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Summary Paragraph  37 

Common human diseases are frequently polygenic in architecture, comprising a large number of risk alleles 38 
with small effects spread across the genome1–3. Polygenic scores (PGSs) aggregate these alleles into a 39 
metric which represents an individual’s genetic predisposition to a specific disease. PGSs have shown 40 
promise for early risk prediction4–7, and there is potential to use PGSs to understand disease biology in 41 
parallel8. Here, we investigate the role plasma protein levels play in cardiometabolic disease risk in a cohort 42 
of 3,087 healthy individuals using PGSs. We found PGSs for coronary artery disease (CAD), type 2 43 
diabetes (T2D), chronic kidney disease (CKD), and ischaemic stroke (IS) were associated with levels of 49 44 
plasma proteins. These associations were polygenic in architecture, largely independent of cis protein 45 
QTLs, and robust to environmental variation. Over a median 7.7 years follow-up, 28 of these plasma 46 
proteins were associated with future myocardial infarction (MI) or T2D events, 16 of which were causal 47 
mediators between polygenic risk and incident disease. These protein mediators of polygenic disease risk 48 
included targets of approved therapies which may have repurposing potential. Our results demonstrate that 49 
PGSs can identify proteins with causal roles in disease, and may have utility in drug development. 50 

Main Text 51 

Cardiometabolic diseases have a major polygenic component, which is due to the combination of many 52 
thousands of variants across the genome, each exerting small lifelong effects9–13. Risk stratification using 53 
cardiometabolic PGSs have shown potential clinical utility for disease prevention14; however, molecular 54 
mediators of polygenic risk and their potential to be modulated to reduce disease risk remains unknown. 55 
Variants associated with polygenic traits are spread across many different pathways, exerting their effects 56 
through multiple levels of regulation, including gene expression, proteins and their interactions, cell 57 
morphology, and higher order physiological processes15. Proteins that are pathway-level hubs through 58 
which polygenic effects converge, however, could be promising targets for pharmaceutical intervention16–59 
19. 60 

Here, we demonstrate how PGSs can be used to identify proteins with causal roles in disease aetiology. The 61 
INTERVAL cohort comprises approximately 50,000 adult blood donors in England20,21, of which 3,087 62 
participants have linked electronic hospital records, imputed genome-wide genotypes, and quantitative 63 
levels of 3,438 plasma proteins22 (Online Methods, Supplementary Data 1,2). The characteristics of the 64 
participants are given in Extended Data Table 1; and participants with history of any cardiometabolic 65 
disease were excluded (Online Methods, Supplementary Table 1), reducing the potential for reverse 66 
causality in downstream analysis. A schematic of the study is given in Extended Data Fig. 1.  67 

To quantify each participant’s relative polygenic risk of atrial fibrillation (AF), CAD, CKD, IS, and T2D 68 
we applied externally derived genome-wide PGSs comprised of 1.8–3.2 million variants (Online 69 
Methods). Using PGSs, we identified 49 proteins whose levels differed with respect to polygenic risk at a 70 
false discovery rate (FDR) of 5% (Fig. 1a,b, Extended Data Table 2,3, Supplementary Table 2,3): 31 71 
proteins for the T2D PGS, 11 proteins for the CAD PGS, 1 protein for the IS PGS, and 8 proteins for the 72 
CKD PGS. Associations included proteins with established roles in cardiometabolic disease, such as 73 
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cystatin-c (CST3) and beta-2-macroglobulin (B2M) which are biomarkers for chronic kidney disease23, 74 
apolipoprotein E (APOE) whose link to coronary artery disease has been extensively studied24,25, and 75 
fructose-1,6-bisphosphatase 1 (FBP1) which plays a key role in glucose regulation and is a target of type 2 76 
diabetes drugs26.  Associated proteins belonged to multiple non-overlapping pathways (Supplementary 77 
Information), and many are relatively understudied in the context of their respective diseases (Extended 78 
Data Table 4) warranting future study. 79 

PGS to protein associations were robust to technical, physiological, and environmental confounding 80 
(Supplementary Information). We observed directional consistency and strong correlation of effect sizes 81 
when utilizing an orthogonal proteomics technology in independent samples (Extended Data Fig. 2a-c). 82 
Protein levels and PGS to protein associations were also temporally stable over two years of follow-up 83 
(Extended Data Fig. 2c-d). PGS to protein associations were also robust to circadian and seasonal effects, 84 
inclusion of participants with any prevalent cardiometabolic disease, and body mass index (BMI), with the 85 
exception of six T2D PGS to protein associations that were partially mediated by BMI (Extended Data 86 
Fig. 2f-g).  87 

Most PGS to protein associations were not explained by protein quantitative trait loci (pQTLs) but instead 88 
were highly polygenic (Online Methods; Fig. 1c): each protein required a median 12% of the genome to 89 
explain its association with a PGS (Fig. 1c). Only four associations could be explained by pQTLs, and 90 
contributing loci were spread across the genome for the remaining 46 (Extended Data Fig. 3). 91 
Interestingly, the effects of PGSs and pQTLs on protein levels were largely independent (Online Methods, 92 
Supplementary Table 4), suggesting that polygenic risk can enhance or buffer locus-specific effects on 93 
protein levels. 94 

