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Abstract 16 

Environmental sources of infection can play a primary role in shaping epidemiological 17 

dynamics, however the relative impact of environmental transmission on host-pathogen systems 18 

is rarely estimated. We developed and fit a spatially-explicit model of African swine fever virus 19 

(ASFV) in wild boar to estimate what proportion of carcass-based transmission is contributing to 20 

the low-level persistence of ASFV in Eastern European wild boar. Our model was developed 21 

based on ecological insight and data from field studies of ASFV and wild boar in Eastern Poland. 22 
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We predicted that carcass-based transmission would play a substantial role in persistence, 23 

especially in low-density host populations where contact rates are low. By fitting the model to 24 

outbreak data using Approximate Bayesian Computation, we inferred that between 53 to 66% of 25 

transmission events were carcass-based – i.e., transmitted through contact of a live host with a 26 

contaminated carcass. Model fitting and sensitivity analyses showed that the frequency of 27 

carcass-based transmission increased with decreasing host density, suggesting that management 28 

policies should emphasize the removal of carcasses and consider how reductions in host densities 29 

may drive carcass-based transmission. Sensitivity analyses also demonstrated that carcass-based 30 

transmission is necessary for the autonomous persistence of ASFV under realistic parameters. 31 

Autonomous persistence through direct transmission alone required high host densities; 32 

otherwise re-introduction of virus periodically was required for persistence when direct 33 

transmission probabilities were moderately high. We quantify the relative role of different 34 

persistence mechanisms for a low-prevalence disease using readily collected ecological data and 35 

viral surveillance data. Understanding how the frequency of different transmission mechanisms 36 

vary across host densities can help identify optimal management strategies across changing 37 

ecological conditions. 38 

 39 

Keywords: environmental transmission, carcass, African swine fever, wild boar, persistence, 40 

spatial model, transmission, approximate Bayesian computation 41 

 42 

1   |   INTRODUCTION  43 

Understanding mechanisms by which pathogens transmit between hosts is key for 44 

defining disease risk and for planning effective control strategies. In addition to direct host-to-45 
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host or vector-borne transmission, pathogens can spread through environmental sources, such as 46 

through contact with fomites (Allerson et al. 2013), ingestion of contaminated drinking water 47 

(Breban et al. 2013, Kraay et al. 2018), contact with contaminated soil (Turner et al. 2014), 48 

contact with contaminated carcasses (Chenais et al. 2018), or carcass scavenging (Wille et al. 49 

2016, Brown and Bevins 2018).  Environmental sources of infection can promote pathogen 50 

persistence by increasing their likelihood of contact with susceptible hosts because many 51 

pathogens can remain viable in the environment longer than they can keep a host infectious. For 52 

example, epidemiological models demonstrate that pathogens can persist in small populations at 53 

very low levels of prevalence when infectious agents remain viable in the environment (Breban 54 

et al. 2013). For wildlife populations with seasonally varying densities, environmental sources of 55 

infection can ignite seasonal epidemics during low-density periods when susceptible hosts are 56 

not frequent enough to continuously maintain pathogen transmission through direct contact 57 

(Sauvage et al. 2003). The persistence of infectious agents in environmental reservoirs can 58 

enable high pathogen reproductive numbers when epidemic growth rates are low by extending 59 

the infectious period beyond the life expectancy of the host (Almberg et al. 2011). In some 60 

systems, environmental transmission mechanisms can explain recurrent epidemics (Towers et al. 61 

2018), even at intervals that are longer than demographic cycling (Breban et al. 2013), as well as 62 

amplifying rates of inter-population transmission by increasing infectious contact opportunity 63 

between groups (Kraay et al. 2018). Theoretical metapopulation modeling has shown that 64 

accounting for mechanisms of environmental transmission in addition to routes of direct 65 

transmission can lead to qualitatively different disease dynamics and predict different animal 66 

movement thresholds for metapopulation decline (Park 2012). Although optimal disease 67 

management strategies require knowledge of transmission mechanisms to identify appropriate 68 
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control points, quantifying the relative role of environmental transmission relative to other 69 

transmission mechanisms has been elusive for most host-pathogen systems (but see Towers et al. 70 

2018).  71 

African swine fever (ASF) is a highly virulent disease of swine with devastating 72 

consequences for domestic swine industries and food security globally. The virus is known to 73 

spread through host-to-host contact, contact with infected carcasses, meat products, fomites, 74 

aerosols, the environment, or through tick vectors (Wieland et al. 2011, Costard et al. 2013). 75 

Although ASFV persists at low levels among sylvatic hosts in endemic regions of Africa, reports 76 

documenting low-level persistence of ASFV in Eastern European wild boar populations in the 77 

absence of viral spillover from domestic swine populations or other sources of infection remains 78 

inexplicable (Olševskis et al. 2016; Śmietanka et al. 2016; Frant et al. 2017). Considering wild 79 

boar contact dead conspecies frequently, infectious carcasses are hypothesized to enable ASFV 80 

persistence in wild boar populations (Costard et al. 2013, Probst et al. 2017, Lange and Thulke 81 

2017, EFSA, 2017). Even though the role of carcass-based transmission in ASFV maintenance 82 

remains unknown, ASF management strategies in Eastern Europe continue to promote the rapid 83 

removal of wild boar carcasses (Costard et al. 2009; Costard et al. 2013, EFSA, 2017). 84 

Carcass-based transmission is a special case of environmental transmission but where the 85 

contamination is from biological material. Carcass-based transmission is hypothesized as a 86 

potential mechanism allowing low-level persistence because carcasses can remain infectious for 87 

long periods of time relative to live infectious hosts. A second hypothesis to explain persistence 88 

of ASFV in wild boar populations is that continual introduction from neighboring countries plays 89 

a role in persistence. To evaluate these hypotheses, we developed and fit a spatially-explicit 90 

mechanistic epidemiological model to spatio-temporal disease surveillance data (Fig. 1) using 91 
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approximate Bayesian computation (ABC). We estimated the levels of direct transmission, 92 

carcass-based transmission, and continued introduction that best explained spatial spreading 93 

patterns of ASFV. As a separate objective, we used sensitivity analysis on the transmission 94 

mechanism parameters to understand the relationship between host density and the importance of 95 

carcass-based transmission. We hypothesized that because wild boar tend not to move very far, 96 

carcass-based transmission likely accounts for a substantial amount of overall transmission. 97 

