Anillin/Mid1p interacts with the ECSRT-associated protein Vps4p and mitotic kinases to regulate cytokinesis in fission yeast

Imane M. Rezig ${ }^{1}$, Gwyn W. Gould ${ }^{1,3,4}$ and Christopher J. McInerny ${ }^{2,3}$

${ }^{1}$ Institute of Molecular, Cell and Systems Biology
${ }^{2}$ School of Life Sciences

Henry Wellcome Laboratory of Cell Biology,
College of Medical, Veterinary and Life Sciences,
Davidson Building,
University of Glasgow,
Glasgow G12 8QQ,
Scotland, United Kingdom
${ }^{3}$ Email: Gwyn.Gould@strath.ac.uk, Chris.McInerny@glasgow.ac.uk
${ }^{4}$ Current address: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde,

161 Cathedral Street,
Glasgow G4 ORE,
Scotland, United Kingdom

Short title: Interactions of anillin, ESCRT-associated protein Vps4, aurora and polo kinases

Abstract

Cytokinesis is the final stage of the cell cycle which separates cellular constituents to produce two daughter cells. Using Schizosaccharomyces pombe we have investigated the role of various classes of proteins involved in this process. Central to these is anillin/Mid1p which forms a ring-like structure at the cell equator that predicts the site of cell separation through septation in fission yeast. Here we demonstrate a direct physical interaction between Mid1p and the endosomal sorting complex required for transport (ESCRT)-associated protein Vps4p. The interaction is essential for cell viability, and Vps4p is required for the correct cellular localization of Mid1p. Furthermore, we show that Mid1p is phosphorylated by the aurora kinase Aurora A, that the interaction of mid1 and ark1 genes is essential for cell viability, and that Ark1p is also required for the correct cellular localization of Mid1p. We mapped the sites of phosphorylation of Mid1p by Aurora A and the polo kinase Plk1 and assessed their importance by mutational analysis. Mutational analysis revealed S332, S523 and S531 to be required for Mid1p function and its interaction with Vps4p, Ark1p and Plo1p. Combined our data suggest a physical interaction between Mip1p and Vps4p important for cytokinesis, and identify phosphorylation of Mid1p by aurora and polo kinases as being significant for this process.

Author summary

Replication is a property of all living cells, with cell separation, so-called cytokinesis, the final step in the process. A large number of proteins have been identified that are required for cytokinesis, but in many cases it is not understand how they interact and regulate each other. In this research we have analysed two classes of proteins founds in all eukaryotic cells with central roles in cytokinesis: the endosomal sorting
complex required for transport (ESCRT) proteins and the anillin protein Mid1p. We identify a direct physical interaction between the ESCRT protein Vps4 and anillin/Mid1p, and explore how it regulates cytokinesis. Midp1 activity is shown to controlled by the protein kinase Ark1p by direct phosphorylation, and this phosphorylation is important for Mid1p function. These observations identify new ways in which ESCRT and anillin/Mid1p control cell separation.

Introduction

Much is understood about the control and regulation of the cell division cycle, with many critical cell cycle mechanisms identified being evolutionarily conserved, present across the eukaryotic kingdom. One cell cycle stage that has been increasingly studied is cytokinesis where DNA, organelles and cell constituents are partitioned and allocated to two daughter cells during their physical separation. The fission yeast Schizosaccharomyces pombe has proven to be an excellent model organism to study the eukaryotic cell cycle [1]. It is especially useful for studying cytokinesis and cell division as, explicit in its name, it divides by medial fission involving a contractile actomyosin ring leading to the process of cell separation, which is similar to these processes in mammalian cells [2].

A number of proteins have been identified that regulate cytokinesis in fission yeast, including those in a signal transduction pathway named the Septation Initiation Network (SIN) [3]. The SIN proteins form a pathway that facilitates contractile ring constriction and promotes the formation of a medial cell wall-like structure between the two daughter cells, called the septum. Furthermore, SIN components associate with the spindle pole bodies and link mitotic exit with cytokinesis [4]. Sid2p is one regulator of the SIN-cascade of signaling proteins [5]. It terminates the signaling
cascade leading to the transition from the spindle pole bodies to the cell division site promoting the onset of cytokinesis [6]. A recent study identified anillin/Mid1p as a substrate for Sid2p and indicated that the phosphorylation of Mid1p facilitates its removal from the cell cortex during the actomyosin contractile ring constriction [7].

