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Abstract 
Background: 
Machine learning approaches have become increasingly popular modeling techniques, relying 
on data-driven heuristics to arrive at its solutions. Recent comparisons between these 
algorithms and traditional statistical modeling techniques have largely ignored the superiority 
gained by the former approaches due to involvement of model-building search algorithms. This 
has led to alignment of statistical and machine learning approaches with different types of 
problems and the under-development of procedures that combine their attributes. In this 
context, we hoped to understand the domains of applicability for each approach and to identify 
areas where a marriage between the two approaches is warranted. We then sought to develop 
a hybrid statistical - machine learning procedure with the best attributes of each.  
Methods: 
We first present three simple examples to illustrate when to use each modeling approach and 
posit a general framework for combining them into an enhanced logistic regression model 
building procedure that aids interpretation. We next study 556 benchmark machine learning 
datasets to uncover when machine learning techniques outperformed rudimentary logistic 
regression models and so are potentially well-equipped to enhance them. We develop and 
illustrate a software package, InteractionTransformer, which embeds logistic regression with 
advanced model building capacity by using a machine learning algorithm to extract candidate 
interaction features from a random forest model for inclusion in the model. Finally, we apply our 
enhanced logistic regression analysis to two real-word biomedical examples, one where 
predictors vary linearly with the outcome and another with extensive second-order interactions. 
Results:  
Preliminary statistical analysis demonstrated that across the 556 benchmark datasets, the 
random forest approach significantly outperformed the logistic regression approach. We found a 
statistically significant increase in predictive performance when using the hybrid procedure and 
greater clarity in the association with the outcome of terms acquired compared to directly 
interpreting the random forest output.  
Conclusions: 
When a random forest model is closer to the true model, hybrid statistical - machine learning 
procedures can substantially enhance the performance of statistical procedures in an 
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automated manner while preserving easy interpretation of the results. Such hybrid methods may 
help facilitate the widespread adoption of machine learning techniques in the biomedical setting.  
 
Key Words: Interactions, Random Forest, Logistic Regression, Model Explanations, Machine 
Learning 
 

Background 
 
In the era of Big Data, models with highly complex specifications are employed to study 
nontrivial biomedical phenomena, including genetic or epigenetic interactions, high-resolution 
modalities such as Computed Tomography (CT) scans and histopathology slide images [1–6]. 
Many statistical approaches to modeling these complex data rely on expert consultation and 
annotation to help determine which variables and targets to study. Oddly, despite the advances 
in computing power, these procedures have not been augmented with sophisticated model-
building algorithms. At best commercial software still only supports simple and restrictive search 
strategies such as forward, backward and stepwise selection. In contrast, machine learning 
techniques employ a data-driven set of heuristics to simultaneously build and estimate models 
that may include an extensive array of nonlinear interactions in the data. While machine learning 
methods are particularly helpful in exploratory or predictive settings, not much may be revealed 
about how the set of covariates vary with each other and the dependent variable. Unlike 
statistical models, which are able to make predictions when the data has a low number of 
features as compared to the number of training samples, machine learning algorithms are much 
more suitable for the high dimensional domain, especially if the data is subject to 
multicollinearity, and to the low dimensional domain when it is not clear how the covariates vary 
with the outcome. For instance, machine learning technologies have demonstrated the ability to 
make impressive predictions on medical images, genomic data and Electronic Health Record 
(EHR) modalities in the presence of many training instances [7–9]. In recent years, these 
approaches have gained much traction in the biomedical space and will continue to do so in the 
years to come. 
 
However, with researchers and practitioners flocking to adopt these new technologies, there are 
concerns that traditional statistical methods are being passed over too quickly. Many published 
papers that show that machine learning techniques outperform traditional statistical models. Yet, 
many of these papers mislead the reader by presenting unfair comparisons between the 
methodologies, for instance selecting datasets that are difficult to learn given insufficient model-
building strategies or by comparing a statistical procedure with no embedded learning 
component to machine learning procedures [10]. Meanwhile, these featured datasets run 
counter to more clinically focused sets on which one prior study has demonstrated no 
performance improvement for machine learning techniques [11]. Given this ambiguity and the 
clear need for models that are inherently interpretable for widespread adoption in the biomedical 
space, we believe there is much to be gained by entwining these methodologies rather than 
thinking of them as competitors.  
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We address a gap among traditional statistical procedures by proposing that sophisticated 
search algorithms be paired with them to suggest terms that can be added to the base 
specification to improve model fit and the predictive performance of traditional statistical models. 
These search algorithms would consider sets of candidate predictors from sets as expansive as 
those available to machine learning algorithms. Whereas the implementations of traditional 
statistical procedures such as linear and logistic regression in commercial packages often 
include basic search algorithms (e.g., forward, backward and stepwise regression), these 
search algorithms would span all forms of higher-order interactions and nonlinear 
transformations. Crucially, they would not be limited to only the models that can be formed by 
the predictors in the model specification but rather would include a myriad of additional 
predictors formed from functions of one or more of them and nonlinear transformations of their 
sum. Therefore, they would substantially enhance model-building capacity, potentially bringing 
the performance of traditional statistical methods on par with machine learning methods while 
retaining the easy and direct interpretability of the results of statistical procedures. In addition, 
such hybrid procedures would enjoy the automatic implementation and scalability enjoyed by 
the machine learning methods. 
 
