND [dementia]. Studies were examined to fulfill the following 
criteria: (1) original research papers available in English (no case studies or reviews); 
(2) participants examined using [18F] FDG-PET at rest (no functional tasks); (3) AD 
patients compared with age-matched healthy controls; (4) clinical diagnosis of AD using 
NINCDS-ADRDA ​[12]​ or DSM-III ​[13]​ criteria; and (5) whole-brain analyses (no 
region-of-interest analyses) conducted in standardized stereotaxic space with available 
coordinates. Each article was read twice to determine if the study met the inclusion 
criteria. 
 
Coordinates of regional hypometabolism peaks from retained articles were used to 
create ALE maps using BrainMap’s GingerALE application (​www.brainmap.org/ale​) ​[14]​. 
This software assigns each voxel an activation likelihood estimate that is equal to the 
probability of at least one of the reported peaks of hypometabolism being located in that 
voxel ​[15]​. To find distinct anatomical clusters, these voxelwise maps were clustered 
(min cluster extent = 500mm3; false discovery rate q= 0.05). The identified clusters 
were then used to determine a threshold that marks which samples are inside regions of 
hypometabolism. 

Gene expression data 
The Allen Human Brain Atlas provides a comprehensive transcriptional landscape of the 
adult human brain ​[16]​. The Atlas was obtained from six individuals (five males, one 
female), with age ranging from 24 to 57 years. Custom 64K Agilent microarrays were 
used to assay genome-wide expression in 3,702 spatially-resolved samples (232 
named brain regions). We also used the RNA-sequencing datasets that were generated 
on the Illumina HiSeq2000 platform. These RNA-sequencing data were quantified with 
transcripts per million (TPM) and assayed a subset of anatomic structures from two of 
the six brains. The Allen Institute normalized the data and adjusted for array-specific 
biases, batch, and dissection method. Microarray probes were filtered using quality 
control data provided by Miller et al. ​[17]​. After this filtering, 31,452 probes remained of 
the 58,692 on the microarray.  
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Differential expression analyses 
The microarray dataset was first used at the sample and donor level to identify genes 
that are differentially expressed in the regions of hypometabolism identified by the 
ALE-based analysis. Expression values were mean-averaged for genes with multiple 
probes, resulting in 15,143 genes. This analysis was restricted to samples from the 
cerebral cortex, as marked by the Allen Human Brain Atlas annotations (allocortical 
regions, namely the hippocampal formation and piriform cortex, were excluded). For 
each donor and gene, expression values were compared between samples inside and 
outside of the hypometabolic regions using the Mann-Whitney U test. The Allen Institute 
provided MNI coordinates, which were used to map expression values into the voxel 
space of the meta-analysis. For analyses that spanned multiple donors, Fisher's method 
was used to generate a single meta p-value for each gene and direction ​[18]​. We used 
the Benjamini–Hochberg false discovery rate (FDR) procedure for multiple test 
correction to adjust for the many tested genes ​[19]​.  

Gene Ontology enrichment analysis 
The Gene Ontology (GO) provides gene-level annotations that span specific cellular 
components, biological processes, and molecular functions ​[20]​. These annotations, 
defined by GO terms, were required to have annotations for 10 to 200 tested genes 
(6,333 GO groups annotating 14,241 unique genes). To test for enrichment, we sorted 
the genes from the most overexpressed to underexpressed in regions of 
hypometabolism. Within this ranking, the area under the receiver operating 
characteristic curve (AUC) was used to test for gene ontology terms that are enriched in 
either direction (overexpressed: AUC > 0.5, underexpressed: AUC < 0.5). The 
Mann–Whitney U test was used to determine statistical significance with FDR correction 
for the GO groups tested. We used GO annotations from the GO.db and org.Hs.eg.db 
packages in R, version 3.8.2, which were dated April 24, 2019 ​[21,22] ​. We used the 
REVIGO tool to summarize many terms that were significant after correction ​[23]​. We 
used the default REVIGO parameters with uncorrected p-values for the input GO 
groups and restricted this analysis to the biological process branch of the GO.  

