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Single cell RNA sequencing provides powerful insight into the
factors that determine each cell’s unique identity, including
variation in transcription and RNA splicing among diverse
cell types. Previous studies led to the surprising observation
that alternative splicing outcomes among single cells are highly
variable and follow a bimodal pattern: a given cell consis-
tently produces either one or the other isoform for a partic-
ular splicing choice, with few cells producing both isoforms.
Here we show that this pattern arises almost entirely from
technical limitations. We analyzed single cell alternative splic-
ing in human and mouse single cell RNA-seq datasets, and
modeled them with a probablistic simulator. Our simulations
show that low gene expression and low capture efficiency dis-
tort the observed distribution of isoforms in single cells. This
gives the appearance of a binary isoform distribution, even
when the underlying reality is consistent with more than one
isoform per cell. We show that accounting for the true amount
of information recovered can produce biologically meaningful
measurements of splicing in single cells.

Introduction
Single-cell RNA sequencing (scRNA-seq) has provided impres-
sive temporal resolution to our understanding of continuous bio-
logical processes such as cell differentiation [1, 2]. It has uncov-
ered hidden heterogeneity among cells and exposed the factors
that determine each cell’s unique identity. One broad source of
transcriptomic diversity is alternative splicing, and several stud-
ies have uncovered compelling evidence of changes in alternative
splicing among single cells during differentiation [3–6].

A particularly surprising conclusion of several scRNA-seq stud-
ies was the observation that splicing was often bimodal among
supposedly homogeneous cells [5, 7–9]. That is, some cells al-
ways spliced in a particular cassette exon, and some cells never
spliced in the exon, but few cells showed truly intermediate inclu-
sion within one cell. This unexpected result contrasted with pre-
vious single molecule imaging studies of several alternative exons
that showed that cell-to-cell variability is minimized and tightly
regulated by the splicing machinery in single cells [10]. This
led to investigations of the mechanisms that might be responsible
for stochastic splicing variability among apparently homogeneous
cells, such as variation in DNA methylation [11].

We propose that the observed bimodality does not generally

reflect splicing biology, but rather, that it exposes a technical lim-
itation of the scRNA-seq data that have been collected so far. Be-
cause alternative isoforms of a gene share much of the same se-
quence, only the few RNA-seq reads mapping to the exact alter-
native splice junctions, or to the alternative exon itself, reveal its
alternative splicing. When combined with the low mRNA cap-
ture efficiency of scRNA-seq and the PCR amplification of small
amounts of starting material into a full-length sequencing library,
these circumstances create the risk of bottlenecks that lose all but
a few individual mRNAs of most genes in each cell.

The limitations of scRNA-seq are a known obstacle to study-
ing splicing in single cells [12]. Similar concerns have arisen with
the use of scRNA-seq to infer allelic expression; a careful anal-
ysis showed that stochastic patterns resulted from technical noise
[13]. A recent study advised that the high dropout rate of scRNA-
seq makes it fundamentally unsuitable for measuring changes in
splicing [14]. Others have implemented workarounds, e.g., using
sequence features to predict splicing outcomes in lieu of sufficient
sequencing coverage [6], or attempting to identify excess variance
beyond technical noise [3, 11]. These studies have identified true
examples of differential splicing in single cells, but they funda-
mentally do not explain how scRNA-seq limitations have caused
qualitative, not just quantitative, distortions in our understanding
of alternative splicing.

Here, we show that scRNA-seq splicing data are consistent
with a simple model. Consider a particular cassette exon whose
true pattern of exclusion follows a unimodal distribution of iso-
form ratios across cells (i.e., most cells express both isoforms,
with a ratio revolving around the same mean). This distribution
can be distorted by extreme information loss during library prepa-
ration and sequencing, creating the illusion that individual cells
only produce one isoform or the other. Our simulations make it
clear that the reliability of splicing measurements is a function of
the initial amount of mRNA, the efficiency of its recovery, the un-
derlying splicing rate, and further distortions from PCR amplifica-
tion of cDNA. These effects should be considered when interpret-
ing previous studies that used qualitative changes in the observed
distribution of the splicing rates [5] or changes in their variance
[11] as evidence for regulation of alternative splicing. Consider-
ing the true amount of information available for a cassette exon
can allow for accurate observations of alternative splicing. Using
a data normalization and filtering method to identify cassette ex-
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ons with sufficient information, we are able to draw biologically
relevant conclusions about alternative splicing in single cells.

Results
We began by examining the splicing of several cassette exons in
a high-coverage mouse scRNA-seq dataset [15], estimating their
percent spliced-in as the fraction of splice junction reads that show
exon inclusion (out of all reads that cover the junction). We use
Ψ̂ to denote these estimated rates, while Ψ denotes the actual rate
as it is in the cell. For clarity we define Ψ̂ (which pertains to a
specific cassette exon) as binary if it is close to 0 or 1 (i.e., the
respective cell tends to express transcripts that either include the
exon or exclude it, but not both). We further define the distri-
bution of Ψ̂ across cells as bimodal if its individual values are
binary, where some cells have a Ψ̂ close to 1 (most observed tran-
scripts include the exon) and some with Ψ̂ close to 0 (most ob-
served transcripts do not include the exon). Strikingly, the exons
we inspected had more binary outcomes in cells with fewer reads
covering their splice junctions, while cells with more reads were
more likely to show non-binary Ψ̂ values (Figure 1a).This effect
of coverage may reflect a non-binary reality, since even if both
isoforms are expressed in a certain cell, the likelihood of observ-
ing both isoforms is reduced as the number of captured mRNAs
decreases. In contrast, if the underlying distribution was indeed
bimodal, as previously proposed [5, 7, 8], then the read coverage
would have little effect on the variability of Ψ̂ across cells.

To further explore this phenomenon, we extended our analy-
sis to the entire observed transcriptome in several full-transcript
scRNA-seq datasets from mice and humans. We found a strong
effect of coverage on the observed bimodality in all cases. We
consistently found that the bimodally distributed Ψ̂ values were
mostly observed in junctions with low coverage (Figure 1b,c; Sup-
plementary Figure S1a,b). We find similar results in an alternative
analysis whereby cells with an overall higher number of splice
junction reads also tended to have a smaller fraction of exons with
binary values (Figure 1d, Supplementary Figure S2c,d). Interest-
ingly, in a closer inspection, we find that the association between
binary values and read coverage is not observed in exons that are
binary but not bimodal (i.e., the average Ψ̂ is close to 0 or 1; Figure
1c). Taken together, these observations suggest that the presence
of bimodality in exon inclusion patterns may reflect a distortion
of an underlying unimodal splicing distribution (i.e., when cells
in fact express both isoforms), rather than a truly bimodal expres-
sion pattern in the analyzed cells.

