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     Abstract—Dementia of Alzheimer’s Type (DAT) 
is associated with a devastating and irreversible 
cognitive decline. As a pharmacological intervention 
has not yet been developed to reverse disease 
progression, preventive medicine will play a crucial 
role for patient care and treatment planning. 
However, predicting which patients will progress to 
DAT is difficult as patients with Mild Cognitive 
Impairment (MCI) could either convert to DAT 
(MCI-C) or not (MCI-NC). In this paper, we develop 
a deep learning model to address the heterogeneous 
nature of DAT development. Structural magnetic 
resonance imaging was utilized as a single biomarker, 
and a three-dimensional convolutional neural 
network (3D-CNN) was developed. The 3D-CNN was 
trained using transfer learning from the 
classification of Normal Control and DAT scans at 
the source task. This was applied to the target task of 
classifying MCI-C and MCI-NC scans. The model 
results in 82.4% classification accuracy, which 
outperforms current models in the field. 
Furthermore, by implementing an occlusion map 
approach, we visualize key brain regions that 
significantly contribute to the prediction of MCI-C 
and MCI-NC. Results show the hippocampus, 
amygdala, cerebellum, and pons regions as 
significant to prediction, which are consistent with 

 
   This paper is submitted to the IEEE Signal Processing on 17 Dec 
2019. This research was funded by the following grants from the 
National Institute on Aging: AG055121 and by grants from Brain 
Canada, CIHR, NSERC and Compute Canada. 
   Jinhyeong Bae, Jane Stocks, Ashley Heywood, Lisanne Jenkins, 
and Lei Wang are with Northwestern University, Chicago IL 60611 
USA. (e-mails: jinhyeongbae2017@u.northwestern.edu; 
janestocks2018@u.northwestern.edu; 

current understanding of disease. Finally, the 
model’s prediction value is significantly correlated 
with rates of change in clinical assessment scores, 
indicating the model is able to predict an individual 
patient’s future cognitive decline. This information, 
in conjunction with the identified anatomical 
features, will aid in building a personalized 
therapeutic strategy for individuals with MCI. This 
model could also be useful for selection of 
participants for clinical trials. 
 
     Index Terms—Biomedical informatics, 
Biomedical imaging, Feature extraction, Magnetic 
resonance imaging, Medical diagnostic imaging, 
Neural Networks, Neurology, Predictive models.1, 2 
 
 

I.  INTRODUCRION 

 
EMENTIA of Alzheimer’s Type (DAT) is a 
common and severe neurodegenerative disorder [2, 

14]. Current research in pharmacological intervention 
for DAT has not yet been able to reverse the disease 
course. Therefore, Mild cognitive impairment (MCI), as 
a precursor to dementia, is a crucial area for research as 
a potential point of intervention. MCI patients are 
characterized by noticeable cognitive decline, including 
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deficits in memory or language. Critically, a patient with 
MCI can progress into DAT or remain stable in their 
MCI diagnosis. About 10%~12% of MCI patients 
convert to DAT every year [31].  
     Predicting patients who progress from MCI to DAT 
is important for patient care, as well in the selection for 
clinical trials aimed at treating and preventing disease 
[32]. However, diagnostic tools for DAT, which rely 
heavily on clinical scores, are limited in their ability to 
predict future development of the disease. Thus, new 
methodology is needed in order to better predict disease 
progression.  
     With the development of computational methods 
such as machine learning and deep learning, the utility 
of biomarker-based diagnosis for the classification and 
prediction of disease is becoming recognized. Various 
methods have been proposed to tackle the problem of 
predicting MCI patients who convert to DAT (MCI-
Converters or MCI-C) vs. those who do not (MCI-Non-
Converters or MCI-NC) [4, 7, 21, 38]. For example, 
using Random Forest with weak hierarchical lasso 
feature selection, Li et al. [21] achieved 74.8% 
classification accuracy with 161 MCI-NC and 132 MCI-
C sMRI scans. Cheng et al. [7] produced 79.4% 
classification accuracy by using Domain Transfer 
Feature Selection (DTFS) and Domain Transfer Sample 
Selection (DTSS) for extracting features and Support 
Vector Machine (SVM) for classifying 43 MCI-NC and 
56 MCI-C patients. Similarly, Suk et al. [38] had 74.8% 
classification accuracy in classifying 226 MCI-NC and 
167 MCI-C patients by using 2D-CNN based on 93 
regions of interest (ROIs) as features.1 Lastly, Basaia 
and colleagues [4] showed 74.9% classification 
accuracy in classifying 533 MCI-NC and 280 MCI-C 
patients by using 3D-Convoluational Neural Network 
(CNN) based on gray matter tissue probability maps.  

