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Abstract

The regulation of mRNA controls both overall gene expression as well as the distribution
of mRNA isoforms encoded by the gene. Current algorithmic approaches focus on characteri-
zation of significant differential expression or alternative splicing events or isoform distribution
without integrating both events. Here, we present Hierarchical Bayesian Analysis of Differen-
tial Expression and ALternative SPlicing (HBA-DEALS), which simultaneously characterizes
differential expression and splicing in cohorts. HBA-DEALS attains state of the art or better
performance for both expression and splicing, and allows genes to be characterized as having
differential gene expression (DGE), differential alternative splicing (DAST), both, or neither.
Based on an analysis of Genotype-Tissue Expression (GTEx) data we demonstrate the exis-
tence of sets of genes that show predominant DGE or DAST across a comparison of 20 tissue
types, and show that these sets have pervasive differences with respect to gene structure,
function, membership in protein complexes, and promoter architecture.

INTRODUCTION

RNA sequencing (RNA-seq) has become the most commonly used genomic technique for the
transcriptome-wide analysis of differential expression and alternative splicing of mRNAs. Since its
introduction over a decade ago, Illumina short-read sequencing technology has been the dominant
platform for carrying out RNA-seq experiments, but newer long-read single-molecule sequencing
technologies of Pacific Biosciences and Oxford Nanopore provide alternatives that may allow a more
accurate and comprehensive assessment of isoform diversity.1 Analysis of RNA-seq data is done in
a pipeline that maps raw reads to genes or isoforms (transcripts), quantifies the number (count)
of reads associated with each isoform generating an expression matrix, followed by normalization
steps and statistical analysis of differential expression.2;3

Algorithms for the analysis of differential gene expression or differential splicing have many
different approaches. Differential gene expression (DGE) refers to alterations in the expression
(counts) of the sum of each of the isoforms that are encoded by a gene. Many methods for DGE
analysis are based on discrete probability distributions such as the Poisson or negative binomial.4;5

voom instead estimates the mean-variance relation non-parametrically from log-counts per million
reads data, which are used as input for linear modeling and empirical Bayes differential expression
analysis.6

In contrast to DGE, differential alternative splicing and transcription (DAST) refers to differen-
tial usage of isoforms that include distinct combinations of exons or begin from distinct transcrip-
tion start sites. Computational methods for identifying DAST in RNA-Seq data can be broadly
divided into two approaches. The first approach is based on an analysis of the percent spliced in
(Ψ[Psi]), which is defined as IR

IR+ER , where IR refers to inclusion reads and ER to exclusion reads.
This approach models differences in splicing as differences in Ψ, corresponding to the probability
of an alternative splicing event at a splice junction.7–10 A second approach compares counts of
alternative isoforms.11–13

Most existing methods look at either DGE or DAST but not both. When using separate
procedures for differential splicing and expression, however, the determination of which genes
are alternatively spliced, differentially expressed, undergo both of these changes or none of them
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requires intersection between negative and positive findings. This is usually not possible without
violating some of the assumptions of individual tests. For example, frequentist methods assess
statistically significant differential expression or splicing using p-values, but non-significant p-values
cannot be readily interpreted as providing evidence of lack of differential expression or splicing.
Moreover, variation of gene expression can be affected by expression level,14 and as a corollary
variation of isoform expression is affected by isoform level. Methods that transform isoform levels
into proportions (i.e., Ψ-based methods) do not model this relationship, and therefore fail to
accurately model dispersion, which is essential for determining significance. On the other hand,
modeling individual isoform expression levels but not modeling their joint expression can result in
false positives when a gene is differentially expressed but its isoforms are not differentially spliced.
Similarly, a change in an individual isoform’s levels between conditions does not necessarily mean
a change in that isoform’s proportion and vice versa.

In this work, in contrast, we present a Bayesian method for analyzing RNA-seq data that
simultaneously identifies DGE and DAST based on isoform counts. We show with our method,
using data from the Genotype-Tissue Expression (GTEx) project,15 that genes can be assigned
to four groups according to the propensity of a gene to show DGE, DAST, both, or neither in
comparisons between different tissue types. These classes differ not only with respect to gene
functions and structure, but also with respect to the distribution of transcription factor binding
sites (TFBS), membership in protein complexes, and methylation of their promoter regions.

RESULTS

Here, we present a method for joint modeling of differential expression and splicing, Hierarchical
Bayesian Analysis of Differential Expression and ALternative Splicing (HBA-DEALS).

A Bayesian model for simultaneous assessment of differential expression and splicing

HBA-DEALS uses as input a matrix of isoform counts derived from mapped RNA-seq reads in
n samples divided into two cohorts n1 and n2 (e.g., cases and controls). HBA-DEALS uses a
hierarchical Bayesian model that simultaneously assesses the absolute expression levels of the gene
and its isoforms (Fig. 1).

