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Abstract

Short-range neighbour-dependent interactions and small-scale spatial structure

are thought to affect community dynamics in many ecological and biological pro-

cesses, such as predator-prey dynamics and immune responses. Yet, a large class

of mathematical models aimed at representing these processes ignores these fac-

tors by making a classical mean-field approximation, where interactions between

individuals are assumed to occur in proportion to their average density. Such

mean-field approximations amount to ignoring spatial structure. In this work, we

consider an individual based model of a two-species community that is composed

of consumers and resources. The model describes migration, predation, competi-

tion and dispersal of offspring, and explicitly gives rise to varying degrees of spatial

structure. We compare simulation results from the individual based model with

the solution of a classical mean-field approximation, and this comparison provides

insight into how spatial structure can drive the system away from mean-field dy-

namics. Our analysis reveals that mechanisms leading to intraspecific clustering

and interspecific segregation, such as short-range predation and short-range dis-

persal, tend to increase the size of the resource species relative to the mean-field

prediction. We show that under certain parameter regimes these mechanisms lead

to the extinction of consumers whereas the classical mean-field model predicts the

coexistence of both species.

Keywords Spatial patterns, individual-based model, prey-predator dynamics, com-

petition, mean-field.

1 Introduction

Mathematical modelling of ecology and cell biology processes, such as predator-prey

dynamics and immune cell-pathogen interactions, can provide insight into the impact

of various interaction mechanisms that influence community dynamics. Traditional

mathematical models are based on making a mean-field approximation, where the
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community is assumed to be locally well mixed and the presence of an individual

at one location is independent of the presence or absence of an individual at any

other location (Law and Dieckmann 2000; Law et al. 2003; Baker and Simpson 2010;

Grunbaum 2012). Mean-field models, such as the Lotka-Volterra model of predator-

prey dynamics and the logistic growth model do not incorporate any information about

the spatial correlation between the locations of individuals. These classical mean-field

models are typically written as ordinary differential equations that govern the time

evolution of the average density of individuals (Murray 1989; Edelstein-Keshet 2005).

Some prey-predator models incorporate different types of functional responses, such

as density dependence (Abrams and Ginzburg 2000; Wang et al. 2009), but do not

explicitly consider the role of spatial structure. Spatially explicit mean-field models

are also commonly used to help understand various ecology and cell biology processes,

where the density dynamics is described using partial differential equations (Maini

et al. 2004; Zeng 2007; Aly et al. 2011; Tang and Song 2015). Even though these

spatially explicit models express the density of individuals as a function of spatial

location, interactions between individuals are implicitly assumed to be given by local

mean-field conditions described by the average density alone.

In many situations, short-range interactions are thought to play a significant role

in determining community dynamics (Penczykowski et al. 2016; Galetti et al. 2018).

For example, in a prey-predator community, an individual member of the prey popu-

lation located nearby a cluster of predators could experience increased mortality due

to the high risk of predation. Similarly, localised intraspecies competition for shared

food resources could lead to an increase in the death rates of conspecific individuals.

Neighbour-dependent interactions are known to leaad to spatial structures (Tobin and

Bjornstad 2003; Santora et al. 2010). Typical forms of spatial structures relevant to

ecological and biological systems include: (i) clustering where individuals aggregate

together; and (ii) segregation where individuals tend to spread out as much as possi-

ble (Binny et al. 2015; Treloar et al. 2015; Surendran et al. 2019). These types of

spatial structures can occur within communities composed of single or multiple species

(Markham et al. 2013; Gerum et al. 2018; Dini et al. 2018).

While spatial structure is known to impact the macroscale density dynamics of

a community, commonly-used mean-field models neglect these effects. In contrast,

discrete individual based models (IBM) are useful to investigate the effects of short-

scale interactions and the formation of spatial structure. Many IBMs are lattice-based,

where the interactions between individuals are dictated by an artificial lattice structure

(Mobilia et al. 2006; Mobilia et al. 2007; Baker and Simpson 2010; Dobramysl and

Tauber 2013). A more realistic approach is to consider lattice-free IBMs, where in-

teractions can be incorporated more realistically in a spatially continuous framework.

The IBM considered in this study is an extension of our previous work (Surendran

et al. 2018) examining the neighbour-dependent interactions between motile agents
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(e.g. cells) and stationary agents (e.g. obstacles) in the context of experimental cell

biology. Here, we extend this framework to accommodate interactions relevant to eco-

logical processes, such as predation and competition. Similar IBMs have been used

previously to study the impact of motility and fecundity rates on density dynamics

(Murrell 2005) as well as exploring the impact of spatial patterns on the evolution and

natural selection of prey dispersal (Barraquand and Murrell 2012).

