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Abstract 

G-protein coupled receptors (GPCRs) represent a significant target class for pharmaceutical 

therapies. However, to date, only about 10% of druggable GPCRs have had their structures 

characterized at atomic resolution. Further, because of the flexibility of GPCRs, alternative 

conformations remain to be modeled, even after an experimental structure is available. Thus, 

computational modeling of GPCRs is a crucial component for understanding biological function 

and to aid development of new therapeutics. Previous single- and multi-template homology 

modeling protocols in Rosetta often generated non-native-like conformations of transmembrane 

α-helices and/or extracellular loops. Here we present a new Rosetta protocol for modeling 

GPCRs that is improved in two critical ways: Firstly, it uses a blended sequence- and structure-

based alignment that now accounts for structure conservation in extracellular loops. Secondly, by 

merging multiple template structures into one comparative model, the best possible template for 

every region of a target GPCR can be used expanding the conformational space sampled in a 

meaningful way. This new method allows for accurate modeling of receptors using templates as 

low as 20% sequence identity, which accounts for nearly the entire druggable space of GPCRs. 

A model database of all non-odorant GPCRs is made available at www.rosettagpcr.org.  
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Author Summary 

Structure-based drug discovery is among the new technologies driving the development of next 

generation therapeutics. Inherent to this process is the availability of a protein structure for 

virtual screening. The most heavily drugged protein family, G-protein coupled receptors 

(GPCRs), however suffers from a lack of experimental structures that could hinder drug 

development. Technical challenges prevent the determination of every protein structure, so we 

turn to computational modeling to predict the structures of the remaining proteins. Again, 

traditional techniques fail due to the high divergence of this family. Here, we build on available 

methods specifically for the challenge of modeling GPCRs. This new method outperforms other 

methods and allows for the ability to accurately model nearly 90% of the entire GPCR family. 

We therefore generate a model database of all GPCRs (www.rosettagpcr.org) for use in future 

drug development.  
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Introduction 

G-protein Coupled Receptors Represent Important Therapeutic Targets  

G-protein coupled receptors (GPCRs) are the largest family of membrane proteins in the human 

body comprising nearly 800 distinct receptors [1]. They orchestrate cellular response to 

extracellular signals and thus play roles in immune response, cardiopathies, and neural 

development. They are a ubiquitous family of proteins evolved over time to respond to a variety 

of stimuli including ions, small molecules, larger peptides, and even light [2]. Given their 

position at the interface of a cell with its environment, they are attractive targets for therapeutic 

intervention. Current estimates suggest around 30% of drugs available act at a GPCR [3]. 

Experimental structures of GPCRs are determined at an increasing rate overcoming substantial 

obstacles 

The first atomic resolution structure of a GPCR was rhodopsin in 2000, in part due to its high 

abundance and stability from native sources [4]. For most receptors, expression levels are well 

below what is needed for structural characterization from orthologous sources. Therefore, it 

wasn’t until 2007 that the structure of a second receptor was experimentally determined [5,6]. As 

dynamic, membrane-bound proteins, significant protein engineering was needed for structure 

determination (i.e. thermostabilization through mutation, nanobodies, fusion protein, or 

truncation of flexible termini) [7]. Since 2007, about 50 unique receptor structures have been 

determined. While this is a tremendous achievement, this represents only about 6% of the GPCR 

superfamily. Even when focusing on non-olfactory GPCRs that are generally considered as 

druggable targets, nearly 350 unique receptors remain to be structurally characterized either for 

better understanding of how current drugs bind their targets or for structure-based drug 
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discovery. Of importance, at least 100 of non-olfactory GPCRs have been designated orphan 

receptors due to a lack of chemical matter [8]. Knowledge of the structural details of the ligand 

binding pocket could assist in identifying chemical probes for these dark receptors.  