Three possible scenarios could explain a PGS to protein association27: (1) the protein plays a causal role in 95 
disease, (2) the protein levels are changing in response to disease processes, but are not themselves causal 96 
(reverse causality), and (3) the protein levels are correlated with some other causal factor (confounding) 97 
(Fig. 2a). Utilizing a median of 7.7 years of follow-up in nation-wide electronic hospital records, we 98 
examined whether levels of PGS-associated proteins were associated with risk of onset of the respective 99 
cardiometabolic disease, then performed mediation analysis28 to identify the proteins that mediate PGS to 100 
disease associations, and thereby play causal roles in disease pathogenesis (Online Methods). Limited by 101 
the number of incident disease events, we restricted our analyses to CAD and T2D (Extended Data Fig. 4).  102 

25 of 31 (81%) of T2D PGS proteins were significantly associated (P < 0.05) with increased risk of T2D 103 
and 3 of 11 (27%) of CAD PGS proteins were significantly associated with increased risk of incident MI 104 
(Fig. 2b, Extended Data Table 2). There was directional consistency and strong correlation (Pearson 105 
correlation: 0.96, P = 4×10-23) between effects of PGSs on protein levels and hazard ratios for protein levels 106 
on incident disease risk (Fig. 2c). Using mediation analysis, we found that one and 15 proteins were 107 
significant mediators between polygenic risk of MI and T2D, respectively, indicating causal roles in disease 108 
pathogenesis (Fig. 2d).  109 

As polygenic disease risk is itself estimated from population-level data, it is unlikely that any single protein 110 
explains polygenic risk. Here, we found that causal protein mediators each explained a median of 6.6% of 111 
PGS to disease associations (Extended Data Table 2), with the 1 CAD PGS mediator (APOE) explaining 112 
5.4% of CAD polygenic risk to incident MI association, and the 15 T2D PGS mediators explaining 27% of 113 
the T2D polygenic risk to incident T2D association. A complementary approach for causal inference, 114 
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Mendelian randomisation29 (Online Methods), also supported causal effects on T2D for two proteins 115 
(SHBG and CFI) which mediated the T2D PGS to T2D association (Supplementary Information, 116 
Extended Data Fig. 5, Supplementary Table 5, 6). Notably, only 12 (24%) of the proteins associated 117 
with PGSs could be tested with Mendelian randomisation due to lack of cis protein quantitative trait loci 118 
(pQTLs) as genetic instruments (Online Methods) highlighting the complementarity of our PGS-protein 119 
association approach. 120 

Finally, to identify druggable targets associated with polygenic disease risk and potential drug repurposing 121 
opportunities, we utilised the DrugBank database30 (Online Methods) to find that 18 of the 49 PGS-122 
associated proteins were targeted by 236 drugs (Extended Data Table 5, Supplementary Table 7). Ten 123 
licensed drugs had protein target effects which were consistent with reduction of cardiometabolic disease 124 
risk (Table 1). These included the well-known T2D drug metformin31, which reduces liver glucose 125 
production by inhibition of FBP132, a protein whose levels were elevated in people with high polygenic risk 126 
for T2D (Fig. 1). Among the other nine licensed drugs, we highlight the potential to repurpose pegvisomant 127 
for T2D prevention. Pegvisomant (DB00082) is used to treat acromegaly by blocking the binding of 128 
endogenous growth hormone to growth hormone receptor (GHR)33–35. We found increased GHR was a 129 
causal mediator of polygenic T2D risk and incident T2D (Fig. 2) and GHR loss-of-function mutations are 130 
associated with lower T2D risk36 providing additional genetic support for this target. Furthermore, 131 
pegvisomant has been shown to improve insulin sensitivity in acromegaly patients37,38. Together, these 132 
observations suggest pegvisomant is a priority to evaluate for repurposing for T2D prevention (Table 1). 133 

Conclusions 134 
Polygenic scores for disease are explicitly constructed to maximise risk prediction, typically without 135 
consideration of the underlying biology. However, PGSs also hold considerable promise for identifying 136 
molecular pathways in the development and progression of disease8,27. Here, we identified plasma proteins 137 
significantly associated with PGSs for cardiometabolic disease in a healthy pre-disease cohort. The vast 138 
majority of these associations were highly polygenic, revealing an unappreciated role for polygenic effects 139 
on protein levels, including for several well-known disease proteins. These proteins were predictive of 140 
incident disease, and 16 were mediators of type 2 diabetes or myocardial infarction, suggesting that their 141 
modulation is likely to attenuate disease risk. There are multiple licensed drugs for many of these targets.  142 
Overall, this study demonstrates the power of polygenic scores to elucidate novel disease biology and their 143 
potential to inform development of medicines.  144 
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Figures 286 

Figure 1: Proteins associated with polygenic risk for cardiometabolic disease 287 
 288 