Estimation of Cell-Type Proportions 
The Marker Gene Profile (MGP) tool was used to estimate cell-type proportions from the 
cerebral cortex expression profiles ​[24]​. This method uses the first principal component 
of the expression of cell-type specific genes to estimate the relative abundance of a 
cell-type. We used 21 top marker genes obtained from a single cell study of the adult 
human temporal cortex [Supplementary Table S3 in ​[25]​]. This study used 
transcriptomic profiles to cluster cells into astrocyte, neuron, oligodendrocyte, 
oligodendrocyte precursor, microglia and endothelial groups. These marker genes were 
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used to calculate AUC values and estimate cell-type proportions with the MGP tool. 
Proportions were estimated separately for each donor across the same cortical samples 
used in the differential expression analysis. 

Single-cell RNA sequencing analysis of mouse microglia 
Supplemental data from a single-cell RNA sequencing study of wild type and AD 
transgenic mouse model (5XFAD) were used to examine expression in immune cell 
types ​[26]​. Keren-Shaul and co-authors profiled trancriptomically 8,016 immune cells 
from three wild type and three 5XFAD mice and clustered these cells into 10 distinct 
subpopulations based on expression. Of these 10 clusters, 3 expressed microglia 
markers. Two of these microglia clusters contained primarily cells from 5XFAD and not 
wild type mice and named them disease-associated microglia (DAM). For our analysis 
we consider these clusters separately as different microglial states: normal, 
intermediate (group II DAM), and AD associated (group III DAM).  

Single-nucleus RNA sequencing analysis 
Supplemental data from a single-nucleus RNA sequencing study of the human 
prefrontal cortex were used to examine differential expression across AD states in 
microglia. Specifically, for each gene we extracted adjusted p-values 
(IndModel.adj.pvals), mean expression, and fold changes (IndModel.FC) from 
Supplement Table 2 in Mathys, Davila-Velderrain, et al. ​[27]​. After quality control, 
Mathys, Davila-Velderrain, et al. clustered the transcriptomes of 70,634 nuclei from 48 
individuals into eight broad cell-type clusters. For this work we focused on data from the 
1,920 microglia nuclei. The 48 participants in this study were classified into no (24), 
early (15) and late (9) AD pathology. To test for enrichment of our genes of interest, we 
sorted the genes from the most overexpressed to underexpressed for the differential 
expression results for no versus early pathology and early versus late pathology 
analyses. Within this ranking, the area under the receiver operating characteristic curve 
measure (AUC) was used to test for genes that are significantly enriched in either 
direction. We also used the mean expression to determine which genes increase in 
expression across the three pathology groups. For a given set of genes, the 
hypergeometric test was used to determine if a greater number of genes increase 
across pathology than expected by chance.  

Results 

Meta-analysis of FDG-PET studies of AD 
Our literature search for FDG-PET studies identified 3,229 titles. Screening of the 
abstracts yielded 230 relevant studies. Upon review of the full articles, 29 relevant 
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studies remained. When two studies utilized the same patient population, one of the 
overlapping studies was excluded, resulting in a total of 27 studies yielding 33 
independent samples with a total of 915 Alzheimer’s patients and 715 healthy controls 
(Supplement Table 1). Activation Likelihood Estimation (ALE) meta-analysis of these 
studies identified the following cortical regions as showing (consistently) lower glucose 
metabolism in patients vs. controls: posterior cingulate gyrus, middle frontal region, 
angular gyrus, middle and inferior temporal regions. A cluster analysis revealed 23 
clusters (min cluster extent = 500mm3; FDR q= 0.05). A voxel-wise threshold of 0.006 
was set to mirror this clustering map (Figure 1) and was used to determine if a given 
voxel was inside an AD-associated region of hypometabolism in subsequent 
transcriptomic analyses.  
 

 
 
 
Figure 1: Cortical surface views of the ALE meta-analysis results. Regions where 
hypometabolism was not detected are transparent (ALE value of 0.006 or less). Lower 
glucose utilization (AD vs. controls) ranges from low (yellow) to high (black).  