Computational Modeling can Extend our Current Understanding of GPCR Structures 

Given this knowledge gap, homology modeling is an important tool for generating models of as-

of-yet undetermined receptor structures. Homology modeling uses a protein template with a 

shared topology to map the target sequence onto its backbone coordinates in a process called 

threading [9]. Early homology modeling relied on a single template structure for target structure 

prediction. However, these methods fail to generate accurate models using templates with low 

sequence identity to the target protein. More recently, the use of multiple templates has seen 

success in modeling targets in which the sequence identity is below 50% to any given template 

[10,11]. Given that GPCRs share identities in the range of 20-30%, GPCR-specific homology 

modeling has largely moved towards multiple template modeling. Servers for the prediction of 

GPCRs from multiple templates are available including GPCR-ModSim [12], GPCR-I-Tasser 

[13], GPCRM [14], GPCR-SSFE [15], and GPCRdb [16]. GoMoDo, another server, uses single-

template modeling [17]. The underlying software for all these servers is Modeller [18], except 

for GPCR-I-Tasser [11]. To date, no GPCR-specific multi-template modeling method has been 

developed in Rosetta, a software capable of structure prediction, design, and docking of ligands 

[19,20]. Despite a unified method for GPCR modeling, Rosetta’s performance on single-template 

modeling of GPCRs has been analyzed in the past with mixed success. In the GPCR Dock 

experiment [21], Rosetta performed best in the structure prediction of the Smoothened receptor 

ligand binding pose [22]. 

Rosetta Hybridizes Multiple Templates 
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While other methods predefine template segments for various parts of the target model or 

averages template structures, Rosetta handles multiple templates simultaneously during its 

modeling process [23]. Rosetta holds all templates in a defined global geometry and randomly 

swaps parts of each template using Monte Carlo sampling to identify regions from the various 

templates that best satisfy the local sequence requirements. This template swapping occurs in 

parallel with the traditional peptide fragment swapping from a database derived from the PDB 

based on the target sequence and predicted secondary structure, a hallmark of Rosetta’s folding 

algorithm [24]. This simultaneous sampling of template segments and peptide fragments allows 

the energy function to define which segments to keep from the various templates based on how 

well each segment improves the overall score of the model. Hybridization of templates has been 

shown to be successful in CASP experiments, particularly for low template identity targets down 

to 40% [23]. Below 40% identity, Rosetta is capable of producing accurate models, though it is 

not known a priori if the output models will be reliable. 

Development of a GPCR-specific Multiple-Template Homology Modeling Protocol in Rosetta 

Given the past success of Rosetta in single template homology modeling of GPCRs [22] and the 

novel strategy of multiple template modeling in the Rosetta framework [23], we set out to 

develop a protocol specific to GPCRs that utilized these new algorithms. The change from the 

previous single-template homology modeling to multiple-template modeling was multifaceted 

and we tested each component individually. First, the use of multiple templates begs the question 

of what is the optimal number of templates to use. Previous work in multiple template homology 

modeling suggested that there is a goldilocks effect in which multiple templates are better than 

one but too many templates could actually hurt the modeling process [25]. Additionally, as 

Rosetta uses a peptide fragment library, we evaluate its influence on enhancing modeling 
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accuracy. Further, loop closure is handled simultaneously in Rosetta’s multiple-template 

homology modeling through the use of these peptide fragments. As these loops are defined by 

their input template, we optimized the alignment in these regions and tested its effect on model 

accuracy. We benchmarked our methods on 34 available structures of unique GPCRs covering 

the four classes (A, B, C, and F) that had structures available at the outset of the study in July 

2017. Additionally, we chose to model all targets using templates below 40% sequence identity, 

unless otherwise noted, to mimic the situation when predicting novel target structures. We find 

that our GPCR-specific Rosetta-based multiple template homology modeling method 

(RosettaGPCR) is highly accurate due to the curated sequence alignments and peptide fragment 

utilization. We find, that our new method accurately models Class A receptors down to a 

template identity of 20%. Further, this method outperformed other GPCR servers in the 

prediction for four new GPCR structures. Based on this success, we established a database of all 

human non-odorant receptors available for use (www.rosettagpcr.org). Altogether, RosettaGPCR 

is currently one of the best available methods for modeling this pharmacologically important 

family of proteins.  
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Methods 

Description of Benchmark Data Set 

For this study we chose to model 34 crystal structures of GPCRs covering the four structurally 

characterized classes A, B, C, and F. In total there were 29 Class A members, two Class B 

receptors, two Class C receptors, and one Class F receptor (Table S1). Importantly, we chose to 

model the receptors using exclusively templates below 40% sequence identity, unless explicitly 

noted, as this most closely resembles the majority of real-life cases when modeling GPCRs. 