In this paper, we aim to illustrate the domains from which machine learning models can be 
sensibly applied to assist traditional statistical models from which to generate models that can 
be widely adopted in clinical applications.  
 
First, we describe the machine learning and logistic regression models and their differences, 
including scenarios under which each outperforms the other. Then, we demonstrate that 
extracting interactions via the machine learning can enhance logistic regression (hybrid 
approach) as well as the ability of logistic regression to “protect the null hypothesis” by inhibiting 
the additional of unwarranted interaction terms to the model. Finally, we show consistencies 
between the logistic regression model and the machine learning model when the logistic 
regression model is closer to the true model. This study shows that machine learning can be 
deployed to assist with the development of statistical modeling approaches to obtain machine-
learning level performance with statistical model interpretability. 
 
Review of Modeling Approaches 
 
We now introduce hallmark models from machine learning and traditional statistics to better 
highlight domains from which either technique may excel. 
 
Statistical Analysis System (SAS) is perhaps the most widely used commercial statistical 
software package. Its regression procedures are well established [12]. Some procedures, such 
as Proc reg and Proc logistic, include simple search algorithms that allow progress to be made 
towards a best fitting model. For example, forwards, backwards and stepwise regression can be 
implemented with the mere inclusion of an optional term in the specification of the procedure. 
Although these procedures have high utility and a long history (stepwise regression first made 
its debut in 1960), their model building search capacity has to our knowledge not been 
significantly enhanced since 1992 [13–15]. During this time, computational power has 
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exponentiated. Remarkably, more expansive and otherwise advanced search algorithms have 
not been incorporated. Why not? Perhaps a lack of focus on, or accommodation of, predictive 
problems involving large data sets with many predictors. Whatever the reason, the 
computational power has for some time been available to enable these procedures to be 
enhanced. Therefore, we view this omission or gap as an historical anomaly that we seek to 
correct herein. 
 
In the literature, comparisons are made between statistical models devoid of model-building and 
machine learning approaches enhanced by very sophisticated and powerful algorithms [10, 11]. 
This is an unfair comparison that risks making traditional statistical methods be dismissed too 
rapidly from consideration when choosing an analytic approach to a problem.  
 
Logistic Regression 
 
Logistic regression is the most widely used modeling approach for binary outcomes in 
epidemiology and medicine [16]. The model is a part of the family of generalized linear models 
that explicitly models the relationship between the explanatory variable X and response variable 
Y. Conditional on the predictors, a binary outcome Y is assumed to follow a binomial distribution 
for which p=P(Y = 1 | X) represents the probability of the binary response given the predictors:  
 

logit�p� 	 log 
 p
1 � p 	 β�� � X��� 	 β� � � β�X�

�

���

 

 
The approach above assumes a linear relationship between logarithm of the odds of the 
outcome and the predictors as equivalently depicted below: 
 

E�Y|X� 	 P�X���� 	 1
1 � e����	
���	

 

 
In applications involving a large number of predictors, LASSO or Ridge regression techniques 
serve to penalize the model’s complexity to make it more generalizable to unseen data by 
reducing the magnitude of the model coefficients such that high magnitude features become 
less tailored to the data used to tune the model parameters. Penalization also aids model 
estimation by repelling parameters from boundary values in much the same way that prior 
distributions with continuous support nudge the posterior distribution away from the extremities 
of the values a model parameter can attain.  
 
Classification and Regression Trees  
 
Classification and Regression Trees (CART), otherwise known as Decision Trees [17], are a 
series of computational heuristics that arrive at a solution for a problem by forming binary 
splitting rules on the features of the data based on the criterion of maximizing the information 
gained about the outcome from making the split. This can be formulated mathematically as: 
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G�Y, S� 	 H�Y� � H�Y|S� 

 
where S is an indicator variable indicating which side of the split contains a given observation. 
The above equation states that the information acquired about a set of labels given the split is 
the entropy of the original set of labels minus the entropy of the labels given the split, where 
entropy is defined as: 
 

H�Y� 	 � ∑ p�log�p�) 
 

The entropy conditioned on the split is the weighted average of the entropy of the labels 
partitioned to each child, weighted by the number of samples sent to each child: 
 

H�Y|S� 	 � n�

N�
�

H�S�� 

 
An alternative criterion that can be used in this framework, and the one used in this work, is Gini 
Impurity, which measures the probability of incorrect identification of a randomly chosen 
element and is given by: 
 

G�Y� 	 1 � � p�


�

 

 
Decreases in Gini Impurity are expressed similarly to information gain, and both represent key 
criterion to decide which features and values should be used to split a branch. The values that 
the branches split on can be viewed as non-linear transforms of the data, while splits on multiple 
variables introduce interactions between those variables. A collection of hyperparameters 
effectively prune and limit the depth of each tree to generalize the model to unseen data. 
 