In this work, we explore various spatial structure forming mechanisms such as

short-range predation, short-range-dispersal of offspring and short-range intraspecies

competition in a community of consumers and resources. We examine the effects

of these mechanisms, both in isolation and in combination, and specifically examine

how these effects generate spatial structures that lead to deviations from mean-field

dynamics. These investigations are conducted by comparing IBM simulations with

the solution of appropriate mean-field equations. The spatial configuration of the

community is analysed in terms of pair correlation functions (PCF) (Agnew 2014;

Binny et al. 2016a, b). The PCFs measure spatial structure within and between

species. This analysis assists our interpretation of the impact of spatial structure.

We demonstrate scenarios where the mean-field model completely fails to capture the

spatial effects and predict qualitatively different behaviours.

2 Individual-based model

We consider a community that consists of two distinct species, namely consumers and

resources. The consumers are a group of individuals undergoing proliferation, death

and movement events. They can be thought of as ecological predators or immune cells

(Abrams 2000; Akira et al. 2006; Soehnlein et al. 2017). These consumers predate

on the resources. The resources are also motile and proliferative. The resources can

be thought of as a population of ecological prey or biological pathogens (Rincon et

al. 2017; Hunt and Brown 2018; Vijay 2018). In our model, consumers and resources

are distributed on a continuous two dimensional domain of size L×L with population

sizes Nc(t) and Nr(t), respectively. The IBM is constructed for spatially homogeneous

problems, where the population density in a small region, averaged over multiple reali-

sations of the IBM, is independent of the location of that region (Plank and Law 2015).

This means our framework is relevant to communities that do not have macroscopic

gradients in the density of individuals (Jin et al. 2018).

The net death rate of a resource individual located at xn is taken to be a result of

both interspecies predation and intraspecies competition that arise from interactions

with other individuals in the population,

Drn =

Nc(t)∑
l=1

ωp
rc(|xl − xn|) +

Nr(t)∑
k=1

ωc
rr(|xk − xn|). (1)
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The first term on the right of Equation (1) is the death rate from predation by con-

sumers, specified by the kernel ωp
rc(|ξ|). The second term on the right of Equation (1)

accounts for the contribution of competition to the resources death rate, specified by

the kernel ωc
rr(|ξ|). Both kernels in Equation (1) are decreasing functions of distance,

|ξ|. A schematic representation summarising the impact of predation and competition

on the event rates of individuals is given in Figure 1.
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Figure 1: Schematic representation of the impact of neighbour-dependent interactions
on the proliferation and death rates of resources (black) and consumers (red). The
green squares indicate the reference individual whose event rates are altered by the
interaction with neighbouring individuals. a shows the impact of predation interaction
on a resource. The death rate of the resource, Dr, increases due to the predation. b
shows the impact of intraspecies competition of resources. Competition results in
increase of the resource death rate. c shows the impact of predation interaction on
consumers. Predation enhances the proliferation rate of consumer, Pc. d shows the
impact of intraspecies competition of consumers. Competition results in increase of
the consumer death rate, Dc.

We consider Gaussian interaction kernels to ensure the strength of interaction be-

tween individuals decreases with separation distance. The predation kernel describing

the contribution of a neighbouring consumer at a displacement, ξ, to the death rate

of a reference resource individual is given by,

ωp
rc(|ξ|) = γprc exp

(
− |ξ|2

2(σprc)
2

)
, (2)

where γprc > 0 and σprc > 0 represent the predation strength and the spatial extent of

predation, respectively. There is no strict requirement on the functional form of the
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interaction kernel. Non-Gaussian kernels can be incorporated into the IBM, depending

on the specific applications (Plank et al. 2019). Competition kernels also take the same

functional form. For simplicity, we assume that resources proliferate at a constant rate

pr, and that this rate is unaffected by the presence of other individuals.

Consumer reproduction is taken to be dependent on the predation and subsequent

consumption of resources, which provide the required biomass for offspring. We use

a predation kernel, ωp
cr(|ξ|), to account for the contribution of resources in the en-

hancement of the proliferation rate of consumers. Setting γpcr < γprc reflects a realistic

situation where the consumption of a single resource is insufficient to generate a single

consumer. We also make a reasonable assumption that, σpcr = σprc, so that the distance

over which consumers and resources interact is symmetric. The net proliferation rate

of consumers is computed by summing the contributions from all the resources,

Pcn =

Nr(t)∑
l=1

ωp
cr(|xl − xn|). (3)

The mortality of consumers depends on competitive interactions between consumers.

The net death rate of consumers is given by,

Dcn = dc +

Nc(t)∑
l=1

ωc
cc(|xl − xn|). (4)

The first term on the right of Equation (4) is a constant intrinsic death rate of con-

sumers which is unaffected by the presence of other individuals in the model. The

second term on the right of Equation (4) accounts for the contribution of competition

between consumers. For simplicity we assume the movement rate of consumers and

resources are constant, and given by mc, and mr, respectively.