289 

a) Quantile-quantile plots of P-values for PGS to protein associations across all 3,438 tested proteins. E290 
plot compares the distribution of observed P-values (y-axes) to the distribution of expected P-values un291 
the null-hypothesis for 3,438 tests (x-axes) on a –log10 scale. Associations were adjusted for age, sex,292 
genotype PCs, sample measurement batch, and time between blood draw and sample processing. 293 
summary statistics are provided in Supplementary Data 3a. b) Heatmaps showing the 49 proteins wh294 
levels significantly associated (FDR < 0.05) with at least one PGS. Each heatmap cell shows the stand295 
deviation change in protein levels per standard deviation increase in PGS, estimated linear regress296 
adjusted for age, sex, 10 genotype PCs, sample measurement batch, and time between blood draw 297 
sample processing. Proteins are ordered by PGS from left to right by decreasing association magnitu298 
positive and negative associations split into separate heatmaps. Point estimates are detailed in Extend299 
Data Table 2. Details about each protein are provided in Extended Data Table 3. c) Barplots showing 300 
proportion of the genome required to explain each PGS to protein association (polygenicity; Onl301 
Methods). Proteins are ordered from left to right by strength of PGS to protein association. Highlighted302 
red are PGS to protein associations that were explained by singular variants regulating the protein lev303 
protein quantitative trait loci (pQTLs), rather than polygenic.   304 
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Figure 2: PGS-associated proteins influence 7.7 year risk of myocardial infarction and diabetes 305 

306 

a) Possible models of causality for PGS to protein to disease associations. C: causal disease factor upstre307 
of protein that induces a correlation between protein levels and disease. b) Association between PG308 
associated proteins with 7.7 year risk of hospitalisation with myocardial infarction and diabetes. There w309 
insufficient events to analyse proteins associated with the IS PGS (N=3 incident disease events) or with310 
CKD PGS (N=0 incident disease events) (Extended Data Fig. 4a). Cox proportional hazard models w311 
fit between protein levels and incident disease using follow-up as time scale and adjusting for age and 312 
(Online Methods). HR: hazard ratio conferred per standard deviation increase in protein levels. 95% 313 
95% confidence interval. See Extended Data Table 2 for detailed point estimates. c) Comparison314 
effects of PGS on protein levels (x-axes; Fig. 1b) to associations between protein levels and incid315 
disease (y-axes; Fig. 2b). Points and horizontal bars on the x-axes indicate standard deviation change316 
protein levels (and 95% confidence interval) per standard deviation increase in respective PGS. Points 317 
vertical bars on the y-axis show hazard ratio (and 95% confidence interval) per standard deviation incre318 
in protein levels. d) Estimated causal effect of PGS on disease through each protein in mediation analy319 
(Online Methods). Causal OR: odds ratio for incident disease adjusting for age and sex conferred throu320 
each protein per standard deviation increase in PGS. The total odds ratio for MI conferred per stand321 
deviation increase in CAD PGS was 2.94 (95% CI: 1.69–5.31, P-value: 2×10−4). The total odds ratio 322 

T2D conferred per standard deviation increase T2D PGS was 2.00 (95% CI: 1.37–2.96, P-value: 4×10323 
Proteins are ordered from left to right by their hazard ratio in Fig. 1b. b-d) points in red indicate prote324 
whose levels increased with PGS, and blue indicates proteins whose levels decreased with PGS. 325 
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Tables 326 

Table 1: Drugs whose effects on proteins counteract effects of PGSs on proteins 327 
 328 
   PGS associated target PGS supported use 
Drug ID Drug Name Therapeutic uses Protein Drug Effect Pharma Disease Phase Trial Number 

DB00331 Metformin Type 2 diabetes FBP1 Inhibitor Yes T2D Licensed - GPD1 Inhibitor - 

DB00396 Progesterone Female infertility, hormone imbalance SHBG Potentiator - 
CAD  4 NCT00361075 
T2D* 3 NCT00000466 
IS - - 

DB01088 Iloprost Pulmonary arterial hypertension 
PDE4A Inducer - 

CKD 3 NCT00345501 PDE4D Inducer - 

DB00675 Tamoxifen Breast, ovarian, and endometrial cancers SHBG Inducer - 
CAD  3 NCT00000529 
IS - - 
T2D* - - 

DB00082 Pegvisomant Acromegaly GHR Antagonist Yes T2D* 2 NCT02023918 

DB01026 Ketoconazole Fungal infections, Cushing's syndrome SHBG Ligand - 
T2D* 2 NCT00494663 
CAD - - 
IS - - 

DB12010 Fostamatinib Immune thrombocytopenic purpura MUSK Inhibitor - T2D - - 

DB00131 
Adenosine 
phosphate Nutritional deficiencies FBP1 Antagonist - T2D - - 

DB14533 Zinc chloride Zinc deficiency, intravenous nutrition APOE Antagonist - CAD* - - 
DB14548 Zinc sulfate Intravenous nutrition APOE Antagonist - CAD* - - 

 329 
List of drugs that reduce the function or levels of proteins whose levels are elevated in participants with 330 
high polygenic risk, or increase in function or levels of proteins whose levels are decreased in participants 331 
with high polygenic risk (Supplementary Information). Drug ID gives the identifier in DrugBank. 332 
Columns under the “PGS associated target” heading indicate the PGS-associated protein that interacts with 333 
the drug, and the effect of the drug on the listed protein, and “Yes” in the “Pharma” when the 334 
pharmacological action of the drug is due to its effect on the protein (as listed in the DrugBank database). 335 
Columns under the “PGS supported use” heading indicate the disease(s) whose PGS are associated with the 336 
listed protein, and where clinical trials for that drug on that disease have been undertaken, the maximum 337 
clinical trial phase reached along with the respective trial number in the National Institute of Health 338 
(NIH)’s National Library of Medicine (NLM)’s Clinical Trials database (https://clinicaltrials.gov). A * next 339 
to the disease indicates there was evidence supporting a causal effect of the protein on the disease (Fig. 2d). 340 
See Supplementary Information for summary of evidence for each drug.  341 
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Online Methods 342 

