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ABSTRACT 

Accurate prediction of gene regulatory rules is important towards understanding of cellular processes. 

Existing computational algorithms devised for bulk transcriptomics typically require a large number of 

time points to infer gene regulatory networks (GRNs), are applicable for a small number of genes, and 

fail to detect potential causal relationships effectively. Here, we propose a novel approach ‘TENET’ to 

reconstruct GRNs from single cell RNA sequencing (scRNAseq) datasets. Employing transfer entropy 

(TE) to measure the amount of causal relationships between genes, TENET predicts large-scale gene 

regulatory cascades/relationships from scRNAseq data. TENET showed better performance than other 

GRN reconstructors, in identifying key regulators from public datasets. Specifically from scRNAseq, 

TENET identified key transcriptional factors in embryonic stem cells (ESCs) and during direct 
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cardiomyocytes reprogramming, where other predictors failed. We further demonstrate that known 

target genes have significantly higher TE values, and TENET predicted higher TE genes were more 

influenced by the perturbation of their regulator. Using TENET, we identified and validated that Nme2 

is a culture condition specific stem cell factor. These results indicate that TENET is uniquely capable 

of identifying key regulators from scRNAseq data. 

Keyword: Gene regulatory network, single cell RNA sequencing, causal relationship, transfer entropy, 

regulator, hub, embryonic stem cells, transcription factors 

Key Points 

• TENET measures putative causal relationships between genes using transfer entropy. 

• TENET shows outstanding performance in identifying key regulators compared to existing 

methods. 

• TENET can reveal previously uncharacterized regulators. 

 

INTRODUCTION 

Regulatory mechanisms are key to understanding cellular processes. The cell-type specific 

functions and responses to external cues is governed by complex gene regulatory networks (GRNs) 

(Davidson and Levine 2008; Møller and Natarajan 2020; Kim et al. 2012). Various approaches 

including genome-wide location analysis using chromatin immunoprecipitation followed by genome-

wide sequencing (ChIP-seq) (Gerstein et al. 2012; Chen et al. 2008) and perturbation analysis were 

designed to explain the putative causal relationships between genes (Loh et al. 2006; Hormoz et al. 

2016). However, protein binding information is limited by the availability of antibodies and 

identification of target genes is difficult when bound at intergenic regions. Moreover, using 

perturbation experiments, it is hard to measure the strength of the putative causal relationships with the 

target genes. Systems biology approaches have been suggested to predict regulators and their target 

genes, prior to experimental wet-lab validation to reduce the cost and time (Hartemink 2005; Zou and 

Conzen 2005; Margolin et al. 2006; Møller and Natarajan 2020; Cho et al. 2007). However, previous 

attempts to infer GRNs have been limited to a small number of genes (Moignard et al. 2015; Li et al. 

2004; Sanchez-Castillo et al. 2018) and/or cannot detect putative causal relationships effectively (Aibar 

et al. 2017; Chan et al. 2017). 
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When dealing with causal relationships, time is often involved, i.e. an effect cannot occur 

before its cause. In order to utilize time to identify the cause (the regulator) and the effect (the target 

genes), a time series analysis of gene expression data would be useful. Single cell RNA sequencing 

(scRNAseq) provides sequential static snapshots of expression data from cells aligned along the virtual 

time also known as pseudo-time (Setty et al. 2016; Trapnell et al. 2014; Haghverdi et al. 2016). Indeed, 

gene expression patterns and peak levels across pseudo-time have been used to infer potential 

regulatory relationships between genes previously (Trapnell et al. 2014; van Dijk et al. 2018). It is 

based on an assumption that the expression profile of a potential regulator precedes the expression 

pattern of a target gene along the pseudo-time. Moreover, current approaches rely on visual and manual 

inspection and the gene expression dependencies are not extensively investigated. Systematic 

approaches that quantify potential causal relationships between genes and reconstruct GRNs are still 

highly required. 

We aim to quantify the strength of causality between genes by using a concept originating from 

information theory, called transfer entropy (TE). TE measures the amount of directed information 

transfer between two variables (Schreiber 2000; Hlaváčková-Schindler et al. 2007). Leveraging the 

power to measure potential causality, TE has been successfully applied to estimating functional 

connectivity of neurons (Orlandi et al. 2014; Wollstadt et al. 2014; Spinney et al. 2017) and social 

influence in social networks (Kim et al. 2016). Based on TE, we developed TENET 

(https://github.com/neocaleb/TENET) to reconstruct GRNs from scRNAseq data. Using single-cell 

gene expression profile along the pseudo-time, TENET calculates TE values between each set of gene 

pairs. 

We found that TE values of the known critical regulators (i.e. target genes) were significantly 

higher than that of randomly selected targets. Interestingly, target genes with higher TE values were 

influenced more profoundly by the perturbation analysis. We also show that TENET outperforms 

previous GRN constructors in identifying target genes. 