The IBM is simulated using the Gillespie algorithm (Gillespie 1977). We use peri-

odic boundary conditions over the computational domain since the domain considered

is large enough to avoid any edge effects. Initial population sizes of consumers and

resources are Nc(0) and Nr(0), respectively, and the locations of these individuals are

initially chosen at random. At each time step, the neighbour-dependent event rates of

individuals are computed according to Equation (1) and Equations (3)–(4). The net

event rate of all individuals is computed by summing all the intrinsic and neighbour-

dependent rates as,

λ(t) =

Nr(t)∑
l=1

(
Prl +Drl

)
+

Nc(t)∑
k=1

(
Pck +Dck

)
. (5)

The time intervals between successive events are distributed according to an exponen-

tial distribution with mean 1/λ(t). When a consumer proliferates, a daughter consumer
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is placed at a displacement, ξ, drawn from a bivariate normal distribution with mean

zero and standard deviation, σdc , resulting in an increase of the consumer population

by one. Here, σdc is the consumer dispersal range. Similarly, the proliferation of a re-

source individual involves placing a daughter resource at a displacement sampled from

a bivariate normal distribution with mean zero and standard deviation σdr . When a

consumer undergoes a movement event, it travels a displacement (|ξ| cos(θ), |ξ| sin(θ)),

where the distance moved by a consumer, |ξ|, is drawn from a truncated Gaussian

distribution with a positive mean µsc and a narrow standard deviation σsc , such that

σsc ≤ µsc/4. To ensure the movement distance is always positive, we truncate the

Gaussian at distances greater than 4σsc from the mean. The direction of movement,

θ ∈ [0, 2π], is uniformly distributed. Movement of a resource is specified by a similar

Gaussian distribution with mean µsr and standard deviation σsr .

To analyse the resulting community dynamics, we calculate the average density of

consumers and resource by dividing the number of individuals in both the species with

the area of the domain as, Zc(t) = Nc(t)/L
2 and Zr(t) = Nr(t)/L

2, respectively. The

average density of pairs of individuals reveals the correlation between the locations

of individuals (Bolker and Pacala 1999; Law et al. 2009; Ovaskainen et al. 2014).

We calculate several PCFs, defined as the average densities of pairs normalised by the

density of pairs in a community without any spatial structure (i.e. a community that

evolves in such a way that the mean-field assumption is valid). We define the PCF as a

function of the separation distance between pairs of individuals, |ξ|, and time, t. Since

there are two species in the model, there are three unique PCFs: (i) the auto-PCF of

consumers, Ccc(|ξ|, t); (ii) the auto-PCF of resources, Crr(|ξ|, t), and, (iii) the cross-

PCF, Ccr(|ξ|, t), respectively. In the complete absence of spatial structure we have

Ccc(|ξ|, t) = Crr(|ξ|, t) = Ccr(|ξ|, t) = 1. When the auto-PCF of consumers is greater

than unity, Ccc(|ξ|, t) > 1, we have a larger number of pairs of consumers separated by a

distance, |ξ|, than we would have in a community with spatially random configuration.

We refer to this configuration as clustered. When Ccc(|ξ|, t) < 1, we have a smaller

number of pairs of consumers separated by a distance, |ξ|, than we would have in a

community with spatially random configuration and this situation corresponds to a

segregated spatial structure. Similarly, clustered and segregated spatial patterns of

resources correspond to Crr(|ξ|, t) > 1 and Crr(|ξ|, t) < 1, respectively. Interspecies

clustering and segregation of consumers and resources correspond to Ccr(|ξ|, t) > 1

and Ccr(|ξ|, t) < 1, respectively.

To compute the auto-PCF of consumers, we consider one consumer individual as a

reference individual and then calculate the distance between the reference individual

and all other Nc(t) − 1 consumers. We record the distances between the reference

individual and other individuals of the same species. The auto-PCF is constructed by

counting the distances that fall into the interval
[
|ξ|−∆|ξ|/2, |ξ|+∆|ξ|/2

]
(Binder and

Simpson, 2015). The bin count is normalized by a factor of 2π|ξ|∆|ξ|Nc(Nc − 1)/L2
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to ensure that Ccc(|ξ|, t) = 1 in the absence of spatial structure. A similar procedure

is followed to compute Crr(|ξ|, t) and Ccr(|ξ|, t).

2.1 Mean-field dynamics

Here, we present a continuum description of the IBM by invoking the mean-field as-

sumption. We denote the density of species i at time t, averaged over many identically-

prepared realisations of the IBM as Zi(t). Note that, in our model, average density is

independent of location owing to the combination of boundary conditions and initial

condition used. In the IBM, the presence of other individuals in the neighbourhood of

a focal individual is affected by the communitys spatial structure. However, the mean-

field assumption ignores this dependence by assuming that the probability that there

is an individual of species i at any given location ξ at time t is independent of the occu-

pancy of other individuals, and is given by Zi(t). For example, the expected prolifera-

tion rate of a consumer at location ξ and time t is,
∫
ωp
cr(|ξ|)Zr(t) dξ=2πγpcr(σ

p
cr)2Zr(t).