A simple probabilistic exercise shows the potential loss of
splicing information during sequencing. Single cell RNA-seq ex-
periments that capture full-length transcripts have an estimated
capture efficiency of only 10%, due to RNA degradation and in-
efficient reverse transcription [4, 8, 16, 17]. For instance, a gene
that expresses 20 mRNA molecules in a cell might only have two
mRNAs recovered, and if that gene is alternatively spliced with a
true splicing rate Ψ of 0.5, there is approximately a 50% chance
that those few recovered mRNAs will only represent one of the
two isoforms that were originally present in the cell (Supplemen-
tary Figure S2a,b). As many genes are expressed at just a few
RNA molecules per cell, low recovery might affect many alterna-
tive splicing events [18, 19]. Furthermore, while the empirically
observed Ψ̂ provides a maximum likelihood estimate for the true
splicing rate, the uncertainty of this estimate (i.e., the range of
alternative values with a nearly similar likelihood) decreases sub-

stantially with the number of observed molecules (Supplementary
Figure S2c and Methods).

Simulations of RNA sequencing reveal technical sources of
distortion of splicing estimates

Our theoretical reasoning above relied on a simple model where
the number of observed mRNA molecules (rather than number of
reads) is known and the only distorting factor is a limited cap-
ture efficiency. In practice, both of these assumptions are chal-
lenged due to additional factors, such as PCR amplification and
variability in the capture efficiency across cells. To investigate
the pertaining effects on Ψ̂ distributions in this more complex set-
ting, we designed a probabilistic simulator of alternative splicing
in single cells (Figure 2a). The model has two main components:
We begin by simulating the underlying molecular content of each
cell, by drawing gene expression levels and cassette exon splic-
ing rates from a probabilistic model of cell state. We then sim-
ulate the technical process of extracting data from each cell us-
ing single cell RNA sequencing with a full transcript coverage.
This part accounts for variability in capture rates, and the effects
of PCR amplification, fragmentation and sequencing. It relies on
SymSim, a simulation software for single cells RNA sequencing
data [20]. The final product of our simulation is the number of
splice junction reads that either span or skip each exon in each
cell. These numbers are distorted in a way that reflects real nui-
sance factors. For instance, two reads could have originated from
the same molecule due to amplification effects.

We used our simulator to investigate how the observed inclu-
sion (Ψ̂) of cassette exons differs from the underlying Ψ, setting
the average capture rate to 10% and the other technical parame-
ters to values that are characteristic of Smart-seq2 datasets (see
methods). We considered either a bimodal and binary regime of
Ψ (i.e., both isoforms are expressed in the population, but rarely
by the same cell; Figure 2b), or a non-binary regime (cells tend
to express both isoforms; Figure 2c) [5, 11, 21]. We simulated
the splicing of cassette exons in 500 genes, in a population of 300
single cells.

As expected, in the bimodal case, the observed estimates (Ψ̂)
reflected the underlying process well, independent of the average
capture efficiency (Figure 2d). In contrast, when we modeled
a non-binary splicing regime, the observed Ψ̂ distributions were
strikingly similar to the splicing distributions of cassette exons in
real single cell RNA-seq datasets (Figure 1b, 2e). Specifically,
the loss of information due to mRNA recovery and library gen-
eration led many of the observed Ψ̂ to become binary, and their
distribution across cells to become bimodal. This tendency again
correlated with coverage, whereby lowly covered exons showed
the strongest effect, while exons with high coverage maintained a
non-binary distribution. Consistently, in this non-binary regime,
the average of Ψ̂ was similar to the true average of Ψ, but the
variance of Ψ̂ increased (Supplementary Figure S2d,e). Further-
more, as in the real data sets (Figure 1c), we also found that the
dependency between read coverage and the chance of observing a
binary Ψ̂ is more pronounced in exons with an underlying Ψ that
is far from binary (Figure 2f-i), highlighting again that such an
association likely indicates an artifact.

Finally, we estimated the chance of observing only one type
of isoform (i.e., a binary Ψ̂) as a function of the underlying Ψ and
the number of transcripts that are present in the cell. As above, our
simulations assume an average mRNA capture rate of 10% (Figure
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Figure 1: a) Comparison of splice junction read coverage and observed Ψ̂ for three cassette exons in the Chen dataset, with low, medium,
and high coverage [15]. Each dot represents the Ψ̂ of that exon in one cell. b) Ψ̂ distribution of the 300 highest coverage cassette exons
with intermediate splicing (average Ψ̂ between 0.2 and 0.8) in each of the five analysed datasets (Table 1). Each row in the heatmap
shows the distribution of Ψ̂ for one exon across all cells. c) Relationship between the average read coverage and proportion of binary
observations for each cassette exon in the Chen dataset. d) Correlation between the total number of splice junction reads captured in
each cell, and proportion of cassette exons that show binary Ψ̂ in that cell.
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2j). Our results delineate the range of values in which an artifact
is less expected. For instance, for an exon with 50% inclusion
rate, a non binary estimate is more likely if the respective gene
has at least 50 transcripts in the cell. Notably, these estimates are
more conservative than the theoretical analysis (Supplementary
Figure S2a,b), due to the effect of the technical nuisance factors
we modeled in this simulation.

Technical sources of variation in scRNA-seq

To address the extent of the distortion from technical factors, we
ran the simulator with a fixed underlying Ψ = 0.5, and observed
the effect of varying different parameters of the RNA sequencing
process. Decreasing the average capture efficiency dramatically
increased the number of binary Ψ̂ observations, particularly for
exons with low expression, although even highly expressed genes
suffered great distortion in the observed distribution of Ψ̂ when
the average capture efficiency was very low (Figure 2k). These
results reinforced the hypothesis that capture efficiency is a main
technical factor that creates the appearance of bimodality in single
cell splicing.

Another potential source of technical variation is the amplifi-
cation process. To generate the sequencing libraries in studies of
splicing in single cells, mRNAs are usually reverse transcribed,
amplified as full-length cDNAs, fragmented, and finally ampli-
fied again to generate enough material for sequencing. Previous
studies have proposed increasing the number of PCR cycles for
cDNA amplification to compensate for the low starting material
in scRNA-seq [5, 14]. Here, we find that increasing the number of
cDNA amplification PCR cycles resulted in a modest, yet consis-
tent increase in the number of binary Ψ̂ observations (Supplemen-
tary Figure S2f,g), which might explain the differences between
the theoretical and the simulation-based analysis. Notably, the
PCR effect was modestly alleviated by increasing the likelihood
of duplicating a cDNA molecule every PCR cycle (i.e., amplifica-
tion efficiency [20]; see Supplementary Figure S2f).