The isoform counts are first log-transformed. Gene expression levels are then modeled using a
normal distribution, with mean that is equal to the sum of corresponding mean isoform levels. A
linear model is fit to each gene’s levels, and a trend line is then fitted to the square root standard
deviations as a function of mean gene level.6 The variance of an individual sample is inferred
from the value of the corresponding value of fitted function. The mean isoform expression is a
fraction of the mean expression level of its gene (In Fig. 1, Sample A and Sample B display a
different distribution of the three isoforms of an example gene), and similarly to gene expression,
a sample-specific variance is obtained from a mean-variance trend for isoforms. The proportions
of all isoforms assigned to a gene are represented as a vector of isoform fractions [p1, p2, .., pn] with∑
pi = 1 (isoform fractions are symbolized by the triangles in Fig. 1).The prior of the isoform

fractions is Dirichlet distributed with the vector [1, 1, ..., 1].
In order to model difference in gene expression, a parameter β is added to the mean expression

level in one condition. A non-informative N (0, 5) prior is assigned to β. The model predicts DGE
when the bulk of the posterior of β does not contain 0. Unlike differential expression, simple
addition cannot model difference in splicing because the entries of the vector of isoform fractions
must sum to 1, and addition does not preserve this property. Therefore, instead of adding a
vector α to the isoform fractions in one condition, we apply an Aitchison perturbation16 between
α and the isoform fractions in that condition. As with β, HBA-DEALS estimates the posterior
distribution of α, and uses this to call DAST (Methods). Given the expression levels of a gene, the
isoform proportions are independent of β. Thus, HBA-DEALS independently and simultaneously
assesses DGE and DAST.

Model validation

We applied three approaches to assess the performance of HBA-DEALS. First, we extended an
existing simulation scheme for RNA-seq expression data6 to enable the modeling of alternative
splicing. For each gene, we split its sample proportion between a random number of isoforms,
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Figure 1. Overview of the HBA-DEALS model. The expression of a gene with three
isoforms (green, orange and blue) is shown. The gene expression is the sum of the expression of
the isoforms. Differential gene expression is modeled as two Normal distributions that differ by the
parameter β. The expressions of the corresponding isoforms are modeled using a Dirichlet prior
whose difference is controlled by α (symbolized by the two triangles). An MCMC procedure is used
to solve for the posterior distribution of the parameters of the model for all genes and isoforms
at once. The posterior distributions are in turn interpreted to classify each gene as DAST, DGE,
DAST/DGE, or static (Methods).

and for differentially spliced genes we doubled the proportion of one random isoform in cases
and another in controls. We analyzed 50 simulated datasets for DGE with HBA-DEALS, voom,6

DESeq2,5 edgeR4, baySeq17, and NOISeq.18 We analyzed the same datasets for differential alter-
native splicing with HBA-DEALS, rMATS,8 and a method we call optimal splicing from transcript
proportions (OSTP), which provides an upper bound on the performance of t-statistic-derived sig-
nificance values to compare Ψ of isoforms (Methods). HBA-DEALS displayed a larger area under
the precision-recall curve than the other approaches did for both DGE and DAST (Fig. 2a–b).

In order to assess the accuracy of HBA-DEALS using real data, we ran HBA-DEALS on
estimated isoform levels from the Genotype-Tissue Expression project (GTEx)15. We used HBA-
DEALS to identify differentially expressed and differentially spliced genes in 20 different pairs
of tissues. We chose ten pairs of tissues that were closely related (e.g., subcutaneous adipose
tissue and visceral adipose tissue), and ten that were more distant (e.g., liver and pituitary gland;
Supplemental Table S1). We formed multiple subcohorts for each tissue by choosing 15 samples at
random and then compared the results of HBA-DEALS between different subcohorts. Although
the individual samples derive from unrelated individuals, there was a high degree of overlap of
genes identified as differentially expressed or spliced. We tested the overlap between a total of
2791 pairs of cohorts (Supplemental Table S1). In each case, the overlap was highly significant
(p < 2.23 × 10−308 for all comparisons, hypergeometric test). These results suggest that HBA-
DEALS is able to identify characteristic and reproducible differences in cohorts (Fig. 2c–d and
Supplemental Figs. S1 and S2). The correlation was higher in the distant tissues, likely because
ratio of larger than the differences between samples was higher. We also verified that the correlation
increases with cohort size (Supplementary Fig. S3).

Finally, for each tissue pair we performed multidimensional scaling (MDS) of the vectors of
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isoform proportions in all available samples, including only isoforms that were differentially spliced
in at least 3 subcohorts (Methods). More specifically, we first obtained genes that were predicted
to be differentially spliced in at least 3 cohorts of a given tissue pair, and their isoforms that were
classified as differentially spliced with a fold change of at least 2. For each gene we then computed
the proportion of each isoform that was predicted to be differentially spliced out of the total
number of isoforms of that gene. The Euclidean distance between the vectors of these proportions
over all differentially spliced genes of a tissue pair were then reduced into 2 dimensions using
multidimensional scaling.19 The overlaps were highly significant (p < 2.23×10−308, Hypergeometric
test). As an example, we show MDS that was performed on samples from the left ventricle of the
heart (LV) and the atrial appendage (AA). We first performed MDS by calculating intersample
distance based on levels of isoforms that had been identified as differentially spliced in different
cohorts and obtained a nearly perfect separation by tissues (Fig. 2e). As a control, we repeated
the MDS with differentially expressed genes and isoforms that were assigned probability of at least
0.25, and the two cohorts display a substantially lower degree of separation (Fig. 2f).
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Figure 2. HBA-DEALS evaluation. (a) Precision-Recall (PR) analysis of HBA-DEALS
and five state-of-the-art algorithms for the detection of RNA-seq differential expression. (b) PR
analysis of HBA-DEALS, OSTP, and rMATS. (c) R2 for gene expression (GTEx, distant). Data
points shown in color represent correlations based on genes that were identified as differentially
expressed by HBA-DEALS. As a control, genes not identified as differentially expressed (probability
of direction p ≥ 0.25, see Methods) are shown in gray (Abbreviations in Supplemental Table S2).
(d) R2 for isoform proportion (GTEx, distant). Data points shown in color represent correlations
based on isoforms identified as differentially spliced by HBA-DEALS. As a control, isoforms from
genes not identified as differentially spliced (p ≥ 0.25) are shown in gray. (e) MDS plot for left
ventricle (LV) compared with atrial appendage (AA). Each dot represents one sample. The MDS
was performed using only isoforms that HBA-DEALS identified as DAST. (f) As a control, the
same analysis was performed using isoforms of genes from the DGE group.
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HBA-DEALS defines four categories of genes that differ with respect to splicing and
expression