Pseudo-time has been used in a number of GRN reconstructors (Matsumoto et al. 2017; Specht 

and Li 2017; Papili Gao et al. 2018; Qiu et al. 2020; Deshpande et al. 2019). Unique to TENET is the 

ability to represent key regulators with the hub nodes in the reconstructed GRNs. For instance, TENET 

identified pluripotency factors from scRNAseq during mouse embryonic stem cell (mESC) 

differentiation (Tuck et al. 2018) and the key programming factors from scRNAseq for the direct 

reprogramming toward cardiomyocytes (Liu et al. 2017b), where existing methods either failed to 

identify or capture their importance for the regulatory network. Interestingly, the factors that TENET 

identified were more negatively correlated with the number of final states (or attractors) in the Boolean 
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networks (Moignard et al. 2015), which confirms the importance of the identified hub nodes. An 

alternative method SCENIC also infers GRNs and their target genes using co-expression and the motif 

information (Aibar et al. 2017). Compared with SCENIC, TENET determines the regulatory 

relationships using the expression profiles alone along the pseudo-time. Therefore, TENET can be used 

to search for any type of regulators regardless of their binding to DNA. 

Applying TENET to scRNAseq data for mESC differentiation into neural progenitor cells 

(NPCs), we found that Nme2 is a key transcription factor (TF) that regulates pluripotency genes in a 

culture condition dependent manner. Inhibition of Nme2 in mESC cultured in ground state (2-inhibitors 

and LIF; ‘2iL’) conditions leads to dramatically reduced cell proliferation and reduced expression of its 

direct targets, compared to differentiation in permissive conditions (Serum and LIF; ‘SL’). In summary, 

TENET has a potential to elucidate previously uncharacterized regulatory mechanisms by reprocessing 

scRNAseq data. 

 

METHODS 

The TENET algorithms 

TENET measures the amount of putative causal relationships using the scRNAseq data aligned along 

pseudo-time. From pseudo-time ordered scRNAseq data (Figure 1a), TENET calculates bidirectional 

pairwise TE values for selected genes using JAVA Information Dynamics Toolkit (JIDT) (Lizier 2014) 

(Figure 1b). We calculated TE values by estimating the joint probability density functions (PDFs) for 

mutual information (MI) using a non-linear non-parametric estimator “kernel estimator”(Schreiber 

2000). The joint PDF of two genes x and y can be calculated as follows: 
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where Θ is a kernel function and N is the number of cells. We used step kernel (Θ(x>0)=1, Θ(x≤0)=0) 

with kernel width r=0.5 as default. The TE from X to Y is defined as follows: 
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where H(X) is Shannon’s entropy of X and L denotes the length of the past events considered for 

calculating TE. It calculates the amount of uncertainty of Yt reduced by considering Xt-1:t-L. We 

reconstructed the GRNs by integrating all TE values for gene pairs (Figure 1c). To remove potential 

indirect relationships, we applied the data processing inequality (Margolin et al. 2006), i.e. iteratively 

eliminating feed-forward loops. The feed-forward loop is defined by a network motif composed of 

three genes, where gene X regulates gene Y and both gene X and Y regulate gene Z. We trimmed the 
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link from gene X to gene Z if TEX
�

Z is less than the minimum value of TEX
�

Y and TEY
�

Z. Finally, we 

reconstructed a GRN consisting of the significant links using Benjamini-Hochberg’s false discovery 

rate (FDR) (Benjamini and Hochberg 1995) after performing the one-sided z-test while considering the 

all trimmed TE values as a normal distribution. The hub node is identified by calculating the number of 

targets (outgoing links). 

 

Figure 1. TENET reconstructs GRNs from pseudo-time ordered single cell transcriptome data 

using TE. a. Step 1: Pseudo-time ordered scRNAseq data are used as the input for TENET.  b. Step 2: 

TENET calculates gene-to-gene pairwise TE while considering the past events of X and Y. c. Step 3: A 

reconstructed GRN is composed of putative but significant causal relationships followed by trimming 

indirect relationships. The heatmap shows the gene expression levels for a regulator (X) and its target 

genes. 

 

Statistical analysis 

A two-sided one-sample z-test was performed to evaluate the mean of TE values for the targets of key 

factors (c-Myc, n-Myc, E2f1, Zfx, Nme2) in mESCs and Gata4 in mouse cardiomyocytes. This was 

accomplished by generating a fitted z-distribution of the TE values using the same number of randomly 

selected genes (1,000 times). A two-sided two-sample Student t-test was performed to evaluate the 

relative gene expression changes after knocking-in of Tbx3 and Esrrb and knocking-down of Pou5f1 

and Nanog for the specified TE values, respectively. 
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To test TENET, we used the scRNAseq dataset obtained from mESCs (Tuck et al. 2018) and mouse 

cardiomyocytes (Liu et al. 2017b). Wishbone (Setty et al. 2016) was used for pseudo-time analysis. As 

an input gene list for the benchmarking of mESC dataset, we used 3,277 highly variable genes with 

log2(count)>1 for more than 10% of all cells and a coefficient of variation > 1.5. For the scRNAseq 

data during the reprogramming into cardiomyocytes, we used 8,640 highly variable genes with 

log2(count)>1 for more than 10% of all cells and a coefficient of variation >1. To reconstruct the GRN, 

we used a regulator gene list which includes genes with a GO term “regulation of transcription 

(GO:0006355)” for the mESC. We generated all the network figures using Cytoscape 3.6.1 (Shannon et 

al. 2003). 

Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

for the functional gene group 

All enriched GO terms and KEGG pathways were obtained using Enrichr (Kuleshov et al. 2016). The 

“pluripotency gene” and the “neural differentiation gene” were obtained from the genes with a GO 

term “stem cell population maintenance (GO:0019827)” and “neuron differentiation (GO:0030182)”, 

respectively. We used GO terms “cardiac muscle cell differentiation (GO:0055007)”, “cardiac muscle 

contraction (GO:0060048)” for cardiomyocyte gene. 

Gene expression and ChIP-seq data for validation 

We downloaded an RNAseq dataset in mESCs with three different combinations of double knock-in 

for Esrrb and Tbx3 (Esrrb-/Tbx3-, Esrrb+/Tbx3-, Esrrb+/Tbx3+) (Hormoz et al. 2016). The gold 

standard target genes of Esrrb and Tbx3 was obtained by comparing Esrrb-/Tbx3- versus Esrrb+/Tbx3- 

samples and Esrrb+/Tbx3- versus Esrrb+/Tbx3+ samples with 2-fold change criterion, respectively. 

The target genes of Nanog and Pou5f1 were identified by using microarray data in mESC with Nanog 

and Pou5f1 knockdown (Loh et al. 2006). To identify target genes of these two TFs, we used a 2-fold 

change and a p-value < 0.01 as described in the original data analysis. 

ChIP-seq data for Pou5f1, Esrrb, Nanog in mESCs were reanalyzed for peak calling (Chen et al. 

2008). After removing the adapter sequence using CutAdapt (Martin 2011) implemented in 

TrimGalore-0.4.5, we aligned the ChIP-seq reads to the mm10 genome using Bowtie2 (Langmead et al. 

2013). ChIP-seq peak was called against GFP control using the “findPeaks” command in the Homer 

package (Heinz et al. 2010). 

Robustness of the performance of TENET 

In order to evaluate the robustness of TENET, we ran the Wishbone 57 times with different options on 

the Boolean expression data of single-cells obtained from early blood development experiments 

(Moignard et al. 2015). 57 Wishbone trajectories were obtained by running Wishbone with 19 different 
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initial states provided in the reference paper (Moignard et al. 2015) and three different choices of cells 

based on the branches (total cells, trunk + first branch, trunk + second branch). The other GRN 

reconstructors from Beeline were also run based on these 57 Wishbone trajectories. 

Condition specific targets 

To identify condition specific targets, we reconstructed GRNs using the pseudo-time ordered 

expression data of 2iL+NPCs and SL+NPCs using TENET. Subsequently, the condition specific 

targets of the top 20 factors in the common GRN were obtained by selecting targets in the culture 

condition specific GRNs. For example, the 35 target genes of Nme2 were included in the 2iL-specific 

but not in the SL-specific GRN whereas the 14 target genes were included in the SL-specific but not in 

the 2iL-specific GRN. 

ESC culture 

E14 mESC were cultured on plastic plates coated with 0.1% gelatin (Sigma #G1393) in either DMEM 

knockout (Gibco #10829), 15% FBS (Gibco #10270), 1xPen-Strep-Glutamine (Gibco #10378), 

1xMEM (Gibco #11140), 1xB-ME (Gibco #21985) and 1000U/mL LIF (Merck #ESG1107) (“Serum”) 

or in NDiff 227 (Takara #Y40002), 3uM CHIR99021 (Tocris #4423), 1uM PD0325901 (Tocris #4192) 

and 1000U/mL (“2iL”). For Nme2 experiments, mESCs were treated with either vehicle DMSO 

(Sigma #02660) or 0.5uM STP (StemCell technologies #72652) for 24 or 48hr. 

Alkaline phosphatase staining 

For AP staining, 1000 mESCs were seeded in a 12-well plate and cultured for 24 or 48hr. The cells 

were washed in PBS, fixed in 1% formaldehyde and stained with AP following manufacturers 

instruction (Merck #SCR004). For quantification of positive stained colonies, four randomly selected 

areas of each well were imaged (10x magnification; Nikon Eclipse TS2) and manually counted. 

Colonies were marked as pluripotent or primed based on morphology and intensity of AP staining. The 

mean and standard error of mean (SEM) were calculated over four independent replicates. 

Cell proliferation assay 

For proliferation assay, 100,000 mESCs were seeded in a 6-well plate in both 2iL and SL conditions. 