INTERVAL cohort 343 
INTERVAL is a cohort of approximately 50,000 participants nested within a randomised trial studying the 344 
safety of varying frequency of blood donation20,21. Participants were blood donors aged 18 years and older 345 
(median 44 years of age; 49% women) recruited between June 2012 and June 2014 from 25 centres across 346 
England. The collection of their blood samples for research purposes was done using standard protocols 347 
and has been extensively described previously20. Participants gave informed consent and this study was 348 
approved by the National Research Ethics Service (11/EE/0538). 349 

Electronic health records were obtained for all INTERVAL participants from the National Health Service 350 
(NHS) hospital episode statistics database (https://digital.nhs.uk/data-and-information/data-tools-and-351 
services/data-services/hospital-episode-statistics) for all events up to the 8th of February 2020, prior to the 352 
onset of the COVID19 pandemic in England. The median and maximum follow-up time were 6.9 years and 353 
7.7 years respectively. The earliest available hospital record for any INTERVAL participant was the 25th 354 
March 1999, with maximum retrospective follow-up of 13.6 years. These records came in the form of 355 
international classification of diseases 10th revision (ICD-10) codes40 and were subsequently made available 356 
to analysts after summarisation into 301 endpoints using CALIBER rule-based phenotyping algorithms41 357 
(https://www.caliberresearch.org/portal). ICD-10 codes contributed to each event regardless of whether 358 
they coded for primary or non-primary diagnoses in the hospital records. 359 

Genotyping, quality control, and imputation of INTERVAL participants has been described in detail 360 
previously42. Briefly, participants were genotyped using the Affymetrix UK Biobank Axiom array in 10 361 
batches. Samples were removed if they had sex mismatch, extreme heterozygosity, were of non-European 362 
descent, or were duplicate samples. Related samples were removed by excluding one sample from each pair 363 
of close relatives (first or second degree; identity-by-descent �� � 0.187). Genotyped variants were 364 
removed if they were monomorphic, bi-allelic and had Hardy-Weinberg equilibirum p-value < 5×10-6, or 365 
call rate < 99%. SHAPEIT3 was used to phase variants, then imputation to the UK10K/1000 Genomes 366 
panel was performed using the Sanger Imputation Server (https://imputation.sanger.ac.uk). 367 

Quantification, processing, and quality control of protein levels in INTERVAL using the SOMAscan 368 
assays has been described in detail previously22. Briefly, relative concentrations of 4,034 SOMAscan 369 
aptamers were measured in 3,562 INTERVAL participants in two batches by SomaLogic Inc. (Boulder 370 
Colorado, US) using version 3 of the SOMAscan platform. Aptamers were excluded if, in the latest version 371 
of the SOMAscan platform, they (1) targeted non-human proteins, (2) have been found to be measuring the 372 
fusion construct rather than the target protein, or (3) found to be measuring a contaminant. A curated 373 
information sheet for all 4,034 aptamers is provided in Supplementary Data 1.  374 

Aptamer concentrations (relative fluorescence units) were natural log transformed then adjusted within 375 
each batch for participant age, sex, the first three genetic PCs, and duration between blood draw and sample 376 
processing (< 1 day or > 1 day), then the residuals were inverse rank normal transformed. Here, we further 377 
adjusted the normalized protein levels used in previous studies for batch number, and filtered to 3,793 high 378 
quality aptamers targeting 3,438 proteins after obtaining the latest information about aptamer sensitivity 379 
and specificity from SomaLogic. Distributions of aptamer levels and associations with covariates before 380 
and after quality control are given in Supplementary Data 2. 381 
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In total, there were 3,087 INTERVAL participants passing quality control, without prevalent 382 
cardiometabolic disease (see below), and with matched genotype, proteomic, and electronic health record 383 
data available for the primary analyses. 384 

Prevalent disease exclusion 385 
National Health Service (NHS) Blood and Transplant blood donation eligibility criteria 386 
(https://www.blood.co.uk/who-can-give-blood/) meant there were built in exclusions for the INTERVAL 387 
cohort for people with a history of major diseases, recent illness, or infection. Specifically for 388 
cardiometabolic diseases, blood donation eligibility criteria excluded individuals who had been diagnosed 389 
with atrial fibrillation, had a history of any stroke, or a history of major heart disease; including heart 390 
failure, coronary thrombosis, myocardial infarction, cardiomyopathy, ischaemic heart disease, and 391 
arrhythmia, or surgery for a non-congenital heart conditions. Use of aspirin or other blood thinners to 392 
control elevated blood pressure (hypertension) also made people ineligible to donate blood and participate 393 
in the INTERVAL cohort. Individuals with type 2 diabetes were ineligible, unless their type 2 diabetes was 394 
well controlled by diet alone, did not require regular insulin treatment, and the individual had not required 395 
insulin treatment for at least four weeks prior to attempted blood donation. Extended details on blood 396 
donation criteria eligibility for specific diseases, medications, and lifestyle factors can be found at 397 
https://my.blood.co.uk/knowledgebase. 398 