Generation of multiple-sequence alignments of templates 

Initial alignments for the benchmark set were obtained from the GPCRdb [26]. This largely 

ensured that the transmembrane α-helices were well aligned. To improve on these alignments, 

the structures were visualized in PyMol, and the structural alignments were compared to the 

sequence alignments. Transmembrane helical sequences were aligned starting from the most 

conserved residue in each α-helix and extended outwards using the structural alignments to guide 

insertion and deletions along the α-helical axis. Loop alignments were generated based on the 

alignment of vectors of Cα to Cβ atoms between receptor structures. If structures were present in 

loop regions such as disulfides, α-helices, or β-sheets, these were preserved in the alignment. 

Remaining residues that could not be aligned by any of the above metrics were moved to be 

adjacent to a region of defined secondary structure to ensure proper fitting of peptide fragments 

between ordered and unordered regions. The alignment of the 34 receptors is shown in Figure 

S1. Additional alignments were generated using the default options of ClustalOmega [27], 

Muscle [28], T-Coffee TM-PSI and Espresso [29], and Mustang [30] and used without further 

modification. 
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Template Selection 

For all receptors, a pairwise identity matrix was generated using ClustalOmega [27]. The 

reported identities were used to rank the templates for each receptor model. Shown in Table S2 is 

the ranked list of templates for each target receptor. While most templates have sequence 

identities below 40%, those highlighted in yellow were removed because they featured sequence 

identity above the 40% threshold. Templates labeled in bold were used in single-template high 

identity modeling to compare to previous benchmark [22]. 

Generation of Additional Input Files 

Membrane spanning topology files were generated by submitting the sequence of the target 

proteins to Octopus [31]. The output files were converted into Rosetta readable span files with 

Rosetta’s built in octopus2span.pl script. Disulfide bond restraint files were prepared for each 

target protein for the conserved disulfide bond between TM3 and ECL2, except for LPA1 and 

S1P1. Additional disulfide bonds within ECL3 were mapped as needed. 

Sequence alignment of target sequence to template MSA 

Alignment of sequences without known structure was accomplished similarly as above. First, 

alignments were extracted from GPCRdb. Then the highly conserved residues in each helix were 

aligned with the template MSA. Positioning of residue x.50 (BW numbering) often corrected 

helix alignments but gaps and deletions were propagated throughout families. For receptors 

lacking the highest conserved residue in each helix, other motifs such as DRY, NPxxY, and 

CxxP were used for helix positioning. The loops were aligned as such: ECL1, ICL1, and ICL2 

were aligned using common sequence motifs (eg. xWxxG in ECL1). For ICL3, sequence 

alignments were maintained within families particularly with receptors with short loops such as 
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the Class B and chemokine receptors. For the majority of receptors, the ICL3 sequence was split 

at the halfway point between TM5 and TM6 and the halfves were adjoined directly to the end of 

TM5 or beginning of TM6, respectively. For ECL3, particular attention was given to the 

presence of cysteines for either internal ECL3 disulfides or disulfides between N-terminus and 

ECL3. These cysteine residues were used for alignment. For receptors lacking cysteine bonds, 

patterns identified in template familes were used to fix family alignments. Remaining receptors, 

again had the sequence of the loop halved and adjoined the halves to their next helix sequence. 

For ECL2, targets were grouped by putative ligand binding type: aminergic, lipid, peptide, 

unknown. Based on this grouping, the alignments were carried out specifically for their family 

type (i.e. a beta sheet was predicted and aligned for all peptide receptors). For receptors with 

unknown ligand type and dissimilar ligand, the loop sequence was first divided at the conserved 

cysteine residue and this residue was aligned generating two shorter loops. These loops were 

then halved and adjoined to their nearest fixed structural feature, either a transmembrane helix or 

the conserved disulfide bond with TM 3. The full MSA of all receptors is available at 

www.rosettagpcr.org.  

Model Production 

With all input files in hand, target sequences were threaded onto the pre-aligned templates using 

Rosetta’s partial_thread application [23]. Threaded models were passed to the hybridization 

application via use of Rosetta XML scripts [23,32]. Either 100 models or 1000 models were 

generated per run as noted in the text. 

Data Availability 
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Top models for each receptor are available at www.rosettagpcr.org. All scripts and files needed 

for generating the models are also provided as a protocol capture on this website. 
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Results 

Blended Sequence- and Structure-Based Alignment Is Critical for Modeling Success 

Inherent to any homology modeling protocol is an alignment between the sequence of the target 

protein and the template structure. As different families of GPCRs share low sequence identity 

with one another, sequence alignment is not trivial for this class of proteins. The best-known 

alignment of GPCRs is Ballesteros-Weinstein (BW) numbering [33] which identifies the most 

conserved residue in each α-helix and sets as a starting point for alignment (#TM-span.50). 