Random Forest 
 
Random forest is an extension of the base CART algorithm by considering the construction of 
multiple CART models to arrive at a prediction [18, 19]. While decision trees are formed by 
utilizing all of the features, each CART model considers the best splitting feature out of n < N 
randomly selected features at a time, and fits subsequent branches by selecting out of another 
random set of n features, all while bootstrapping the training samples. A collection of these 
estimators is formed, and results are aggregated to form predictions. This is done because each 
of the CART models may provide high variance estimates by over-fitting their training 
observations. When aggregating results the variance is typically reduced by de-correlating the 
individual CART models by bootstrapping both the observations and the predictors. The number 
of trees and various aspects of each estimator’s construction can be limited in order to reduce 
overfitting the training data.  
 
Use Cases for Each Modeling Technique 
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Figure 1: Characteristics of linear modeling approach (blue), decision trees (orange), random forest 
(green), original generated points (black); (a-b) Predictor X versus response Y for the a) linear continuous 
predictor, b) non-linear transformed predictor; c) binary prediction performance as a function of interaction 
strength, smoothed using Savitzky-Golay filter to best illustrate trends 
 
Here, through a series of simple examples, we illustrate when either the traditional 
statistics or machine learning modeling approaches more closely resembles the true 
model and should be employed. 
 
In figure 1a, we have a use case where we have a single linear continuous predictor. The 
distribution of the response is generated conditionally on this input by the true model: 
 

& 	 9( 
(~*��3,3� 

 
It seems upon inspection that a line passing through the datapoints could best describe this 
relationship, so first we fit a linear regression model to the data. The derived slope was found to 
be exactly 9 and the model had a mean absolute residual (MAR) of 0 on a held-out validation 
set. This example depicts the case when the true model is a linear regression model. Now, we 
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fit two CART-models, a decision tree and the random forest model, and we see that the true 
linear relationship was approximated by these machine learning approaches using a staircase 
type fit. Under this model, the machine learning approach is guaranteed to have a higher 
residual error, and upon inspection of held out test data, this is the case (MAR of decision tree 
and random forest of 0.38 and 0.29 respectively). This illustration demonstrates that linear 
modeling approaches (any model of the generalized linear model family) are, in cases when a 
predictor varies linearly with the outcome, not made inadmissible by the random forest and 
other ML approaches. This means that we should be cognizant of cases when the true model 
space is linear because simpler models produced via this assumption may lay closer to the true 
model than a heuristic that only forms a coarse approximation. 
 
Conversely, we designed two simple examples to illustrate when the machine learning approach 
is closer to the true model. In one example, figure 1b, we transform the continuous predictor X 
into the dependent outcome variable Y via the model: 
 

& 	 �2 - .���� � /01�(� � .|�|�� 

(~*��3,3� 
 
These transformations are difficult to be approximated by models that suppose the predictors 
are linearly associated with the outcome. We see that the linear fit cuts through the middle of 
the entire dataset and as such has a worse goodness of fit (mean absolute residual of 0.46) 
than the machine learning approaches (0.07 and 0.05 for decision tree and random forest 
respectively). This is because CART techniques do quite well in capturing discontinuities in the 
data and are able to come up with sharp and variable decision curves. In this case, the machine 
learning model better captures transformations to the data than the linear modeling approach. 
 
As the last use case, figure 1c, we now consider a binary response model with four continuous 
predictors. The predictors vary linearly with the outcome; however, in the true model, the final 
two predictors interact: 
 

Y 	 .��∑ ��� �����������.� 

(�~2�0,1� 
(~2�0,1� 
(�~2�0,1� 

(� 4  5�0.5,0.58 
 
where: 
 

σ�:� 	 1
1 � ;�� 

 
For this experiment, we vary the strength of the interaction β, and test the logistic regression, 
decision tree and random forest models, hoping to find that the logistic regression model 
performs worse as the magnitude of the interaction increases. This would mean that without 
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adding interaction terms to the logistic model, the approach would be unable to detect the 
presence of two interacting predictors. In figure 1c, we see that the accuracy of the linear model 
diminishes in the domain of high interaction strength, while outperforming the machine learning 
approaches when the true model discards interactions and the relationship between predictors 
and response are linear. It can be noted, that the CART models’ accuracy does not significantly 
differ across varying interaction strengths. 
 
In some cases, we can make reasonable guesses at which interactions would be the most 
appropriate to include such that the logistic model can better approximate the interaction 
relationship. While we had demonstrated the superior performance of statistical models when a 
linear solution space exists, when this solution space becomes more complex, the machine 
learning based approaches are better able to efficiently search over numerous combinations 
and specifications of the predictors separately and in combination. Traditional statistical models 
are not embedded with these machine learning model building features. These two points lead 
naturally to consideration of procedures that use machine learning methods to enhance 
traditional models by bolstering their model building capacity. 
 
Proposed New Method 
 
Our proposed method utilizes machine learning to suggest terms to add to traditional statistical 
models; we refer to this as our hybrid statistical inference approach. We consider this approach 
a candidate to move on from the stepwise regression approaches currently enabled in SAS 
Proc Reg and SAS Proc logistic. We propose to augment the current SAS procedures with the 
output from a sophisticated and comprehensive search algorithm in the form of an ordered list of 
candidate second-order interactions. Linear and logistic regression procedures can then 
subsequently be estimated with the most promising of these terms included as predictors. While 
we illustrate our idea using this particular case, we also advocate for the development of far 
more expansive algorithms and thus types of inputs to further enhance traditional statistical 
methods. Such procedures may be characterized by a need to iterate between traditional 
statistical methods and machine learning methods such that each informs the improvement 
made to the other in the next iteration. 
 