Along the same lines, we predicted that the potential role of carcass-based transmission would 98 

increase with decreasing host density because at low host densities direct contact would be more 99 

limited due to the short-range movement tendencies of wild boar and short infectious period of 100 

the virus.   101 

 102 

2   |   METHODS 103 

2.1   |   African swine fever in Poland 104 

The first wild boar case of ASF in Poland was detected in February 2014 in the north-105 

eastern part of the country (53°19'33"N, 23°45'31"E), less than 1km from the border with 106 

Belarus (Fig. 1). Following the first occurrence of ASF in Poland, an intensive surveillance 107 

program was implemented in the affected area. The strategy was based on laboratory tests of all 108 

wild boar found dead and killed in road accidents (passive surveillance) and all hunted wild boar 109 

(active surveillance). A total of 4625 boar were hunted and 271 dead carcasses were sampled in 110 

Poland during 2014-2015 (Fig. 1). Samples, collected by veterinary services and hunters, were 111 

submitted to the National Reference Laboratory for ASFV diagnostics at the National Veterinary 112 

Research Institute in Puławy, Poland. We used surveillance data from 8 administrative districts 113 

in Poland where ASFV was detected between 2014 and 2015 (Fig. 1). During this time frame, 114 
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139 of 2761 total wild boar samples tested positive for ASFV in a region spanning ~ 100km 115 

along the border (Fig. 1). The furthest case from the border was the 139th case which occurred in 116 

late 2015, 34.5 km from the border. Since sampling was strictly linked to hunting activities and 117 

the random discovery of carcasses, surveillance data were irregular and seasonally variable. A 118 

detailed description of laboratory procedures and tests can be found in Woźniakowski et al. 119 

2016.  120 

 121 

2.2   |   Modeling approach 122 

To account for wild boar population dynamics and their impact on ASFV ecology, we 123 

developed a spatially-explicit, individual-based model that accounts for variation among 124 

individuals in spatial behavior and social interactions (Gabor et al. 1999; Kaminski et al. 2005; 125 

Podgórski et al. 2014a, b). We estimated unknown parameters by fitting our model to ASFV 126 

surveillance data from Poland using methods of ABC (described below). We estimated rates of 127 

new viral introduction and probabilities of direct and carcass-based transmission that best 128 

explained the data. Rates of viral introduction from Belarus ranged from a single event to 60 129 

introductions per year (i.e., continuous spillover at the border). Likewise for both direct and 130 

carcass-based transmission mechanisms, we considered prior distributions that ranged from 0% 131 

transmission probability to 100% transmission probability to neighbors daily. Without prior 132 

knowledge on transmission dynamics in this specific system, this design allowed us to estimate 133 

the relative contribution of these three persistence mechanisms in explaining the observed 134 

surveillance data. Due to extreme computational requirements, sensitivity analyses were 135 

completed on a subset of data to broadly evaluate how mechanisms of viral maintenance vary 136 

over a range of host population densities. The general schematic for our modeling approach is 137 
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outlined in Figure S1. All analyses were implemented in Matlab (Version R2016b, The 138 

MathWorks, Inc., Natick, Massachusetts, United States). Attributes and model parameters for the 139 

model are described below.  140 

 141 

2.3   |   Individual-based model 142 

Landscape. The landscape was comprised of 5 x 5 km (25 km2) grid cells arranged 143 

similarly to the outbreak area (Fig. 1, Fig. S2). Grid cells each had a carrying capacity of 0.5-2 144 

boars/km2, which controlled heterogeneity in population density across the landscape through 145 

density-dependent reproduction. The total landscape size was 120 x 50 km (6000 km2). 146 

Attributes. Individual-level attributes were monitored and updated at a daily time step. 147 

Attributes included disease status, age, sex, unique group identification, dispersal age and 148 

distance, status of life, reproduction, age at natural death, x coordinate, y coordinate, and grid-149 

cell ID. The following disease states were included in the model to track ASFV transmission: 150 

susceptible, exposed, infectious (alive), and infectious (dead carcass) (Fig. 2). Sex, dispersal 151 

distance, and age at natural death were fixed throughout life but the other attributes changed 152 

based on time, age, group size, and grid-cell density.  Space was continuous at the individual-153 

level (individual home range centroids were continuous variables assigned to individuals that 154 

were located in discrete grid cells). Life status was monitored as alive (i.e., contributing to host 155 

population dynamics) or dead (i.e., a carcass on the landscape that can transmit disease but does 156 

not move or reproduce). Reproductive status described age-based conception ability, gestation 157 

status, and time since last birth for females. Individual attributes were updated based on the 158 

following processes: natural mortality, disease transmission, dispersal and social dynamics, 159 

surveillance sampling (permanent removal of individuals from the landscape), reproduction.  160 
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Disease dynamics. Disease transmission was modeled using the force of infection equation 161 

(FOI; rate at which susceptible individuals become infected) outlined in equation 1, where xi,j is 162 

the distance between the home range centroid of infectious individual i (Ii) and susceptible 163 

individual j (Sj) (as defined by their x and y coordinates), a denotes alive individuals, b denotes 164 

infectious carcasses, d denotes direct transmission, c denotes carcass-based transmission,  is the 165 

transmission probability that is specific to the transmission mechanism (d or c). To account for 166 

spatial contact behavior in wild boar (Podgórski et al. 2018), transmission probabilities were 167 

assumed to decay exponentially with distance according to the rate parameter  (Table 1). 168 

Additionally because wild boar exhibit heterogeneous contact structure due to family grouping 169 

(Pepin et al. 2016, Podgórski et al. 2018), probabilities of direct transmission and carcass-based 170 

transmission were assumed to be more likely if contact occurred within the same family group 171 

(wd and wc). In equation 1, w denotes Ii-Sj contacts that are within the same family group. 172 

Specific parameters are listed in Table 1.   173 

 174 

(1) 175 

Numerous studies demonstrate that animals in the family Suidae are extremely 176 

susceptible to multiple strains of ASFV with nearly 100% of domestic pigs and wild boar 177 

succumbing to disease within approximately 8-20 days post exposure (Blome et al. 2012, 178 