Exon filtering enables a more accurate analysis of splicing in
single cells

We next set out to find criteria that would identify cassette ex-
ons with enough information to draw biological conclusions about
their splicing. While our filter should ideally rely on the actual
number of mRNA molecules observed, full-length RNA-seq ex-
periments generally do not report an absolute mRNA count. Pre-
vious studies used filters based on the number of reads covering
alternative splice junctions as a proxy for the amount of infor-
mation [5, 11]. However, the number of splice junction reads is
influenced not only by the number of recovered mRNAs, but also
by the extent of PCR amplification and sequencing depth.

To estimate the number of mRNA molecules that were cap-
tured into cDNA, we adapted the Census normalization approach
[4]. This method infers a per-cell scaling factor between the rel-
ative abundance of each gene, inferred from RNA-seq, and the
actual number of mRNAs recovered (Figure 3b). We found that
some datasets with many reads per cell, such as the Song et al.
dataset [5] (Supplementary Figure S3b), nonetheless had few mR-
NAs recovered per cell, which may explain the extensive splicing
bimodality in this dataset. The dataset with the highest recovery
of mRNAs (Chen et al [15]) indeed showed a larger extent of non-
binary splicing events.

Next, we explored how many mRNAs must be recovered to

reduce the prevalence of binary observations. Our simulations
showed that a median of nine recovered mRNA molecules in a cell
were required to give a 50% chance of observing both isoforms of
an exon with an intermediate inclusion level (Figure 2j, Supple-
mentary figure S3f). In keeping with this, we saw in the real data
that exons with an average of at least 10 mRNAs recovered per
cell generally had substantially fewer binary observations (Figure
3b, Supplementary Figure S3c-e). However, a subset of these ex-
ons had few splice junction reads relative to the estimated mRNA
count, and this subset showed binary splicing in many cells. We
expect that these represent cases where the overall read coverage
of the full gene led to a high recovered mRNA estimate, but fewer
reads were recovered from the specific splice junctions of interest,
perhaps due to annotation errors or poor recovery of fragments
with particular sequence composition.

To prevent distortions arising from this low read recovery, we
considered the number of splice junction reads expected to arise
from a cassette exon. First, for each cell we calculated the cover-
age rate, representing the expected reads per position of an mRNA,
as the total nucleotides of reads divided by the total nucleotides of
mRNAs recovered from that cell (Figure 3c). Then, the expected
number of splice junction reads for a particular cassette exon also
depends on its Ψ: with no amplification, one mRNA molecule will
produce one pertinent splice junction read if the cassette exon was
excluded, or two if it was spliced in. Thus, 1+ Ψ̂ splice junction
reads are expected per mRNA, multiplied by the per-cell cover-
age rate. This provided a second filtering criterion: we excluded
exons with fewer reads than would arise from 10 mRNAs, given
that exon’s Ψ̂ and the coverage rate in that particular cell. This
metric is calculated for each exon separately, driven by the actual
information in each cell.

Our filter based on the number of recovered mRNA molecules
and the expected splice junction reads was able to remove po-
tentially spurious binary observations, as shown for alternatively
spliced exon 8 of Cadm1, a cell adhesion factor that is differen-
tially spliced in neurogenesis [22, 23]. Single-cell data showed an
apparent bimodal distribution of Cadm1 splicing throughout dif-
ferentiation, with no clear pattern of differential splicing (Figure
3d,e). However, discarding cells that had fewer than 10 mRNA
molecules and fewer splice junction reads than expected from 10
mRNA molecules revealed a clear change in Cadm1 splicing dur-
ing neurogenesis (Figure 3f).

Finally, we asked if these two filtering criteria would allow us
to identify exons with sufficient alternative splicing information
across many cells. We screened all exons with average Ψ̂ between
0.05 and 0.95, and selected the exons in an individual cell that
passed both filters. We further required that the exon pass these
cutoffs in at least half of cells. This simple approach selected
exons that were predominantly unimodal (Figure 3g), and we hy-
pothesized that the remaining exons with bimodal splicing rep-
resented legitimate, regulated changes in splicing between cells.
These exons should show some co-regulation, which should be
reflected in the covariance of the Ψ̂s. We compared the structure
of the covariance matrix of cells using the exons passing our fil-
ter with the covariance matrices of cells with exons passing two
other selection criteria: a cutoff of 10 recovered mRNAs with-
out considering the splice junction reads, and a simple read-based
cutoff of 10 splice junction reads as used in many previous anal-
yses (Figure 3h,i). Our combined filter recovered more evidence
of co-regulation than the simple read-based filter. Importantly,
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Figure 2: a) Simulator of scRNA-seq splicing data. Green elements represent biological variables; blue elements represent technical
processes. The underlying Ψ is drawn from a Beta distribution with either a bimodal or unimodal shape. Individual gene expression
determines the total number of mRNAs, and these mRNAs are spliced stochastically according to Ψ, producing isoforms that splice
in or skip the exon. mRNAs are captured with a probability drawn from a normal distribution. Sequencing produces splice junction
reads, which determine the observed Ψ̂. b) Bimodal model of cassette exon splicing. Some cells consistently splice in the exon, while
others consistently skip it. After mRNA capture and sequencing, observations of Ψ are almost exclusively binary. c) Unimodal model.
Individual cells express some mRNAs that splice in the cassette exon and some that skip it. Low mRNA capture dramatically reduces
the number of cells in which both isoforms are observed, artificially inflating binary Ψ values. d) Simulations of alternative splicing
and scRNA-seq under the bimodal model. The observed Ψ̂ distribution is similar to the true Ψ distribution, and its shape is largely
unaffected by capture efficiency. e) Simulations with the unimodal model. Exons with high expression have a unimodal distribution
of true Ψ. The observed distribution of Ψ̂ is distorted by low capture efficiency, and only a handful of the highest expressed exons
maintain a unimodal Ψ̂. Fewer exons show unimodal splicing as the capture efficiency is reduced. f) Under the bimodal model, exons
with high coverage have slightly fewer binary Ψ observations, and g) simulated cells with a high number of total splice junction reads
have slightly fewer exons with binary Ψ̂. h) Under the unimodal model, exons with intermediate splicing show a strong decrease in
binary observations as coverage increases, as seen in real data (Figure 1c). i) Similarly, simulated cells with high read coverage have a
decrease of the proportion of binary Ψ̂. j) Effect of the initial number of mRNA molecules and underlying Ψ on the proportion of binary
Ψ̂ observations. k) Effect of capture efficiency on the proportion of binary observations of cassette exons with underlying Ψ = 0.5.
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Figure 3: a) Total mRNA molecules captured per cell in each dataset, estimated with the Census normalization [4]. b) The estimated
number of recovered mRNAs and the number of splice junction reads for each cassette exon, averaged across cells, for the Song et al and
Chen et al datasets. c) Per-cell coverage rate in each dataset, showing how many reads are expected to cover each position of an mRNA.
d) PCA projection and inferred lineage of single cells in the Chen dataset based on gene expression, showing differentiation of mouse
ES cells into motor neurons. e) Cadm1 alternative splicing appears binary in many cells, with little distinguishable pattern. f) After
removing cells with fewer than 10 recovered Cadm1 mRNA molecules and fewer splice junction reads than expected from 10 mRNAs
(grey), a clear pattern of differential splicing during differentiation is visible. g) Cassette exons were filtered to remove observations in
individual cells with fewer than 10 recovered mRNAs, or with fewer splice junction reads than expected from 10 mRNAs; we then kept
exons that passed these filters in at least half of cells. The plot shows the average number of recovered mRNAs and average number of
splice junction reads for only the remaining observations, for each exon that passed the overall filter. The remaining exons have fewer
binary Ψ̂ observations. h) Number of exons passing the filter for three datasets. i) Comparison of covariance of Ψ̂s using three methods
of filtering Ψ observations (exons with more than 10 mRNAs in a cell, exons with more than 10 splice junction reads in a cell, and the
data-driven filter described in panel g), as well as two controls (no filter, and a random subsample of the data to match the number of
observations that pass the mRNA + reads filter). Covariance structure was measured as the sum of the squares of the first k eigenvalues
of the covariance matrix, divided by the sum of all squared eigenvalues. j) Example exons that pass the overall filtering criteria in the
Chen dataset. Clear patterns of splicing change are observed in the cells that individually pass the filter (color); cells that do not meet
the criteria are not considered (grey).
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many exons that passed our filter showed clear patterns of differ-
ential splicing between cell subtypes, including some with known
regulation during differentiation (Figure 3j) [23]. We concluded
that scRNA-seq can reveal true changes in alternative splicing, in-
cluding truly bimodal distributions between cell types, when noisy
observations are filtered out by principled coverage criteria.