Mid1p forms a ring-like structure at the cell equator that predicts the site of cell separation through the formation of a septum in fission yeast [8,9,10]. In cells containing a chromosomal deletion of the mid1 gene (mid1t), a misshaped contractile ring is assembled during anaphase when the SIN pathway becomes active; such observations confirm the important role of Mid1p in directing contractile ring assembly to its correct location [11,12,13].

Many other groups of proteins have a role in septum formation in S. pombe. Amongst these the various classes of ESCRT proteins, including the ESCRT-III regulator Vps4p, were found to be required for septation, suggesting that they have a role in cytokinesis in fission yeast [14,15]. Additional experiments suggested that the ESCRT proteins interacted with established cell cycle regulators including the polo kinase Plo1p, the aurora kinase Ark1p and the CDC14 phosphatase, Clp1p to control these processes [14].

As a way to further understand the regulation of ESCRT proteins during cytokinesis in fission yeast, we sought to identify other proteins that interact with anillin/Mid1p. Here we describe a direct physical interaction between Vps4p and the anillin Mid1p which is essential for cell viability and for the correct placement of Mid1p. We further show an interaction between Mid1p and the aurora kinase Ark1p which is essential for cell viability and identify phospho-acceptor sites in Mid1p and study their role
using mutagenesis. Collectively, our observations reveal novel mechanisms by which cytokinesis is regulated by different classes of proteins acting through Mid1p.

Results

Genetic and physical interactions between Mid1p and Vps4p in fission yeast

Previously, we identified and characterised the requirement and role of ESCRT proteins for cytokinesis in fission yeast [15]. These experiments also revealed the interaction of ESCRT proteins with three cell cycle regulators, the Polo-like kinase Plo1p, the aurora kinase Ark1p and the CDC14 phosphatase Clp1p. These observations offered a framework by which ESCRT proteins are regulated to control cytokinesis. To further explore ways in which the ESCRT proteins might integrate with other cell cycle regulators to control cytokinesis, we examined their interaction with the anillin Mid1p. Mid1p has a central structural role in cytokinesis, forming equatorial nodes to create an annular shaped structure that determines the position of the division plane [16,13].

We initiated this by searching for genetic interactions between the mid1 gene and genes encoding ESCRTs and ESCRT-associated proteins. Double mutant fission yeast strains were created containing a chromosomal deletion of mid1 (mid1D) and individual chromosomal deletions of ESCRT genes from Classes E-0 to E-III and vps4 and searching for synthetic phenotypes. mid1 1Δ was combined with sst4 $4(\mathrm{E}-0)$, sst64 and vps284 (E-I), vps364 and vps254 (EII), vps204, vps324 and vps24 (E III), and $v p s 4 \Delta[17,15]$. In each case double mutants were created which were viable, with no apparent synthetic phenotypes (data not shown). The exception was mid1s
$v p s 4 \Delta$ which instead failed to form viable colonies and was synthetically lethal (Fig 1A).

This striking observation demonstrated a genetic interaction between the mid1 and vps4 genes, with one explanation that the two encoded proteins interact to control an essential cellular function. To test this hypothesis we expressed and purified a Histagged version of $V p s 4 p$ protein from bacteria, using the same method to express and purify three different GST-tagged domains of Mid1p. Full length Mid1p was not purified as it is insoluble under such conditions [16,18].

Full length Mid1p is 920 amino acids in length; the three domains used in pull-down experiments described here encompass the amino acids 1-453 ("N-term"), 452-579 ("Middle") and 798-920 ("C-term") [19,18]. Of these three domains, only the Cterminus of amino acids 798-920 was pulled-down by recombinant $V p s 4$ p (Fig 1B). This indicates a direct physical interaction between Vps4p and the C-terminus of Mid1p, and that this interaction involved residues 798-920 of Mid1p.