Gallardo et al. 2017). Infection can also present in a chronic form with viral shedding lasting 179 

more than 6 weeks, however, attenuated viral strains that promote chronic infections have never 180 

been reported in the Eastern European region (Sanchez-Vizcaino et al. 2015). Considering host 181 

competence in surviving wild boar is largely unknown, and only a small fraction of individuals 182 

are likely to survive viral exposure, we assume ASF is 100% lethal in wild boar. Periods of latent 183 

𝐹𝑂𝐼 =∑∑𝐼𝑖𝑎(𝑆𝑗𝛽𝑑𝑒
−𝜆𝑥𝑖𝑗

𝐾
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𝑁
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+  𝑆𝑗𝑤𝛽𝑤𝑑) +∑∑𝐼𝑖𝑏(𝑆𝑗𝛽𝑐𝑒
−𝜆𝑥𝑖𝑗 +  𝑆𝑗𝑤𝛽𝑤𝑐)
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and infectious disease in live hosts were Poisson random variables (Table 1). We tied viral 184 

persistence time in carcasses to carcass decay rates to give uninfected and infected carcasses the 185 

same opportunity to be sampled (and we could not find data to suggest otherwise). Therefore, 186 

infected carcasses were assumed to remain infectious for the entire duration they persisted in the 187 

environment. The infectious period of carcasses were assumed to vary seasonally based on field 188 

measures of carcass persistence in Eastern Poland (Table 1, Fig. 2).  189 

Social structure and dispersal. Social structure of wild boar is based on cohesive, 190 

matrilineal groups, composed of a few subadult and adult females and their offspring (Gabor et 191 

al. 1999; Kaminski et al. 2005; Podgórski et al. 2014a, b). Studies demonstrate that the frequency 192 

of direct contacts is much higher among individuals within than between groups (Podgorski et al. 193 

2014a; Pepin et al. 2016). Further, social groups may temporarily break, reform, or exchange 194 

individuals (Gabor et al. 1999; Poteaux et al. 2009) but group members usually form stable and 195 

long-lasting relationships (Podgórski et al. 2014a). Thus, social and spatial movement behavior 196 

can constrain wild boar contact and modulate the spread of infectious diseases (Loehle 1995). 197 

We accounted for the effects of social structure as described in Figure S3. Females and 198 

immatures occurred in family groups. Members of the same family group had the same home 199 

range centroid. Adult males were independent (not part of a group, each having a unique home 200 

range centroid). Social structure was dynamic – family groups that became too large (according 201 

to a maximum group size parameter; Table 1), split in half and one group dispersed (Fig. S3). 202 

Likewise, because adult females are rarely found alone (Kaminski et al. 2005, Podgórski et al. 203 

2014a), independent females were joined to the nearest family group that was below capacity 204 

(Table 1; Maximum group size). Dispersal caused permanent relocation of the home range 205 

centroid (x and y coordinates). Dispersal distances were chosen at random from a Weibull 206 
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distribution (Table 1; Figure S3). In addition to dispersal due to social structuring, natal dispersal 207 

also occurred, but only once at a randomly selected age (Table 1) assigned at birth. Males 208 

dispersed independently and females dispersed with their sisters. Although the dispersal of 209 

young wild boar leaving their maternal groups is the main source of long-distance movement, the 210 

majority of individuals disperse in relatively short distances (1-3 km diameter) from an average 211 

home range (<5 km2) and longer dispersals (5-30km) are less common (Truve and Lemel 2003; 212 

Keuling et al. 2010; Prevot and Licoppe 2013; Podgórski et al. 2014b; Kay et al 2017).  213 

The dispersal process (natal or other relocation) was: 1) for each 45 degree angle from 214 

the home range centroid, a new possible set of [x,y] coordinates was obtained using the dispersal 215 

distance value assigned at random to the group (Table 1; i.e. x = distance x cos(angle) + current 216 

x coordinate, y = distance x sin(angle) + current y coordinate). If at least one of these potential 217 

locations were valid (i.e., in a grid cell with fewer boars than the carrying capacity or a location 218 

off the grid), then a valid potential location was chosen at random and boar(s) were relocated 219 

there. Boars that traveled off the grid were lost permanently. If there were no valid locations, the 220 

distance value was doubled and the process repeated until a valid location was obtained.  221 

Birth and death parameters. Boar conception occurred randomly in reproductively active 222 

females based on a seasonally varying conception probability (Table 1; Fig. 2). Pregnant females 223 

gave birth to 6 offspring (3 male, 3 female) after a gestation period of 115 days (Table 1). 224 

Following birth there was a fixed lag of 3 months before the possibility of conceiving again 225 

(Table 1). Thus, the maximum number of litters per year was 2. Net population growth rate was 226 

controlled by multiplying the seasonal trends in conception probability by a scaling parameter 227 

(Ɵ). The full range of the prior distribution of Ɵ allowed net population growth rates to range 228 

between 1.3 and 2.3 for population densities at 10% of the carrying capacity, consistent with 229 
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Bieber and Ruf [2005]. Conception probability was density dependent such that conception did 230 

not occur in individuals in grid cells that were already at carrying capacity. The population-level 231 

host demographic dynamics were similar to a logistic model (Pepin et al. 2017). 232 

Sources of mortality included natural mortality, disease-induced mortality, and hunter 233 

harvests (described below). For natural mortality, each individual was assigned a longevity at 234 

birth based on wild boar life expectancy (Table 1; Fig. 2). 235 

Initial conditions and demographic burn-in. Populations were initialized as follows. A 236 

matrix with the number of rows equivalent to the desired population size was created. Each 237 

individual (row) was assigned attributes at random (Table 1). For males whose age was beyond 238 

dispersal age, dispersal status was recorded as completed. All females and males less than 239 

dispersal age were divided into group sizes that were ¼ of the maximum sounder size (plus one 240 

smaller group of remaining individuals if applicable). Each individual or group was assigned to a 241 

grid cell ID chosen at random (the algorithm ensured that unoccupied grid cells were selected 242 

first). Within each grid cell, the individual or group was given [x,y] coordinates selected at 243 

random. After the population was initialized, population dynamics were allowed to occur for 10 244 

years. The population at the end of the 10 years was used as the starting point for all simulation 245 

conditions with disease transmission. 246 

 Surveillance parameters. Because hunter harvests made up most of the sampling (94.5%) 247 

and hunter harvesting is thought to be a primary regulator of population density (Keuling et al. 248 