In addition to intrinsic exclusion due to blood donation eligibility criteria, participants were excluded from 399 
analyses if they had any events relating to cardiometabolic disease prior to baseline assessment. Among the 400 
301 CALIBER endpoints, we classified 48 as cardiometabolic disease or having potential to introduce 401 
reverse causality by modifying risk for incident AF, CAD, CKD, IS, or T2D (Supplementary Table 1). In 402 
total 87 participants (2.7%) were excluded, predominantly due to prevalent hypertension (N=57 events; 403 
66% of excluded participants) and prevalent diabetes (N=11 events; 13% of excluded participants); with all 404 
others accounting for less than 5% of excluded participants (Supplementary Table 1). 405 

Polygenic scores 406 
PGSs were derived in a consistent manner, by linkage-disequilibrium thinning, at an r2 threshold of 0.9, the 407 
latest GWAS summary statistics for each respective disease (Supplementary Information). GWAS 408 
summary statistics used to derive the AF PGS, CKD PGS, and T2D PGS were those published by Nielsen 409 
et al. in 20189 (GCST006414), Wuttke et al. in 201910 (GCST008065), and Mahajan et al. in 201811 410 
(GCST007517), respectively. PGSs for CAD and IS used in this study were our previously published CAD 411 
metaGRS43 and Stroke metaGRS44. The CAD PGS was derived from meta-analysis of three PGSs for 412 
CAD, including a PGS derived as described above from GWAS summary statistics published by Nikpay et 413 
al. in 201545. The IS PGS was derived from meta-analysis of PGS for ischaemic stroke and its risk factors, 414 
including a PGS derived as described above from GWAS summary statistics for IS published by Malik et 415 
al. in 201812. The PGSs each comprised 1.75–3.23 million SNPs genome-wide and are available to 416 
download through the Polygenic Score Catalog46 (https://www.pgscatalog.org/) with accession numbers 417 
PGS000727 (atrial fibrillation), PGS000018 (coronary artery disease), PGS000728 (chronic kidney 418 
disease), PGS000039 (ischaemic stroke), and PGS000729 (type 2 diabetes). All PGSs were derived from 419 
GWAS summary statistics including only individuals with European ancestry. See Supporting 420 
Information and Extended Data Fig. 4 for details on PGS validation. 421 

Levels of each PGS (sum of dosages × weights) were computed in INTERVAL from probabilistic dosage 422 
data using plink (version 2)47 after mapping PGS variants to those available in the INTERVAL genotype 423 
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data (Supplementary Information). Levels of each PGS were adjusted for the first 10 principal 424 
components (PCs) of the imputed genotype data and standardised to have mean of 0 and standard deviation 425 
of 1 prior to downstream statistical analyses. 426 

PGS to protein associations 427 
Each of the five PGSs were tested for association with each of the 3,793 aptamers using linear regression 428 
(Fig 1a,b, Extended Data Table 2). PGS and proteins were adjusted for covariates and normalised prior to 429 
model fitting (see above). Linear regression coefficients were averaged where multiple high quality 430 
aptamers targeted the same protein (Supplementary Information). False discovery rate (FDR) correction 431 
was subsequently applied across the 3,438 P-values (one per protein) for each PGS separately. Details on 432 
aptamer specificity and sensitivity are given in Supplementary Table 2 for the 54 aptamers targeting the 433 
49 PGS-associated proteins, and aptamer specific estimates of PGS on protein levels are detailed in 434 
Supplementary Table 3 for the five PGS-associated proteins targeted by more than one aptamer 435 
(WFIKKN2, GPD1, IGFBP1, IGFBP2, and SHBG). 436 

Polygenicity of PGS to protein associations 437 
To quantify the polygenicity of PGS to protein associations (Fig. 1c, Extended Data Fig. 3) we performed 438 
a multi-step experiment to determine the proportion of the genome required to explain that association. 439 
First, we split the given PGS into separate scores for each of the 1,703 approximately independent LD 440 
blocks estimated in Europeans from the 1000 Genomes reference panel by Berisa & Pickrell 201648 441 
(https://bitbucket.org/nygcresearch/ldetect-data/src/master/EUR/fourier_ls-all.bed). Next, we tested each of 442 
these 1,703 scores for association with the given protein (Supplementary Data 3e). Then, we retested the 443 
PGS to protein association, progressively removing independent LD blocks, at each step removing the LD 444 
block whose score had the strongest association with the protein. From this we quantified the polygenicity 445 
(Fig. 1c) based on the LD blocks needed to be removed from the given PGS in order to attenuate the PGS 446 
to protein association (so that the association P-value became > 0.05, Supplementary Data 3f) as the sum 447 
of removed LD block sizes / sum of all LD block sizes (i.e. proportion of genome removed). Extended 448 
Data Fig. 3 shows the independent LD blocks contributing to the polygenicity of each PGS to protein 449 
association. 450 