Approximating the other birth and death rates in the community in a similar way leads

to

d

dt
Zc(t) = 2πγpcr(σ

p
cr)

2 Zc(t)Zr(t)− dc Zc(t)− 2πγccc(σ
c
cc)

2 Zc(t)
2, (6)

d

dt
Zr(t) = pr Zr(t)− 2πγprc(σ

p
rc)

2 Zc(t)Zr(t)− 2πγcrr(σ
c
rr)

2 Zr(t)
2. (7)

This system of equations can be derived rigorously from the IBM under the mean-

field assumption by replacing the second moment of the spatial point process with the

product of the first moments (Plank and Law, 2015), but we omit the details of this

here. In this work we study the solution of Equations (6)–(7) numerically using the

ode45 routine in MATLAB (Mathworks 2019).

3 Results

In this section, we compare averaged data from IBM simulations with the solution

of the mean-field model to explore the impact of spatial structure on the community

dynamics. The auto- and cross-PCFs help to distinguish between different spatial

structures formed due to the intraspecies and interspecies interactions. Linking the

PCFs and averaged densities from the IBM with the solution of the mean-field model

provides comprehensive insight into the role of spatial structure in driving community

dynamics. We first present simulation results that are in good agreement with the

solutions of the mean-field model. We then use these initial results as a benchmark

for exploring other parameter combinations. Mean-field dynamics are replicated in

the IBM by considering sufficiently large predation, competition and dispersal ranges.

Under these conditions the spatial configuration of individuals does not strongly in-
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fluence community dynamics, and the individuals interact weakly leading to negligible

correlations. A summary of parameter values for this first case are given in Table 1.

In Figure 2, we show two scenarios where averaged simulation results from the

IBM match well with the solution of the mean-field model. The first case, shown

in Figure 2(a)–(d), corresponds to a scenario that exhibits co-existence of consumers

and resources. In this case, we consider a community of consumers and resources

distributed uniformly with Nc(0) = 100 and Nr(0) = 200, respectively, as shown in

Figure 2(a). After a sufficiently long time, t = 200, we observe that the densities of

consumers and resources and the three PCFs appear to become steady. The snapshot

of the IBM at t = 200 in Figure 2(b) does not show any obvious spatial structure,

and the auto- and cross-PCFs are approximately unity in Figure 2(d), confirming the

absence of spatial structure. The temporal dynamics of the community are tracked

by plotting the average densities of consumers and resources as a function of time, in

Figure 2(c). Here, the mean-field model accurately matches the IBM results. These

observations are expected since we consider long-range interactions and long-range

dispersal.

Table 1: Description of model parameters and variables
Parameter symbol Description Mean-field value

γccc competition strength of consumers γccc = 0.001
γcrr competition strength of resources γcrr = 0.001
γpcr predation strength with which consumers attack resources γpcr = 0.003
γprc predation strength with which resources are attacked by consumers γprc = 0.004
σccc competition range of consumers σccc = 4.0
σcrr competition range of resources σcrr = 4.0
σpcr predation range over which consumers attack resources σpcr = 4.0
σprc predation range over which resources are attacked by consumers σprc = 4.0
σdc dispersal range of consumers σdc = 4.0
σdr dispersal range of resources σdr = 4.0

Nc(0) initial population size of consumers Nc(0) = 100
Nr(0) initial population size of resources Nr(0) = 200
pc intrinsic proliferation rate of resources pc = 0.2
dc intrinsic death rate of consumers dc = 0.1
mr intrinsic movement rate of resources mr = 0.1
mc intrinsic movement rate of consumers mc = 0.1
µsc mean movement distance of consumers µsc = 0.4
µsr mean movement distance of resources µsr = 0.4
σsc standard deviation movement distance of consumers σsc = 0.1
σsr standard deviation movement distance of resources σsr = 0.1
L domain length L = 20

Variable Description

t time
|ξ| separation distance between a pair of individuals
Zc(t) average density of consumers
Zr(t) average density of resources

Ccc(|ξ|, t) PCF corresponding to the pair densities of consumers (auto-PCF of consumers)
Ccr(|ξ|, t) PCF corresponding to the densities of pairs involving a consumer and resource (cross-PCF)
Crr(|ξ|, t) PCF corresponding to the pair densities of resources (auto-PCF of resources)
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Figure 2: Simulation results that match well with the solutions of the mean-field model. Results in a-d correspond to a case where
consumers and resources coexist (pr = 0.2, dc = 0.1). Results in e-h correspond to a case where consumer extinction occurs (pr = 0.1,
dc = 0.4). a, e show locations of consumers (red dots) and resources (black dots) at t = 0. b, f show locations of consumers and resources
at t = 200. c, g show the densities of consumers (red lines) and resources (black lines) as a function of time. Solid lines correspond to the
averaged results from 1000 realisations of the IBM and dashed lines correspond to the solution of the mean-field model, Equations (6)-(7).
c, f show the PCFs computed at t = 200 as a function of separation distance. Other parameter values are given in Table 1.
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We present a different example of mean-field dynamics in Figure 2(e)–(h), where

the consumer species eventually becomes extinct. Here, we choose an identical initial

arrangement of individuals and interactions to that of the coexistence case in Figure