2013, Massei et al. 2015), we included it as a source of mortality in our model in addition to 249 

using it as our observation model. In 2014, average wild boar densities were estimated at 1.5- 2.5 250 

boar/km2, locally ranging from 0.5-1 boar/km2 to 3-5 boar/km2 (Regional Directorate of State 251 

Forests, Białystok, Poland). However, because we had no data on how the absolute number of 252 
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boar sampled related to the underlying density, we added parameters h and c to scale the 253 

absolute numbers of boar sampled up or down (Table 1). First we calculated the relative number 254 

of boar sampled daily by each surveillance method (number sampled on day t/maximum ever 255 

sampled on any given day) to produce seasonal trends in the proportion of the population 256 

sampled (Fig. 2; Fig. S4). Next, we multiplied the seasonal trend data for each surveillance 257 

method by the scaling factors (h and c, Table 1; Fig. S4) to determine the daily proportion of 258 

boar that would be sampled by hunter harvesting or dead carcasses. The product of the trend data 259 

and the scaling factor can be thought of as a daily detection probability. We assumed that boar < 260 

6 months of age would not be hunted (typically not targeted by hunters) and that boar < 3 months 261 

of age would not be sampled by the dead carcass method (because they are unlikely to be found). 262 

We recorded the disease status for all boar that were sampled and then immediately removed 263 

them from the landscape permanently.  264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 
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 276 

Table 1. Model parameters. 277 

 278 

 279 

 280 

 281 

Table S1. Description of parameters.

Parameter Values Estimated (Y/N) Source

Longevity PDF for longevity in Fig. 2 N Jezierski 1977

Daily conception probability per individual
Monthly values in Fig. 2 rescaled 

to daily (i.e., /30) ∙ q
Y (q)

Ježek et al. 2011; Rosell et al. 2012; 

Bieber and Ruf 2005; estimated (q)

Litter size 6 boars N
Bieber and Ruf 2005; Fruziński 

1995; Gethoffer et al. 2007

Age at reproductive maturity (females) 180 days N
Gethoffer et al. 2007, Rosell et al. 

2012

Minimum time between farrowing and 

conception
90 days N Barret 1978

Gestation time 115 days N Henry 1968 

Age of natal dispersal 
~Poisson(13 months); truncated 10-

24 months
N Podgórski et al. 2014a; Figure S4

N

N

Maximum group size 10 N Podgórski et al. 2014a

Incubation period ~Poisson(4 days), truncated at 1 N
Blome et al. 2013;Gallardo et al. 

2015

Infectious period ~Poisson(5 days), truncated at 1 N
Blome et al. 2013, Gallardo et al. 

2015

Disease-induced mortality (DIM) 100% N
Blome et al. 2013,Gallardo et al. 

2015

Contact probability given distance  e
-x

ij Y estimated

Direct transmission probability d Y estimated

Carcass-based transmission probability c Y estimated

Y

Y

Y

Y

Y

Y

Frequency of spillover (f) f Y estimated

Seasonal trend in sampling Fig. S4 N

Unpublished data of the National 

Veterinary Research Institute, 

Poland

Y

Number of carcass surveillance samples / day c ∙ Fig. S4 estimated

wd

wc

p ∙ data in Fig. 2Persistence of carcasses (p)
estimated ; Selva et al. 2005; N. 

Selva pers. comm.

Surveillance parameters

Number of hunter surveillance samples/ day h ∙ Fig. S4 estimated

Direct transmission probability for contact 

pairs in the same family group
estimated

Carcass-based transmission probability for 

contact pairs in the same family group
estimated

Epidemiological parameters

Dispersal distance
~Weibull(2.5,0.5); shown in 

Figure S3

Keuling et al. 2010; Podgórski et al. 

2014a, Prevot and Licoppe 2013; 

Demographic parameters
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 282 

2.4   |   Approximate Bayesian Computation 283 

We estimated the unknown parameters using ABC with rejection sampling. Estimated 284 

parameters are indicated in Table 1.  285 

Approximate Bayesian computation selects parameter sets for the posterior distribution 286 

using distance metrics (difference between model predictions and the observed data), a measure 287 

of how well a model parameter set approximates target patterns in the observed data. We used 288 

three distance metrics concurrently; the sum for each of: 1) monthly cases from carcasses, 2) 289 

monthly cases from hunter-harvest sampling, and 3) monthly maximum distance from the 290 

border. Distance metric tolerance values were 48 for monthly cases from carcasses, 24 for 291 

monthly cases from hunter-harvest samples, and 120 for maximum distance from the border. 292 

Parameter sets with outcomes lower than these values for all 3 metrics comprised the posterior 293 

distribution. This allowed average error rates of 2 (carcass) and 1 (hunter harvest) cases, and 5 294 

km from the border per month on average. We chose tolerance values based on what we believed 295 

to be an acceptable level of error for planning control strategies and risk assessment. Also, more 296 

stringent error rates would require restrictively large computational resources unless prior 297 

distributions are more informed.  298 

We fit the model to 4 different landscapes separately: ‘patchy’ including high (2 boar / 299 

km2) and low (0.5 boar / km2) density patches guided by the location of cases in the real data 300 

(average density ~1 boar/ km2); and ‘homogenous’ landscapes with densities of 1, 1.5, and 2 301 

boar / km2. This design evaluated whether observed outbreak patterns could have arisen from the 302 

underlying distribution of boar density being higher in patches where the disease was observed 303 

relative to other patches, as opposed to alternative mechanisms such as the surveillance patterns.  304 
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Prior distributions. Each parameter had a uniform prior distribution as follows: frequency 305 

of introduction f~Unif(0,60), d~Unif(0.0001,1),c~Unif(0.0001,0.99), h~Unif(0.0005,0.1), 306 

c~Unif(0.0005,0.8), p~Unif(0.1,1.5), q~Unif(0.5,6), λ ~ Unif(0.1, 2.5), wd~Unif(0.01,1), and 307 

wc~Unif(0.001,1). Prior distribution ranges were informed by movement and contact data 308 