Cells were initially allowed to attach for 24hrs before treatment with either DMSO or STP. After either 

24hr or 48hr of DMSO or STP treatment, cells were detached from the plate using Accutase and 

counted using the TC-20 automated cell counter (BioRad). Data are mean + SEM from 4 biological 

replicates. 

RNA extraction and qPCR 

Total RNA was harvested using Trizol (Ambion #15596026), lock-gel columns (5prime #733-2478) 

and precipitated in chloroform/isopropanol using with glycogen. Reverse transcription was performed 
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with 1ug of RNA using high capacity cDNA kit (Applied Biosystem #4368814). Quantitative-PCR was 

performed using SYBR-green with LightCycler480. To obtain relative gene expression levels, 

expression levels were normalized to Gapdh as a control. 

 

RESULTS 

TENET quantifies the strength of putative causal relationships between genes from scRNAseq 

data aligned along the pseudo-time 

TENET measures TE for all pairs of genes to reconstruct a GRN. To assign time to the cells, 

TENET aligns cells along the pseudo-time. The paired gene expression levels along the pseudo-time 

are used to calculate TE (Figure 1a). Given the pseudo-time ordered expression profiles (Figure 1a), TE 

quantifies the strength of putative causal relationships of a gene X to a gene Y (Figure 1b) by 

considering the past events of the two genes. TE represents the level of information in gene X that 

contributes to the prediction of the current event Yt. The highly significant relationships between genes 

are obtained by modeling all possible relationships with normal distribution (Benjamini-Hochberg’s 

FDR (Benjamini and Hochberg 1995)<0.01). The potential indirect relationships are removed by 

applying data processing inequality measure (Margolin et al. 2006) (Figure 1c) (see Methods). TENET 

can be run on various sets of cell type regulators including either known set of genes or the set of all 

TFs, or even on the entire set of genes depending on the network of interest. After feature selection, the 

network analysis is applied to understand key regulators and relationships within the networks. In sum, 

TENET is useful in identifying target genes of a regulator and predicting key regulators. 

 

The TF target genes showed significantly higher TE values than randomly selected genes 

We applied TENET to the scRNAseq data during mESC differentiation into NPCs (Tuck et al. 

2018). We profiled mESCs cultured in 2iL (serum-free media with MEK and GSK3 inhibitors and 

cytokine LIF) and SL (serum media and cytokine LIF), and induced differentiation into neural 

progenitor cells (Bibel et al. 2007). The 2iL cultured mESCs (termed ‘ground state’) homogeneously 

express naïve pluripotency markers mimicking mouse epiblast, while SL cultures contain a 

heterogeneous mix of undifferentiated and differentiating ESCs (Alexandrova et al. 2016; Kalkan et al. 

2017). Another motivation for choosing the mESC experimental system was that a number of ChIP-seq 

and RNAseq datasets are publicly available for validation (Chen et al. 2008; Loh et al. 2006; Hormoz 

et al. 2016). Visualization of the scRNAseq data during mESC differentiation using tSNE showed the 

differentiation trajectory from naïve ground state pluripotency (2iL) to differentiation-permissive (SL) 
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to NPCs (Figure 2a). Consistent with the differentiation time course, general and naïve pluripotency 

markers including Pou5f1 (or Oct4), Sox2 and Nanog were highly expressed in the mESC population 

whereas NPC markers such as Pax6 and Slc1a3 were highly expressed in the NPCs (Figure S1). Then, 

we evaluated the TE values of the target genes supported by ChIP-seq at the promoter proximal (+/-

2kbps) region. We chose c-Myc, n-Myc, E2f1 and Zfx (Chen et al. 2008) as their occupancy is often 

observed at the promoter region of their target genes. Applying peak calling using Homer (Heinz et al. 

2010), we found 541 c-Myc promoter proximal peaks. The TE values of the c-Myc targets were 

compared to the randomly selected genes (as control) with the same sample size, similar GC contents 

and expression levels. Repeating the process 1,000 times, we observed that the 541 c-Myc target genes 

showed significantly higher TE values (p-value=1.19e-27) than the randomly selected genes (Figure 

2b). We also confirmed that ChIP-seq binding targets for other promoter binding TFs such as n-Myc, 

E2f1 and Zfx also have significantly higher TE values compared with the random targets (Figure S2a-

c). 

Additionally, we performed evaluation of TE values using the scRNAseq dataset for the 

reprogramming of mouse fibroblasts into induced cardiomyocytes (Liu et al. 2017b). Investigation 

using Gata4 ChIP-seq in cardiomyocytes (Luna-Zurita et al. 2016) confirmed that the 331 potential 

target genes with Gata4 promoter occupancy also possess significantly higher TE values compared 

with random targets (Figure S2d). 
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Figure 2. Validation of TENET-inferred GRNs for the mouse embryonic stem cell (mESC) 

pluripotency. a. A tSNE plot of the mESCs (2iL and SL) and NPCs shows distinct expression. b. The 

c-Myc target genes have higher TE values than the randomly selected 541 genes (repeated 1000 times). 