There are several limitations to the previous studies 
described so far. For example, many of these failed to 
assess their model using a separate, independent test 
dataset, which is the best practice in the field to evaluate 
a model’s effectiveness and generalizability [33], 
particularly in the absence of feature visualization. 
When designing a study, it is important to assign a 
portion of the whole data set in a random manner to be 
included in the independent test set [19]. For example, 
Basaia and colleagues [4] assigned 10% of the whole 
dataset as test. While the most effective splitting ratio of 
the training, validation, and test sets is still under 
discussion, the ratio of 60:20:20 or 70:15:15 is 
traditionally accepted for small data set. 
      In addition, previous methods relied on hand-crafted 
feature extraction, whereby raw data are transformed to 
produce specific features (e.g., cortical thickness) that 
train the machine [1]. This approach assumes that the 

 
1 93 ROI for each sMRI and PET, and 3 features from CSF are used. 

chosen feature is the most informative but may miss 
important information contained in the raw data. For 
example, studies that selected gray matter as the feature 
for model training [4] did not consider CSF or white 
matter that also play a role in DAT [17, 20, 40]. 
Additionally, Cheng et al. [7] manually selected “useful” 
samples using DTFS and DTSS-based features. 
Machined trained with such samples may be biased and 
thus may not be generalizable to other populations. 
     CNN is a deep-learning approach that has evolved in 
recent years to produce better classification performance 
than conventional machine learning methods across 
several fields [6]. An end-to-end CNN is also able to 
produce features that are not biased to the researcher’s 
choice. However, this has not been implemented to 
predict conversion from MCI to DAT.   
 
 

II.  RESEARCH OBJECTIVES 

 
     In the present study, we implement an end-to-end 
CNN model with transfer learning [29] to classify MCI-
NC vs. MCI-C patients using structural magnetic 
reasoning image (sMRI). We evaluate model 
performance up to 10 years before conversion. Further, 
using an occlusion map method for visualization, we 
determine which regions of the brain are most 
significant in the prediction model. Finally, we correlate 
model prediction probability with diagnostic and 
clinical measures.  
 
 

III.  BACKGROUND INFORMATION 
 
     Transfer learning improves model performance by 
training the model through two classification tasks, i.e., 
the source task and the target task. At the source task, 
the model is pre-trained with the resource that is similar 
to the target task. Through the source task, domain 
knowledge is generated, and it is transferred to the target 
task. The model is re-trained with the resource that is 
directly relevant to the classification objective based on 
the domain knowledge. This scheme enables the model 
to be optimized more efficiently.  
     Previous research suggests that the classification task 
of Cognitively Normal Control (NC) vs. DAT is similar 
to the classification task of MCI-NC vs. MCI-C [8, 9, 
43]. In previous studies, the classification task of NC vs. 
DAT has been used to pre-train the model [4, 7]. 
Therefore, we utilize a classification task of NC vs. DAT 
as the source task for transfer learning to our target task 
model. 
     Visualizing features that are significant in the 
model’s predictions is important as it enables us to  
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validate the model’s reasoning. It also allows for 
identification of neuroimaging biomarkers of 
conversion to DAT. State-of-the-art visualization 
techniques include Gradient Class Activation Map 
(Grad-CAM) and Guided Gradient CAM (Guided-
Grad-CAM) due to its class-discriminative nature of 
feature visualization [34, 45]. However, in the medical 
field, this could act as a drawback as it could not 
visualize the characteristic of negative samples [3]. Also, 
the visualized features have extremely low resolutions 
(e.g., 3x4x3 voxels) due to the CNN architecture design. 
In occlusion method [44], small sections (e.g., 2x2x2 
voxels) are systematically occluded from all scans, and 
the already-trained model produces prediction scores on 
the occluded scans, producing an occlusion map which 
represents the prediction scores for the occluded image 
location. The resulting map of relevant brain regions is 
at a resolution that is close to the original data. To the 
best of our knowledge, this method has yet to be 
implemented in the deep model of classifying MCI-NC 
vs. MCI-C.   
 