(Podgórski et al. 2013, Pepin et al. 2016, Kay et al. 2017, Podgórski et al. 2018). As part of the 309 

parameter generation process we implemented the following constraints for each parameter set: 310 

d>c, wd>d, wc>c to further inform prior distributions with biologically realistic knowledge. 311 

To sample across parameter space efficiently we used a Latin hypercube algorithm to generate 312 

979,592 parameter sets and then ran the model twice on each parameter set (for a total of 313 

1,959,184 iterations; or 2 chains of 979,592). d, c, and c were sampled on a loge scale. 314 

Because the epidemiological model was time-intensive we used a two-tiered approach to 315 

evaluating parameter sets. First, simulations were terminated early if the trajectory was 316 

unrealistic – specific criteria were: 1) the landscape-wide host density dropped below 20% of the 317 

initial density, 2) more than 150 new cases occurred per day; 3) there were no new cases sampled 318 

by either type of surveillance method in the past 6 months, or 4) the total number of cases 319 

sampled by both methods of surveillance totaled more than 300 (more than double the actual 320 

number). We then only considered parameter sets for which the simulation reached the end of the 321 

two-year time frame. For this reduced set, the posterior distributions consisted of all unique 322 

parameter sets (considering both chains) that were within the absolute distance of three metrics: 323 

the sum of absolute differences between observed and simulated data for monthly positive 324 

samples from live and dead animals (considered separately), and the maximum monthly distance 325 

of cases from the border. 326 
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Goodness-of-fit. To determine the ‘best’ landscape model we ranked models from the 327 

different landscapes based on their distance metrics (where minimum values are best) and the R2 328 

values (squared correlation coefficient of the observed and predicted data) for the observed 329 

versus the predicted monthly cases and monthly distance from the border (Table 1). To calculate 330 

the R2 values, for each landscape we conducted 1000 simulations using random draws from the 331 

posterior distributions of parameters and calculated the R2 value for each simulation. We then 332 

took the mean of the 1000 R2 values for each metric (monthly cases and distance) to represent 333 

the overall R2 values for the metrics of a particular model. As another measure of predictive 334 

ability, we tested the ability of our models to forecast ASF dynamics by using the parameters 335 

estimated from fits to the 2014-2015 data to predict the first 7 months of 2016 (Jan.-Jul.). We 336 

then compared the R2 values for the in-sample predictions relative to the full set of predictions 337 

(Table 1).  338 

2.5   |   Sensitivity analyses 339 

Sensitivity analyses were conducted on homogenous landscapes varying in density from 340 

1-4 boar / km2, reflecting the observed densities of wild boar in Eastern Europe (Melis et al. 341 

2006). We completed a full factorial sensitivity analysis to assess how ASF persistence and 342 

transmission dynamics respond to changes in f, d, and c. Transmission parameters d, and c 343 

varied from no transmission (0.0001) to high levels of transmission (0.3) and f was varied from 344 

1 introduction to 50 introductions per year. All other parameters were fixed with a parameter set 345 

from the posterior distribution of the patchy landscape model. Sensitivity analyses were 346 

completed using 3 different 50 km x 50 km landscapes that varied in host density (1-4 347 

boars/km2). The index case occurred in grid cell 50 (middle of the most right side column of grid 348 

cells) on day 30 (same day of introduction in the ABC analyses). All runs were conducted for 2 349 
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years. We ran 100 replicate simulations for each set of conditions. We recorded all cases (true 350 

behavior), but included host mortality due to hunting and removal of dead carcasses due to 351 

surveillance sampling. We recorded the following output: 1) persistence probability (proportion 352 

of 100 simulations where at least one case occurs in the last week of the two year period after 353 

only a single introduction at the start), and 2) the proportion of transmission events that were 354 

from direct and carcass-based transmission. The latter output was obtained by recording the 355 

proportion of transmission events that were direct transmission for each day and taking the 356 

median value over time, considering only days where at least one transmission event occurred. 357 

We modeled the outputs using generalized linear models using appropriate distributions and/or 358 

data transformations for each of the 4 response variables and including the transmission 359 

probability parameters and introduction frequency as covariates, and all interactions. The 360 

purpose of these models was simply to interpolate the relationships at a higher resolution within 361 

the range of values used in the simulations. For modeling persistence probability, we also 362 

included up to 4th order interactions because the relationships were highly non-linear and thus 363 

these were important for accurately interpolating the relationships.  364 

3   |   RESULTS 365 

3.1   |   Model fit 366 

Despite high uncertainty in several estimated parameters, the models captured the general 367 

trends in the surveillance data well (Fig. 3). All models captured monthly cases better than 368 

monthly maximum distance from the border (Table 2, Fig. 3). Relative to the observed data, the 369 

model predicted higher incidence during months 14-16 (Feb.-Apr. of the second year which 370 

included a birth pulse) and lower incidence than the observed data in months 5-7 (May-Jul. of 371 

the first year, which included a period of abnormally low surveillance) (Fig. 3a, Fig. S4). The 372 
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average prevalence observed through surveillance in the model tracked the magnitude of true 373 

sample prevalence for both hunter-harvest and carcass surveillance samples (Fig. S5). Models fit 374 

on homogenous landscapes of host density did not capture spatial spreading rates as well as the 375 

patchy landscapes that included high-density patches (2 boar / km2; average 1 boar / km2; Table 376 

2). 377 

Rejection rates for the proposed parameter sets were high for all four models, such that 378 

posterior distributions ranged between 6-53 values (0.00031%-0.0027% model acceptance rate) 379 

(Table 2), and uncertainty in parameter estimates were large (See Fig. S6). Due to the high 380 

amount of stochasticity in model processes and uncertainty in parameter estimates, the model fit 381 

the data on average (i.e., R2 for the median trajectory of stochastic runs relative to observed data; 382 