We next asked whether sets of genes can be identified by HBA-DEALS whose regulation is found to
occur primarily by means of differential splicing, differential expression, or both. For the following
analysis, we performed 20 comparisons between samples from different tissues (e.g., left ventricle
against atrial appendage). For each comparison, we compared cohorts of 15 samples for each tissue
(Supplemental Table S1), and used HBA-DEALS to call genes differentially spliced, differentially
expressed, both, or neither.

For the following analysis, a gene is considered differentially expressed in a tissue if it was
differential expressed in at least 3 subcohorts, and differentially spliced if it has an isoform that
was differentially spliced in at least 3 subcohorts. If a gene is found to be differentially spliced in
at least twice as many comparisons as it is found to be differentially expressed, we assign it to the
DAST group. Conversely, if a gene is differentially expressed in at least twice as many comparisons
as it is differentially spliced, we assign it to the DGE group. Genes that are both differentially
spliced and differentially expressed are assigned to the DAST/DGE group. Finally, genes that
do not display differential expression or splicing as defined above are assigned to the static group
(Fig. 3a).
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Figure 3. (a) Distribution of protein coding genes in the groups DAST (n=1789), DGE (n=3355),
DAST/DGE (n=7102), and static (n=2018). Only those genes were included in the analysis for
which at least two isoforms were expressed at sufficient depth in most tissues. (b) Gene Ontology
analysis revealed six GO significantly enriched GO terms that show an at least 2-fold enrichment
in one of the four groups (Methods and Supplemental Tables S3–S8).

We performed Gene Ontology20 (GO) term enrichment analysis on the genes in each of the four
groups. The four groups differed with respect to significantly overrepresented GO terms (Fig. 3b,
with details in Supplemental Tables S3–S8). Six terms displayed strong enrichment in one of the
four classes, as defined by statistically significant overrepresentation, having at least 20 annotated
genes, and showing an at least two-fold higher percentage of annotated genes than the entire
population of genes (Methods). All six enrichments were found for the DAST group, and all of
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the terms were related to RNA biology. For instance, while only 10.1% of all 13,688 genes were
annotated to rna binding, over twice as many genes in the DAST set were (21.5%). RNA binding
proteins are involved in each step of RNA metabolism including alternative splicing.21 Changes
in alternative splicing are common in biological processes and disease states, and an investigation
of the functions of alternatively spliced genes may tell us something about the biology of those
states. For example, subsets of alternatively spliced genes found in aging, with mutations in the
spliceosome gene U2AF1 in myelodysplastic syndrome, and with differentiation of erythroblasts
are enriched for genes involved in RNA processing.22–24

None of the significant GO terms for the DGE group was associated with a two-fold increase
in the percentage of annotated genes. The specificity of the significant GO terms identified for the
DAST and DGE groups was significantly higher than for the remaining two groups (Supplemental
Fig. S4). This suggested that the DAST and DGE groups show a greater degree of functional
uniformity than the other two groups, which motivated us to further investigate differences between
these two groups.

Pervasive differences in the genomic characteristics of DAST and DGE genes

We compared the DAST and DGE groups with respect to a variety of genomic properties. DAST
genes show a lower percentage of promoter methylation than DGE genes. DAST genes also have
a higher number of exons, are shorter and have a lower mean exon length. DGE genes are more
likely to have a TATA-box element in their promoter, and are correspondingly less likely to be
associated with a CpG island. DAST and DGE genes differ with respect to the frequency of a
number of predicted transcription factor binding sites (Table 1).

Predictor DAST genes DGE genes P -value

Promoter methylation age 0 34.66 25.09 1.69× 10−23 (MW)
ZFX binding 57.5% 35.8% 1.83× 10−8 (W)
Number of Exons 34 21 4.22× 10−106 (MW)
Total Gene Length 72,367 bp 76,408 bp 5.81× 10−6(MW)
Dispersion 27.32 27.92 6.62× 10−3 (MW)
CpG island 77% 61.3% 1.52× 10−26 (FET)
TATA box 5.5 % 12.9% 2.32× 10−15 (FET)
Number of transcripts 11.4 6.9 4.94× 10−152 (MW)
Exon length 240 bp 250 bp 4.35× 10−28 (MW)

Table 1. Genes regulated predominantly by alternative splicing (AS genes) differ from genes
regulated predominantly by differential expression (DE genes) with respect to a number of char-
acteristics related to DNA sequence, methylation, and transcription factor binding. Entries shown
as percentages indicate the percentage of all genes in the group that display the characteristic.
MW: Mann-Whitney test; FET: Fisher exact test; W: Wald test. Additional methylation results
are listed in Supplementary Table S9.