 

IV.  MATERIALS AND METHODS 

 
A. Participants  
     Data used in the preparation of this article were 
obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). The 
ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. 
Weiner, MD. The primary goal of ADNI has been to test 
whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological 
assessment can be combined to measure the progression 
of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD). 
     The source task includes 2084 NC and 1406 DAT 
scans from 1080 subjects. Scans from multiple 
timepoints are included if available. In the target task, 
we examine MCI-C patients with a conversion time up  

 
to 3 years (longer conversions are examined later), and 
MCI-NC patients with a duration of MCI (within ADNI) 
at least 3 years. MCI subjects with a duration of MCI 
less than 3 years without conversion are exclude due to 
the potential possibility of near-future conversion. Only 
single timepoints are included for the target task, 
resulting in 222 MCI-NC and 228 MCI-C scans from 
450 subjects. Demographic information and clinical 
scores are shown in Table 1. Figure 1 shows the 
distributions of duration of MCI-NC and conversion 
time of MCI-C patients. 
 
(a)                                                  (b)     

   
Figure 1. Distribution of MCI-NC (N=514) and MCI-C (N=277) 
patients according to the duration and conversion years. As the 
classification task lies in classifying MCI in patients who would 
convert to DAT in 3 years, MCI-C patients whose conversion time is 
in 3 years (red box in (b), N=228) are included. As a comparison to 
this group, MCI-NC patients whose duration time is at least 3 years 
(red box in (a), N=222) are included in this study. 

B. Structural MRI data preprocessing 
     1.5T and 3T sMRI data are downloaded from ADNI. 
Preprocessing is performed including skull-stripping 
[41], re-orientation, cropping and padding to 158 x 196 
x 170. The FMRIB Software Library (FSL; 
https://fsl.fmrib.ox.ac.uk) is then used to correct 
intensity inhomogeneity by using an N3 algorithm [37] 
and to co-register the scans to the Montreal Neurological 
Institute (MNI)-152 atlas by using affine linear 
alignment. 
 
C. Data setup for transfer learning 
     For the source task, NC and DAT scans are randomly 
selected and divided into training, validation, and test 
sets. To provide diverse domain knowledge as much as 
possible, 90% of the data (3143 scans) are assigned to 

Table 1. Demographic and clinical information within subjects for the Source and Target Tasks 

 
 

N total Age 
% 

Male 
Education CDRSB ADAS11 ADAS13 MMSE 

Source 
Task 

NC 2084 
76.49 
(5.92) 

49.8% 
16.35 
(2.74) 

0.09 
(0.30) 

5.56 
(2.85) 

8.70 
(1.32) 

29.04 
(1.21) 

DAT 1406 
76.18 
(7.22) 

60.1% 
15.35 
(2.90) 

5.22 
(2.41) 

20.47 
(7.85) 

31.03 
(9.43) 

22.31 
(3.68) 

Target 
Task 

MCI-
NC  

222 
72.25 
(7.32) 

63.1% 
15.97 
(2.85) 

1.18  
(0.63) 

8.61  
(3.41) 

13.77 
(5.33) 

28.00 
(1.69) 

MCI-
C 

228 
74.18 
(6.96) 

57.0% 
15.87 
(2.78) 

1.97 
(0.98) 

13.17 
(5.00) 

21.27 
(6.04) 

26.77 
(1.72) 

Results are reported as mean (SD). Age and education are reported in years. CDR=Clinical Dementia Rating Scale; ADAS11=Alzheimer’s 
Disease Assessment Scale 11; ADAS13=Alzheimer’s Disease Assessment Scale 13; MMSE=Mini Mental State Exam.  
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the training set while the validation and test sets each 
contained 5% of the sample (172 and 175 scans). Groups 
within the training, validation and tests sets are 
confirmed not to differ significantly on demographic 
and clinical characteristics: sex, race, ethnicity, marital 
status, age, years of education, clinical scores, genetic 
information, etc 2. 
     For the target task, MCI-NC and MCI-C scans are 
split into training, validation, and test set by following 
the conventional ratio of 70% vs. 15% vs. 15% (314, 68, 
and 68 scans). To avoid data leakage [42], a single time 
point scan is used for each subject. The test set of the 
target task is also ensured to be fully independent (i.e., 
unseen) from the training and validation sets in both the 
source and target tasks. Therefore, no subjects in the 
target task test set overlap with the rest of the sample. 
This step has been overlooked in previous research and 
is crucial for both avoiding biased learning and 
increasing the generalizability of the model.  
  