Discussion
The surprising result that alternatively splicing is bimodal among
single cells provoked curiosity and speculation. Bimodal out-
comes might reflect hidden cell subtypes, but the bimodality was
seen even among apparently homogeneous cells. Did splicing out-
comes reflect some unknown, stochastic cell state?

We have shown here that the bimodal patterns could have an
entirely different explanation: profound technical limitations of
single cell RNA sequencing. A crucial limit on biologically mean-
ingful splicing observations in a single cell is the number of mR-
NAs available to inform the measurement. This is determined
both by the expression of the genes that contain the exons of inter-
est, and by the capture efficiency of the experiment. It is important
to note that the depth of a sequencing library does not necessar-
ily reflect its quality. Along with low mRNA numbers, splicing
observations are also distorted by uneven amplification efficiency
and cDNA overamplification. Increasing PCR amplification cy-
cles in an attempt to compensate for low capture efficiency has the
risk of worsening the technical distortion. Indeed, in our analysis,
the dataset with the highest read count per cell actually had quite
low mRNA recovery and large technical distortion, creating an ap-
pearance of bimodal splicing [5]. Moreover, a qualitative change
in the observed Ψ̂ distribution of an exon between single cell sub-
populations does not necessarily reflect a change in the underlying
splicing rate, as changes in gene expression and mRNA recovery
between samples can create the illusion of a splicing change.

Further developments in statistical analysis that carefully ac-
count for both missing and redundant information due to low cap-
ture efficiency could make splicing observations in single cells
more reliable. We set the foundation for such analysis by propos-
ing a probabilistic process that describes the biological and tech-
nical steps that generate single cell splicing data. We also intro-
duced a simple approach that builds on the Census normalization
[4] to estimate the number of mRNAs recovered and the extent of
artificial duplication of splicing information. This metric provides
a practical filter for identifying exons with sufficient information
to analyze. On the experimental side, improving the capture ef-
ficiency of scRNA-seq methods while moderating the extent of
overamplification is crucial for increasing the subset of exons for
which reliable observation can be made.

True biological insight into alternative splicing can indeed be
found from high-quality scRNA-seq data, and we hope that new
methods will allow better understanding of splicing regulation,
cell-to-cell variation, and the importance of alternative splicing
in defining cell fate [24, 25]. However, some limitations are in-
herent to the situation. Single cells express a limited number of
mRNAs per gene; splicing observations in single cells will always
be inherently noisy reflections of the underlying biology.

Methods
Analysis code is available at

https://github.com/lareaulab/sc binary splicing

Analysis of single cell RNA-seq datasets

Datasets Five publicly available single cell RNA sequencing
datasets were analysed (Table 1). These datasets are referenced
with the first author’s lastname throughout this paper. For the
Chen dataset, we only selected the cells that are part of an exper-
iment that induced mouse embryonic stem cell differentiation to
motor neurons (total 488 out of 617). For the Trapnell dataset, we
only selected the runs that are annotated to have one cell per well,
as opposed to zero or two (314 out of 372 single cell samples).

Alignment, TPM quantification and Ψ estimation We aligned
the reads of each dataset using STAR 2.5.3 [26] with two-pass
mode and index overhang length adapted to the read length of
each dataset. We used the hg38 genome annotation for the hu-
man RNA-seq datasets, and the mm10 annotation for the mouse
datasets. Gene expression levels in transcripts per million (TPM)
were calculated by running RSEM [27] on the BAM files pro-
duced by the STAR alignment. We ran rMATS 3.2.5 [28] on bulk
human and mouse RNA-seq datasets from cell types matching the
scRNA-seq datasets [15, 29, 30] to find all annotated cassette exon
alternative splicing events in each cell type. Then we used the
SJ.out.tab files obtained from the scRNA-seq STAR alignment to
obtain the splice junction reads compatible with the list of cas-
sette exons found by rMATS. For each cell i, we calculated the
observed Ψ of the cassette exon j as:

Ψi j =
SJAi j

SJAi j +2SJBi j

where SJAi j correspond to the number of reads that cover the two
splice junctions compatible with cassette exon inclusion, and SJBi j
are the reads that cover the splice junction compatible with its
exclusion.

We also determined the coverage of an exon j in i as SJi j =
SJAi j + SJBi j. We used SJi j and Ψi j for the analyses shown in
Figure 1.