Vps4p is required for the correct cellular distribution of Mid1p

To further understand the interaction between Vps4p and Mid1p we examined the requirement for Vps4p to control the cellular distribution of GFP-tagged Mid1p during the cell cycle. Mid1p distribution has been well characterised and shown to move from the nucleus to the equatorial region to form nodes and a medial ring, that predicts the site of cell cleavage during septation [8].

Wild-type cells showed three patterns of GFP-Mid1p: localization to the nucleus,
cytoplasmic, and equatorial nodes, as previously reported (Fig 2A; [8,5]). By contrast, GFP-Mid1p in vps4 4 cells showed strikingly different patterns. Although cytoplasmic GFP-Mid1p was similar to wild-type, additional plasma membrane localization was observed (Fig 2B). In some cells, GFP-Mid1p localized to only one node and the plasma membrane, or localized to three nodes in other cells. The frequencies of these abnormal phenotypes in vps 4Δ cells were compared with wild-type and showed significant differences (quantified in Fig 2C). Overall, GFP-Mid1p localization was significantly altered by the absence of $v p s 4^{+}$.

These results, in addition to the observation that the mid1 and vps 4 genes interact genetically, and further that the Mid1p and $V p s 4 p$ physically interact in vitro, suggest that Mid1p and Vps4p coordinate to regulate the S. pombe cell cycle.

Genetic and physical interactions between Mid1p and Ark1p in fission yeast

 We hypothesized that mid1 and ark1 genes interact to accomplish S. pombe cytokinesis, as we and others have shown that aurora kinases modulate ESCRT protein function $[20,15]$. To test this, both genetic and biochemical approaches were taken.First, a mid14 strain was crossed with strains containing ark1-TS mutations to generate double mid1 Δ ark1-TS mutant strains. The mid1 Δ ark1-TS double mutant failed to form viable colonies (Fig 3A). Such a synthetic lethality indicates a genetic interaction between the mid1 and ark1 genes.

As with mid1 and vps4 such a genetic interaction might be explained by a physical interaction between Mid1p and Ark1p proteins. Since Ark1p is a protein kinase we tested whether Mid1p can be phosphorylated by aurora kinase, using an in vitro phosphorylation approach with recombinant Mid1p domains purified from E. coli. These experiments were performed with the human aurora kinases Aurora A, Aurora B, and the human polo kinase Plk1 (Fig 3B). Phosphorylation of both the "N-term" and "Middle" Mid1p domains by Aurora A and Plk1 was detected, but not by Aurora B (Fig 3B; Exp. B and Exp. C). In contrast, no phosphorylation was detected of the "C-term" Mid1p domain by any of the three kinases Aurora A, Aurora B or Plk1 (Fig 3B; Exp. D). These results indicate that, at least in vitro, the " N -term" and "Middle" domains of Mid1p interact with and are phosphorylated by both Aurora A and Plk1 kinases, while the "C-term" domain of Mid1p is not phosphorylated by Aurora A, Aurora B or Plk1.

Ark1p is required for the correct cellular distribution of Mid1p

To further analyse the interaction of Ark1p and Mid1p we examined the effect of two different temperature sensitive ark1 mutants, ark1-T11 and ark1-T8, on Mid1p distribution in cells (Fig 4).

In ark1-T11 cells GFP-Mid1p showed wild-type phenotypes (Fig 4A). But in addition, new localization patterns were apparent, where GFP-Mid1p localization showed nuclear exclusion and appeared to be encircling the nucleus. The frequencies of these phenotypes were quantified and compared to wild-type cells revealing significant differences (Figs 4B). In ark1-T8 cells GFP-Mid1p showed new additional localization patterns (Fig 4D). Cells were observed to be round and shorter than the
rod-shaped wild-type cells and GFP-Mid1p localization presented nuclear exclusion and encircled the nucleus. While some cells had one nucleus, others showed two, three, or even four nuclei. The frequencies of these phenotypes were quantified and compared to wild-type cells revealing significant differences (Figs 4E). These data support the hypothesis that Mid1p and Ark1p coordinate to regulate the S. pombe cell cycle.