The expression ratio of predicted Tbx3 (c) or Esrrb (d) target genes (Tbx3 or Esrrb overexpression 

(Tbx3+ or Esrrb+) against control (Tbx3- or Esrrb-)). The expression ratio of predicted Pou5f1 (e) or 

Nanog (f) target genes (knockdown versus wild-type). 

 

TE values reflect the degree of dependency to the regulator 

Gene perturbation followed by gene expression measurement by bulk RNAseq has been widely 

used to determine potential target genes. We further examined the TE values of the potential TF target 

genes identified by overexpression of Esrrb and Tbx3 as well as knockdown of Pou5f1 and Nanog (Loh 

et al. 2006; Hormoz et al. 2016). We divided the genes based on their TE values and investigated the 

fold changes upon the perturbation of the corresponding TF. Interestingly, the expression levels of the 

genes with low TE values (<0.05) had little or no influence upon perturbation. However, the expression 

levels of the genes with high TE values were markedly increased upon overexpression of Esrrb and 

Tbx3 and consistently, decreased upon knockdown of Pou5f1 and Nanog. These changes were 

particularly more significant for genes with higher TE values (>0.2) (Figure 2c-f). These results 

indicate that TE values reflects the degree of dependency of the target genes to the expression of their 

regulator. 

 

TENET can predict key regulators from scRNAseq data 

To determine whether the TENET captures the key biological processes, we investigated hub 

nodes and evaluated if key regulators were well represented. From the reconstructed GRNs from mESC 

to neural cells, we assessed if key regulators (based on the number of outgoing edges) in the GRNs are 

associated with stem cell or neural cell biology. The gene ontology (GO) terms and KEGG pathways 

enrichment tests showed that the hub regulators (number of outgoing edges >= 5) are mostly associated 

with pluripotent stem cells and cellular differentiation functions (Figure S3a). We also benchmarked 

and compared TENET’s performance to other methods including SCODE (Matsumoto et al. 2017), 

GENIE3 (Huynh-Thu et al. 2010), GRNBOOST2 (Moerman et al. 2019), SINCERITIES (Papili Gao et 

al. 2018), LEAP (Specht and Li 2017), SCRIBE (Qiu et al. 2020), and SCINGE (Deshpande et al. 

2019). For unbiased comparison, we ran each GRN method on the same set of 3,277 highly variable 

genes (see Methods). 
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The top 4 ranked regulators determined by TENET were markers for pluripotency (Pou5f1, 

Nanog, Esrrb, and Tbx3) (Figure 3a). Compared to TENET, most methods failed to identify these key 

genes in the hub list except for SCRIBE. For instance, GENIE3 and GRNBOOST2 only found Nanog 

as the 14th and 5th of the top regulators, respectively; but they did not detect Pou5f1. SCRIBE, another 

TE-based GRN predictor identified Nanog, Pou5f1, Esrrb, Tbx3 as the top regulators, suggesting the 

algorithmic advantages of TE especially for scRNAseq data (Figure S4). However, both SCRIBE and 

SCODE the numbers of target genes in the hub node were drastically reduced beyond the 5th regulator, 

which highlights that these methods emphasize on a few potential regulators during network 

reconstruction. 

Intrigued by this, we investigated whether the hubs in the networks are associated with 

“pluripotency” or “neural differentiation” using the list of the genes obtained from GO database (see 

Methods). We investigated both receiver operating characteristic (ROC) curves and precision-recall 

curves (PRCs) while regarding genes in the GO database as true. The ROC curves for the pluripotency 

and neural differentiation demonstrates TENET’s far exceeding capability in predicting key regulatory 

factors related with these key GO terms compared to other methods (Figure 3b and S5a-b). The area 

under precision-recall curve (AUPRC) further confirmed the increased performance of TENET in 

capturing key regulators (Figure 3c). As TE values rely on pseudo-time, we also investigated whether 

TENET results were sensitive to other pseudo-time inference methods. Computing pseudo-time using 

PAGA (Wolf et al. 2019) and Slingshot (Street et al. 2018) showed that TENET is robust to the choice 

of pseudo-time inference and outperformed other GRN reconstructors (Figure S6). 

To further test if TENET can suggest key regulatory factors in various biological systems, we 

reconstructed a GRN based on the scRNAseq data for direct reprogramming of mouse fibroblast into 

cardiomyocyte by overexpressing Mef2c, Tbx5 and Gata4 (Liu et al. 2017b). We first examined if 

these overexpressed factors were well predicted in the inferred GRNs. Consistently, TENET identified 

those three major reprogramming factors (Mef2c, Tbx5 and Gata4) as well as other genes associated 

with cardiomyocytes as top ranked regulators (Figure 3d and Figure S3b). Not surprisingly, these 

factors were not well observed in the GRNs inferred by other reconstruction methods (Figure 3e-f and 

S5c-d) with exception of SCRIBE that only found Mef2c (Figure S7). Additionally, while 

GRNBOOST2 showed relatively better performance in detecting pluripotency and neuronal 

differentiation factors, it failed in detecting the key factors during cardiomyocyte reprogramming. 