Gene expression normalization and pseudotime inference For
the purpose of visualization of the Chen et al. [15] dataset as
shown in Figure 3, we normalized the gene expression data. First
we selected the genes with TPM> 5 and more than 20 reads in at
least 20 cells. After filtering, we used SCONE 1.6.1 [31] to select
the best normalization approach for the data. For improving the
normalization of the data, we used additional information for each
cell, including the annotated cell type and batch, total number of
reads, housekeeping genes and genes that are expected to change
in the biological process that the dataset covers. We applied prin-
cipal component analysis (PCA) over the log-counts from the best
SCONE normalization, and used the first two principal compo-
nents to infer pseudotime using Slingshot 1.0.0 [32]. We used the
cell type annotation as the cluster input for slingshot, and manu-
ally indicated the direction of the biological process.

mRNA counts estimation with the Census approach We per-
formed our own implementation of the mRNA count estimation
proposed by Qiu et al in Census [4]. The total number of tran-
script mRNAs in cell i is estimated as:

Mi =
ni

FXi(x
∗
i )−FXi(0.1)

where x∗i is the mode of the log-transformed distribution of TPM
values in cell i. As in Qiu et al, we found x∗i by fitting a Gaus-
sian kernel density estimation to each distribution and finding its
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peak. We also set 0.1 as is the minimum TPM below which it is
assumed that no mRNA is present. ni is the number of genes in
cell i with an estimated TPM in the interval (0.1,x∗i ). FXi is the
cumulative distribution function of the TPM values in cell i. The
original Census implementation also adjusts the mRNA estima-
tion by multiplying by 1

θ
, where θ is the capture efficiency of the

dataset estimated with RNA spike-ins. Since for most datasets we
do not have a reliable way of estimating the capture efficiency, we
removed this adjustment from the equation, so that Mi in our es-
timation is not an estimation of the amount of mRNAs present in
the cell lysate as it is in Census, but an estimate of the mRNAs
successfully captured into cDNA.

We found that some datasets contained outlier cells with Mi
much higher than the median estimate (more than ten-fold in-
creases). These outliers generally correspond to cells with a multi-
modal TPM distribution. An inflation in very low TPM values dis-
torts the normalization by shrinking the values of FXi(x

∗
i )−FXi(ε),

thus inflating the Mi values in these cells. Because the Census
method relies on a Gaussian kernel density estimation that per-
forms inaccurately for multimodal distributions, we excluded this
handful of outliers from further analysis.

Finally, the number of mRNA transcripts of gene g in cell i is
calculated as:

Yig = Xig ·
Mi

106

where Xig is the expression of gene g in cell i expressed in TPM.

Nucleotide coverage and expected splice junction reads Am-
plification in short-read library preparation can lead to multiple
reads from different cDNA copies covering the same nucleotide
from a single mRNA molecule. We estimated the coverage rate
of each cell as the expected number of reads covering a single
nucleotide as:

C j = read coverage at each position of mRNAs in our sample

=
total nt of reads in cell j

total nt of mRNAs in cell j

=
∑k lr j · r jk

∑k l jk ·m jk

where C j is the number of reads expected to cover each nucleotide
in cell j; lr is the effective read length for the sequencing protocol
used in cell j; ri j is the number of reads that map to gene i in
cell j, as reported by RSEM; li j is the effective length of gene i in
cell j, as reported by RSEM; and mi j is the estimated number of
captured mRNAs of gene i in cell j.

We assume that in each cell, the expected number of reads cov-
ering a splice junction is the same as the number of reads expected
to cover each nucleotide. We also assume that this expected num-
ber is uniform across all mRNAs in the cell. We do not consider
other factors that might affect this coverage such as sequencing
biases. Therefore, the expected number of splice junction reads
covering the splicing of cassette exon i in cell j is estimated as:

SJEi j = mi j · (expected splice junctions per mRNA) ·C j

= mi j · (1+ Ψ̂i j) ·C j

where SJEi j is the expected number of splice junction reads cover-
ing the splicing of exon i in cell j (both for mRNAs that splice-in
or skip the exon). mi j is the estimated number of mRNAs from the
gene containing the cassette exon i in cell j; Ψ̂i j is the observed

splicing rate of exon i in cell j. The expected number of splice
junctions per mRNA is 1+ Ψ̂i j because 1 splice junction read is
present in mRNA molecules that skip the exon, and 2 in those that
include it.

Filtering and covariance structure analysis Simulations of the
effect of the initial number of mRNA molecules of a gene and the
underlying Ψ suggest that, an average of 61.81 mRNA molecules
are necessary to have a 50% chance of making an intermediate Ψ

observation when the underlying Ψ is 0.5. This number goes up to
89.78 if the Ψ is 0.2 or 0.8 (Supplementary Figure 3f). Assuming
a capture efficiency of 10%, we rounded at 10 captured mRNA
molecules as the lower threshold for a quality Ψ observation.

In some cases, the number of observed splice junction reads
is discordant with the estimated number of mRNAs recovered.
Therefore we set a additional filter based on the number of reads
expected to come from 10 mRNA molecules that are informative
about the splicing of a cassette exon:

SJmi j = 10 · (1+ Ψ̂i j) ·C j

Therefore, for every observation, we required at least 10 mR-
NAs of the gene captured, and at least the number of reads that we
expect if 10 mRNAs are informative. Notice that this minimum
will be unique to each observation (combination of cassette exon
and cell), as it depends on the cell-specific coverage rate, and the
cell and exon specific observed Ψ̂.

To determine if the selected splicing observations reveal the
covariance structure of the individual cell populations, we used the
Chen et al. [15], Trapnell et al. [33], and Song et al. [5], datasets.
We selected the exons for which we accepted observations in at
least 50% of the cells. To determine the covariance structure of
the data, we calculated the covariance matrix of the cells using the
z-normalized Ψ̂ observations (due to the high variability of single
cell data, we set the maximum and minimum z-scores as 3 and -3
respectively). We determined the percent of variability captured
by the first k eigenvalues as follows:

vk =
∑

k
λ=1 λ 2

∑
|Λ|
λ=1 λ 2

where vk is the percent of variability captured by the first k eigen-
values, and Λ is the set of all eigenvalues of the covariance ma-
trix. We determined the percent of variability captured by the first
k ∈ {1, ...,10} eigenvalues in the three datasets. We compared the
structure of the data with our filtering criteria versus filtering the
data based on mRNA counts only, and based on reads only. For
filtering with mRNAs only, we kept the splicing observations of
cassette exons that fall in genes with at least 10 estimated mRNA
molecules. For filtering based on reads only, we kept the obser-
vations that were covered by at least 10 splice junction reads. For
each filtering approach, we selected the exons for which we ac-
cepted observations in at least 50% of the cells, and repeated our
covariance structure analysis for the first k ∈ {1, ...,10} eigenval-
ues.