The hybrid approach stems from principles of explainable machine learning. Notably, many 
machine learning approaches struggle to gain traction and widespread adoption because they 
are unable to explain why they made their prediction. Existing techniques to explain the output 
from random forest algorithms attempt to quantify the marginal association of a variable’s 
capacity to reduce the amount of mislabeling in its decision splits. In contrast, the coefficients of 
the logistic regression model can be exponentiated to form an odds-ratio. However, these 
methods find global importance for the importance of each predictor and not the importance of 
the predictor for each test instance. The ideal interpretation technique for a machine learning 
model should project the random forest fit onto a linear subspace to determine the overall extent 
to which a specific factor contributes to the fit. Our hybrid approach utilizes such a projection to 
efficiently derive important model additions. 
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Methods 

 
Here, we discuss sensible approaches to enhance statistical modeling. Fundamentally, the 
essence of our approach is to build an intuitive understanding of when the “statistical” model 
(e.g. linear regression, logistic regression) is more representative of the true model that 
describes the data compared to the machine learning approach and what to do in cases where 
there is extensive incongruence. When the machine learning model is closer to the true 
approach, we posit that its output contains keys in the form of interactions between predictors 
and nonlinear transformations of predictors that can be exploited to substantially improve the fit 
of the corresponding statistical model. That is, machine learning models can be used as an 
efficient way of traversing the space of higher-order and nonlinear predictors to identify the best 
candidates to improve the fit of statistical models beyond that possible with main variable 
predictors alone. We conjecture that the addition of a relatively small number of these more 
complex forms of predictors will almost always lead to an improvement in fit of the statistical 
model to such an extent that its performance is similar to that of the best machine learning 
models. The greater ease of interpretability of statistical models then makes them highly 
competitive alternatives to machine learning alone. Inspired by a work that used these concepts 
to derive meaningful variable transformations [20], and as a special case of our proposed new 
methodology, we extend these ideas to automate the extraction of meaningful interactions via 
machine learning that are then added to the statistical modeling technique to enhance its 
performance. We also provide user-friendly software to allow users to apply this methodology to 
their own studies. 
 
SHAP Interaction Terms Extend Linear Model Building Capabilities  
 
A nice feature of ML is that a number of algorithms have been developed that are amenable to 
hybridization with traditional statistical procedures or that provide the ingredients for making 
such a hybrid procedure. For example, SHAP (SHapley Additive ExPlanations) [21] is an 
algorithm designed to help interpret why any model has made its prediction for individual testing 
instance. These approaches explain “black-box” models by fitting linear additive surrogate 
models to each testing sample. If machine learning models can be characterized by complex 
curves over multiple variables, these models can be thought of as local tangent lines near each 
combination of variables present in the dataset (locally accurate). The coefficients of these 
models, dubbed shapley values, represent the importance of each predictor to the outcome 
prediction; these coefficients directly sum to the model prediction (additive), and features that 
are important to the prediction over a number of samples are consistent. SHAP sums the 
contributions of each feature to the model’s prediction over all possible permutations of other 
features. 
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Interaction Extraction and Autonomous Application 
 
If the logistic regression model is correct, whether or not it contains interactions, then it will 
outperform any other specification. If it is not the correct model, then an approach with powerful 
search capability over the predictor space is likely to find ways to outperform logistic regression. 
If quantified in terms of functions of predictors and fed into logistic regression, these identified 
ways of improving model fit have the potential to enhance the fit of the logistic regression model 
such that its performance is more in-line with that of a search algorithm. For example, a 
subsequent logistic regression model augmented with complex predictors recommended by the 
output of a machine learning algorithm might then be sufficiently close to the truth that it 
outperforms all competitors. If not, one can continue iterating between the procedures until 
superior performance (and convergence) is obtained. 
 
While the Surrogate Assisted Feature Extraction (SAFE) Transformer [20] has demonstrated the 
ability to accurately characterize variable transformations by estimating how a nonlinear 
predictor varies with the outcome, recent advances in SHAP methodology have allowed for the 
accurate detection of salient interactions of tree-based models [22, 23]. Simply put, these 
methodologies expand the aforementioned SHAP method to include interaction terms for 
individual samples. A measure of the global importance of these interactions can be 
characterized by summing the interaction effects over all of the samples to find the salient 
interactions for the model’s prediction. These important interactions can be extracted and added 
as predictors to the logistic regression model. A related operation is the use of machine learning 
algorithms to identify nonlinear transformations of variables that can be used to form other 
additional predictors. This is outside the scope of the current study, which is solely focused on 
the identification the candidate interaction effects and to provide advice of when they should be 
included. 
 