Independent contributions of PGS and pQTLs to protein levels 451 
Multivariable linear regression models were fit for each protein on PGS levels and pQTL dosages to 452 
estimate their independent contributions to protein levels (Supplementary Table 4). The pQTLs used for 453 
each protein were: (1) conditionally independent pQTLs mapped in INTERVAL and published by Sun et 454 
al. 201822, which included both cis (within 1Mb of the encoding gene) and trans pQTLs passing the trans-455 
significance threshold of P < 1.5×10-11; (2) trans-pQTLs with P < 1.5×10-11 (lead variant only) for proteins 456 
not published in Sun et al. 201822 (B2M, DUSP26, and FTMT); and (3) hierarchically significant cis-457 
pQTLs (lead variant only) mapped in this study (Supplementary Data 4, Supplementary Information) 458 
for proteins without cis-pQTLs passing the trans-pQTL significance threshold above (ACY1, ADIPOQ, 459 
APOE, CST3, GPD1, PTPRU, SHBG, and UST). 460 

Incident disease associations 461 
PGSs and protein levels were tested for association with incident disease using Cox proportional hazards 462 
models adjusting for age and sex (Fig. 2b, Extended Data Fig. 4) using the survival package in R. The 463 
timescale used was time from baseline to first event of the relevant disease or to the latest available date in 464 
the hospital records (8th February 2020). PGSs and proteins were adjusted for covariates and normalised 465 
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prior to model fitting (see above). Cox model coefficients were averaged where multiple high quality 466 
aptamers targeted the same protein (Supplementary Information).  467 

Incident disease events for AF, CAD, CKD, IS, and T2D were defined as first hospital episode for the 468 
closest matching CALIBER phenotype41 (https://www.caliberresearch.org/portal). Incident AF events were 469 
defined as any hospital episode with ICD-10 code I48. Incident IS events were defined as any hospital 470 
episode with ICD-10 codes I63 or I69.3. For CAD we analysed incident MI events, defined as any hospital 471 
episode with ICD-10 codes I21–I23, I24.1, or I25.2. The closest matching CALIBER phenotype for T2D 472 
was for diabetes more broadly, including ICD-10 codes for any hospital episode for type 1 or type 2 473 
diabetes or complications thereof: E10–E14, G59.0, G63.2, H28.0, H36.0, M14.2, N08.3, or O24.0–O24.3, 474 
however we note type 1 diabetics are not eligible to donate blood (https://my.blood.co.uk/knowledgebase/) 475 
and adult onset of type 1 diabetes is relatively rare compared to type 2 diabetes49. closest matching 476 
CALIBER phenotype for CKD was for end stage renal disease more broadly, which as defined as any 477 
hospital episode with ICD-10 codes N16.5, N18.5, T82.4, T86.1, Y60.2, Y61.2, Y84.1, Z49.1, Z49.2, 478 
Z94.0, and Z99.2. 479 

Mediation analysis 480 
Mediation analysis was used to identify causal proteins by identifying the PGS-associated proteins which 481 
partially mediate the association of PGS on disease (Fig. 2d). This approach uses the counterfactual 482 
framework to infer causal effects 28,50,51 and can be adapted to this setting as the arrow of causality between 483 
PGS and any associated phenotype can only flow in one direction as the PGS is fixed at conception (i.e. the 484 
underlying alleles in each person cannot be modified later in life by protein levels or the development of 485 
cardiometabolic disease). Here, we used the natural effects model developed by Vansteelandt et al. 201252, 486 
which is available in the medflex R package53, to estimate natural indirect effects (effects of PGS on 487 
disease through protein levels) on the log odds scale by imputing unobserved counterfactuals. Standard 488 
errors were computed using the robust sandwich estimator54, from which 95% confidence intervals and P-489 
values were calculated. Multiple mediation analysis55 was performed using the R package mma56 to 490 
quantify the proportion of PGS to disease association mediated by the 15 causal T2D proteins. 491 

Mendelian randomisation 492 
Two-sample Mendelian randomisation29 was also performed as an orthogonal approach to identify proteins 493 
which may play a causal role in disease (Extended Data Fig. 5, Supplementary Table 5,6). PGS-494 
associated proteins were tested provided they had three or more independent by LD (r2 < 0.1) cis-pQTLs 495 
after mapping pQTL to GWAS summary statistics (Supplementary Information), and provided the 496 
SomaLogic aptamer(s) did not have similar affinity for or comparable binding to multiple proteins or 497 
differential binding to specific isoforms (Supporting Table 3, Supplementary Information). In total, 12 498 
of the 49 PGS-associated proteins could be tested (24%), substantially higher than the overall measured 499 
proteome (497 proteins, 14.5%). GWAS summary statistics were obtained from Nelson et al. 201713 for 500 
coronary artery disease (GCST004787), Wuttke et al. 201910 for chronic kidney disease (GCST008065), 501 
Malik et al. 201812 for ischaemic stroke (GCST006906) and Mahajan et al. 201811 for type 2 diabetes 502 
(GCST007518). In all cases, we used the GWAS summary statistics for the samples of recent European 503 
ancestry. For type 2 diabetes, we used the BMI-adjusted GWAS summary statistics in order to avoid false 504 
positive causal estimates arising where pQTLs influence type 2 diabetes risk through BMI rather than 505 
through the tested protein (horizontal pleiotropy). We used five different Mendelian Randomisation 506 
methods57–60, each of which make use of information across 3 or more instruments to estimate causal 507 
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effects with each method differentially robust to different sources of bias, to obtain a consensus (median) 508 
estimate of causal effects of protein levels on disease risk (Supporting Information). We considered there 509 
to be a significant causal effect where P < 0.05 along with no significant evidence that causal effects were 510 
due to associations of the pQTLs with some other causal risk factor (horizontal pleiotropy; Egger 511 
intercept60 P > 0.05). FDR correction was performed across all tested proteins for each disease separately. 512 
Analysis was performed using the R package MendelianRandomization61. Colocalisation analysis62 was 513 
also performed where cis-pQTL instruments had P < 1×10-6 in the respective GWAS (Supplementary 514 
Table 6, Supplementary Information). 515 