Many genes are differentially expressed in cortical regions with AD 
associated hypometabolism 
Using all six brains included in the Allen Atlas, we first identified the genes that were 
differentially expressed in the FDG-PET-defined hypometabolic regions of the cerebral 
cortex (1 female and 5 male, aged 24–57 years). The number of cerebral cortex 
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samples that were profiled by the Allen Institute ranged from 182 to 481 per donor; of 
those, 5.9-9.9% overlapped with the hypometabolic regions. Of the 15,143 genes 
tested, 99 were significantly expressed at higher, and 51 at lower levels in these 
hypometabolic regions, after correction, across all donors. Substantial variability across 
the six brains in the Allen Human Brain Atlas has been previously noted both 
genome-wide and in the context of AD ​[28–31] ​. Given this variability, we then tested 
each brain separately. Strikingly, one brain drove the majority of the above atlas-wide 
signal for spatial expression overlap with the FDG-PET-derived map. In this brain 
(10021/H0351.2002), 647 genes were differentially expressed with 74% being 
expressed at lower levels in the hypometabolic regions (Supplement Table 2). In the 
remaining five donor brains, differentially expressed genes were only found in the oldest 
donor (donor 12876/H0351.1009, 57-year-old male). Taken together, our analysis of 
brain 10021/H0351.2002 marks it as an outlier with hundreds of genes that align 
spatially with the patterns of lower glucose metabolism observed in patients with AD (vs. 
controls). 

Brain specific analyses point to a unique donor 
We examined the demographic information and metadata of this donor to help 
understand the above observation. Brain 10021/H0351.2002 was from a 39-year-old 
male African American individual. Postmortem interval was 10 hours, the lowest of the 
six donors. In agreement, RNA Integrity values (RIN) for this brain are higher than the 
other donors for all four of the regions assayed for RIN (frontal pole: 7.5, occipital pole: 
7.1, cerebellum: 8.6, and brainstem: 7.3). As documented by the Allen Institute, this 
donor, like the others, had no known history of neuropsychiatric or neurological 
conditions. The presence of a broad range of drugs was tested for in postmortem blood 
by the Allen Institute. In donor 10021/H0351.2002, atropine, caffeine, lidocaine and 
monoethylglycinexylidide was detected at levels usually not toxicologically significant. 
We note that monoethylglycinexylidide is a metabolite of lidocaine, an anesthetic that is 
commonly used during dental procedures. Among the six donors, only 
10021/H0351.2002 tested positive for lidocaine and monoethylglycinexylidide. The 
included brains were also classified as “normal” by a radiologist or pathologist. While 
considered neurotypical, it was noted that brain 10021/H0351.2002 contained a single 
neurofibrillary tangle in the entorhinal cortex. Neurofibrillary tangles in the hippocampus 
and entorhinal cortex are considered early events in AD progression ​[32]​. Neurofibrillary 
tangles were not found in the other five brains (three of which are older than this donor). 
The presence of a neurofibrillary tangle is a unique feature of this individual and the 
postmortem interval and RIN values suggest tissue quality is not driving the Alzheimer’s 
associated molecular patterns that are observed.  
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ER translocation​ genes are enriched for overexpression in areas of 
Alzheimer's associated hypometabolism 
To distil the molecular results we performed GO enrichment analysis on the 
transcriptome-wide results from donor brain 10021/H0351.2002. In total, 215 GO 
groups were significantly enriched (Table 1 shows the top 10 GO terms enriched for 
genes upregulated in hypometabolic regions). Due to the high degree of overlap in gene 
membership among our top GO terms, we used REVIGO tool to summarize them ​[23]​. 
This tool removes redundant GO terms based on semantic similarity, providing a 
dispensability metric. Of the 98 biological process terms enriched for overexpression, 
three were assigned the lowest possible dispensability score of zero: SRP-dependent 
cotranslational protein targeting to membrane (GO:0006614, 87 genes, AUC = 0.874, 
p ​FDR​ < 10​-28​), chronic inflammatory response (GO:0002544, 15 genes, AUC = 0.78, p​FDR 
< 0.05), and cell killing (GO:0001906, 94 genes, AUC = 0.60, p​FDR​ < 0.05). The 
strongest signal is from genes involved in SRP-dependent cotranslational protein 
targeting to membrane (Figure 2). This process targets protein translocation to the 
endoplasmic reticulum via the signal-recognition particle (SRP). These genes are 
primarily components of the cytosolic ribosome and henceforth referred to as ‘ER 
translocation’ genes. Six of these genes are found within the top 20 genes with higher 
expression in hypometabolic regions (​RPL34​, ​RPL32 ​, ​RPS27 ​, ​RPS27A ​, ​RPL37A ​, and 
RPS15A ​). In contrast, genes that are underexpressed in regions of hypometabolism are 
less significantly enriched for specific GO terms (lowest p​FDR​ = 7.3 × 10​-8​). However, 
these top terms contain more diverse themes (bottom half of Table 1), some of which 
have been previously implicated in AD. The most significant GO terms representing 
these themes are: ‘ubiquitin ligase complex’, ‘tRNA aminoacylation’, ‘ATPase activity, 
coupled’, ‘HOPS complex’ (involved in endosomal vesicle tethering), and ‘microtubule 
organizing center part’. The ubiquitin-proteasome system has been linked to AD ​[33]​. Of 
the four genes that encode ubiquitin, three with available data are strongly 
overexpressed in regions of hypometabolism in this brain. In summary, this enrichment 
analysis points to spatial differences in vesicle fusion, protein translation, targeting, and 
degradation. 
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Figure 2: SRP-dependent cotranslational genes ranked based on differential expression 
in hypometabolic regions associated with AD. Genes are marked with dots, with the 
y-axis representing the genome-wide differential expression rank and ranges from 
overexpression (top) to underexpression (bottom). The black line marks the median 
expression rank of the SRP-dependent cotranslational genes. The dashed grey line 
marks the gene with the most stable expression between inside and outside of the 
hypometabolic regions for each donor. Red highlights genes that pass correction for 
multiple testing. 
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Table 1: Top GO groups enriched for differential expression in areas of Alzheimer's 
associated hypometabolism in brain 10021/H0351.2002. 