Although interaction extraction has been studied previously, very few studies have attempted to 
characterize the importance of extracting these interactions over many datasets, and the ones 
that have focused on selecting a small number of predictors from which to test for interactions 
[4, 24]. Our novel contribution is the development of an automated means from which to extract 
these interactions and use them to enhance statistical model-based analyses of datasets of 
interest. 
 
Software Implementation and Availability 
 
We have bundled and wrapped our multi-component methodology into a publicly available open 
source software package, InteractionTransformer, (GitHub: 
https://github.com/jlevy44/InteractionTransformer) that can be run using both R (GitHub via r-
devtools: jlevy44/interactiontransformer) and Python (PyPI: interactiontransformer) to make 
these methods easily deployable for the biomedical researcher. InteractionTransformer takes as 
input the design matrices and outcome variable and fits a specified machine learning model to 
the data. Then, it extracts the most important SHAP-derived interaction terms from the machine 
learning model and augments the design matrices of the training and test data to include these 
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interaction terms. It also provides additional capabilities to plot the salient SHAP features of any 
model and extract the variable importance assigned to all of the interaction terms for additional 
inspection. A wiki page detailing installation and usage can be found here: 
https://github.com/jlevy44/InteractionTransformer/wiki . 
 
EVALUATION OF HYBRID APPROACH: Dataset Acquisition and Experimental 
Description 
 
We seek to estimate the general utility of extracting these salient interactions and when they 
should be sensibly employed by characterizing their activity over a large dataset.  
 
We first acquired a dataset that would allow us to establish the necessary domains for the 
application of these modeling techniques. Inspired by a meta-analysis of random forest versus 
logistic regression, we utilized data from the OpenML database [25] to extract 556 datasets 
purposed for binary classification problems. Each dataset was cleaned and preprocessed using 
a data pipeline implemented in python. 
 
We ran five-fold cross validation of naive implementations of L2-regularized logistic regression 
and random forest models using the scikit-learn and imbalanced-learn packages [26, 27] to 
compare the overall accuracy of the random forest models versus logistic regression models. 
Then, we characterize the extent to which extracting these interactions improve the fit of the 
logistic regression model. Since the primary domain of research pertinent to this study involves 
fully identified models, we excluded high dimensional genomics datasets and retained 277 
datasets in the p<n domain; i.e., the number of observations always outnumbers the number of 
predictors. Then, we extracted the pertinent interactions from the training data of each of these 
datasets using InteractionTransformer. After applying these interaction terms to the design 
matrices of the training and test sets, we scored a naive logistic regression model using five-fold 
cross-validation to compare with the original two models. This will characterize the overall extent 
to which these interactions enhance the logistic regression model. 
 

Results 
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Figure 2: (a-b) Boxenplots of prediction performance of Logistic Regression versus Random 
Forest for a) original 556 datasets, b) subset 277 datasets, c) linear plot of the performance 
gains of hybrid approach versus the random forest approach 
 
Random Forest Outperforms Logistic Regression 
 
A total of 556 OpenML datasets were fitted and tested on both the naive logistic regression and 
random forest models. Five-fold cross validation scores of the C-statistics (Area Under the 
Receiver Operating Curve, AUROC) of the models demonstrated that random forest models 
clearly outperform the logistic regression models by 0.061 AUROC on average (Figure 2a) 
(t=13.6, p=2.3e-36), where the random forest models scored 0.87 and logistic regression 
models scored an average cross-validated C-statistic of 0.81. 
 
We then restricted range of the number of variables and samples from 5 to 110 and 50 to 2500 
respectively to focus on low dimensional domains where it is more sensible to employ standard 
statistical modeling techniques in the biomedical space. Here, out of the remaining 277 datasets 
studied, the random forest model further outperformed the logistic regression models by an 
average 5-fold cross validated C-statistic difference of 0.077, 0.86 AUROC to 0.78 AUROC 
respectively (Figure 2b) (t=11.5, p=3.8e-25). At this point, we felt that it would be pertinent to 
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study the nature of this difference through the introduction of interaction terms into the logistic 
regression model using our interaction extraction approach. 
 
Application of Interaction Terms 
 
Out of the remaining 277 datasets, we applied the interaction terms to the model by using SHAP 
to add pertinent terms to the design matrix. We performed this procedure, ran a logistic 
regression model on the resulting design matrix, and calculated the C-statistic on a validation 
set for each of 5 cross validation folds, as noted in the previous section. The resulting measures 
of model fit were compared to the fit of the original logistic regression models (those not 
enhanced by the ML identified interactions) and plotted against the improvement of the random 
forest model over the logistic regression approach. Note that improvement of the logistic 
regression models may be bounded by a maximum score dictated by the maximum score 
attainable by any model, 100%. As seen in Figure 2c, the domain in which the random forest 
model is closer to the true model is when the differences in the cross-validation scores on the x-
axis is greater than 0. In this case, extracting interactions proved to be beneficial when the 
differences in cross validation scores between the interaction and logistic regression model in 
the y-axis was greater than 0.  
 