Fig. 3c, d) better than the observed data relative to any one trajectory (i.e., median of R2’s for 383 

each stochastic run; Fig. 3a, b). R2 for the full data (including out-of-sample predictions) were 384 

lower than those for the in-sample predictions (Table 2, Fig. 3a, b), indicating that the model 385 

performed worse at out-of-sample prediction. The posterior distributions revealed parameter 386 

correlations (Fig. S7). d and c were negatively correlated with each other and even more 387 

negatively correlated with , whereas c and p were positively correlated (Fig S7). Other 388 

parameters were relatively uncorrelated.  389 

3.2   |   Role of carcass-based transmission 390 

The models predicted a substantial amount of carcass-based transmission (monthly 391 

average between 53 and 66% during 2014-2015 depending on the landscape; Fig. 4) and a much 392 

higher prevalence of ASF in sampled carcasses versus hunter harvested samples (Fig. S5a). The 393 

best model (patchy landscape) also predicted a slow decline of the wild boar population over 394 

time (Fig. S5b), which corresponded to proportionately more transmission events originating 395 
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from carcass-based transmission over time (Fig. 4), especially in the patchy and low-density 396 

homogenous landscapes.  397 

3.3   |   Host density effects on ASF persistence  398 

Sensitivity analyses showed that densities higher than 1 boar / km2 were important for 399 

autonomous persistence (Fig. 5 a,d,g). Without carcass-based transmission, persistence required 400 

re-introduction 10 or more times per year at lower host densities (Fig. 5b,e). However, with only 401 

carcass-based transmission, persistence occurred across some narrow range of carcass-based 402 

transmission probabilities even at low host densities (Fig. 5c,f) with few to no re-introductions. 403 

In contrast, high host density (4 boar / km2) allowed for autonomous persistence when carcass-404 

based transmission was absent (Fig. 5g,h,i) over some narrow range of transmission probabilities 405 

for either transmission mechanism on its own.  406 

 407 

Table 2. Model selection and fits for different densities and patchiness of the wild boar 408 

population. The model that best explained the data is highlighted in light grey. This model 409 

produced similar fits to the case data compared with the other models, but performed 410 

significantly better in terms of the R2 and ABC distance metrics for fitting to the distance from 411 

the border. 412 
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 413 

aMedian distance  metrics ± 95% confidence intervals for 1000 simulations from the posterior 414 

distribution. 415 

 416 

4   |   DISCUSSION 417 

The persistence of ASFV in wild boar in Eastern Europe remains a significant threat to 418 

domestic pig populations globally, and hence international trade and food security. By fitting a 419 

mechanistic disease-dynamic model to spatio-temporal disease surveillance data using prior 420 

knowledge of wild boar population dynamics, we inferred that 53-66% of ASFV transmission 421 

events occurred through the contact of susceptible hosts with dead carcasses. Because wild boar 422 

tend not to contact carcasses immediately, but will continue to contact carcasses even during the 423 

Patchy Homogenous Homogenous Homogenous

Goodness of fit 0.5 or 2 boar / km
2

1 boar/km
2

1.5 boar/ km
2

2 boar/ km
2

R
2

Monthly cases in sample 0.55 ± 0.0060 0.56 ± 0.006 0.57 ± 0.006 0.53 ± 0.006

(Median of the R
2
's for 1000 individual 

time series ± 95% confidence interval)
all 0.47 ± 0.0049 0.51 ± 0.006 0.49 ± 0.006 0.50 ± 0.007

Monthly distance from border in sample 0.31 ± 0.018 0.25 ± 0.012 0.23 ± 0.013 0.20 ± 0.015

(Median of the R
2
's for 1000 individual 

time series ± 95% confidence interval)
all 0.28 ± 0.011 0.27 ± 0.009 0.26 ± 0.011 0.23 ± 0.011

Monthly cases in sample 0.63 0.64 0.65 0.59

(R
2
 of median values from 1000 points at 

each month)
all 0.53 0.61 0.59 0.57

Monthly distance from border in sample 0.53 0.43 0.45 0.40

(R
2
 of median values from 1000 points at 

each month)
all 0.55 0.44 0.46 0.42

Distance metrics
a 

Median absolute error in monthly live 

cases ± 95% confidence interval 
in sample 20 ± 0.5 20 ± 0.7 20 ± 1.1 21 ± 1.0

Median absolute error in monthly carcass 

cases ± 95% confidence interval 
in sample 44 ± 0.8 45 ± 0.8 43 ± 2.2 45 ± 2.5

Median absolute error in monthly distance 

from border ± 95% confidence interval in sample 106.6 ± 3.0 110.3 ± 3.1 110.7 ± 4.3 112.7 ± 4.4

Number of values in posterior distribution 

(acceptance rate in %)

53 / 1,959,184 = 

0.0027%

28 / 1,959,184 = 

0.0014%

8 / 1,959,184 = 

0.00041%

6 / 1,959,184 = 

0.00031%
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later stages of decay (Probst et al. 2017), increased surveillance and elimination of carcasses 424 

could dramatically decrease transmission (Morelle et al. 2019). Thus, developing cost-effective 425 

methods for carcass detection and retrieval may be critical to reduce transmission rates in wild 426 

boar populations (Guinat et al. 2017). Additionally, as we found that the relative importance of 427 

transmission mechanisms depended critically on host density, our results emphasize the 428 

importance of considering wild boar population dynamics in control (EFSA, 2017).  429 

Although our model captured the data fairly well, when the model fit incidence as well as 430 

possible, it underestimated the rate of spatial spread. When it fit the rate of spatial spread well, it 431 

overestimated incidence. Thus, the structure of our model lacked an important unknown process 432 

in the spread of ASFV in wild boar populations. Because our modeling framework accounts for 433 

well-documented spatial contact (Podgórski et al. 2018) and dispersal distances (Keuling et al. 434 

2010, Podgórski et al. 2014b), our difficulty with concurrently fitting incidence and distance 435 

trajectories could be due to long-distance movements occurring often enough to seed infection 436 

outside the daily home range or dispersal movements. These results come as no surprise, as the 437 

human-mediated spread of ASFV continues to play a large epidemiological role in the area 438 