2(a)–(d). The only difference between the results in Figure 2(e)–(h) and Figure 2(a)–

(d) is that here we specify a higher consumer death rate which leads to the extinction

of consumers. The snapshot of the IBM at t = 200 in Figure 2(f) shows that only

resources remain at this time. Consistent with this, the density of consumers in Figure

2(g) decays to zero by approximately t = 20. The estimate of average densities from

IBM and mean-field model match well for this case. Results in Figure 2(h) indicate that

Crr(ξ, t) ≈ 1, and this is consistent with the fact that the mean-field approximation is

accurate. Note that we only give Crr(ξ, t) in Figure 2(h) since consumers are absent

from the simulation by t = 200.

Given we have established that averaged data from the IBM is consistent with the

solution of the mean-field model for the choice of parameters in Figure 2, we systemat-

ically vary the parameters in the IBM and explore how the resulting spatial structure

affects the accuracy of the mean-field description. In all of these subsequent com-

parisons, we fix the mean-field equilibrium densities of consumers and resources. By

fixing the equilibrium densities, we are able to compare different mechanisms and their

impacts on the dynamics. Under coexistence, the equilibrium densities of consumers

and resources are given by,

Z∗c = lim
t→∞

Zc(t) =
prγ

p
cr (σpcr)

2 − dcγ
c
rr (σcrr)

2

2π
[
γpcr (σpcr)

2
γprc (σprc)

2
+ γccc (σccc)

2 γcrr (σcrr)
2
] , (8)

Z∗r = lim
t→∞

Zr(t) =
prγ

c
cc (σccc)

2 + dcγ
p
rc (σprc)

2

2π
[
γpcr (σpcr)

2
γprc (σprc)

2
+ γccc (σccc)

2 γcrr (σcrr)
2
] . (9)

When we compare different parameter combinations, we take care to choose the in-

teraction ranges and interaction strengths so that Z∗c and Z∗r remain constant. This

ensures that the long-time solution of the mean-field model is constant between the var-

ious conditions that we examine. The specific values of interaction range and strength

parameters used in each of our simulations are given in respective figure captions.

3.1 Short range dispersal creates intraspecies clustering

Here, we investigate the impact of short-range dispersal of consumers and resources on

the spatial structure of the community and how it influences the accuracy of the mean-

field model. In these simulations, the predation and competition interactions are long-

range, as in Figure 2. We first consider short-range dispersal of consumers, as shown

in Figure 3(a)–(d). This leads to the development of intraspecies clustering among

consumers, as shown in Figure 3(b), quantified by the auto-PCF with Ccc(|ξ|, t) > 1
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for small |ξ| in Figure 3(d). In addition we have, Crr(|ξ|, t) ≈ Ccr(|ξ|, t) ≈ 1, suggesting

there is no intraspecies spatial structure among resources and no interspecies spatial

structure. Since the dispersal of resources is long-range, there is little correlation

between the locations of parent and daughter resources, which explains why there is no

intraspecies spatial structure among resources. Even though consumers exhibit strong

clustering we do not see a large discrepancy between the IBM simulations and the

solution of the mean-field model. This observation is due to the long-range predation

and competition interactions, under which local spatial structure does not influence

the dynamics of the community.

Next, we consider the short-range dispersal of resources in Figure 3(e)–(h). After

a sufficiently long time, t = 200, we see more resource individuals at close distances

compared to the initial spatial random distribution. Results in Figure 3(h) show

Ccc > 1, confirming clustering of resources. Again, the cluster formation is due to

short-range dispersal. Similar to the case of short-range dispersal of consumers, we do

not observe strong interspecies spatial structure or any discrepancy between the mean-

field model and IBM estimates of the densities of consumers or resources. Finally, we

consider the short-range dispersal of both consumers and resources in Figure 3(i)–(l).

Since resource and consumer parents now place their offspring close to them, we see

the development of intraspecies clusters of both consumers and resources.
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Figure 3: Short-range dispersal. Results in a-d correspond to short range dispersal of consumers (σdc = 0.5). Results in e-h correspond
to short range dispersal of resources (σdr = 0.5). Results in i-l correspond to short range dispersal of both species (σdc = σdr = 0.5). a, e,
i show the locations of consumers (red dots) and resources (black dots) at t = 0. b, f, j show the locations of consumers and resources
at t = 200. c, g, k show the densities of consumers (red lines) and resources (black lines) as a function of time. Solid lines correspond
to the averaged results from 1000 realisations of the IBM and dashed lines correspond to the solution of the mean-field model, Equations
(6)-(7). d, h, l show the PCFs computed at t = 200 as a function of separation distance. Other parameter values are given in Table 1.
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3.2 Short range competition creates intraspecies segregation

We first consider short-range competition among consumers in Figure 4(a)–(d). After

a sufficiently long time, t = 200, consumers tend to stay apart from each other, forming

an intraspecies segregated spatial pattern, confirmed by Ccc(|ξ|, t) < 1 in Figure 4(d).