We also sought to determine how a logistic regression model augmented by interactions 
extracted from the machine learning model would respond when the machine learning model 
was closer to the true model.  We observed a positive relationship between the improvement of 
random forest versus improvement of the interaction extraction model over the logistic 
regression model (m=0.26, intercept=-0.01, r=0.56, p=6.8e-24). This demonstrates the potential 
for utilizing the output of the machine learning model to enhance statistical models such that 
their predictive accuracy makes a substantial gain on that of the ML procedure, even when the 
random forest is (closer to) the true model. Conversely, when the random forest 
underperformed versus the initial logistic regression model, traditional statistical methods 
tended to reject the inclusion of the interactions (if the ML output even suggested them in the 
first place). 
 
Selected Biomedical Case Studies 
 
Finally, we explore two test use cases using pertinent biomedical datasets. In the first, epistasis 
is studied using a model rich with interactions where the random forest model is closer to the 
true model and a diabetes dataset where the logistic regression model is closer to the true 
model to understand the nature of the extracted interactions. 
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Table 1: 95% confidence intervals for predictive performance (C-statistic) of Logistic 
Regression, Hybrid Approach, and Random Forest on held-out test set for the tasks of Epistasis 
and Diabetes prediction; confidence intervals obtained using 1000 sample non-parametric 
bootstrap  
 
CASE STUDY 1: Interaction Extraction Helps Model Epistasis 
 

 
Figure 3: (a-c) Epistasis SHAP summary plots for: a) Logistic Regression, b) Random Forest, 
and c) Hybrid Approach; d) Odds-ratios for coefficients of predictors derived from hybrid logistic 
regression augmented by RF suggested interactions; e) SHAP scores (measures of predictor 
variable importance) for top 10 ranked interactions 
 
Epistasis is defined as the interaction between multiple genes, where the complex interplay 
between the presence or absence of two genes in the form of alleles serves as an effect 
modifier to elicit the development of a complex trait or disease. Many researchers conceptualize 
the components of these interactions to be binary explanatory variables. The presence of these 
interactions can hamper the ability to uncover the true effect of the target gene in question. 
There are over 21,000 genes in the human genome, which can make studying all of the 
possible interactions between the genes computationally intractable, especially given 
interactions with more than two genes. Machine learning approaches such as multi-factor 
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dimensionality reduction seek to characterize all possible pairwise interactions, but still suffer 
from the computational time needed to process all such interactions [28, 29]. 
 
There exist a few interacting genes that we are unable to detect, so we expect the random 
forest model to outperform the logistic regression model. When we train both models and test 
on the test set, random forest outperforms logistic regression 0.8 to 0.47, a monstrous 
performance gain of 0.33 (Table 1). This makes for a perfect use case from which to evaluate 
the ability to extract interaction terms that enhance the performance of logistic regression 
models. 
 
Inspection of SHAP summary plots reveals the salient features for each training data set for 
each model. It is clear that the naive logistic regression model is unable to determine which 
genes are interacting. The random forest plot tells another story, the SHAP plots upweight 
genes that appear to have interactions with other genes but does not clearly describe which 
genes it is interacting with. After we extract the interactions, we augmented the design matrix for 
the logistic regression model and estimated the corresponding logistic regression model. The 
results reveal that the added interactions substantially enhances the logistic regression model 
(AUROC 0.85) while enabling the familiar interaction-effect regression model interpretation. 
Inspection of the SHAP plots and exponentiated model coefficients identifies which genes were 
explicitly and significantly interacting with one another, and which were overall most explanatory 
for the complex trait being studied (Figure 3a-d). Furthermore, a study of the SHAP ranking of 
all of the interactions of the model yields four interactions as far stronger performers than any 
others (Figure 3e). 
 
Here, we have demonstrated the power to meaningfully extract interactions important to a 
machine learning model and add them to an underperforming logistic regression model to boost 
its performance to match that of the machine learning model. Thus, in this case, the hybrid 
approach can be viewed as outperforming either the logistic regression or Random Forest 
approaches alone! In our next example, we will study a case where adding interaction terms did 
not improve model performance.  
 
CASE STUDY 2: Random Forest and Logistic Regression Features Coherent for 
Diabetes Prediction 
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Figure 4: (a-c) Diabetes SHAP summary plots for: a) Logistic Regression, b) Random Forest, 
and c) Hybrid Approach; d) Odds-ratios of predictors derived using logistic regression prior to 
application of hybrid procedure; e) Odds-ratios of predictors derived from hybrid approach 
logistic regression coefficients; f) SHAP interaction scores for top 10 ranked interactions 
 
In the early 1900s, the diversion of irrigation systems that had once made the Pima Indians of 
Arizona and Mexico a prosperous agricultural community disrupted their lifestyle from one that 
had subsided on high carbohydrate, low fat diet to one based on a high fat diet and a more 
sedentary lifestyle. The Pima Indians have been willing participants in a myriad of 
epidemiological, clinical and genetic studies that have ultimately contributed to a better 
understanding of the pathogenesis and diagnosis of type II diabetes and obesity. Here, we 
study a dataset acquired from the National Institute of Diabetes and Digestive and Kidney 
Diseases and fit logistic regression and random forest models to the data to predict diabetes as 
a binary outcome as defined by the World Health Organization [30, 31]. 
 