D. Architecture of Convolutional Neural Network 
     A base model for transfer learning is developed by 
benchmarking Residual Network 50 (ResNet50) [12]. 
Unlike the conventional approach, which relies on 
tuning hyperparameters to research global optima, 
ResNet50 is beneficial in optimization. It uses skip 
connection that could smooth the loss landscape. The 
model could avoid local minima, and easily reach to the 
global optima [22, 25]. However, ResNet50 has a higher 
complexity that is likely to cause a high variance 
problem. We therefore scale down ResNet50 by 
decreasing the number and width of convolutional layers. 
The resulting model has narrower and shorter network 
architecture than ResNet50 and is named ResNet29 
(Figure 2).  
     ResNet29 is an end-to-end binary classification 
model. The number of filters in the first convolutional is 
reduced from 64 to 32. The number of bottleneck 
modules in each convolutional section is reduced from 
3, 4, 6, and 3 to 2, 2, 2, and 2, respectively. One 
additional bottleneck layer is added at the end. The 
number of filters of each residual block is divided by 4, 
resulting in 4,305,666 hyperparameters.  
     All codes are built in python Keras as TensorFlow 
backend. Experiments are conducted by using 4 
NVIDIA P100 Pascal (12G HBM2 memory). The 
source task is completed in approximately 9 hours and 3 
hours is taken to complete the target task. 
 

 
2 Clinical scores and genetic information include CDR, ADAS11, 
ADAS13, MMSE, RAVLT immediate, RAVLT learning, RAVLT 

(a) 

 
      (b)                 (c) 

 
Figure 2. (a). Architecture of Convolutional Neural Network (CNN). 
The original ImageNet Model, i.e., ResNet50 was scaled down by 
narrowing and shortening the model. A Global Average Pooling layer 
was added at the end of the architecture, followed by the classification 
layer. (b) Skip connection was used to enable the model to reach a 
global optima. [12] (c). Bottleneck layers were set to reduce the 
model’s complexity and thereby improve the classification 
performance. [12]  

E. Hyperparameters 
     At the source task, the model is trained with a 
cyclically changing learning rate from 1e-2 to 1e-4 with 
a unit epoch of 25 through the entire epoch of 75 to avoid 
the model being stuck in local optima, in order to 
achieve global maxima [30]. To reduce overfitting, ridge 
regression and weight constraint with the hyper-
parameter value of 4e-4 and 2 are used with the batch 
normalization layer [16]. To reduce gradient exploding, 
gradient clipping is set as 1 [26]. The model and the 
weight matrix trained on NC vs. DAT are transferred to 
the target task of classifying MCI-NC vs. MCI-C. At the 
target task, the first 127 out of 155 layers are frozen 
during training, which results in 2,767,106 trainable 
parameters. The model is retrained with a cyclically 
changing learning rate from 1e-3 to 1e-5 with unit epoch 
25 through the entire epoch 125. Ridge regression, 
weight constraint, and gradient clipping are set as 7e-4, 
2, and 1 with batch normalization layer. 
     Batch size is fixed at 1. All convolutional layers are 
initialized with ‘he_normal’ [13] and the ‘elu’ activation 
function is used while output layer uses ‘softmax’ 
activation function. Categorical cross entropy is used as 
a loss function and stochastic gradient descent is used as 
an optimizer. 

forgetting, RAVLT percent forgetting, FAQ, APGN1, APGN2, 
APOE2, APOE3, and APOE4. 
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F. Feature Visualization Method: Occlusion Map 
     An occlusion map is generated by the prediction 
score of the model. For all subjects that have been 
corrected predicted by the target task, their preprocessed 
brain scan are occluded by a 2x2x2 voxel patch 
(intensity 0) then fed into the model. The patch position 
is iterated through each voxel with stride of 2. An 
occlusion map of prediction is generated and visualized 
as a heatmap. In places where prediction score decreases 
from the un-occluded result, these regions are regarded 
as significant in their contribution to the prediction of 
conversion to DAT. 
 
G. Relating to Clinical and Neuropsychological 

Measures 
     For relating 3D-CNN prediction probability to 
diagnostic and clinical measures, we include the  
Clinical Dementia Rating-Sum of Boxes (CDRSB), 
Alzheimer’s Disease Assessment Scale – cognitive 11 
item (ADAS 11) and cognitive 13 item (ADAS 13), 
Mini Mental State Exam (MMSE), Rey Auditory Verbal 
Learning Test (RAVLT) – RAVLT Immediate, RAVLT 
Learning, RAVLT Forgetting, RAVLT Percent 
Forgetting, and Functional Activities Questionnaire 
(FAQ) [11, 23, 24, 27, 28, 36]. 
     For 514 MCI-NC and 277 MCI-C subjects (Figure 
1.), we calculate Pearson correlation coefficients 
between model prediction probabilities from the first 
MCI-diagnosed sMRI scan and rate of change in clinical 
assessments. The longitudinal clinical scores from the 
first MCI-diagnosed time point to the end of clinical 
history are used to obtain the rate of change of clinical 
assessments scores. Correlations between the baseline 
sMRI scan and the clinical scores’ rate of change  

 
3 MRI features indicates average cortical thickness, standard 
deviation in cortical thickness, volumes of cortical parcellations, 
volumes of specific white matter parcellations, and the total surface 

 
obtained through the first to the last clinical history are 
also examined. 