The intense competition at short distances increases the death rates of nearby con-

sumers, leading to a configuration where consumers are well-separated. In addition we

have Crr(|ξ|, t) ≈ Ccr(|ξ|, t) ≈ 1, indicating there is no intraspecies spatial structure in

resources and no interspecies spatial structure among consumers and resources. Since

we consider long-range predation for this case, the consumer-resource interspecies in-

teractions are similar to that of the mean-field case in Figure 2. Hence, the spatial

structure of consumers does not impact density dynamics, as evident from the good

agreement between the IBM results and the solution of the mean-field model in Figure

4(b).

Results in Figure 4(e)-(h) and Figure 4(i)-(l) consider intraspecies competition of

resources and intraspecies competition of both species. In both cases, we observe

competition-induced segregation. In Figure 4(h), Ccc(|ξ|, t) < 1, confirms the segre-

gation of resources, whereas Ccc(|ξ|, t) < 1 and Crr(|ξ|, t) < 1, respectively in Figure

4(l) confirm the interspecies segregation between consumers and resources. Again, we

observe that the density dynamics from IBM is in good agreement with the solution

of the mean-field model.
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Figure 4: Short-range competition. Results in a-d correspond to short-range competition of consumers (σccc = 0.5 and γccc = 0.064).
Results in e-h correspond to short-range competition of resources (σcrr = 0.5 and γcrr = 0.064). Results in i-l correspond to short-range
competition of both species (σccc = σcrr = 0.5 and γccc = γcrr = 0.064). a, e, i show the locations of consumers (red dots) and resources
(black dots) at t = 0. b, f, j show the locations of consumers and resources at t = 200. c, g, k show the densities of consumers (red
lines) and resources (black lines) as a function of time. Solid lines correspond to the averaged results from 1000 realisations of the IBM
and dashed lines correspond to the solution of the mean-field model, Equations (6)-(7). d, h, l show the PCFs computed at t = 200 as a
function of separation distance. Other parameter values are given in Table 1.
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3.3 Short range predation drives interspecies segregation

In this section we explore the impact of short-range predation. In these simulations

we fix the range of competition and dispersal to be the same as in Figure 2 so that any

spatial structure is driven by the influence of short-range predation. Results in Figure

5(a)-(b) show the initial spatially random configuration of individuals and the long-

time outcome of the IBM, respectively. In this case, visually identifying the nature of

the long-time steady spatial structure of the community is difficult. The PCFs shown

in Figure 5(d), provide insight into the spatial structure. Since the predation is short-

range, there is a high probability that each consumer predates upon nearby resources.

Hence, the short-range predation by a consumer eventually depletes the resources

locally, creating an interspecies segregation. This is confirmed by Ccr(|ξ|, t) < 1 for

short distances in Figure 5(d). There is some clustering among resources indicated by

Crr(|ξ|, t) > 1 at small distances. This is because consumers tend to predate upon

nearby resources. Those resources that are not consumed are more likely to be in

regions with lower consumer density, which therefore tend to contain small clusters of

resources. These spatial structures have an impact on the density dynamics. Results

in Figure 5(c) show that the mean-field model underestimates the density of resources.

The spatial segregation between consumers and resources assists the resources to avoid

predation. Results in Figure 5(c) also show that the mean-field model underestimates

the density of consumers. This may be counter-intuitive but can be attributed to the

net increase in the resource population size more than offsetting the decrease in per

capita contact rate between consumers and resource due to interspecific segregation.

15

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880104doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880104


(b)

0

0.5

1

1.5

0 4 8

Ccc(     , t)
Crr
Ccr

ξ||
(     , t)ξ||
(     , t)ξ||

x
-10

0

10
y

(a) -10               0                10
x

-10

0

10

y

-10               0                10

0

0.5

1

1.5

t
0 100 200

Z  i
(t

)

C ij(|
ξ|

, t
)Z c (t) 

Z c (t) 
Z r (t) 
Z r (t) 

ξ||(c) (d)

t = 0 t = 200

Figure 5: Short-range predation. a-b show the locations of consumers (red dots) and
resources (black dots) at t = 0 and t = 200, respectively. c shows the densities of
consumers (red lines) and resources (black lines) as a function of time. Solid lines
correspond to the averaged results from 1000 realisations of the IBM and dashed lines
correspond to the solution of the mean-field model, Equations (6)-(7). d shows the
PCFs computed at t = 200 as a function of separation distance. Parameter values are
σpcr = σprc = 0.5, γpcr = 0.192 and γprc = 0.256. Other parameter values are given in
Table 1.
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3.4 Short-range dispersal and short-range predation enhances re-

sources’ survival

Results in Sections 3.1–3.3 consider the impact of various mechanisms acting in isola-

tion whereas here we investigate multiple mechanisms acting in unison. We start by

considering the combined effect of short-range dispersal of consumers and short-range

predation in Figure 6(a)-(d). In the long-time limit we observe dispersal-induced clus-

tering of consumers and predation-induced interspecies segregation between consumers

and resources, leading to Ccc(|ξ|, t) > 1 and Ccr(|ξ|, t) < 1. Segregation between the

two species minimises the chances of predation and results in an increase in the density

of resources compared to the solution of the mean-field model. Note that the density

of resources in Figure 6(c) is higher compared to the case in Figure 5, where there was

only short-range predation. Since the dispersal of resources is long-range, there is a

possibility of daughter resources being placed in local neighbourhoods of consumers.