Drug targets 516 
For each PGS-associated protein, a list of drugs that target or interact with the protein was downloaded 517 
from the DrugBank database30 version 5.17 released on the 2nd of July 2020 518 
(https://go.drugbank.com/releases/latest) (Extended Data Table 5, Supplementary Table 7). To obtain a 519 
list of drugs that counteract PGS effects and thus may have potential repurposing opportunities (Table 1), 520 
we filtered to drugs with approved status and not withdrawn status, then to drugs whose effect on the 521 
protein was in the opposite direction to the effect of the PGS on protein levels (e.g. inhibitors where 522 
increased PGS was associated with increased protein levels, Supplementary Information). 523 
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Extended Data Figure 1: Study schematic. 634 
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Extended Data Table 1: Cohort characteristics 636 

 637 

IQR: interquartile range. Body mass index (BMI) was computed from self-reported height and wei638 
(Supplementary Information).  639 
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Extended Data Table 2: Point estimates for PGS to protein to disease associations 640 

641 

Beta: standard deviation change in protein levels per standard deviation increase in PGS. 95% CI: 9642 
confidence interval. HR: hazard ratio for incident disease conferred per standard deviation increase643 
protein levels. OR: odds ratio for incident disease adjusting for age and sex conferred through each prot644 
per standard deviation increase in PGS. % PGS: Percentage of total effect of PGS on incident dise645 
conferred through protein levels. The total odds ratio for MI conferred per standard deviation increase646 
CAD PGS was 2.94 (95% CI: 1.69–5.31, P-value: 2×10−4). The total odds ratio for T2D conferred 647 

standard deviation increase T2D PGS was 2.00 (95% CI: 1.37–2.96, P-value: 4×10−4). Point estimates 648 
greyed out where P-value > 0.05  649 
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Extended Data Table 3: Information about each PGS associated protein 650 

651 

Aptamer: Sequence ID for the SomaLogic aptamer(s) targeting the protein. A * next to the protein na652 
indicates the aptamer(s) binds to specific isoforms of the listed protein or binds to multiple proteins; 653 
Aptamer target column. Extended details on aptamer sensitivity and specificity can be found654 
Supplementary Table 2.   655 
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Extended Data Table 4: Previous evidence for PGS-associated proteins in disease 656 
 657 

658 
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Extended Data Figure 2: Robustness of PGS to protein associations  659 

660 

a-c) Robustness of PGS to protein associations to proteomics technology. c) Longitudinal stability of P661 
to protein associations. d) Longitudinal stability of protein levels. d-e) Robustness of protein levels662 
proteomics technology. f) Robustness of PGS to protein associations to environmental and physiolog663 
confounding. g) Mediation of PGS to protein associations through body mass index (BMI) for six prote664 
associated with PGS for type 2 diabetes. a) Compares associations between PGSs and protein lev665 
quantified by SomaLogic SOMAscan aptamers (x-axis; Fig. 1b) to associations with protein lev666 
quantified using the Olink Explore platform in 418 independent INTERVAL participants (y-axis) with667 
prevalent cardiometabolic disease (Supplementary Information). In total 1,463 proteins were quantif668 
by the Olink Explore platform, including 907 quantified by the SomaLogic platform, and among these669 
of the 49 PGS-associated proteins. Points correspond to PGS to protein level association beta estimates, 670 
the bars to their 95% confidence intervals. b) Compares associations between PGSs and protein lev671 
quantified by SomaLogic SOMAscan aptamers (x-axis; Fig. 1b) to associations with protein lev672 
quantified using the Olink T96 platform in 3,848 independent INTERVAL participants. In total 2673 
proteins were quantified by the Olink T96 platform, including 224 quantified by the SomaLogic platfo674 
and among these, 4 of the 49 PGS-associated proteins. c) Compares PGS to protein associations in 6675 
participants with protein levels quantified by both the SomaLogic platform and Olink T96 platform (fr676 
blood samples taken after 2 years of follow-up). a-c) share common x-axes and legend. Point estimates677 
associations between PGS and protein levels assessed by Olink proteomics in each panel are given678 
Supplementary Data 3b. d) Compares protein levels quantified by the SomaLogic platform (x-axes)679 
protein levels quantified by the Olink T96 platform (y-axes) after two years of follow-up in 6680 
participants. e) Compares protein levels quantified by the Olink T96 platform (x-axes) to protein lev681 
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quantified by the Olink Explore platform (y-axes). f) Compares PGS to protein associations before (x-axes; 682 
Fig. 1a) and after (y-axes) adjustment for circadian effects (time of day of blood draw), adjustment for 683 
seasonal effects (date of blood draw), when including 87 participants with prevalent cardiometabolic 684 
disease, and adjustment for BMI. To capture the potentially non-linear effects of circadian rhythm and 685 
season on protein levels both were treated as categorical variables with 10 groups of equal length duration, 686 
using the group with the largest sample size as the reference in the model (Supplementary Information). 687 
Point estimates in sensitivity analyses are given in Supplementary Data 3c. g) For the six proteins whose 688 
association T2D PGS was attenuated (P > 0.05; Extended Data Fig. 2f) gives, from mediation analysis 689 
(Online Methods), the estimated effect of T2D PGS on the protein levels through BMI (standard deviation 690 
change in protein levels through BMI per standard deviation increase in T2D PGS) and the estimated effect 691 
of T2D PGS on protein levels independent of BMI. 95% CI: 95% confidence interval.   692 
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Extended Data Figure 3: Polygenicity of PGS to protein associations 693 
 694 