 
 

V.  RESULTS 

 
A. 3D-CNN classification results  
     Classifying MCI-NC vs. MCI-C through transfer 
learning with a base model of ResNet29 is successful 
(See Table 2.). It produces a test set classification 
accuracy of 82.4% and 0.827 Area Under the Curve 
(AUC) as well as 0.189 Equal Error Rate (EER) value 
(Figure 3.) 
 
 (a)                                                  (b) 

  
Figure 3. Loss history of train and validation data (a) and classification 
performance (b), i.e., Area Under the Curve (AUC) and Equal Error 
Rate (ERR) on test data. Train and validation loss are continuously 
decreasing along to the epochs, which indicates the model is learning. 
Weight matrix that is restored and used to evaluate the test 
classification accuracy was where the validation loss showed the 
minimum. Test classification accuracy reported 82.4%. AUC and EER 
value are 0.827 and 0.189, respectively. 

     The test set is composed of MCI-C patients whose 
conversion time is between 0 to 3 years. To further look 
at the models’ prediction performance over a longer 
conversion time, a separate MCI-C dataset whose 
conversion time is longer than 3 years is used. In 
conversion time from 0 to 3 years, 3 to 6 years, and 6 to 

area of the cortex. And Meta features includes demographic, genetic 
information, baseline cognitive scores, and lab tests. 305 MRI 
features and 52 Meta features are used. 

Table 2. Summary of MCI-NC vs. MC-C classification research. 

 Engineering Biomarker 
Conversion 

time 
(years) 

Random guess 
(%) 

Accuracy 
(%) 

Increase (%) 

Proposed 
model 

Network sMRI 3 50.7 82.4 31.7 

Basaia et al, 
2018 

Feature sMRI 3 65.6 74.9 9.3 

Suk et al, 2017 Feature 
sMRI, 

Clinical 
Score 

1.5 57.5 74.8 17.3 

Cheng et al, 
2015 

Feature 
sMRI,  

PET, CSF 
2 56.6 79.4 22.8 

Li et al, 2014 Feature 
MRI,  
Meta 

features3 
4 54.9 74.8 19.9 
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10 years, there are 37, 39, and 9 MCI-C subjects, and the 
model’s sensitivity on these three groups are 79.31, 
70.27, and 55.57, respectively. The same model and its 
produced weight matrix are implemented to predict 
patients with longer conversion time. The results show 
that prediction score decreases with longer conversion 
time (Figure 4). 

 

 
Years Nparticipants Sensitivity 
0-3 37 79.31% 
3-6 39 70.27% 

6-10 9 55.57% 
Figure 4. The sensitivity to predict patients with conversion years from 
0 to 10. The same model and its weight matrix show decreasing 
sensitivity as conversion time gets longer. It indicates that the 
heterogeneous nature of DAT makes the model confused in predicting 
future development. 

 
B. Feature Visualization 
     Using occlusion mapping, we identify structural 
features predicted by the model (Figure 5.). Red regions 
in the brain indicate a high prediction score, indicating a 
greater likelihood of being the MCI-NC brain. Blue 
regions indicate that the occlusions of these regions 
lower the model’s confidence in predicting MCI-NC 
status; As seen in Figure 5, the hippocampus, amygdala, 
and pons regions are relevant for characterizing MCI-
NC Similarly, the cerebellum and pons regions are 
recognized as features in predicting MCI-C. 
classification (Figure 6).  
 
C. Relating to clinical scores 
     CNN-based prediction score shows significant 
correlation with CDRSB, FAQ, MMSE, and RAVLT 
forgetting (Figures 7. and 8.). Higher prediction score of 
CNN is related to the higher score of CDRSB and FAQ 
and lower MMSE and RAVLT forgetting score. On the 
other hand, RAVLT immediate learning, ADAS11, and 
ADAS 13 do not show a significant correlation with the 
3D-CNN-based prediction scores. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5. Occlusion map’s (a) coronal plane, (b) sagittal plane, and (c) transverse plane across all correctly predicted MCI-NC patients. The red 
color indicated the higher prediction score, whereas the blue color indicated the lower prediction score. The blue regions, which implies the 
important brain regions in predicting MCI-NC, indicate the hippocampus, amygdala, pons regions, etc.  
 