Name Genes ID AUC p-value​FDR 

SRP-dependent cotranslational protein targeting to 
membrane 

87 GO:0006614 0.874 1.35E-29 

cotranslational protein targeting to membrane 90 GO:0006613 0.865 2.07E-29 

protein targeting to ER 92 GO:0045047 0.847 2.86E-27 

cytosolic ribosome 87 GO:0022626 0.856 3.45E-27 

establishment of protein localization to endoplasmic 
reticulum 

96 GO:0072599 0.828 1.66E-25 

structural constituent of ribosome 107 GO:0003735 0.794 1.05E-22 

ribosomal subunit 158 GO:0044391 0.737 1.01E-21 

nuclear-transcribed mRNA catabolic process, 
nonsense-mediated decay 

104 GO:0000184 0.783 2.07E-20 

protein localization to endoplasmic reticulum 109 GO:0070972 0.765 9.44E-19 

cytosolic large ribosomal subunit 47 GO:0022625 0.894 6.73E-18 

…..     

microtubule organizing center part 145 GO:0044450 0.395 0.00244 

DNA-dependent ATPase activity 59 GO:0008094 0.33 0.00145 

HOPS complex 13 GO:0030897 0.137 0.00135 

ATPase activity, coupled 186 GO:0042623 0.396 0.00026 

tRNA aminoacylation for protein translation 40 GO:0006418 0.268 9.84E-05 

amino acid activation 43 GO:0043038 0.275 8.24E-05 

aminoacyl-tRNA ligase activity 33 GO:0004812 0.243 8.24E-05 

cullin-RING ubiquitin ligase complex 111 GO:0031461 0.355 3.84E-05 

tRNA aminoacylation 42 GO:0043039 0.259 1.91E-05 

ubiquitin ligase complex 195 GO:0000151 0.368 7.35E-08 
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Estimates of cell-type proportions are disrupted in hypometabolic regions in 
brain 10021/H0351.2002 
To test if regional transcriptomic differences might be due to cell type proportions, we 
performed enrichment analyses of cell type-specific marker genes based on the 
differential expression results. In the five brains, microglia marker genes were 
expressed at low levels in the hypometabolic regions (underexpressed; AUC = 0.1, p​FDR 
< 10 ​-8​) while astrocyte and neuron markers were expressed at high levels 
(overexpressed; AUC > 0.66, p​FDR​ < 0.05). In contrast, brain 10021/H0351.2002 showed 
an opposite pattern of enrichment (Supplement Table 3). Using the Marker Gene Profile 
[24]​ tool, which uses a more complex parametric method, we also observe an 
interaction between hypometabolic regions and brain 10021/H0351.2002, whereby 
estimates of microglia proportions are higher inside hypometabolic regions in brain 
10021/H0351.2002 (5 genes, t = 2.1, p = 0.033) and estimated proportions of neurons 
are lower (21 genes, t = -4.0, p < 0.0001).  

Validation of ER translocation​ genes with RNA sequencing data 
Focusing on donor 10021/H0351.2002, the top-ranked gene ontology group, 
‘SRP-dependent cotranslational protein targeting to membrane’/’ER translocation’, 
contains genes that are involved in the targeting of proteins to the endoplasmic 
reticulum. Given the high and ubiquitous expression of ribosomal genes, it is possible 
that the ER translocation signal is due to ceiling effects induced by the dynamic range of 
microarray gene expression profiling. To address this concern, we tested for the 
association using RNA sequencing data, which has a broader dynamic range. We again 
observe that the ER translocation genes are enriched (100 cerebral cortex samples, 