Theoretical analysis of the observed Ψ̂ with limited capture
rate

mRNA molecules are captured at a limited rate, approximated in
some instances at 10% of the molecules in the cell. Under the
assumption of uniform sampling of transcripts and isoforms, and
assuming the only nuisance factor is the limited capture rate, we
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formalize the probability for observing a splicing ratio Ψ̂. We
start by specifying this probability, assuming that we know the
total number of transcripts from the respective gene in the cell (m),
the real splicing rate Ψ and the number of captured molecules r
(assuming that for any capture molecule we know if it includes
the exon or not). In that case:

Pr(Ψ̂ |Ψ,r,m) =

(mΨ

rΨ̂

)(m(1−Ψ)

r(1−Ψ̂)

)(m
r

)
Note that for this calculation, the capture efficiency (c) is not
needed, since we assume that we know m and r. For a more useful
analysis, we will next assume that only one of these variables is
not known (starting with m and then r).

In a more realistic scenario, r and c can be estimated (e.g., us-
ing Census), while m remains unknown. We can therefore marginal-
ize m to calculate:

Pr(Ψ̂ |Ψ,r,c) =
∞

∑
m=0

Pr(Ψ̂,m |Ψ,r,c)

=
∞

∑
m=r

Pr(Ψ̂ |Ψ,r,c,m)Ṗr(m | r,c)

=
∞

∑
m=r

Pr(Ψ̂ |Ψ,r,m)Ṗr(m | r,c)

To estimate Pr(m | r,c) we note the following:

Pr(m | r,c) = Pr(r | c,m) ·Pr(m)

∑
∞

m′=0 Pr(r | c,m′) ·Pr(m′)

=
Pr(r | c,m) ·Pr(m)

∑
∞

m′=0 Pr(r | c,m′) ·Pr(m′)

=
Pr(r | c,m)

∑
∞

m′=0 Pr(r | c,m′)

=

(m
r

)
cr(1− c)m−r

∑
∞

m′=0 Pr(r | c,m′)

where we model the probability of capturing r mRNA molecules
as a Binomial sample from m with probability c. Note that the
third transition is done under the assumption of a uniform prior on
m.

To compute the denominator, we expand:

∞

∑
m′=0

Pr(r | c,m′) =
∞

∑
m′=r

(
m′

r

)
cr(1− c)m′−r

= cr
∞

∑
k=0

(
r+ k

r

)
(1− c)k = cr

∞

∑
k=0

(r+ k)!
k!r!

(1− c)k

= cr
∞

∑
k=0

(−1)k

k!
(r+1)(r+2) . . .(r+1+(k−1))(c−1)k

= cr
∞

∑
k=0

1
k!
(−(r+1))(−(r+2)) . . .(−(r+ k))1r+k+1(c−1)k

by Taylor series centered in 1 = cr 1
cr+1 =

1
c

Thus

Pr(Ψ̂ |Ψ,r,c) =
∞

∑
m=r

Pr(Ψ̂ |Ψ,r,c,m)Ṗr(m | r,c)

=
∞

∑
m=r

(mΨ

rΨ̂

)(m(1−Ψ)

r(1−Ψ̂)

)(m
r

) (m
r

)
cr(1− c)m−r

1
c

≈
10r/c

∑
m=r

(
mΨ

rΨ̂

)(
m(1−Ψ)

r(1− Ψ̂)

)
· cr+1(1− c)m−r

In the last equation, we estimate the sum going only up to a large
value of m, since its posterior probability diminishes. In expecta-
tion m≈ r/c. We use ten times this value as the maximum.

We can use this equation to estimate the expected proportion
of binary Ψ̂ observations that is expected when we observe only
r junctions from a splicing event with a given true rate Ψ (Sup-
plementary Figure 2a). We can also estimate the chance to have
an empirical Ψ̂ that is at least within a certain delta (in absolute
terms) from the real Ψ. Namely we can estimate Pr(| Ψ̂−Ψ |<
δ |Ψ,r,c) (Supplementary Figure 2b).

In another calculation of interest, one can ask how many mRNA
molecules should a gene have in a cell in order to correctly esti-
mate the splicing rate, under a limited capture efficiency c. To
estimate it, we denote by d a binary variable indicating that the
gene has been detected (i.e., r > 0) and marginalize r in the fol-
lowing way:

Pr(Ψ̂ |Ψ,c,m,d) =
Pr(Ψ̂,d |Ψ,c,m)

Pr(d | c,m)

Where

Pr(Ψ̂,d |Ψ,c,m) =
m

∑
r=1

Pr(Ψ̂,r |Ψ,c,m)

=
m

∑
r=1

Pr(Ψ̂ |Ψ,c,m,r) ·Pr(r | c,m)

=
m

∑
r=1

(mΨ

rΨ̂

)(m(1−Ψ)

r(1−Ψ̂)

)(m
r

) ·
(

m
r

)
cr(1− c)m−r

=
m

∑
r=1

(
mΨ

rΨ̂

)(
m(1−Ψ)

r(1− Ψ̂)

)
· cr(1− c)m−r

and

Pr(d | c,m) = 1− (1− c)m

We use this in Supplementary Figure S2c to plot the chances
to see only one isoform (binary Ψ̂) for a fixed Ψ (set to 0.5) as a
function of the number of molecules present in the cell (m).

Probabilistic simulator of splicing in single cell data

1) Biological process. We simulate the expression of 500 genes
in 300 cells using SymSim, an in-silico simulator of gene ex-
pression in single cells [20]; the expression of gene g in cell i
is annotated as Xi. We simulate one cassette exon j for each gene
g. For each exon j in cell i, we simulate an underlying splicing
distribution of a cassette exon j Ψi j as a Beta distribution with
exon-specific parameters α j and β j. The splicing of j in i is sim-
ulated as a Binomial sampling from Xig with probability Ψi j. 2)
Technical process. We simulate the capture, fragmentation and se-
quencing of each transcript using a modified version of SymSim’s
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True2ObservedCounts function and a random vector of tran-
script lengths. Finally, we subsample the obtained reads based on
the transcript length in order to simulate the coverage of informa-
tive splice junctions.

We simulate the splicing of cassette exons in a set of genes G
expressed in a population of cells N. For each gene g ∈ G, we
simulate the splicing of one cassete exon j. The inclusion of j
forms the isoform jA, while the exclusion of the exons forms the
isoform jB. The production of mRNA molecules from jA in a
single cell i ∈ N is determined by the total expression of g, and by
the action of the splicing machinery of i.

1. Biological process

Splicing from pre-mRNA transcripts in individual cells For
each alternatively spliced gene g in a cell i, we simulate the ex-
pression of g and the splicing of its cassette exon.