DNA methylation of the promoter region or of the gene body can influence alternative splic-
ing.25–27 We compared the methylation levels in gene body and promoter of DAST and DGE
genes, in 12 different age groups (Methods). In all the age groups, the percentage of methyla-
tion was significantly higher in expression-regulated genes. We found that the degree of promoter
and gene body methylation is also correlated with exon count of genes. The proportion of DAST
genes increases with the exon count, but for any particular exon count, lower degrees of promoter
methylation are association with higher proportions of DAST genes (Fig. 4a). For gene body
methylation, the proportion of DAST genes is highest with intermediate levels of methylation, and
lowest with the lowest levels of methylation. Furthermore, when the number of exons grows, even
small increases in methylation increase the chance that a gene is splicing-regulated (Fig. 4b).

Limited evidence exists coupling binding of transcription factors to promoters with alternative
splicing.28;29 We explored whether profiles of TF binding motifs in gene promoters are predictive
of a gene being in the DAST or DGE group by means of logistic regression with a total of 401
predictors consisting of the predicted target genes of 401 TFs. The value of each predictor is 1
(TFBS present) or 0 (no TFBS). The dependent variable is the group (DAST vs. DGE). The
weighted sum of the predictors and the intercept models the logit of the probability of belonging
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Figure 4. (a) Promoter Methylation x Number of Exons x Proportion of Splicing Genes -
Promoter. (b) Promoter Methylation x Number of Exons x Proportion of Splicing Genes -Gene
Body. (c) Bar plot of the 41 TFs with significant regression coefficients in the logistic regresssion.
Positive coefficients predict DAST, and negative coefficients predict DGE. (d) Multidimensional
Scaling of TF interaction profiles of DAST (blue) and DGE (green) genes.

to the expression-regulated gene class. The model identified 41 TFs with a statistically significant
regression coefficients, comprising 24 TFs in the DAST group and 17 TFs in the DGE group
(Fig. 4c and Supplemental Table S10). We then used the Mann-Whitney test to compare the
distributions of the probability of a gene belonging to the DAST class as assigned by the network
to the genes in the DAST and DGE classes. We obtained p-values of 1.11×10−76 and 5.25×10−77.
This indicates that the model can predict the correct gene class for unobserved genes based in TF
binding and methylation profiles.

Networks of splicing-regulated transcription factors

We then investigated potential synergy between TFs of the DAST and DGE groups. For each
group and for each pair of TFs, we computed the number of targets bound by both TFs divided
by the number of targets bound by at least one of them, where targets are defined as all genes
in either the DAST or the DGE groups. We noted that some TFs had very few or very many
binding targets. In order to remove trivial low and high scores we therefore selected TFs from
the 0.2 to the 0.8 quantiles with respect to the total number of targets in both sets of genes. We
then performed multidimensional scaling on the vectors of interaction scores of the different TFs,
i.e. each point in the MDS corresponds to the interaction profile of a specific TF with other TFs
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when the targets are either the DAST or DGE set (Fig. 4d). Remarkably, we obtained perfect
linear separation between interaction profiles for the two types of genes. This result suggests that
combinatorial regulation plays a role in determining both changes in splicing and gene expression.

In order to examine whether particular protein complexes are enriched for DAST, we down-
loaded the full set of gene complexes from the CORUM database30 and computed the probability
of the obtaining the observed proportion of DAST genes or a higher proportion under the bino-
mial null distribution, setting the probability of a DAST gene to the mean proportion of DAST
genes over all complexes (0.55). After Benjamini-Hochberg multiple testing correction, DAST but
not DGE were significantly enriched in spliceosome related complexes. Two complexes enriched
for DAST genes were related to the ribosome (Table 2). Interestingly, networks of autoregulated
alternative pre-mRNA splicing have been demonstrated for components of the spliceosome as well
as for subsets of ribosomal proteins.31–33

Complex name DAST genes DGE genes P -value

Spliceosome 49 6 1.79× 10−6

Nop56p-associated pre-rRNA complex 30 2 5.23× 10−5

Ribosome, cytoplasmic 25 1 1.13× 10−4

C complex spliceosome 32 4 4.08× 10−4

60S ribosomal subunit, cytoplasmic 16 0 1.87× 10−3

Parvulin-associated pre-rRNP complex 17 2 0.040

Table 2. Enrichment of DAST genes in protein complexes was calculated using the binomial
distribution (Methods). The Benjamini-Hochberg-corrected p-value is shown.

Combinatorial interactions among transcription factors (TFs) and TF subnetworks are criti-
cal for tissue-specific gene expression.34 We therefore asked to what extent transcription factors
represented in the DAST and DGE groups differ. We computed the count of DAST-TFs with
TF binding motifs in promoters of all DAST genes and the corresponding count with motifs in
promoters or DGE genes. There was a significantly higher count for DAST genes as compared
to DGE genes (16.05 vs 13.67 binding TFs, p = 7.36 × 10−53, Mann-Whitney test). This finding
supports the possible existence of independent cellular circuits that are based primarily on changes
in alternative splicing (Supplemental Fig. S5).