Counting along the α-helix in reference to this residue all other residues are labeled. While 

highly useful, this alignment falls short in two areas. As receptor structures became available, it 

was found that not all receptor families adhere strictly to the i to i+4 periodicity in every α-helix 

[34]. Insertions and deletions have resulted in local alterations of the helicity, in particular 

around proline or glycine residues, and thus the BW numbering, of certain subfamilies of 

proteins. Secondly, BW numbering fails in the loop regions as different receptors have varying 

lengths of α-helices and dramatically different loop structures within extracellular loop 2 (ECL2) 

adopting disordered regions, α-helices, or β-sheets. Further, as these loops are critical for ligand 

recognition [35], they diverge widely in sequence proving even more challenging for the creation 

of meaningful sequence alignments. However, despite sequence divergence, there is evidence for 

structural conservation in these regions [36]. Therefore, a critical component to the present 

method has been to blend sequence and structure information into an optimized knowledge-

based sequence alignment for GPCRs (Fig S1). We compared this new alignment to other well-

known sequence- or structure-based alignment methods. For each receptor in the benchmark, 100 

models were generated for each of the six alignment methods tested. The average RMSD for a 

target protein was divided by the average RMSD for the same target using the new alignment 
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resulting in a fold change and the average across the full benchmark is reported (Figure 1). As 

seen, despite using sequence-only (ClustalOmega [27] and Muscle [28]), structure-only 

(Mustang [30]), or automated blended alignments (T-Coffee, TM-PSI, and Espresso (PDB 

Mode) [29]), the knowledge-based alignment performs the best in all regions tested. For Class A 

receptors it is found that the transmembrane (TM) region is modeled nearly equivalently across 

all methods with the most improvement coming from improvements in ECL2 modeling. For 

Classes B, C, and F there is a large improvement in modeling of all regions, except for Mustang 

alignments of the TM region, the only metric and class in which Mustang outperforms our 

alignment. Importantly, for all classes, the accuracy of ECL2 is strongly improved demonstrating 

this new alignment to be critical for accurate modeling of this region. 

Peptide Fragment Hybridization Improves Target Model Quality 

Our previous benchmark of GPCR modeling relied on single-template threading [22]. We 

wanted to recapitulate this initial study using the Hybridize code [23] to allow for peptide 

fragment insertion but not template swapping to see what effect peptide sampling alone had on 

output quality. This benchmark dataset was limited to the eight receptors with high identity 

templates available in 2013 (β1AR, β2AR, M2R, M3R, δOR, κOR, µOR, and NOPFQ). In this 

experiment, each target was modeled on the single best available template with sequence identity 

either greater than 40% or less than 40% and allowed to hybridize with the peptide fragment 

library (Table 2). As seen in Figure 2, using the exact same template as was used in the previous 

threading-alone method, hybridization of template structures with peptide fragments can 

substantially improve output model accuracy in all measured regions. The transmembrane region 

improves on average by more than one Angstrom to 0.8 Å root-mean-square deviation (RMSD) 

to the crystal structures showing highly accurate modeling of this region. The ECL2 region also 
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showed a dramatic improvement with an average RMSD to the crystal structures of 1.0 Å 

compared to the previous method of single-template modeling without peptide fragment 

insertion which reported an average RMSD of 5.0 Å. The full model RMSD, which accounts for 

all remaining loops and flexible termini, also showed modest improvement from 2.9 to 2.1 Å. 

These results were similar when using a single template with sequence identity less than 40%. 

Both the TM region and ECL2 improved by at least 1.0 Å while the Full Model RMSD actually 

worsened by 0.5 Å. Taken together, peptide insertion accounts for a substantial improvement 

over threading alone even when templates of sequence identity below 40% are used. 

Multiple Templates Improve Performance for Low Sequence Identity Targets 

While peptide insertion helped improved accuracy in the TM and ECL2 regions, overall model 

accuracy weakened when using a single template with sequence identity less than 40% to the 

target model. Therefore, we expected that multiple templates could overcome the shortcomings 

of any single template when modeling a target with low identity templates [23]. We generated 

1000 models for every receptor using either the single best template less than 40% identity or the 

ten best available templates under 40% identity and compared the average RMSD of the 

resulting models (Figure 3 and 4). As expected, the average RMSDs improved for almost all 

receptors in the ECL2 and Full Model criteria. The TM region was rather insensitive to the 

increase in template availability showing on average only 0.05 Å improvement for the whole set. 