Xig expression of gene g in n.

α j,β j splicing rate distribution parameters.
Ψi j ∼ Beta(α j,β j)

XAi j ∼ Binomial(Xig,Ψi j)

XBi j = Xig−XAi j

ΨTi j = XAi j/Xig

Xig represents the total number of pre-mRNA transcribed from
each gene across all cells. We simulate the total counts using
SymSim, an in-silico approach for simulation of single cell gene
expression by accounting for the biological sources of variation
[20]. Ψi j referred to as the underlying splicing rate, is the proba-
bility of splicing-in the cassette exon j of gene g in cell i. Notice
that in this simulation, each gene g only has one cassette exon
j. In a biological context, Ψi j would be determined by intrin-
sic attributes of the cassette exon inherent of g (e.g., sequence,
secondary structure, binding sites), and by the profile of splicing
factors expressed in n. XAi j and XBi j are respectively the counts of
mRNA molecules from isoforms gA and gB in i. Notice that XAi j
is a random binomial sample from the total number of expressed
pre-mRNA molecules of g in i with a probability Ψi j, as it has
been modeled before [10, 28, 34, 35]. ΨTi j is the true isoform ra-
tio that include cassette exon j in cell i, obtained as the proportion
of molecules of gene g that include the cassette exon j.

The distribution of Ψi j across all cells i ∈ N is modeled as
a Beta distribution, which has been used in previous studies of
single cell splicing [5, 11, 21]. In this model, the distribution
is determined by the parameters α j,β j ∈ (0,∞). The values of
these parameter determine the distribution of Ψi j across all cells
as follows:

• Unimodal with intermediate mode if α j,β j > 1.

• Unimodal with mode 1 if 0 < α j < 1≤ β j.

• Unimodal with mode 0 if 0 < β j < 1≤ α j.

• Bimodal with modes 0 and 1 if 0 < α j,β j,< 1.

• Uniform if α j = β j = 1.

Notice that α j
α j+β j

= µ(Ψi j). By controlling the α j,β j parameters
we can compare the biological underlying distribution of the exon
splicing rate with the observed distribution of Ψ inferred from sin-
gle cell RNA-seq data.

To compare the results of our simulations under the bimodal
and unimodal models of splicing, we considered two competing
distributions for the underlying splicing distributions of each cas-
sette exon j in cell i:

• Unimodal splicing:

ΨUi j ∼ Beta(αU j,βU j)

αU j,βU j ∼ Uniform(1,30)

• Bimodal splicing:

ΨBi j ∼ Beta(αB j,βB j)

αB j,βB j ∼
1

Uniform(1,30)

To simulate a realistic scenario, for both the unimodal and bi-
modal models, we simulated additional exons that are consistently
included or consistently excluded. For the consistently included
exons, we sampled the Beta parameters as

α j ∼ Uniform(1,30);β j ∼
1

Uniform(1,5)

For the consistently excluded exons, we sampled the Beta pa-
rameters as

α j ∼
1

Uniform(1,5)
;β j ∼ Uniform(1,30)

For the bimodal simulations shown in Figure 2, we simulated
500 intermediate exons with bimodal Beta distributions, 500 con-
sistently excluded exons, and 500 consistently included exons.
For the unimodal simulations, we simulated 500 intermediate ex-
ons with unimodal Beta distributions, 500 consistently excluded
exons, and 500 consistently included exons.

2. Technical process

mRNA capture into cDNA After simulating the production of
mRNAs of distinct isoforms in single cells, we simulate the pro-
cess of capture and sequencing of mRNA molecules from XAi j and
XBi j.

c expected capture efficiency
cIng drawn from truncated normal with mean c

CIng ∼ Binomial(XIng,cIng)

The process of mRNA capture is simulated using SymSim. CIng
is the number of mRNA molecules of isoform I ∈ {gA,gB} for
gene g on cell n. This number is sampled from the total number of
molecules for isoform that are present in the cell. c is a parameter
that determines the expected capture efficiency. cIng is the specific
probability of capture of isoform I of gene g in cell n, which is
drawn from a truncated normal distribution with mean c.

RNA sequencing Sequencing is also simulated using SymSim’s
approach with a slight modification. Artificial length amplifica-
tion bias can substantially deviate the ratio between two isoforms
that come from the same gene. In order to avoid that, we sampled
the amplification biases from SymSim before simulating amplifi-
cation on each cell, instead of doing it only once before simulating
amplification for all cells, as in the original algorithm. This was
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shown to successfully eliminate unwanted gene length amplifica-
tion bias that is not relevant for the focus of this study.

lIg ∼ Uniform(1000,2|G|)
RIng = True2ObservedCounts(CIng, lIg)

lIg is the length of isoform I in gene g, with I ∈ {A,B}. We as-
signed these lengths to each isoform drawing without replacement
from a uniform distribution with range [1000,2|G|], with |G| the
total number of genes being simulated. RIng is the total number
of observed reads from isoform I of gene g in cell n obtained
from single cell RNA sequencing. These are obtained using the
True2ObservedCounts function from SymSim with the modifica-
tion previously described.

Splice junction coverage and observed Ψ calculation We also
simulate the down-sampling from observing only reads that over-
lap the splice junctions that are informative about the splicing of
the cassette exon.

lr = read length (constant)

jAg =
4(lr−1)

lAg

jBg =
2(lr−1)

lBg

SJIng ∼ Binomial(RIng, jIg)

lr corresponds to the read length from the sequencing process,
which is assumed to be constant. SJIng is the number of reads
that cover informative splice junctions for isoform I ∈ {gA,gB}
for gene g in cell n, which are sampled from the total number of
reads covering the isoform. jAg and jBg are respectively the prob-
abilities of a given read to cover the splice junctions informative
with isoform gA and gB. We assume that the distribution of reads
is expected to be uniform across the transcript. Each read can be
mapped to 2(lr − 1) positions in the transcript that overlap one
splice junction. Thus, the probability of covering one given splice
junction is defined as the number of possible positions in the tran-
script that are informative for the splice junction, divided by the
length of the transcript. jAg is the probability to map to any of the
two splice junctions that are informative for isoform gA. jBg is the
probability to map to one single splice junction, since there is only
one junction informative for isoform gB.