The logistic regression and random forest model both exhibit similar performance (0.83 C-
statistic; Table 1) while generally agreeing on which variables are the most important for the 
model’s decisions. After adding interactions to the logistic regression model, the performance 
does not change. The interaction between BMI and plasma measurements was the most 
significant interaction detected using SHAP (Figure 3c) and appears to be the most important 
variable when running it in the logistic modeling framework. This is a typical use case where 
extracting the interactions does not improve model performance; logistic regression is the 
correct model specification and it is able to strongly hint the fact to us by the non-significant 
effects for the interaction (guiding us to stay with the no interaction specification).  
 

Discussion 
 
We have described and illustrated some of the key differences between traditional statistical 
modeling and machine-learning approaches, focusing the latter on a comparison to random 
forests. The former approach models the explanatory variables as varying linearly on the natural 
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scale of the outcome, while the latter incorporates unguided interaction and transformation 
modeling. These modeling approaches are sometimes compared unfairly due to model building 
being inherent to ML but not to logistic regression. Yet there are many use-cases when logistic 
regression models outperform machine learning approaches. For future biomedical applications, 
the researcher should be privy to which model specification best captures the relationship 
between the predictor and outcome variables. In the following, we summarize the main 
discussion points of our work with sensible modeling recommendations: 
 

● Machine learning approaches may be more suitable for modeling when the number of 
variables far outnumbers the number of features -- the high dimensionality and multi-
collinearity domain. In this domain, you could use machine learning for dimensional 
reduction of the analysis data set [32, 33] prior to estimating logistic regression model on 
only the remaining terms. 

● In the domain where the number of variables is similar to or less than the number of 
observations, testing logistic regression and random forest models on the data should 
give an indication of which approach is more suitable. 

● If logistic regression outperforms or is on par with the random forest model, then the true 
model is likely to have a systematic component that is linear on the log-odds scale, and 
as such the results of the logistic model should be presented. There should be 
consistency between which features both models found to be important. 

● If random forest outperforms logistic regression, the true model likely involves 
interactions and nonlinear variable transforms. One could apply the interaction 
extractions as presented in this work on the random forest model to construct an 
interpretable logistic regression model.  

○ If the number of variables is too high, it may be computationally inefficient to 
extract the interaction term, nor may it improve the logistic regression model 
performance. In this case, the variables should be modeled using the machine 
learning model and explained through SHAP or alternatively the aforementioned 
dimensionality reduction technique should be applied. 

● If interaction extraction demonstrates limited improvement, combining this approach with 
the variable transformer such as SAFE could potentially recover most of the 
performance difference. 

 
Since variable transformations and interactions are a staple of machine learning, we envision 
future model building approaches to iteratively transform and form important interactions 
between the predictors in a model. In addition to this, we can incorporate feature grouping or 
feature selection processes to further eliminate issues associated with multi-collinearity and 
make sure that we are capturing valuable interactions. Finally, we envision that future modeling 
approaches may be able to hybridize machine learning methods such as Classification and 
Regression Trees (CART) and traditional approaches through the development of mechanisms 
that can automatically add smooth linear modeling specifications for the particular decision splits 
when a linear model can best approximate the relationship when restricted to the domain of the 
split. We call for derivations of more higher-level interactions and variable transformations to 
further enhance traditional statistical procedures. In addition, we encourage the development of 
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methods for rigorous mathematical characterization of hybrid procedures and the conditions and 
specifications under which they work best. 
 
We acknowledge that the datasets used in this study were from a machine learning benchmark 
repository, which means that there may be some selection bias as to the suitability of each 
dataset for machine learning versus traditional statistical modeling approaches. For instance, 
other databases such as PMLB [34] have also been developed to benchmark machine learning 
algorithms. Also, because the acquired datasets were based on binary prediction tasks, we did 
not attempt to study approaches with continuous or multinomial outcomes. Finally, our approach 
focused on random forest as a representative of the ML approaches. Deep learning 
methodologies [35] can also be used for interaction extraction, and future work could attempt to 
prune these neural networks until they converge on linear modeling solutions as a means to 
estimate complexity and number of layers of interactions needed to best model the data. 
 

Conclusion 
 
We demonstrated that machine learning techniques may not always include the optimal model 
for a biomedical problem. In cases where they are, there may be means from which to learn 
important interactions from the machine learning models and apply them to enhance statistical 
models. Future approaches to studying biomedical problems may benefit from entwining the 
algorithms acquired from machine learning with the simplicity and interpretability of statistical 
procedures. Such work may be a step in the right direction to build trust and acceptance for 
machine learning into biomedical clinical settings. Our procedure and its illustration are just 
scratching the surface of what can be achieved by hybrid procedures. We encourage readers to 
consider developing or adopting more hybrid statistical - ML procedures, especially in 
applications of an exploratory or predictive nature for which transparent interpretation of the 
results is needed.  
 