(EFSA, 2017). One possible source is hunters that may contaminate hunting equipment when 439 

processing infectious carcasses and then introduce the infectious fomites at another site (Wieland 440 

et al. 2011). Implementing enhanced hunting biosecurity policies could help reduce the spatial 441 

spread of ASFV by hunters. A second possibility are other species which have contact with 442 

infectious carcasses, e.g. scavenging carnivores, birds, and flies, and subsequently disperse 443 

contaminated tissue. Although the role of mechanical vectors in ASFV epidemiology remains 444 

unknown, they are known to enhance spread of many diseases (Siembieda 2011), suggesting that 445 

this mechanism could be worth further investigation.  446 
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Our model tended to predict a relatively high incidence immediately after introduction of 447 

the index case, as would be expected by a new disease introduced into a completely susceptible 448 

population. However, hunting was limited initially in the 1st 3-4 months which accounts for the 449 

low number of observed cases during this time. Once the hunting ban was lifted, the number of 450 

observed cases increased, although the underlying dynamics were more consistent (data not 451 

shown). We accounted for temporal trends in hunting using data on overall sample sizes, but we 452 

did not have precise locations for negative surveillance data. Locations of all samples are 453 

important for data fitting because, as we saw with the temporal sampling data, the surveillance 454 

system limits our observation of the underlying process. If in reality surveillance sampling 455 

locations shifted in spatial clusters that were nearer versus farther from the border, rather than all 456 

samples being spread out randomly, it is possible that cases that were further from the border 457 

may have been detected – i.e., representing the surveillance process as spatially random could 458 

have diluted detection of cases that occurred further away. Indeed, the true rates of spatial spread 459 

were faster than the predicted observed rates in our model (e.g., 16.8 vs 20.2 km from the border 460 

respectively for year 1, and 26.8 vs 31.5 km respectively for year 2), suggesting that accounting 461 

for spatial locations of all surveillance samples could help to improve inference of the spatial 462 

spreading process, and potentially our understanding of the role of transmission mechanisms. 463 

Our analyses highlight the importance of fully recording metadata for negative samples and 464 

appropriately accounting for the full sampling design in the observation process.  465 

Several studies have observed reductions in prevalence of target pathogens from within 466 

populations that diseased hosts are removed from (e.g., Donnelly et al. 2006, Mateus-Pinilla et 467 

al. 2013, Manjerovic et al. 2014, Boadella et al. 2012). However, as others have emphasized, 468 

there can be unexpected consequences of culling programs – for example, adaptation of the virus 469 
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to low density conditions (Bolzoni & De Leo 2013), or increases in long-range host movements 470 

that lead to increased spread of disease (Bielby et al. 2014, Comte et al. 2017). Our sensitivity 471 

analyses also demonstrated that decreasing host density could have unexpected consequences. 472 

We found that while high host densities allowed autonomous persistence by direct transmission, 473 

carcass-based transmission could allow persistence as host density decreases by effectively 474 

extending the opportunity for hosts to contact contaminated carcasses. Thus, a thorough 475 

understanding of the host-pathogen transmission ecology in response to management are 476 

important before planning abundance reduction programs (Harrison et al. 2010). To control 477 

ASFV, density reduction programs will likely be most successful if they include intensive 478 

surveillance and the removal of dead carcasses, especially as populations reach low densities. 479 

A recent study found that for wild boar, a social species that aggregates in family groups 480 

(Podgórski et al. 2014a, Podgórski et al. 2014b), spatially-targeted culling that focuses on 481 

removing all members of family groups is more effective than random removal of individuals 482 

(Pepin & VerCauteren 2016). Although this simulation model did not account for movement 483 

responses due to culling, it did include effects of social structuring in disease transmission. 484 

Because intensive hunting can induce escape movements and intergroup mixing (e.g., Scillitani 485 

et al. 2010), culling programs should consider removal of all individuals in a group to decrease 486 

the chance of increased long-distance movement due to social structure disruptions.  487 

We assumed that ASF was 100% lethal in wild boar, which is an oversimplification of 488 

the system. Indeed, surveillance data in the region suggest there are survivors with < 1% of 489 

individuals testing positive for antibodies against ASFV in the outbreak region (unpublished data 490 

of the National Veterinary Research Institute, Puławy, Poland). Because we assumed absolute 491 

lethality, our models predicted that ongoing transmission of ASFV led to decreased host 492 
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densities and higher levels of carcass-based transmission over time. However, if a strain of 493 

ASFV with reduced lethality were to emerge in this area we might expect different 494 

epidemiological dynamics. Specifically, if more hosts remained alive, they would be available to 495 

reproduce, maintaining higher host densities and a more consistent influx of naïve hosts which 496 

could lead to persistence or recurrent epidemics by direct transmission alone (Stone et al. 2007). 497 

Thus, surveillance for changes in lethality are important for optimizing control strategies in local 498 

areas over time.  499 

Our implementation of wild boar spatial processes is a simplification of reality. We 500 

assumed that individuals could potentially contact other individuals in all directions each day, 501 

with a contact probability that decayed with distance. However, in reality, wild boar movements 502 

are biased towards habitat features and related individuals (Kay et al. 2017, Podgórski et al. 503 

2014a). Although these movements would lead to temporal variation in the distance-transmission 504 

probability relationship as we assumed, it may be that the particular locations of the movements 505 

(e.g., biased towards particular resources or conspecifics) are important to capture, rather than 506 

just the overall distance-variation structure. Indeed, recent work has shown that accounting for 507 

elk movement mechanistically can provide predictions of spatio-temporal prevalence of 508 

brucellosis disease in response to changing seasonality and climate (Merkle et al. 2018).  509 

Mechanistic movement models based on landscape heterogeneity have also been used to predict 510 

areas of highest contact rates (Tardy et al. 2018), another metric of disease transmission risk. 511 

Adaptive prediction of where and when disease transmission risk may be highest is important for 512 

enabling managers to prioritize mitigation strategies in space and time in a cost-effective manner.  513 

Additionally, although theory predicts that implementing reactive control based on knowledge of 514 

social structure can help determine the effectiveness of control (e.g., Azman et al. 2015), we 515 
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rarely know individual-level relationship status a priori. Understanding the link between 516 

mechanistic movement, landscape heterogeneity, and disease transmission could help provide 517 

more practical (landscape-based) guidance for prioritizing surveillance and interventions.  518 

 519 
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FIGURE LEGENDS 764 

 765 

Fig. 1. Location of the ASF outbreak in the wild boar population in Poland (2014-2015). Black 766 

dots indicate ASF cases in wild boar with the first case labeled. Shaded areas represent 767 

administrative districts from which surveillance data used for parameter estimation originated 768 