The probability of this happening is significantly lower when consumers are clustered

rather than uniformly distributed all over the domain as in the case in Figure 5.
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Figure 6: Short-range dispersal and short-range predation. Results in a-d correspond to short range dispersal of consumers (σdc = 0.5)
and short-range predation (σpcr = σprc = 0.5, γpcr = 0.192 and γprc = 0.256). Results in e-h correspond to short-range dispersal of resources
(σdr = 0.5) and short-range predation. Results in i-l correspond to short-range dispersal of both species (σdc = σdr = 0.5) and short-range
predation. a, e, i show the locations of consumers (red dots) and resources (black dots) at t = 0. b, f, j show the locations of consumers
and resources at t = 200. c, g, k show the densities of consumers (red lines) and resources (black lines) as a function of time. Solid lines
correspond to the averaged results from 1000 realisations of the IBM and dashed lines correspond to the solution of the mean-field model,
Equations (6)-(7). d, h, l show the PCFs computed at t = 200 as a function of separation distance. Other parameter values are given in
Table 1.
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Next, we consider short-range dispersal of resources with short-range predation in

Figure 6(e)–(h). These conditions give rise to dispersal induced clustering of resources

and predation induced interspecies segregation, where Crr(|ξ|, t) > 1 and Ccr(|ξ|, t) <
1, respectively. The density of consumers and resources from the IBM is greater

than the solution from the mean-field model, but the deviation is smaller than in the

previous case with short-range dispersal of consumers and short-range predation. Here

the consumers are not concentrated on specific regions as compared to the previous

case. Hence, the probability of predation is, on average, higher compared to the

previous case.

Finally, we consider short-range dispersal of both consumers and resources along

with short-range predation in Figure 6(i)–(l). In this case we see distinct clusters of

consumers and resources due to short-range dispersal of both the species, confirmed

by Ccc(|ξ|, t) > 1 and Crr(|ξ|, t) > 1. Here, we observe an increase in the density of

resources and a decrease in the density of consumers. Since both the species form

clusters and occupy specific regions in the domain, the chances of pairs of consumers

and resources separated by short distances is significantly reduced. The short-range

predation under these circumstances leaves the consumers with reduced availability of

resources for their survival. In contrast, resource grows rapidly due to the reduced risk

of predation.

3.5 Effect of short range predation and short range competition

We consider the combined effect of short-range competition of consumers and short-

range predation in Figure 7(a)–(d). Here, we see consumers tend to become isolated

from other consumers and resources. While short-range predation creates interspecies

segregation, the competition within the consumer subpopulation results in intraspecies

segregation, confirmed by Ccr(|ξ|, t) < 1 and Ccc(|ξ|, t) < 1, respectively. These results

indicate that the density of resources tends to be higher than the solution of the

mean-field model since segregation of consumers and resources reduces the effects of

predation.
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Figure 7: Short-range competition and short-range predation. Results in a-d correspond to short range competition of consumers (σccc = 0.5
and γccc = 0.064) and short-range predation (σpcr = σprc = 0.5). Results in e-h correspond to short-range competition of resources (σcrr = 0.5
and γcrr = 0.064) and short-range predation. Results in i-l correspond to short-range competition of both species (σccc = σcrr = 0.5 and
γccc = γcrr = 0.064) and short-range predation. a, e, i show the locations of consumers (red dots) and resources (black dots) at t = 0. b, f,
j show the locations of consumers and resources at t = 200. c, g, k show the densities of consumers (red lines) and resources (black lines)
as a function of time. Solid lines correspond to the averaged results from 1000 realisations of the IBM and dashed lines correspond to the
solution of the mean-field model, Equations (6)-(7). d, h, l show the PCFs computed at t = 200 as a function of separation distance.
Other parameter values are given in Table 1.
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Combined effects of short-range competition of resources and short-range predation

are shown in Figure 7(d)–(f). These conditions lead to interspecies segregation due

to short-range predation. In addition, we see less pronounced intraspecies segregation

developing among resources due to the competition between resources. In Figure 5,

we saw that the effect of short-range predation, when considered in isolation, leads to

a small scale clustering of resources. Here we see that the additional effects of preda-

tion counteract the impact of competition among resources to form a less pronounced

intraspecies segregation of resources. Finally, we consider the combined effect of the

short-range competition of both consumers and resources and short-range predation in

Figure 7(g)–(i). We find competition-induced intraspecies segregation in this case, and

this is confirmed by Ccc(|ξ|, t) < 1 and Crr(|ξ|, t) < 1, respectively. We also observe

interspecies segregation between consumers and resources confirmed by Ccr(|ξ|, t) < 1

due to the short-range predation.