This is likely due to the high degree of structural similarity of the fold of inactive GPCRs. A few 

exceptions to the overall trends deserve attention. In the TM region, both class C receptors 

perform extremely poorly in either set of templates. This is due to the fact that the 40% threshold 

for selecting templates removed the other class C receptor from the template pool such that they 

were modeled with non-class C templates. As the structure of the TM region is distinct for these 
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proteins compared to the other classes, the error was expected to be high. For the class B 

receptors, the two structures have a sequence identity of 35% with respect to one another 

allowing these structures to be included as templates in the benchmark. Therefore, the single 

template TM RMSD outperforms the ten template TM RMSD by nearly 0.5 Å. In ECL2, there 

are two class A receptors (S1P1 and LPA1) that perform extremely well when using a single 

template as compared to ten templates. These are the only two receptors in the benchmark that 

lack the conserved disulfide between ECL2 and TM3. Their loop structures are quite distinct 

from all other receptors and as a result, loop modeling only performs well when using the other 

as a template (Figure 4C). In the full model RMSD, both Rhodopsin and the Smoothened 

receptor perform extremely poorly regardless of the modeling method used. This is because both 

have extremely long and unusual loops and termini (Figure 4F). Of note, the TM regions of these 

two receptors are accurate with 1.5 Å and 2.7 Å RMSD to the crystal structure of 1U19 and 

4JKV, respectively. Additionally, only two Class A receptors perform worse in the Full Model 

RMSD calculation when using multiple template. These again are S1P1 and LPA1 which 

performed poorly in the ECL2 modeling. It appears that the poor quality of ECL2 is reflected in 

the Full Model RMSD as the difference in the TM region for these two structures is only 0.1-0.2 

Å. 

Identification of the Optimal Number of Templates 

As reported previously for multiple template homology modeling, the use of multiple templates, 

while improving results over the single template approach, will weaken model accuracy if too 

many templates are used [25]. Thus, we determined an optimal number of templates for GPCR 

modeling using our method. We generated an additional 1000 models for each receptor using 

either five or all available templates and compared the data with the previous data on one and ten 
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templates (Figure 5). For both the TM region and ECL2, using all available templates was worse 

than any other set of templates while the average RMSD were quite similar for one, five, and ten. 

However, for the full model accuracy, using a single template was worse than all other template 

sets, though comparably poor to the all available template compared to five or ten templates. 

Five templates performed distinctly well in the full model accuracy compared to the other 

template sets while only providing modest improvement over the other template sets in the TM 

and ELC2 regions. Therefore, we suggest five templates to be the best number of templates for 

modeling GPCRs with our method.  

RosettaGPCR Outperforms other GPCR Modeling Servers 

We next compared our method with other GPCR modeling servers. Three servers with publicly 

available databases of GPCR models, GPCRdb [16], GPCR-I-Tasser [13], and GPCR-SSFE 

[15], were included. Additionally, we utilized the GPCR-ModSim [12] server as it is very user-

friendly and fast. We identified four human GPCR structures that were released following the 

conclusion of method development. The four structures were C5aR1, Y1R, PTAFR, and D2R 

(PDB IDs 6C1R [37], 5ZBQ [38], 5ZKQ [39], and 6CM4 [40], respectively). Of note, GPCR-

ModSim, which is the only on-demand server we tested, had been updated to include the 

structures of PTAFR and D2R. GPCR-SSFE had the structure of D2R in its database. Therefore, 

we excluded results from these servers for these receptors. We generated 100 models of each 

receptor target using five template structures and selected the best model by total energy. In 

comparing our model with the models generated by other servers, we find that RosettaGPCR 

consistently outperforms the other approaches (Figure 6). Only one server performed on one 

target better than RosettaGPCR. GPCRdb had a better ECL2 of Y1R compared to ours with 

RMSDs of 1.6 Å versus 1.9 Å, respectively.  
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Accuracy of Models with Increasingly Worse Templates Does Not Decline Linearly 

In our previous work on GPCR modeling using single-template threading, it was found that 

templates needed to be greater than 50% sequence identity for accurate models [22]. 

Subsequently, the use of multiple-template modeling in Rosetta was suggested to be accurate to 

about 40% sequence identity [23]. However, in this current benchmark we only use templates 

with less than 40% sequence identity and still produce highly accurate receptor models. 