DISCUSSION

Although short- and long-read RNA sequencing has become a standard method for characterizing
both gene expression and alternative splicing, the interplay between gene expression and alternative
splicing has not been extensively studied. The majority of existing methods interrogate either gene
expression or alternative splicing but not both, and methods for jointly modeling expression and
splicing have been lacking. In this work we have presented HBA-DEALS, a Bayesian method that
analyzes both splicing and expression in a single model. Using simulated data we have shown that
the performance of HBA-DEALS in the identification of differential gene expression and differential
alternative splicing is superior to that of state-of-the-art approaches. By investigating data of the
GTEx project, we additionally showed that the predictions of HBA-DEALS are reproducible across
independent biological cohorts. The algorithmic approach HBA-DEALS is a paradigm that can be
used to identify groups of genes that display DAST, DGE, both, or neither. This analysis result
is not readily available with existing methods that investigate DGE or DAST one at a time.

To demonstrate a typical application of our algorithm, we characterized a set of genes that are
preferentially alternatively spliced over a large number of comparisons of different tissues using data
from the GTEx project. We characterized a set of genes that are preferentially alternatively spliced
across comparisons of 20 tissue types. The DAST set was enriched in functions related to RNA
metabolism, for members of spliceosomal and ribosomal protein complexes, and showed pervasive
differences compared to the DGE set with respect to gene structure (gene length, average exon
length, total exon count), DNA methylation of both promoter and gene body sequences, as well
as the distribution of transcription factor binding sites. We have further found that combinatorial
regulation of genes by transcription factors is fundamentally different in splicing-regulated and
expression-regulated genes, which suggests that both processes are under the control of different
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gene regulatory networks. It seems plausible that each process can act independently under certain
conditions or given a specific set of triggers. In support of this hypothesis, we found that tran-
scription factors that are themselves in the DAST group favor targets that are in the DAST group.
Moreover, DAST genes are enriched for RNA-binding, suggesting possible post-transcriptional
regulatory interactions.

HBA-DEALS is an R package that is freely available at
https://github.com/TheJacksonLaboratory/HBA-DEALS.

METHODS

HBA-DEALS: Hierarchical Bayesian Analysis of Differential Expression and ALter-
native Splicing

Hierarchical Bayesian modeling (HBM) is a multiparameter modeling technique in which one as-
sumes a statistical distribution for individual parameters whose interdependencies are reflected in
the structure of the hierarchy. In HBA-DEALS, this hierarchy models isoform levels as fractions
of the total number of mRNA molecules produced from a certain gene. Our assumptions in devel-
oping our model were: (i) Increase or decrease in gene expression induces increase or decrease in
the level of at least one isoform; (ii) Isoform levels are fractions of the gene expression level; and
(iii) Changes in isoform fractions do not necessitate changes in expression levels and vice versa. A
Markov Chain Monte-Carlo (MCMC) technique can be used to estimate the posterior probability
of the parameters of an HBM. To do so, one must design the structure of the HBM and define the
probability distribution of each node.

The input for HBA-DEALS consists of a matrix of gene and isoform counts derived from to
two different conditions, here referred to as case and control, using any short- or long-read next-
generation sequencing technology. In the case of short-read RNA-seq, tools such as RSEM35 or
StringTie,36 can be used to calculate isoform counts. Long-read isoform counts can be generated
with pipelines such as SQANTI.37 HBA-DEALS calculates gene expression levels by summing up
the isoform counts of individual genes.

The data is log-transformed using log2(x + 0.5), where x is the count-per-million reads (log-
cpm). Expression levels are modeled as Normal, with mean that is the sum of the corresponding
isoform levels, and sample-specific variance that is obtained from a mean-variance trend by fitting
a linear model to each gene’s levels, and then fitting a trend line to the square root standard
deviations as a function of mean gene level.6

Assessment of DGE

HBA-DEALS models gene expression as follows. The difference between cases and controls is
modeled with a non-informative Normal prior.

β ∼ Normal(β|0, 5) (1)

The mean log-cpm level in cases is modeled with a Normal distribution such that the mean of
its prior is equal to the mean expression value of the control samples (µ1) with a variance of 5.

β0 ∼ Normal(β0|µ1, 5) (2)

In order to model differences between cases and controls, we model the expression in control i
(yi) as:

yi ∼ Normal(yi|β0, σ̂
2
i ) (3)

For case j, the mean is defined as β0 + β:

yj ∼ Normal(yj |β0 + β, σ̂2
i ) (4)
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Probability of direction

If the mean of the posterior is greater than 0, the probability of differential splicing is 1 minus the
posterior density that is smaller than 0. If the mean is smaller than 0 the probability is 1 minus
the posterior density that is greater than 0. This is essentially the probability of direction with
mean in place of the median of the posterior. The mean of the intercept for expression levels is
the log-transformed mean in the control group. For MCMC initialization, gene expression values
are set to the log-transformed sum of isoform counts and β is set to 0. β is set to 0.

Assessment of DAST

Isoform levels are also modeled as normal, with variance that is obtained from a mean-variance
trend similarly to expression levels. The mean of isoform i corresponds to a fraction pi of the mean
expression level, with

∑
pi = 1.