AUC = 0.733, p ​FDR​ < 10​-9​). While limited in sample coverage for donor 
10021/H0351.2002, the RNA sequencing data validates the finding of differential 
expression of ER translocation genes. 

ER translocation​ gene expression is high in AD-associated microglia (DAM) 
Based on the differential expression of microglia markers in donor 10021/H0351.2002, 
we examined the ER translocation genes in microglia from an Alzheimer's mouse 
model. We tested if the ER translocation genes increase in a stepwise pattern across 
the normal, intermediate, and full DAM clusters. For the 12,712 genes with data 
available, 6.5% monotonically increase in expression across these cell type clusters that 
represent distinct states. Of the 80 mouse homologs of the ER translocation genes, 
75% increase in a stepwise fashion (Figure 3, hypergeometric p < 10​-52​). Compared with 
all gene ontology groups, this is the most significant enrichment (Supplement Table 6). 
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In this single-cell dataset, ER translocation genes are expressed in AD associated 
microglia in a progressive pattern.  

 
Figure 3. Heatmap of the ER translocation gene expression across three microglia cell 
clusters from AD mouse model (left half) and AD pathology subgroups (right half). 
Expression for each gene is z-scored with high expression in red and low in blue. 
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Genes are ordered based on ​hierarchical clustering using complete linkage​ (genes with 
similar expression across the mouse and human data are clustered together). Three 
human genes are duplicated because they have two homologous mouse genes (​RPL6​, 
RPL13 ​, and ​SRP54 ​). Human genes without homologous mouse genes are not 
displayed.  

Expression of ER translocation genes​ is correlated with AD pathology 
Using data from a single-nucleus study of the human prefrontal cortex, we next tested if 
the ER translocation genes are differentially expressed across stages of AD pathology 
[27]​. Guided by our findings in mice, we restricted our analyses to microglia. When 
comparing expression between no- and early-pathology subgroups we find that the ER 
translocation genes are enriched for higher expression in microglia from the early 
pathology individuals (Supplement Figure 1, 79 genes, AUC = 0.716, ​p​ < 10​-10​). For the 
comparison between early- and late-pathology subgroups, the ER translocation genes 
are also enriched for higher expression in the late-pathology microglia (Supplement 
Figure 1, 77 genes, AUC = 0.627, ​p ​ < 0.0005). Beyond these pairwise tests, we counted 
how many genes increase with disease progression. Broadly, for the 7,319 genes with 
data available, average microglial expression of 17.9% progressively increase across 
the pathological groups. For the ER translocation genes, this proportion triples to 55.8% 
(Figure 5, 43 of 77 genes progressively increase, hypergeometric p < 10​-13​). Compared 
to all GO groups, this is the second most significant group with the mostly overlapping 
set of cytosolic ribosome genes ranked first (Supplement Table 5). In this single-nucleus 
dataset, microglial expression of ER translocation genes is correlated with AD 
progression.  