List of Abbreviations 
AUROC: Area under the receiver operating curve 
CART: Classification and Regression Trees 
C-statistic: Concordance statistic 
CT: Computed Tomography 
EHR: Electronic Health Record 
MAR: Mean Absolute Error/Residual 
ML: Machine Learning 
PMLB: Penn Machine Learning Benchmarks 
SAFE: Surrogate Assisted Feature Extraction 
SAS: Statistical Analysis System 
SHAP: Shapley Additive Explanations 
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Appendix A: Glossary of Terms 
 
Statistical Term Machine Learning Term Definition 
Predictor(s)/Covariate(s) Feature; Feature Vector Independent variable used 

to predict outcome variable. 
Observation/Sample Instance/Sample Actualization/value/instances 

of a particular variable of 
interest. 

C-statistic, Concordance 
statistic, AUROC 

AUROC Concordance measure for 
the overall goodness of fit or 
predictive performance of 
selected model over the full 
range of prediction 
thresholds for a binary 
outcome. 

Parameters Weights/Tuning constants In statistics, a parameter is a 
numerical value that serves 
to characterize a population. 
In machine learning, the 
parameter or weight is an 
argument of a function or 
model that is optimized 
given the set of data to 
increase predictive 
performance on unseen 
data. Both are estimated 
using training data. 

Risk-ratio  The ratio of probabilities of 
an event at two different 
values of the predictors 

Odds-ratio  The ratio of the odds of an 
event at two different values 
of the predictors 

Interaction-effect  The change in the effect of 
one predictor on the 
outcome across the value(s) 
of another predictor(s) 

Response Label Outcome or dependent 
variable to predict from the 
predictors. 

Estimation/Fitted model Learning The process of learning the 
parameters of the specified 
model. 

Likelihood function Fitness/Cost/Objective/Loss The objective function 
defined by the criteria on 
which the model parameters 
are estimated or learned 

Classification/Regression Supervised learning Learning the model 
parameters given the 
predictors and response 
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variables 
Clustering/Dimensionality 
Reduction/Density 
Estimation 

Unsupervised learning Learning model parameters 
in the absence of outcome 
observations or a gold 
standard. 

Test set performance Generalization to unseen data Evaluation of the model on 
unseen data that was not 
used for fitting the model 
parameters or 
hyperparameters to estimate 
how well the model recovers 
the real-world. Typically, 
model interpretability 
techniques would be applied 
on this set of data using a 
machine learning model, 
while in traditional statistics, 
the model parameters 
estimated using the training 
data are directly 
interrogated. 

Overfitting Overfitting/Memorization/High 
Variance 

The condition from which a 
highly complex model is too 
closely fit to a collection of 
data points such that the 
model performs poorly on 
unseen data. 

Lack-of-fit/Omitted 
variables 

Underfitting/High Bias When the specified model is 
missing terms that ought to 
be included (i.e., are in the 
data generating process). 

Logit or sigmoid link 
function 

Sigmoid transform/activation 
function 

One type of variable 
transformation that seeks to 
transform a continuous 
predictor or set of predictors 
into a probability for binary 
outcomes. Activation 
functions apply an additional 
non-linear functional form to 
an input. 

Residuals/Residual sum 
of squares/Deviance 
statistic 

Loss/Cost A measure of divergence 
between the observed and 
predicted outcomes that 
indicates how well the 
statistical model or specified 
algorithm fit the given data. 

Penalization term such 
as in ridge regression 
(L2) or Lasso (L1) 
penalization 
Bayesian prior variance 

Hyperparameters such as 
number of CART estimators, 
depth of tree, size of hidden 
layers 

A set of parameters that 
pertain to the procedure 
used to estimate the model 
that are not part of the 
model itself. For example, 
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or scale parameter tuning parameters or 
hyperparameters. These are 
often selected using cross-
validation in machine 
learning. In machine 
learning, evaluation of the 
hyperparameters on the 
validation set that is not 
used to estimate the model 
parameters is used to 
evaluate how well the model 
specification may generalize 
to unseen data. In statistics, 
typical hyperparameters may 
include the prior-parameters 
that define the prior 
distribution. In machine 
learning, the tuning 
parameters may govern how 
much to regularize a 
particular model.  

Propensity weighting Class Balancing A procedure in machine 
learning where the model is 
trained by either: 
oversampling instances of 
under-expressed classes, 
under-sampling over-
expressed classes, or 
adding a weighting term that 
penalizes the model more 
for making incorrect 
predictions on the minority 
classes. 

Model fit Embedding/Projection Low dimensional subspace 
from which the data can be 
represented in such a way 
that maintains fidelity to the 
original source. 

Random Noise Data Augmentation/ 
Regularization/Penalization 

Techniques to modify the 
input data such as adding 
noise to the predictors and 
outcome labels, random 
variable transformations, 
sampling from a latent 
distribution or imposing a 
prior over the parameters 
that seek to make the model 
more generalizable to 
unseen data. 

Binomial/Multinomial Binary/Multiclass A description for the number 
of outcome categories for a 
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classification problem. 
Logistic Regression Single Layer Perceptron with 

Sigmoid/Softmax Activation 
Description of equivalent 
modeling approach in 
statistics/machine learning, 
where a 
dichotomous/nominal 
dependent variable is 
predicted from a set of 
predictors; a logit link 
function is applied to a linear 
combination between the 
predictor and parameters to 
form the final probability 

 
* We note here that the aforementioned terms are analogous yet not entirely identical 
between the disciplines of machine learning and statistics. 
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