The control fractions have a Dirichlet(1) prior, and the case fractions relate to the control
fractions (pi and p′i refer to the proportion of isoform i in controls and cases ) via the following
formula (the Aitchison perturbation16):

p′i =
pi · αi∑

1≤j≤T pj · αj
, (5)

where T is the number of isoforms of the gene and α is a vector whose entries sum to 1.
This Aitchison perturbation computes the product of corresponding entries in the two vectors,

and divides each entry in the resulting vector by the sum of its entries. For example, if a gene
has two isoforms with fractions (0.4,0.6) in condition 1, and alpha is (0.6,0.4), then the Aitchison
perturbation will map the fraction of each isoforms to 0.4·0.6

0.6·0.4+0.4·0.6 = 0.5 in condition 2. A vector
whose entries are equal and sum to 1 is the identity element of the Abelian group defined on the
simplex by the Aitchison perturbation. Therefore, a gene is not differentially spliced if and only if

all the entries of α are equal. The prior on α is also set to Dirichlet with the vector
−→
1 .

For MCMC initialization, we set the initial values of pi to

2tri∑
1≤j≤T 2trj

,

where tri is the log-cpm level of the ith isoform. Additionally, α’s entries are initialized to 1
T .

If for the ith isoform most of the posterior density of αi is concentrated away from the scalar
product ααα · p , then that isoform is predicted to be differentially spliced. If the posterior density
of any isoform of a gene is concentrated away 1

T , the gene is predicted to be differentially spliced.
Therefore, we predict differential splicing of a specific isoform when the bulk of the marginal
posterior density of the isoform’s corresponding entry in α does not contain the scalar product of α
and the vector of isoform proportion in condition 1. We predict differential splicing of a gene when
the bulk of the marginal posterior density of any of its isoforms does not contain 1 divided by the
number of isoforms. More specifically, if the mean of the posterior is greater than the threshold
value the probability of differential splicing is 1 minus the posterior density that is smaller than
the threshold, and if the mean is smaller the probability is 1 minus the posterior density that is
greater than the threshold.

Optimal splicing from transcript proportions (OSTP)

In each sample we divided the level of each isoform by the sum of levels of the other isoforms to
obtain isoform proportions. For each proportion of false positives (FP) we found the t-statistic that
maximizes the proportion of true positives (TP) in each simulated dataset, where the proportion
of TPs is the proportion of differentially spliced isoforms with a fold change of 2 or greater that
are detected. We here refer to the results obtained in this way as optimal splicing from isoform
proportions, or OSTP. Note that OSTP is not a method that can be used in practice, since it does
not provide a way to choose the t-statistic threshold for a given dataset, unless this is baked into
a simulation. Note that OSTP is not a method that can be used in practice, since it does not
provide a way to choose the t-statistic threshold for a given dataset, unless this is baked into a
simulation.
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MCMC

We used the stan package for MCMC modeling via its R interface rstan.38 We set the number of
chains which is set to 1, the number of warmup steps to 2000, and the number of total steps to
10000. In order to obtain an extended range of p-values for generating precision-recall curves in
the simulation, we set the number of steps to 100000, and the number of warmup iterations to
10000. We used the R package coda to parse the results.

GTEx dataset

The genome-wide, cross-tissue expression profiling provided by GTEx includes over 17 thousand
expression samples from 948 donors in 54 tissues.15

RSEM35 isoform counts were extracted from the file
GTEx_Analysis_2016-01-15_v7_RSEMv1.2.22_transcript_expected_count.txt, which is avail-
able from the GTEx portal.15 This file contains RSEM counts for multiple isoforms of different
genes identified by Ensembl ids, in different tissues of different donors. We used biomaRt to
map Ensembl ids to HGNC gene symbols.39 The sample annotations were extracted from the file
GTEx_v7_Annotations_SampleAttributesDS.txt, which contains data from 8444 samples from
703 donors.

Robustness analysis of HBA-DEALS

We reasoned that if HBA-DEALS is able to robustly identify mRNAs that are consistently differ-
entially expressed, alternatively spliced, both, or neither, then we should observe a high level of
consistency in its results for subsets of samples in the GTEx dataset. Therefore, for each pair of
tissues we randomly divided the data into subcohorts of 30 samples, 15 from each condition, keep-
ing transcripts that had a count of at least 1 in each subcohort sample. We then ran HBA-DEAL
on each subcohort separately, and compared the sets of genes and isoforms that were identified
as differentially expressed and differentially spliced, respectively. There was a highly significant
overlap amongst both genes and isoforms that were consistently identified between cohorts. We
then compared the changes in gene expression levels and isoform proportions quantitatively, by
computing the R-square value between log-fold expression changes of each gene and log-fold isoform
proportion changes of each isoform. This has resulted in high correlation between cohorts in the
different tissues (figure 2 c-d). As expected, tissues that were not related showed an overall higher
correlation, since differences between tissues are much greater than differences between donors.

Fold changes in expression were calculated as the mean of the posterior beta, and fold changes
in splicing as the Aitchison perturbation between the mean of the posterior of the fraction in
controls and the mean of the posterior of alpha divided by the mean of the posterior of the fraction
in controls.