(dark grey - "infected zone" in the text, light grey - "buffer zone"). 769 
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 770 

Fig. 2. Schematic of disease state transitions and demographic turnover. Seasonal trends in births 771 

and carcass persistence are shown in bar plots. Seasonal trends in the intensity of sampling by 772 

hunting and carcass sampling are shown in the line plots. There were three mechanisms of 773 

mortality: disease-induced (I2), natural death, or through hunting. There are two potential routes 774 

of transmission: direct (d) or carcass-based (c), which occur via a spatial contact function, F(C), 775 

and a transmission probability given contact,  (d for direct and c for carcass-based). 776 

Persistence of carcasses on the landscape varied seasonally (to reflect weather-based differences 777 

in degradation rates) but were the same regardless of the mechanism of death, such that carcasses 778 

by all mortality mechanisms had equal probability of being sampled. Seasonal trends in 779 

conception probability, carcass persistence, and sampling modes were all multiplied by scaling 780 

parameters (θ, p, h, c) which were estimated. We also allowed for exposed individuals to be 781 
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introduced along the eastern border at frequency f.782 

 783 

Fig. 3. Model fit (patchy landscape). Trajectory of new cases (A) and maximum distance from 784 

the border (B) for observed (red) and predicted (black). Shaded areas indicate 95% prediction 785 

intervals from 1000 simulations from the posterior distributions of parameters. Solid lines 786 

indicate the data that were used for parameter estimation whereas dotted lines show the out-of-787 

sample predictions. C and D show the observed versus predicted points (where each point is the 788 

median across all simulations at each time step) for monthly cases (C) and maximum distance 789 

from the border (D). In-sample points (2014-2015) are in black, out-of-sample points (2016) are 790 

in grey. The grey dotted line indicates the expected fit of the points (1:1 ratio of observed and 791 
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predicted points). 792 

 793 

Fig. 4. Proportion of transmission events that are from direct transmission. Shaded lines are 95% 794 

prediction intervals for 1000 simulations from posterior distributions of each model. Red 795 

indicates >50% of transmission events are carcass-based; blue indicates that >50% are direct. 796 

The different lines show results for different landscapes (heterogeneous versus the three 797 

homogenous landscapes of different densities). Note, parameter estimates were different 798 

depending on the landscape (Table 2). The transparent shaded panel indicates out-of-sample 799 
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predictions. 800 

 801 

Fig. 5.  802 

Effects of host density and persistence mechanisms. Colors show the probability that ASFV will 803 

persist with dark red representing high probability, yellow representing moderately high 804 

probability, light blue representing moderate probability, and dark blue representing low 805 

probability. Axes show the values of the three persistence processes we examined: 1) between-806 

group direct transmission probability (d), 2) between-group carcass-based transmission 807 

probability (c), and 3) introduction frequency (f) as indicated. For each two-way plot, the third 808 

parameter (d, c, or f) was fixed at 0 in order to disentangle each two-way interaction. Within-809 
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group transmission probabilities were fixed at 10 times their respective between-group 810 

transmission probabilities. Other parameters estimated by the model were fixed at biologically 811 

realistic values: h  0.05, c  0.025, p  , q  2,   .5 other parameters were as in Table 1. 812 

Each plot shows results for a different host density. The mean values in black show means for 813 

the entire plot, giving an overall effect of the landscape on spatial spread. 814 

Supplementary Figures 815 

Fig. S1. Schematic of modeling approach.  816 

 817 
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 818 

Fig. S2. Host density structure of landscapes used for data fitting by ABC. X and Y-axes are 819 

in km. The Eastern border is indicated in yellow – boar were not allowed to the right of this line. 820 

Each grid cell is 5 x 5 km. Grid cell colors correspond to maximum boar density allowed in the 821 

grid cell which was 0.5 (light pink) or 2 (dark red) boar / km2. This landscape was the patchy 822 

landscape. We also compared fits on this landscape to ones with homogenous densities of 1 (the 823 

average of the patchy landscape), 1.5, and 2 boar/km2 to evaluate the role of landscape structure 824 

in explaining the patterns of spread. The grid on the right shows observed case locations by year: 825 
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2014 (black), 2015 (red), Jan.-Jul. 2016 (blue). The data from 2016 was withheld for parameter 826 

estimation, but was used to assess out-of-sample model performance. 827 

 828 

S3. Dispersal and social dynamics. Schematic of dispersal mechanisms and social dynamics. 829 

These dispersal events result in permanent relocation of the home range centroid. Natal dispersal 830 

age and dispersal distance for each permanent relocation event are chosen at random from 831 

distributions supported by empirical data displayed on the right half of the figure. 832 
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 833 

Fig. S4. Sampling trends in the infected zone. The vectors of daily proportion values were 834 

multiplied by scaling parameters (h, c) to determine the proportion of the population sampled 835 

each day. Thus, for example, the number of boar sampled on day t by hunting was: number of 836 

boar on the landscape (only including those > 6 months) x proportion in the sampling trend 837 

vector on day t x h. This method accounts for seasonal changes in boar abundance and 838 

sampling. The dotted lines indicate 2016 data, which were not used for parameter estimation but 839 

were used for prediction out-of-sample. 840 
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 841 

Fig. S5. Predictions from 1000 simulations from the posterior distribution (patchy landscape). 842 

Solid lines indicate the time period used for model fitting whereas dotted lines show the out-of-843 

sample predictions for 2016. A. Monthly prevalence in hunted (black) and carcass (red) 844 

surveillance samples. Dashed lines are monthly prevalence in the real surveillance data. B. 845 

Predicted abundance of wild boar in the simulations. 846 

 847 

 848 
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 849 

Fig. S6. Credible intervals (CI) of estimated parameters for each model (solid lines are 95% CIs, 850 

dotted lines are 80% CIs). Prior distributions are all uniform and span the width of the X-axes. 851 

Red shapes indicate the median of the posterior distribution. 852 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.13.875682doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.875682


47 
 

 853 

 854 

Fig. S7. Results are from the patchy landscape. Colors are correlation coefficients between 855 

parameters. d and c were positively correlated with each other and even more positively 856 

correlated with λ, whereas c and p were negatively correlated, and other parameters were 857 

relatively uncorrelated. 858 

 859 

 860 
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