Random guess 
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(a) 

 
(b) 

 
(c) 

 
Figure 6. Occlusion map’s (a) coronal plane, (b) sagittal plane, and (c) transverse plane across all correctly predicted MCI-C patients. The red color 
indicated the higher prediction score, whereas the blue color indicated the lower prediction score. The blue regions, which implies the important 
brain regions in predicting MCI-C, indicate the cerebellum and pons regions, etc.  

 
 

 
Figure 7. Correlation between CNN-based score from first MCI-diagnosed sMRI scan and clinical assessment scores' rate of change.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.20.884932doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.884932


 
Figure 8. Correlation between CNN-based score from baseline sMRI scan and clinical assessment scores' rate of change.

VI.  DISCUSSION 

 
     Using an end-to-end 3D-CNN deep learning model 
with transfer learning on structural MRI scans, we are 
able to predict MCI patients that either remained stable 
in their diagnosis (MCI-NC) or progressed to DAT 
(MCI-C) with an 82.4% accuracy. We achieve this 
without feature engineering. Furthermore, we utilize an 
occlusion map and show the hippocampus, amygdala, 
and pons are key regions in characterizing the MCI-NC 
and cerebellum and pons in characterizing MCI-C. 
Finally, we show that prediction scores from our model 
are related to worsening of clinical and 
neuropsychological performance measures.   
     One of the latest experiments predicting MCI-NC vs. 
MCI-C defined the conversion time at 3 years [4], and 
we chose this conversion time for the present study in 
order to directly compare performance. Further, setting 
conversion time at 3 years provides a well-balanced data 
set between MCI-NC (N=222) and MCI-C (N=228) [15]. 
     Compared to previous studies (Table 2), our model 
achieves the highest accuracy (82.4%) in classifying 
MCI-NC from MCI-C, and the largest difference from 
chance. It also shows the most significant prediction 
increase from random guess, i.e., 31.7%. It should be 
noted that conversion times in previous studies range 
from 1.5 years [38], 3 [4], to 4 years [21], while the 
present study uses a 3-year conversion time window.  
     Some existing studies also include multimodal 
biomarkers in their prediction models, such as positron 
emission tomography (PET) and cerebrospinal fluid 
(CSF) data [7]. Our model outperforms these models, 
demonstrating that it is possible to predict conversion to 
DAT by using a single sMRI scan. This improved 
performance of our model is due to the source task in the 
transfer learning scheme that provides as much diverse 
domain knowledge as possible. Also, various 
engineering techniques, for example, cyclically 
changing learning rate [30], and carefully-tuned a set of 

hyperparameters contributes to the improvement of the 
classification performance. 
     The ability for deep-learning models to identify 
anatomical brain regions in predicting conversion from 
MCI to DAT, to the best of our knowledge, has not been 
demonstrated previously. The occlusion map identifies 
regions including the hippocampus, cerebellum, 
amygdala, and pons as significant. We note that the 
patch color (black) used in the occlusion map does not 
alter the visualization results, as we found identical 
results using a white colored patch. Interestingly, while 
volumetric changes of limbic structures in DAT are well 
documented in the literature [4, 15, 46], disease-related 
volumetric changes of brain stem structures (including 
pons) in patients with DAT are less well documented 
[47]. However, previous research has shown Braak-
stage dependent changes in locus coeruleus, a 
noradrenergic nucleus located in the pons [48]. 
Neuropathological changes in the AD are associated 
with degeneration of the noradrenergic projections from 
the locus coeruleus, and cytopathology in this region has 
been highlighted as an early event predicting disease 
progression in DAT [49].   
     Current clinical diagnostic criteria cannot accurately 
identify clinical stages of MCI-NC and MCI-C [39]. 
Automated classification systems for MCI-NC vs. MCI-
C, such as the method presented in this study, offer 
promise for informing the clinical prognosis of these 
patients. Furthermore, the methods presented here will 
be useful for identifying which patients would benefit 
most from selection into clinical trials. Our methods 
avoid problems faced in the field such as data shortage, 
high variance, and data leakage. Our research shows 
high accuracy in predicting conversion as well as novel 
visualization features, both critical to advancing our 
understanding of DAT. 
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