3.6 Spatial structure drives qualitative departure from the mean-field

model

In this final set of simulations, we present a dramatic case where three spatial structure

forming mechanisms act in unison to produce results that are fundamentally at odds

with the predictions of the mean-field model. These results highlight the danger in

neglecting spatial structure since the mean-field model leads to dramatically misleading

predictions in this case.

The density dynamics of consumers and resources from the IBM simulation in Fig-

ure 8(a) show the eventual extinction of consumers while the resource species continues

to grow to a steady density. In stark contrast, the solution of the mean-field model pre-

dicts the long-time coexistence of consumers and resources. These results demonstrate

that the mean-field model and IBM can predict two qualitatively different outcomes

when there is a strong spatial structure. In Figure 8(b)–(g), we show the evolution of

the spatial structure of the community by presenting snapshots from the IBM as well

as the PCFs at various points in time. We see intraspecies clustering among both con-

sumers and resources, confirmed by Ccc(|ξ|, t) > 1 and Crr(|ξ|, t) > 1, and interspecies

segregation, confirmed by Ccr(|ξ|, t) < 1 at earlier times before reaching the long-time

limit. Strong clustering at these intermediate times is due to the short-range dispersal

of both consumers and resources (σdc = σdr = 0.1). Competition tends to reduce the

extent of clustering. But, dispersal dominates competition since we use very small

dispersal range compared to the competition range (σccc = σcrr = 0.5). Short-range

predation separate consumers and resources from each other by the consumption of

close-lying resources by consumers. This results in interspecies segregation. As time

progresses, these effects result in consumers becoming isolated from resources and

eventually go extinct.
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Figure 8: Short-range competition, short-range predation and short-range dispersal. a shows the densities of consumers (red lines) and
resources (black lines) as a function of time. Solid lines correspond to the averaged results from 1000 realisations of the IBM and dashed
lines correspond to the solution of the mean-field model, Equations (6)-(7). b-c show the locations of consumers (red dots) and resources
(black dots) at t = 5 and PCFs computed at t = 5 as a function of separation distance. d-e show the locations of consumers and resources
at t = 40 and PCFs computed at t = 40 as a function of separation distance. f-g show the locations of consumers and resources at t = 200
and PCFs computed at t = 200 as a function of separation distance. Parameter values are σpcr = σprc = σccc = σcrr = 0.5, γpcr = 0.192,
γprc = 0.256, γccc = γcrr = 0.064, σdc = σdr = 0.1. Other parameter values are given in Table 1.
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4 Conclusion

In this work, we present a relatively simple IBM describing the dynamics of a com-

munity of consumers and resources where we pay particular attention to the effects

of short-range interactions and small-scale spatial structure. The IBM simulation re-

sults are compared with solutions of a mean-field model constructed by invoking the

mean-field approximation. This analysis reveals various situations where the IBM sug-

gest qualitatively different outcomes compared to the solution of the mean-field model.

These observations highlight the importance of considering the role of spatial structure

in community dynamics. Mean-field models are routinely used to explore various char-

acteristics of population dynamics and predator-prey type interactions. These include

predicting whether certain subpopulations go extinct or whether all subpopulation

survive and co-exist (Kuperman et al. 2019). Our results suggest that the predictions

of the mean-field models in these scenarios could be inaccurate if the communities in

question exhibit significant spatial structure.

Our modelling framework can be extended by incorporating various additional

forms of neighbour-dependent interactions that are not considered here. An interest-

ing extension would be to consider the effects of neighbour-dependent directional bias

on the movement of consumers and resources. For example, in this work we make the

simple assumption that the motility rate and direction of movement are independent of

the local density. However, some recent IBMs introduce attractive or repulsive inter-

actions where the motility rate and direction is affected by the local density, and these

interactions can also drive significant differences in the macroscale spatial structure

(Browning et al. 2018; Surendran et al. 2019; Binny et al. 2020). Incorporating these

types of directional bias to the movement of consumers and resources may further

influence the community dynamics beyond the effects explored in the present study.

Another important neighbour-dependent effect in the context of population dynamics

in ecology and cell biology is the incorporation of an Allee effect where proliferation

and death rates are incorporated into the IBM so that there can be a net negative

growth rate at low density and a net positive growth rate at higher densities (Stephens

et al. 1999; Johnston et al. 2017; Fadai et al. 2019). Understanding how these kinds of

interactions that lead to Allee effects would influence the formation of spatial structure

is an open question that could be analysed by extending the modelling framework that

we have presented here.
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