695 
 696 
Linkage disequilibrium (LD) blocks contributing to each PGS to protein association (Online Method697 
Each PGS was partitioned into 1,703 approximately independent LD blocks48 then tested for associat698 
with each protein (Supplementary Data 3e). To obtain the set of LD blocks contributing to each PGS699 
protein association, LD blocks were removed from the PGS in ascending order by association P-value u700 
the PGS to protein association was attenuated (P > 0.05; Supplementary Data 3f). Here, associati701 
(−log10 P-values) between protein levels and LD blocks contributing to the PGS to protein association 702 
shown. Regions in white contain LD blocks that did not contribute to the PGS to protein association. T703 
total percentage of the genome contributing to the PGS to protein association (polygenicity; Fig. 1c704 
shown on the right. PGS to protein associations listed in red are those explained by pQTLs (cis and705 
trans) rather than polygenic. 706 
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Extended Data Figure 4: Incident disease and PGS validity 707 

708 

a) Incident disease events over the 7.7 year of follow-up in the 3,087 INTERVAL participants. Endpo709 
incident disease definition available in INTERVAL for the relevant PGS, as defined by CALIB710 
phenotyping algorithms (Online Methods). Age of onset: median age of first hospitalisation with 711 
respective endpoint. Numbers in brackets gives the interquartile range. b) Hazard ratio (HR) and 9712 
confidence interval (95% CI) conferred per standard deviation increase of the respective PGS on risk713 
hospitalisation with the relevant endpoint. CAD PGS was tested for incident myocardial infarction. Haz714 
ratios were fit using cox proportional hazards models, adjusting for age and sex, and 10 genetic PCs715 
Association between PGS for chronic kidney disease with estimated glomerular filtration rate (eGFR716 
marker of renal function used in chronic kidney disease diagnosis (Online Methods): decreased eGFR717 
indicative of reduced renal function. EGFR was computed from serum creatinine in 3,307 participa718 
using the CKD-EPI equation (Supplementary Information). Association was fit with linear regress719 
adjusting for age and sex, and 10 genetic PCs.  720 
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Extended Data Figure 5: Mendelian randomisation analysis 721 

722 

a) Causal effects of protein levels on disease risk estimated through two-sample Mendelian randomisat723 
analysis of pQTL summary statistics and disease GWAS summary statistics (Online Methods). O724 
consensus estimate of the odds ratio conferred per standard deviation increase in protein levels across f725 
Mendelian randomisation methods (Supplementary Information; Supplementary Table 5). * Estima726 
causal effect is directionally consistent with PGS to protein to disease associations in Fig. 2. 95% CI: 9727 
confidence interval. Pleiotropy P-value: P-value for the intercept term in Egger regression, which indica728 
where P < 0.05, confounding of the causal estimate by associations between genetic instruments (729 
pQTLs) with multiple disease risk factors (horizontal pleiotropy). Entries are greyed out where P > 0.05730 
Dose response curves showing the estimated causal effect of changes in protein levels on disease risk 731 
each protein and disease. The slope of the orange dashed line corresponds to the estimated causal eff732 
(Odds Ratio from Extended Data Fig. 5a). The yellow ribbon shows the 95% confidence interval for 733 
estimated causal effect (slope), accounting also for the 95% confidence interval for the intercept term734 
Egger regression. Points on each plot show the cis-pQTLs used as genetic instruments for each 735 
(Supplementary Table 6). On the x-axes, points show the standard deviation change in protein levels 736 
copy of the minor allele, and horizontal bars indicate the standard error. On the y-axes, points show o737 
ratio conferred per copy of the minor allele, and vertical bars indicate the standard error. 738 
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Extended Data Table 5: PGS-associated drug targets 739 

740 
Number of drugs interacting with each PGS-associated protein, the number approved for therapeutic 741 
and a summary of the therapeutic uses of these compounds. Information was retrieved from DrugB742 
version 5.17 (Online Methods). Supplementary Table 7 provides details for each of the 236 drugs743 
compounds targeting any PGS-associated protein.  744 
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