To further determine the robustness of the set of isoforms that were identified as differentially
spliced, we converted the GTEx expression data into isoform proportions, and selected the set of
isoforms that were differentially spliced in at least 3 cohorts and had a fold change of at least 2
for a multidimensional scaling of all the samples together. We used the R function cmdscale. The
clear separation between samples belonging to different tissues confirmed the robustness of the
isoforms identified in individual cohorts and their consistency as a set. In order to validate the
visual observation, we computed the ratio of the mean between-tissue-distances to within-tissue-
distances in the MDS for the real data and for 1000 permutations of the tissue labels, for each
pair of tissues. We then counted the number of times that a value computed for the permuted
labels was greater or equal to the corresponding value computed for the original labels. For all 10
tissue pairs, this did not occur in any of the permutations, corresponding to a p-value ¡ 0.001 that
a separation between two labels occurred by chance.

Multidimensional scaling

Multidimensional scaling (MDS) is a nonlinear transformation that translates a matrix of pairwise
distances between objects into a two-dimensional visualization of the objects that preserves the
pairwise distances as much as possible.19;40
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Gene Ontology analysis

For Gene Ontology enrichment analysis we used the program Ontologizer,41 using the Parent-
child Intersection algorithm.42 The population set was composed of all the genes that passed
the minimum-counts threshold, i.e. that participated in the analysis. The complete lists of GO
categories with Bonferroni-corrected p-values less or equal to 0.01 are given in supplementary
tables S5, S6, S7, and S8. We used the go.obo and goa_human.gaf files downloaded on December
2, 2019.

Defining four mRNA categories

We define splicing-regulated genes as genes for which differential splicing was observed at least
K times as often as differential expression, and expression-regulated genes as genes for which
differential expression was observed at least K times as often as differential splicing of one of the
isoforms, K=2. To test for robustness of this criterion, we repeated the analysis for increasing
values of K. As can been seen in Supplemental Fig. S3, the properties that were found for K=2
remain significant for increasing values of K.

Additional data sources

We have used several additional data sources in order to characterize the properties if splicing- and
expression-regulated genes. TF targets, the TATA box motif in promoters, and dispersion of the
transcription start site (TSS) were obtained from the FANTOM project portal43. For TF targets
we used the file hg38.gencode_v28.TF_HUMAN.tsv, where TF is the transcription factor name.
Gene lengths were retrieved using the biomaRt R package. Exon and isoform annotations were
taken from the file Homo_sapiens.GRCh38.91.gtf that was download from the Ensembl website.
The methylation datasets were downloaded from MethBank44. The age groups were: age0, age2-
4, age5-13, age14-16, age17-28, age29-36, age37-42, age43-53, age54-66, age67-75, age76-88, and
age89-101.

Simulation

We used the code provided with6 to simulate isoform levels and followed the methodology that
was used to add differential expression for adding differential splicing. For each gene, a num-
ber of expressed isoforms was randomly generated between 2 and 10 using the probabilities
0.4,0.2,0.1,0.05,0.05,0.05,0.05,0.05,0.05. The proportions of genes were then divided to by the
corresponding number of isoforms. A set of differentially spliced genes was selected at random.
In the original code, a gene’s proportion is multiplied by 2 in either cases or controls to generate
differential expression. Therefore, for each differentially spliced gene, the proportion of one random
isoform was increased 2-fold in cases, and the proportion of another isoform was increased 2-fold in
control. This ensures that the total proportion of the gene remains unchanged. After generating
isoform proportions, the simulation proceeds the same as the original code. We generated datasets
with random seeds 1-50. The first 25 were generated using equal library sizes and the last 25 with
unequal library sizes. The input to rMATS consists of counts for ”skip” and ”inclusion” counts,
each representing a distinct isoform. We set for each isoform the “skip” count as the number of
counts of the isoform, and the “inclusion” counts the number of counts of the other isoforms. We
set isoform length to 1 and the PSI cutoff to 1e-10. Tools provided as R packages were used accord-
ing to the usage instructions in the packages. In order to generate mean precision-recall curves,
we fitted a trendline with the function lowess in the R package limma to the precision and recall
values for each tool in each dataset. For missing precision values, we added points with the nearest
lower recall value. The mean of the trendline values over all the datasets was then computed for
each tool to obtain the mean precision-recall curve.

Optimal splicing from transcript proportions (OSTP)

The OSTP method obtains the best precision-recall tradeoff possible using a t-test. First, it
calculates the t-statistic for the difference between isoform proportions in cases and controls. Then,
for each threshold value of the statistic, it finds the false positive (FP) proportion and true positive
(TP) proportion. Finally, for each FP proportion it selects the optimal TP proportion.
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Statistical tests

For performing the Mann-Whitney test, Fisher’s Exact Test, creating the logistic regression model,
computing the hypergeometric cdf, the t statistic and the Mann-Whitney statistic we used the core
modules R programming language.

Dispersion

Promoters can be characterized as either sharp type or broad type, depending on whether they
contain one dominant transcription start site or multiple transcription start sites.45 Cap analysis
of gene expression (CAGE) can be used to identify transcription start sites in promoters. CAGE
experiments generate sets of 20 to 27 bp sequence tags from the 5’ ends of mRNA, which can be
matched to a reference genome. Any accumulation of tags (“peak”) is a reliable indicator of a
transcription start site.