Therefore, we wanted to identify a new lower threshold for template sequence identity to 

generate accurate models. We devised an experiment where we binned available templates into 

groups with 15-19%, 20-24%, 25-29%, and 30-39% sequence identity. We then identified three 

receptors with at least five templates in each identity group and performed multiple-template 

homology modeling with each set of five templates. The results, shown in Figure 7, find that 

overall the TM Region accuracy is unaffected by the use of templates down to 20% sequence 

identity. The same trend held true for the full model RMSDs. ECL2 was the most sensitive 

region where accuracy drops sharply when lower identity templates are used. Taken together, we 

suggest that templates down to 20% identity yield accurate models, particularly within the TM 

region which is important for ligand recognition. 

Development of Database for All Human Non-Odorant GPCRs 

By effectively pushing the lower threshold to 20% sequence identity, we can now predict models 

for the remaining GPCRs deemed druggable. To this effect, we identified the best templates by 

identity for the entire set of non-olfactory human GPCRs Figure S2. Out of 397 receptors, 54 

have at least one structure determined (14% of the receptor family). This provides 81 receptors 

with a template with sequence identity above 40%, the previous threshold for accurate modeling. 

However, the number of receptors with a template between 20 and 40% is 214 (54%). Only 48 
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receptors (or 12% of the receptor family) remain with sequence identities less than 20% and thus 

expected lower accuracy in their models. Due to our expectation to be capable of creating 

accurate structural models over the majority of members of the GPCR family, a model database 

for all GPCRs without an experimentally determined structure was created using this new 

method (www.rosettagpcr.org). This is, to the best of our knowledge, the only Rosetta-based 

GPCR server available which distinguishes it from the many Modeller-based servers. Currently 

all models are in the inactive state though will likely expand to active state models as more 

active state structures are determined.  
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Discussion 

Blending of Sequence- and Structure-Based Alignment are Critical for Low Identity Template 

Based Modeling 

Inherent to any homology modeling protocol is an alignment between the target and the template 

sequences. This alignment maps the target sequence onto the template structure in a process 

called threading [9]. Sequence alignments are necessary for this process and a wide variety of 

search methods have been generated [27,28]. Each sequence alignment method uses a different 

algorithm to weight the importance of sequence conservation globally or locally with or without 

gap penalties. As we learn more about the structures of diverse proteins, it becomes apparent that 

structure is often more well conserved than sequence. As such, additional algorithms have been 

generated based on structural alignments and domain fold recognition [29,30]. This latter case is 

inherent to the family of GPCRs in which the common sequence identity between receptors is 

around 30% while all receptors share a similar structural domain. Therefore, any method for 

aligning GPCRs for the purpose of homology modeling should upweight structural alignments 

over sequence. That is not to say GPCRs lack critical sequence motifs. The NPxxY, CWxP, and 

DRY motifs as well as numerous proline residues and disulfides are critical for receptor function 

and should be maintained in their sequence alignment. Of all the alignment methods available, 

we find that a blended sequence- and structure-based alignment is best for modeling of GPCRs 

with our method.  

One region that is often overlooked when aligning proteins are the loop regions. These loops are 

highly diverse in sequence as they have evolved over time to recognize many different ligands 

[36]. However, as more GPCR structures become available, the loop regions are found to adopt 
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similar conformations. As there is a degree of structural conservation, we focused on aligning the 

loops structurally. This in turn affected how we modeled the loops. By providing a structure-

based alignment of the loops in the overall alignment, we allow Rosetta to build the loops 

simultaneously during the receptor modeling step. This circumvents the need for a secondary 

loop-closure modeling step as in our previous single-template modeling protocol [22]. This 

structural alignment and simultaneous loop building contributed significantly to our alignment 

method outperforming all other alignment methods tested. As shown, almost all methods could 

accurately align and model the TM region, but only our method performed well modeling the 

ECL2 region which reduced the full model RMSD. This blend of sequence- and structure-based 

alignments may prove critical to the modeling of other protein families in which available 

templates have low sequence identity but high structural conservation. Comparative modeling 

protocols for antibodies already include sophisticated approaches to categorize and template 

complementary determining loop regions (CDRs) [41,42]. 