Discussion 
In this study, we projected the transcriptome of the cerebral cortex onto the spatial 
pattern of glucose hypometabolism found in AD cases. Of the six normal brains tested, 
only one demonstrated a strong spatial association between gene expression and the 
hypometabolism pattern. ER translocation genes, which encode proteins of the cytosolic 
ribosome and are involved in targeting protein translation to the endoplasmic reticulum, 
best align with the hypometabolic pattern in this brain. Using the transcriptomic data for 
this individual, we estimate a lower proportion of neurons and more microglia in 
hypometabolic regions. In support, prior neuropathological examination of this individual 
found a neurofibrillary tangle. Beyond this single brain, the same genes have a staged 
expression pattern that increases across cellular and pathological AD associated states 
in microglia.  
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It is striking that the ER translocation GO group was the most significantly enriched set 
in our analysis of the 10021/H0351.2002 donor brain and AD associated microglia. It is 
known that cytosolic ribosome genes are strongly co-expressed ​[35]​. While we did not 
perform co-expression analysis, a change across this gene set will be easily detected 
with pathway or gene ontology analyses due to their high co-expression. This 
coherence is partly why it ranks above all other gene sets tested. Nonetheless, we note 
that a ​RPL34 ​is a top ranked gene, providing a strong signal at the level of single genes. 
To gauge the chance of this GO group being top-ranked in multiple studies, we checked 
if the group is multifunctional or contains genes that are commonly differentially 
expressed. We found that this group ranked average in terms of multifunctional genes, 
relative to other groups (ranked 6,848th of 11,404 GO groups) ​[36]​. In addition, this 
group was not top-ranked in any of the 635 studies systematically examined in a broad 
study of differential gene expression predictability ​[37]​. More directly, the ER 
translocation genes are stable, with a below average prior probability of differential 
expression (ER translocation genes median = 0.246, remaining genes = 0.562, 
Mann-Whitney U test p < 10 ​-9​). Therefore, while ER translocation genes are strongly 
co-expressed, the prior likelihood of the ER translocation genes being differentially 
expressed is low.  
 
It is plausible that brain atlases seeking to assay the normal brain may contain samples 
from donors who may be in the hypothetical stage of preclinical AD ​[34]​. Our findings 
suggest that donor 10021/H0351.2002 may have been on this path. The ribosome and 
protein synthesis have been previously associated with mild cognitive impairment and 
AD (36–39). Pathological tau has also been shown to determine translational selectivity 
and co-localize with ribosomes (40, 41). Beyond the ER translocation genes, we note 
other GO groups with functional relevance. For example, ‘chronic inflammatory 
response’ and ‘cell killing’ genes were enriched for overexpression in the hypometabolic 
regions in brain 10021/H0351.2002. In the other direction, the genes in the homotypic 
fusion and protein sorting (HOPS) complex are underexpressed in hypometabolic 
regions in brain 10021/H0351.2002. This complex contains vacuole sorting genes and 
regulates autophagosome-lysosome fusion ​[38]​. The top two most underexpressed 
gene sets in the hypometabolic regions are ‘ubiquitin ligase complex’ and ‘tRNA 
aminoacylation’. While ubiquitin ligase complex genes are underexpressed, genes 
encoding ubiquitin are overexpressed in the hypometabolic regions in brain 
10021/H0351.2002. In summary, analysis of this single brain identifies genes that 
function in the protein life-cycle and neuroinflammation, which are known to be 
disrupted in AD ​[39–41] ​. 
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