Collectively, our results show that TENET can robustly capture key regulatory genes for biological 

processes. 
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Figure 3. TENET outperformed other tools when predicting key regulatory factors for mESC 

pluripotency and direct reprogramming from mouse fibroblast into cardiomyocyte. a. Key 

regulatory factors for mESC pluripotency and neural differentiation predicted by TENET. The purple 

bar denotes pluripotency and neural differentiation genes. b. ROC curves and c. Area Under Precision-

Recall Curves (AUPRCs) for the prediction of key regulatory factors of pluripotency and neural 

differentiation. d. Key regulatory factors for direct reprogramming into cardiomyocyte in the TENET-

inferred GRN. Three major reprogramming factors Mef2c, Tbx5, Gata4 have a large number of targets. 

e. ROC curves and f. AUPRCs for the prediction of key regulatory factors of cardiomyocyte. 

 

TENET’s hub nodes were associated with the controllability of Boolean network dynamics 

To further investigate the characteristics of TENET in finding key regulators, we compared the 

reconstructed networks with Boolean networks (BNs) (Moignard et al. 2015). BNs consider all possible 

binary status of its members (genes) and have been widely used to model biological systems (Li et al. 

2004; Choi et al. 2012; Wang et al. 2010). BNs can simulate overexpression or knock-out of a gene and 

its consequences from the inferred networks. Therefore, BNs can be used to evaluate how much a 

member (i.e. gene) can influence the steady-state dynamics of the networks, and in combination with 

other members (called “controllability”) (Kim et al. 2013). Previously, a BN based GRN using 20 TFs 

was built using single cell qRT-PCR during mouse early blood development (Moignard et al. 2015) 

(Figure S8). Using the BN-inferred GRN as a surrogate for the gold standard, we first evaluate if the 

networks from GRN reconstructors accurately mimic the BN-inferred GRN. The comparison showed 
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that TENET and GRNBOOST2 outperforms other approaches in both directed and undirected networks 

in this example (Figure S9a-b). 

In the BNs, the number of final stable states (known as attractors) can be calculated while 

simulating all possible states of the members except one member of interest (a gene with perturbation). 

A critical member usually has a small number of attractors. Therefore, the predicted hub genes in the 

GRN will negatively correlate with the number of attractors if the hub genes are the key genes. In a 

series of experiments, TENET showed an ability to find key regulators. We further tested if the 

predicted key regulators are negatively correlated with the attractors found in the BNs. Our simulation 

showed that the TENET-inferred network has the strongest negative correlation with the number of 

attractors compared followed by SCRIBE, SCODE and GRNBOOST2 (Figure S9c), while other 

methods showed either no or positive correlation. This further demonstrated that TENET has the 

capability to identify key regulators. 

TENET outperforms other GRN reconstruction algorithms in identifying target genes 

To further assess TENET, we used Beeline (Pratapa et al. 2020), a benchmarking software for 

GRN inference algorithms. Among them, we performed benchmarking only for those algorithms that 

can implement large scale GRN reconstruction including SCODE (Matsumoto et al. 2017), GENIE3 

(Huynh-Thu et al. 2010), GRNBOOST2 (Moerman et al. 2019), SINCERITIES (Papili Gao et al. 2018), 

LEAP (Specht and Li 2017), SCRIBE (Qiu et al. 2020), and SCINGE (Deshpande et al. 2019), using 

the mESC scRNAseq dataset (Tuck et al. 2018). To prepare stringent datasets for evaluation, we 

regarded a target as true if the expression of the target gene is changed significantly by the perturbation 

study (Loh et al. 2006; Hormoz et al. 2016) and the binding occupancy of the corresponding regulator 

is observed nearby (+/-50kbps to transcription start sites (TSSs)) (Chen et al. 2008) (see Figure S10a 

and Methods). 

We benchmarked all methods running Beeline on 3,277 highly variable genes (see Methods). 

Beeline (Pratapa et al. 2020) provided comprehensive results after running all GRN reconstructors. The 

ROC curves showed that TENET, GENIE3 and LEAP outperformed other reconstructors in predicting 

targets of Nanog, Pou5f1, Esrrb, and Tbx3 (Figure S10b-c). Interestingly, SCRIBE showed worse 

performance than TENET, while GENIE3 and LEAP failed to find key regulatory genes but showed 

good performance in this benchmarking test (even with a small number of regulators). 