Template and Peptide Hybridization are Key Drivers for Accurate Modeling 

The Rosetta code for multiple-template comparative modeling (RosettaCM) made two primary 

changes to the method of homology modeling [23]. The first was the ability to leverage the 

peptide fragment library derived from structures in the PDB. The peptide fragment library is a set 

of 3-mers and 9-mers that are mined from the PDB based on the target sequence. These 

fragments help bias the local geometries of the predicted structures towards structures that are 

known to exist and are low energy for these short regions [24]. The ability to swap in peptide 

fragments is helpful for homology modeling, even of single templates, because it allows 

sampling away from the starting template structure in regions that do not serve well for the target 
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structure. We showed here that threading alone, even for very high identity templates, can be 

further improved solely by incorporation of peptide fragment hybridization. 

The other key change was the use of multiple templates. The original authors of Rosetta’s 

multiple template homology modeling showed that the use of multiple structures is better than 

using a single structure [23]. The reasoning is the same as stated above that for a given target, the 

best available template is still likely to have one or more regions that don’t accurately represent 

geometries accessible to the target sequence. However, as multiple related templates are used, 

the likelihood of finding more optimal local structures from combination of the different 

templates increases. For GPCRs, this has been noted before and many GPCR modeling protocols 

now use multiple templates. However, their treatment of the multiple templates is distinct than 

the process used in RosettaGPCR. Often these methods try to pre-identify which regions of the 

target protein are best captured by each target, and the segments of each template serve as the 

starting model for energetic minimization and loop rebuilding. In Rosetta, all templates are 

passed to the hybridization protocol which randomly swaps segments of templates throughout 

the entire protein. After each modification, the structure is reevaluated and if the score improves, 

the segment is maintained. As a result, segments that perhaps contained initial lower sequence 

identity and would have been discarded before the modeling began in other methods, may prove 

to have better geometries and energies for the target sequence. This selection by energy, not 

identity, can lead to sampling of more native like conformations for the target sequence. 

Combined with the peptide fragment insertion, Rosetta can quickly identify native-like 

conformations distinct from any given template and perform dense sampling around this novel 

conformation. This is not to suggest that Rosetta will sample conformational changes on the 

scale of receptor activation (~10 Å in TM 6), but around 1-2 Å of the input templates. While 
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none of this code is new to Rosetta, the application and focus on GPCRs is novel. We present 

here the method specific for GPCRs and identify the optimal number of templates. Further by 

optimizing the alignment method and simultaneous loop modeling, we were able to push the 

previously reported template threshold of a 40% sequence identity minimum down to 20% for 

accurate modeling. 

Development of the First Rosetta-based GPCR Database 

While several GPCR model databases or on-the-fly modeling servers exist, there is as-of-yet one 

developed within Rosetta. The Robetta server is available for general homology modeling [43], 

but is not designed for membrane proteins. Further, it uses automatic alignment methods which 

we showed are not ideal for this class of proteins. Therefore, we decided to generate a database 

of all non-olfactory human GPCRs (www.rosettagpcr.org). We have confidence in models with 

templates above 20% sequence identity which accounts for 88% of the receptors. It is important 

to note that this method was benchmarked on inactive state structures, and therefore, the models 

in the database are inactive models. These can serve as structures for understanding biochemical 

data and genetic variations. Further, they can serve as starting points for in silico docking 

campaigns. It has been shown before that docking into inactive structures can work for both 

identification of agonists and antagonists [44,45]. However, work is ongoing to develop the 

database further to include active state structures.  

Conclusions 

Accurate modeling of GPCRs is a critical technology for understanding the structural basis of 

ligand recognition and signal transduction for the remaining 350 non-olfactory GPCRs that have 

not had structures determined. Many of these proteins already have FDA approved drugs 
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targeting them [3], but a deep understanding of the molecular basis of drug intervention is 

lacking. Further, about a third of these receptors are classified as orphan receptors because the 

endogenous ligand has not been identified [8]. A structural perspective of the ligand binding 

pocket may help shed light on this group of receptors. Lastly, it should be noted that this protocol 

is dependent on novel information. As new structures become available, the template dataset will 

increase as will the accuracy of the alignment and resulting models. Despite this, in the current 

format, RosettaGPCR stands as the best modeling protocol for GPCRs. Only 48 receptors remain 

with sequence identities less than 20% to an available template and thus expected lower accuracy 

in their models. This subset should be the priority for future experimental structure 

determination. 
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Figure Legends 

Figure 1: Comparison of Average RMSD Change using Various Alignment Methods. A 

total of 100 models were produced for each alignment method. The average RMSD of the 

models were normalized to the average RMSD of the models produced with the knowledge-

based alignment (black). Values above 1 represent an alignment method that produced on 

average worse models while values below 1 represent an alignment method that produced on 

average better models. For (A) all receptors regardless of family, the knowledge-based modeling 

performs the best regardless of region analyzed. When split between (B) Class A and (C) Classes 

B, C, and F, the majority of the improvements are found the Classes B, C, and F where template 

availability is limited. 