Finally, the observed Ψ is calculated as:

Ψ̂i j =
SJAi j

SJAi j +SJBi j

Simulator variants for studying sources of variation

Gene expression and underlying Ψ We tested the effect of the
interplay between gene expression and the ratio of isoforms that
contain the cassette exon on the observed distribution of Ψ. For
this test, we simulated a population of 300 single cells with 500
genes, indexed 1 to 500. For every cell i, the expression of gene g
is fixed as Xig = g, where g ∈ {1,2, ...,500}. This is, every gene
had a different level of expression, and the expression of every in-
dividual gene was constant across all cells. For each simulation,
we fixed the underlying splicing rate of all cassette exons across
all cells. This is, for each cassette exon j of gene g, in every cell,
we set Ψi j = constant. We ran the simulator with different un-
derlying splicing rates, with Ψi j ∈ {0.01,0.02, ...,0.5}. For every

simulation we used an average capture efficiency c = 0.1. We ran
50 simulations for every fixed Ψi j value. For every fixed Ψi j and
for every fixed expression level g, we took the average propor-
tion of cells with binary values for the observed Ψ̂. This is, we
reported:

1
1500

50

∑
sim=1

300

∑
i=1

I(Ψ̂i j = 1)+ I(Ψ̂i j = 0)

Gene expression and capture efficiency We tested the effect
of capture efficiency in Ψ observations. To minimize the effect of
the underlying Ψ in the simulations, in this analysis we fixed the
true splicing rate of all exons to ΨT ng = 0.5 (we achieved this by
setting XAi j = XBi j =

1
2 Xig). We ran simulations for each possible

value for the average capture efficiency in c∈{0.01,0.011, ...,0.1}.
For each tested average capture efficiency rate, we ranked the al-
ternative splicing events by the number of reads that cover the
informative splice junctions. For each alternative event, we ob-
served the proportion of cells that present only one type of isoform
(either including the cassette exon or excluding it, but not both).

cDNA preparation process The results so far suggest that the
process of capturing mRNA molecules into cDNA is a limiting
factor in the estimation of Ψ in single cells. Given that capture
efficiency has a large effect in the distortion of Ψ distributions, we
asked if other parameters that influence the preparation of cDNA
libraries also affect Ψ, namely, cDNA amplification. The single
cell RNA-seq datasets that we analyzed vary the number of PCR
cycles after reverse transcription for cDNA library amplification.
We asked if the number of PCR amplification cycles and the am-
plification efficiency of the experiments affect the distirbution of
Ψ. To test this possibility, we ran simulations with a fixed the true
splicing rate to ΨT ng = 0.5. We set the number of cDNA PCR
cycles as cDNA ∈ {10,11, . . . ,25}, and the PCR amplification ef-
ficiency as η ∈ {0.5,0.55, . . . ,0.95}. We used these parameters as
inputs of the modified SymSim sequencing simulation step. For
each possible combination of the cDNA and η parameters, we
ran 50 simulations and obtained the average binarity of the data.
We found that incleasing the number of PCR amplification cycles
also increases the proportion of cells in which we observe binary
Ψ. Interestingly, PCR amplification efficiency only has a subtle
effect in the porportion of cells with binary Ψ, in which higher
amplification efficiency values decrease the proportion of binary
observations.

cDNA fragmentation and fragment amplification In contrast,
changing the number of PCR cycles for fragment amplification
did not have a large impact on the estimation of the original Ψ.
This suggests that the bottleneck for detecting splicing isoforms
in single cells comes mostly from the process of cDNA capture
and gene expression, not from fragmentation and amplification
(Supplementary Figure S2f,g).
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Dataset Organism Biological process no. cells No. ASE reads/event Accession Ref.
Chen mouse mES motor neuron differentiation 488 1726 38.4 GSE74155 [15]
Lescroart mouse cardiomyogenesis 598 1808 29.5 GSE100471 [36]
Trapnell human skeletal myogenesis 314 1053 98.0 GSE52529 [33]
Song human iPS motor neuron differentiation 206 971 703.0 GSE85908 [5]
Fletcher mouse olfactory neurogenesis 849 287 8.8 GSE95601 [37]

Table 1: Single cell RNA-seq datasets.
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Figure S1: a) As in Figure 1c, the splice junction read coverage of an intermediate exon was anti-correlated with the proportion of
cells in which it shows binary Ψ̂ in all datasets analyzed. b) Pearson correlation score between read coverage and proportion of binary
observations of each cassette exon across five scRNA-seq datasets. c) As in Figure 1d, the total number of splice junction reads in a
cell was inversely proportional to the fraction of exons that have binary values in the cell in all datasets analyzed. d) Pearson correlation
score between the total number of captured reads in each cell and the proportion of cassette exons with binary Ψ̂ across five scRNA-seq
datasets.
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Figure S2: a) Theoretical likelihood of capturing only mRNAs representing one isoform of an alternatively spliced gene in a single cell,
determined by the total number of mRNAs in the cell, the Ψ of the isoforms, and a 10% capture efficiency. b) Probability of observing
a binary Ψ̂ given the number of mRNA molecules of that gene present in the cell. c) The probability of having an observed Ψ̂ within
0.1 of the underlying Ψ. c) Difference between the average true Ψ (fraction of mRNAs selected to include the skipped exon), and the
average observed Ψ̂ determined by splice junction reads in the intermediate exons from the simulations. The difference in average Ψ

decreases as there are more initial mRNAs, but it is not affected by the capture efficiency. d) Difference between the variance in the true
Ψ, and the variance in the observed Ψ̂ in the intermediate exons from the simulations. The difference in average Ψ decreases as there
are more initial mRNAs. The difference in variance is larger as the capture efficiency is lower. e) Effect of the number of cDNA PCR
cycles and amplification efficiency on the proportion of binary observations in our simulations, with the underlying Ψ fixed at 0.5 and
capture efficiency at 10%. The effect of both parameters is modest compared with the effect of capture efficiency, yet clear. This result
suggests that compensating the low starting material in single cells with excessive cDNA PCR amplification might worsen the distortion
in splicing observations. f) Effect of the number of cDNA PCR amplification cycles and fragment amplification cycles in the proportion
of binary observations.
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Figure S3: a) Average number of splice junction reads required to have a 50% likelihood of observing both isoforms in the simulations
when the underlying Ψ is fixed to 0.5, under different capture efficiency values and a fixed expected sequencing library size. The average
number of reads required to detect both isoforms increases as the capture efficiency decreases. These results come from the simulations
shown in Figure 2j. b) Total number of mapped reads per cell for each dataset. c-e) Comparison of the average number of recovered
mRNAs (from the Census estimate) and the average number of splice junction reads for each exon in the c) Lescroart et al [36] dataset,
d) Trapnell et al [33] dataset, and e) Fletcher et al [37] dataset. f) Total number of mRNAs required to have a 50% likelihood to observe
two isoforms in the simulations, for exons with different Ψ at a capture efficiency of 10%. Based on these results, and considering the
10% capture efficiency in the simulations, it appears that a minimum of 10 captured mRNA molecules per observation would result in a
good quality splicing observation.
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