TENET identifies culture condition specific regulators 

To search for potential regulators besides the known TFs during stem cell differentiation (Tuck 

et al. 2018), we extended the GRN by considering 13,694 highly variable genes as well as target genes 

(see Methods). In addition to several known pluripotency (Nanog, Sox2, Pou5f1, Tfcp2l1 etc.,) and 
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neural regulators (Meis1, Tbx3 etc.,), we were intrigued to find Fgf4 and Nme2 as the top regulators 

(ranked by number of targets, Figure S11b and Table S1). Fgf4 is known to be dispensable for 

embryonic stem cells, but is critical for exit from self-renewal and differentiation (Almousailleakh et al. 

2007; Lanner and Rossant 2010), while Nme2 (Zhu et al. 2009) has been implicated in stem cell 

pluripotency (Figure S11). 

As we profiled mESCs in both ground-state 2iL and heterogeneous SL conditions, we assessed 

whether TENET could further distinguish them and identify culture-condition specific GRNs. We 

reconstructed GRNs for 2iL and SL condition separately and compared the regulators as well as their 

specific targets (Figure S12, see Methods). We found several naïve pluripotency markers specifically 

enriched in 2iL condition including Nanog (Wray et al. 2010), Esrrb (Martello et al. 2012), and Tfcp2l1 

(Martello et al. 2013; Qiu et al. 2015), whereas heterogeneous and hypermethylated SL condition 

(Habibi et al. 2013; Leitch et al. 2013) regulators included Tet1 (Pantier et al. 2019; Ito et al. 2010) and 

Dnmt3l (Ficz et al. 2013) and Zfp57 (Riso et al. 2016) (Figure S12). Interestingly, Nme2 was a top 

mESC regulator for the 2iL GRNs. Intrigued by this, we sought to investigate the effect of Nme2 

perturbation using an small molecule inhibitor Stauprimide (STP) that blocks the nuclear localization 

(Zhu et al. 2009). We cultured mESCs in 2iL and SL conditions and treated cells with 0.5μM STP 

(Figure 4a). The cellular proliferation and division were significantly inhibited in both culture 

conditions, but were drastic in 2iL (Figure 4b). Upon 24hr STP treatment in 2iL, we could visually 

observe high levels of apoptotic cells, detached colonies and few viable cells at 48hrs. We quantified 

the STP effect on pluripotency by alkaline phosphatase staining (AP; Figure 4c) and scored cells either 

as undifferentiated (high AP staining, rounded colonies; naïve mESCs) or as mixed (low/no AP staining, 

flattened colonies; differentiation-like/apoptotic cells) (Kalkan et al. 2017; Liu et al. 2017a). The STP 

treatment in 2iL led to a drastic decrease in undifferentiated colonies (45% ± 5.9% colonies) and the 

remaining mixed cells were mostly composed of apoptotic cells. 

Previously, c-Myc has been reported as a target gene of Nme2 (Zhu et al. 2009), consistent with 

TENET prediction. We confirmed that c-Myc expression was significantly downregulated upon STP 

treatment in both culture conditions (Figure 4d). TENET also predicted several TFs including Nanog 

and Ctnnb1 at the target of Nme2. We found that both Nanog and Ctnnb1 transcripts were highly 

upregulated upon STP treatment in both culture conditions but more significant in 2iL condition, 

indicating condition specific regulation of Nme2 as predicted by TENET (Figure 4d). 
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Figure 4. Nme2 inhibition blocks proliferation of mESC in 2iL condition. a. Experimental design: 

The mESCs were seeded in either SL or 2iL culture conditions and were treated with either DMSO 

(control) or 0.5μM STP for 24hr and 48hr. The 6 samples were assayed for proliferation rates, relative 

transcript expression and for pluripotency using alkaline phosphatase (AP). b. Cell proliferation assay 

for mESCs cultured in SL and 2iL conditions with either DMSO (Control) or 0.5μM STP. The mean 

and SEM were calculated over four independent replicates. c. STP treatment leads reduction in 

undifferentiated colonies and increase in mixed differentiation-like colonies across both SL (48hrs) and 

2iL (24hrs) conditions, based on AP staining. AP staining intensity and colony morphology are used to 

classify undifferentiated (high AP staining, rounded colonies) and mixed (low/no AP staining, flattened 

colonies; differentiation-like; apoptotic cells) populations. Representative images of undifferentiated 

and mixed colonies in control and STP treated colonies across both culture conditions. The data in the 

barplots describe the mean ± SEM from 2 biologically independent replicates. d. The c-Myc transcript 

levels are down regulated both in 2iL and SL upon STP treatment, owing to impaired Nme2 nuclear 

localization. The Nme2 target genes in TENET (Nanog and Ctnnb1) are selectively regulated between 

culture conditions. Significance (p-value) are highlighted above barplots. The data in barplots describe 

the mean ± SEM from 3 biologically independent replicates. 
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DISCUSSION 

Systems biology approaches to infer GRNs can provide a hypothesis for further experimental 

validation. Existing methods for bulk transcriptomics datasets are limited because they cannot capture 

the continuous cellular dynamics and/or require cell synchronization to avoid “average out” expression. 

scRNAseq has emerged as an alternative because of its power to provide the transcriptomic snapshots 

of hundreds, thousands of cells on a massive scale, from same population. Subsequently, computational 

approaches used scRNAseq for GRN reconstruction (Moignard et al. 2015; Sanchez-Castillo et al. 