 

Figure 2: Comparison of Single Template Modeling Methods with Peptide Insertion. Using 

only a subset of receptors and templates that were available in our original GPCR modeling 

benchmark (yellow in Table S2), 100 models were generated using either a single high identity 

template or the best template available below 40%. Original results from the 2013 benchmark 

[22] are displayed in black. Using the hybridize code with the same original templates 

dramatically improved the results across all measures (medium grey). Using a low identity 

template in hybridize (light grey) expectedly worsened the results compared to the high identity 

template but was either better or comparable with the original threading alone algorithm. 

 

Figure 3: Comparison of Average RMSDs for Single versus Multiple Template Homology 

Modeling. Using either one template or ten templates, 1000 models were generated for each 

target and the average RMSD was calculated over the TM region (A), ECL2 (B), and the full 

model (C). Values that fall above the diagonal performed better when using multiple templates 

and values that fall below the diagonal performed better with a single template. Targets are 

colored by class. 

 

Figure 4: Examples of results obtainable with RosettaGPCR. In all cases, the crystal 

structure is colored grey and the model is blue. Three different ECL2 loops structures, unordered 

(A), β-sheet (B), and lipid (C). RosettaGPCR performs well on loops containing the conserved 

disulfide. For lipid receptors lacking the conserved disulfide (C) multiple templates (blue) 

perform worse than using a single template with similar structure (green), in this case the LPA 

receptor. Extracellular loops 3 (D) and 1 (E) also perform quite well with this method. In 

general, RosettaGPCR can model the TM region of most receptors below 2 Å (F). However, for 

receptors like rhodopsin with complex loop structures and termini (red), the model (cyan) fails to 

capture the overall conformation (8.0 Å RMSD). 

 

Figure 5: Comparison of Model Accuracy using Various Numbers of Starting Templates. 

For each target, 1000 models were generated using either 1, 5, 10, or all available templates. The 

average RMSD is plotted for the TM region, ECL2, and the Full Model. 
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Figure 6: Results of Novel Structure Prediction from Various GPCR Modeling Servers. 

Blind predictions were carried out on C5aR1 (PDB ID 6C1R [37]), Y1R (PDB ID 5ZBQ [38]), 

PTAFR (PDB ID 5ZKQ [39]), and D2R (PDB ID 6CM4 [40]). 100 models were generated for 

each target with RosettaGPCR (black) and the best scoring model was used for analysis. The 

RMSD of each model for the various servers were calculated for the TM region, ECL2, and the 

full model. No data is available for GPCR-ModSim for D2R and PTAFR and for GPCR-SSFE 

for D2R because these servers had already included these targets in their database. 

 

Figure 7: Model Accuracy with Templates over Multiple Sequence Identity Ranges. Three 

receptors (4ZUD [46], 3PBL [47], and 2RH1 [5]) were identified that had at least 5 templates in 

each identity range (30-39%, 25-29%, 20-24%, and 15-19%). Using the identified 5 templates 

for each identity range, 100 models were generated and the RMSD of these models is displayed 

in box and whisker plots for each region (TM, ECL2, and Full Model). 
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Supporting Information 

Table S1. List of Receptors in Benchmark. Receptor name and the corresponding PDB ID that 

was used for accuracy measurements. 

Table S2. List of Templates for Each Target Ranked by Sequence Identity. Yellow 

highlighted templates were not used for general modeling because they have sequence identities 

greater than 40%. Bolded templates were used for single-template high identity modeling to 

compare to previous benchmark. 

Figure S1. Alignment of receptor sequences. The alignment for all 34 receptors is shown using 

Aline [48]. Identical and highly conserved residues are color-coded for easy identification. 

Alignment available at www.rosettagpcr.org. 

Figure S2. Percent Identify of Best Available Template for Every Non-Odorant Human 

GPCR. For each receptor in the human genome, the best template was identified in the PDB. 

The sequence identity of the best available is plotted. Most templates cross the 20% threshold 

identified as critical for accurate modeling. The previous threshold of 40% identity is highlighted 

in red, and the new 20% identity threshold is highlighted in black. 
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