Based on FANTOM5 data,46 we computed dispersion indexes of CAGE tags for all promoter
sequences, a metric that is conceptually similar to the standard deviation of tag counts.47 A low
dispersion index indicates a sharp distribution of tags, and a high dispersion index indicates a
broad distribution of tags. To compute dispersion indexes, we counted tags between positions -99
and +100 relative to and on the same strand as the annotated transcription start sites. Let s be
the dispersion index and xi be the number of tags at position i. Then,

c =
100∑

i=−99

xi m =
1

c

100∑
i=−99

xii s =

√√√√1

c

100∑
i=−99

xi(i−m)2

The significance of the difference between the the DAST and the DGE groups was determined
using the Mann-Whitney test.

CpG islands

In the human genome, CpG dinucleotides are present at about 20% of the frequency that would
be expected based on the overall GC-content. The depletion of CpG dinucleotides in the human
and other mammalian genomes is due to the increased mutability of methylcytosine within CpG
dinucleotides. Stretches of GC-rich (∼65%) sequence in which the observed frequency of CpG
dinucleotides is close to the frequency that would be expected based on the individual frequency
of G and C bases are termed CpG islands (CGIs). CGIs are associated with the upstream region
of many genes generally covering all or part of the promoter and typically display an average size
of about 1 kb48;49.

To identify CGIs in this study, a 100-nucleotide window was shifted in 1 bp intervals across
the promoter sequences from position [−200,−100) relative to the TSS to [+100,+200). The
percentage GC-content and CpG expected/observed ratio

Number of CpG

Number of C×Number of G
× 100

were calculated per window.
A promoter was considered having a CGI if the consecutive windows inside any region spanning

at least 200 nt all had GC-contents ≥ 50% and CpG expected/observed ratios ≥ 0.650.
The significance of the difference between the DAST and DGE groups was determined using

the Mann-Whitney test.

TATA box

We employed a matrix of counts for TATA to define a position count matrix (PCM).51

A corresponding position weight matrix (PWM) was computed. A PWM of length ` assigns

each oligonucleotide of length ` a matching score x =
∑`

i=1 wbi, where wbi is the weight of base
b at column i of the matrix. The weights wbi were computed relative to the log-normalized base
frequencies per position of the PCM. We identified TATA boxes in the window [−32,−28] with
respect to the transcription start site if the PWM matching score of any oligonucleotide beginning
in this region exceeded a threshold of 0.790.51

The significance of the difference between the DAST and DGE groups was determined using
the Mann-Whitney test.
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PCM

A [ 61{ 16 352 3 354 268 360 222 155} 56 83 82 82 68 77 ]

C [ 145 46 0 10 0 0 3 2 44 135 147 127 118 107 101 ]

G [ 152 18 2 2 5 0 20 44 157 150 128 128 128 139 140 ]

T [ 31 309 35 374 30 121 6 121 33 48 31 52 61 75 71 ]

Number of isoforms

The number of isoforms per gene was retrieved from the GTF file ”Homo sapiens.GRCh38.91.gtf”.
The significance of the difference between the DAST and DGE groups was determined using the
Mann-Whitney test.

Exon length

Exon lengths were retrieved from the GTF file ”Homo sapiens.GRCh38.91.gtf”. The significance
of the difference between the DAST and DGE groups was determined using the Mann-Whitney
test.

Software

HBA-DEALS is implemented as an R package that is freely available at
https://github.com/TheJacksonLaboratory/HBA-DEALS.

References

[1] Pollard, M. O., Gurdasani, D., Mentzer, A. J., Porter, T., & Sandhu, M. S. Long reads: their
purpose and place. Human molecular genetics 27:R234–R241 (2018).

[2] Wang, Z., Gerstein, M., & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics.
Nature reviews. Genetics 10:57–63 (2009).

[3] Stark, R., Grzelak, M., & Hadfield, J. RNA sequencing: the teenage years. Nature reviews.
Genetics 20:631–656 (2019).

[4] Robinson, M. D., McCarthy, D. J., & Smyth, G. K. edgeR: a Bioconductor package for differ-
ential expression analysis of digital gene expression data. Bioinformatics (Oxford, England)
26:139–140 (2010).

[5] Love, M. I., Huber, W., & Anders, S. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome biology 15:550 (2014).

[6] Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. voom: Precision weights unlock linear model
analysis tools for rna-seq read counts. Genome biology 15:R29 (2014).

[7] Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C., & Blencowe, B. J. Efficient and
accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop.
Molecular Cell 72(1):187–200.e6 (2018).

[8] Shen, S., et al. rMATS: robust and flexible detection of differential alternative splicing from
replicate RNA-Seq data. Proceedings of the National Academy of Sciences of the United States
of America 111:E5593–E5601 (2014).

[9] Katz, Y., Wang, E. T., Airoldi, E. M., & Burge, C. B. Analysis and design of RNA sequencing
experiments for identifying isoform regulation. Nature Methods 7(12):1009–1015 (2010).

[10] Hu, Y., et al. DiffSplice: the genome-wide detection of differential splicing events with RNA-
seq. Nucleic Acids Research 41(2):e39–e39 (2012).

[11] Sebestyén, E., Zawisza, M., & Eyras, E. Detection of recurrent alternative splicing switches
in tumor samples reveals novel signatures of cancer. Nucleic Acids Research 43(3):1345–1356
(2015).

15

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.16.878884doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878884
http://creativecommons.org/licenses/by/4.0/
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