2018; Matsumoto et al. 2017; Moerman et al. 2019; Papili Gao et al. 2018; Specht and Li 2017; 

Deshpande et al. 2019; Qiu et al. 2020; Møller and Natarajan 2020; Aibar et al. 2017). 

Many GRN reconstruction algorithms including TENET use the temporal gene expression 

changes, after ordering cells across pseudo-time. For example, GENIE3 (Huynh-Thu et al. 2010) and 

GRNBOOST2 (Moerman et al. 2019) were originally applied the ensembles of regression trees to 

temporal bulk expression data. LEAP (Specht and Li 2017) calculates possible maximum time-lagged 

correlations. SINCERITIES (Papili Gao et al. 2018) and SCINGE (Deshpande et al. 2019) used 

Granger causality from pseudo-time ordered data. SCODE (Matsumoto et al. 2017) uses a 

mechanistical model of ordinary differential equations on the pseudo-time aligned scRNAseq data. 

Compared with current methods, TENET makes use of the power of information theory by adopting 

TE on gene expression along the pseudo-time. Therefore, the performance of these predicted regulators 

could be dependent on the performance of the pseudo-time inference. However, we found that TENET 

is robust to the multiple pseudo-time inference approaches in comparison with other GRN 

reconstructors (Figure S6). 

We showed that TE values of the known target genes were significantly higher than randomly 

selected genes (Figure 2b and S2). The target genes with higher TE values were more significantly 

perturbed by either overexpression or knockdown of the corresponding regulators (Figure 2c-f). We 

also performed comprehensive benchmarking of TENET and several GRN reconstructors using 

Beeline (Pratapa et al. 2020) and its automated pipeline. TENET was consistently one of the top 

performing GRN reconstructors in these tests. 

The evaluation of the performances of GRN reconstructors by counting the number of true or 

false prediction does not fully reflect the importance of the inferred network. We observe that TENET 

consistently predicts and identifies key regulators. This is important because upstream regulators for a 

biological process are often of interest to explain the underlying mechanisms. It is still required to 

evaluate if the inferred networks reflect the key underlying biological processes. Applying TENET to a 
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series of scRNAseq datasets including 1) mESC differentiation and 2) reprogramming to 

cardiomyocytes, we find that TENET identified key factors as the top scoring hubs. For mESC 

differentiation, TENET ranked Nanog, Pou5f1, Esrrb and Tbx3 as the top 4 regulators, while existing 

methods failed to identify these key factors. In an additional test using GO terms, TENET identified 

gene relationships associated with pluripotency and neural differentiation (Figure 3b-c). Interestingly, 

existing methods including LEAP and SINCERITIES did not find any genes related to pluripotency in 

their networks (Figure S5b). Analyzing the reprogramming to cardiomyocytes scRNAseq data, only 

TENET identified the reprogramming factors (Mef2c, Tbx5 and Gata4) (Liu et al. 2017b) (Figure 3d-f 

and Figure S7). These results suggest that while other approaches successful in finding some regulatory 

rules, they cannot make networks focusing on the key biological process. 

We further questioned if TENET is capable of identifying key regulators using BNs. While BNs 

may not be a perfect model of biological system, they can still provide a comprehensive systematic 

overview by visiting all potential states. In BN, the key nodes usually have small number of attractors 

as they drive the networks into more determined status. In our analysis using BNs, TENET-inferred 

networks were negatively correlated with the number of attractors (Figure S9), indicating the key 

ability to capture biological processes. 

A number of studies showed distinct expression patterns in the pseudo-space (Halpern et al. 

2018; Nowotschin et al. 2019). Since pseudo-time inference can lead to multiple branched trajectories, 

we also applied TENET to individual branches. These expression changes for some genes may be 

attributed to association along the spatial axis. However, the associating potential causal relationships 

for them may not be relevant. 

With the power to predict key regulators, we applied TENET to identify mESC culture-

condition specific regulators. TENET predicted several TFs (Nanog, Esrrb, and Nme2) as specific for 

2iL compared to SL culture conditions (Figure S12). Although Nme2 is expressed both in 2iL and SL, 

perturbing Nme2 leads to more dramatic effects (reduced proliferation, AP staining and apoptosis) in 

the 2iL condition; consistent with our prediction. In sum, TENET is a useful approach to predict 

previously uncharacterized regulatory mechanisms from scRNAseq. 

 

DATA AVAILABILITY 

A source code for TENET and input files for the benchmarking datasets are available at 

https://github.com/neocaleb/TENET. 
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