Identification of Mid1p amino acid residues phosphorylated by aurora and polo

kinases

To further explore phosphorylation of Mid1p by aurora and polo kinases a mass spectrophotometry approach was used to identify phospho-acceptor sites. The " N term" and "Middle" domains of Mid1p gel fragments from in vitro kinase assay reactions identical to those shown Fig 3B, but with non-labelled ATP, were excised and subjected to nano-scale liquid chromatographic tandem mass spectrometry (nLC-MS/MS) to generate a Mid1p phospho-site map (Fig 5). This analysis identified 35 potential Mid1p residues phosphorylated by either Plk1 or Aurora A kinases (S2 Table). In parallel we examined other published databases on fission yeast phosphoproteomes to refine and confirm the number of Mid1p phospho-sites. Most of these studies used a stable isotope labeling by amino acid in cell culture approach. We selected four studies which studied the S. pombe global proteome and identified several Mid1p specific phospho-sites [21-24].

The Mid1p phosphorylation events identified by mass spectrophotometry are summarized in S3 Table, alongside those described by the four published studies. The red highlighted residues represent overlap with the residues identified reported
here. The phospho-sites map shows a total of six potential phospho-sites distributed along the " N -term" and "Middle" Mid1p sequence, five of which were identified in this work, and the sixth was added from the published studies (Fig 5B). These are the serine residues S167, S328, S331, S332, S523 and S531.

To confirm the new phospho-sites identified in Mid1p, in vitro phosphorylation experiments involving bacterially expressed phospho-resistant mutant (serine to alanine) forms of the " N -term" and "Middle" domains of Mid1p with Aurora A and Plk1 kinases were completed (Fig 6). These experiments reveled markedly reduced phosphorylation of the Mid1p phospho-resistant mutant S167A by both Aurora A and Plk1 kinases, and S523A by Aurora A alone. These observations support the suggestion that the S167 and S523 residues are phosphorylated by the Aurora A and Plk1 kinases, at least in vitro.

Biological relevance of amino acid residues phosphorylated by Ark1p and

Plo1p in Mid1p

As another way to examine the role of the phospho-sites identified in Mid1p, we analysed the effect of their mutation in vivo. S. pombe cells exhibit morphology defects in the absence of Mid1p function. Therefore, we tested the effect of mutations of Mid1p phospho-sites in fission yeast on cell morphology to assay their relevance.

Versions of the mid1 gene containing phospho-site mutations were generated and integrated in single copy into chromosomal DNA of S. pombe mid14 cells. Each version of the mid1 gene had either a phospho-mimetic $(S>D)$ or a phospho-resistant
$(S>A)$ point mutation(s) of the residues S167, S328, S331, S332, S523 or S531 to create a panel of mutant S. pombe strains (S1 Fig). Such mid1 mutations were made both singly and in combination. As a positive control we integrated the wild-type mid1 ${ }^{+}$gene into mid1 Δ cells to create mid1 Δ pJK148:mid1 ${ }^{+}$. This resulted in cells that behaved identically to wild-type both on solid medium and in liquid culture (Fig 7 and S1 Fig).

Mid1p phospho-mutants in mid14 cells

 Initial experiments examined in mid1 Δ cells the effect of Mid1p phospho-mimetic or phospho-resistant mutations. Strains were grown on solid medium, with the formation of colonies observed in all cases. In most strains where serine was changed to either alanine or aspartic acid cell morphology appeared similar to wild-type (Fig 7, and data not shown). However, interestingly, mid1 S332A cells (but not mid1 S332D) had defects in morphology similar to those observed in mid14 cells, with slower growth at $25^{\circ} \mathrm{C}$ (Fig 7). These data indicate a requirement of S 332 for Mid1p function.Furthermore, other phenotypes were revealed when certain Mid1p phospho-mutants were cultured in liquid medium. For example, mid1 S523A and mid1 S531A mutants displayed morphology defects (S2 Fig). In contrast, the equivalent phospho-mimetic mutants mid1 S523D or mid1 S531D did not.

Mid1p phospho-mutants in ark1-T11 cells
To examine the role of Mid1p phosphorylation in its interaction with Ark1p, we crossed the strains containing phospho-mimetic/resistant versions of mid1 with ark1T11 mutant cells and searched for synthetic phenotypes in double mutants. Viable
colonies were observed in all cases with no synthetic phenotypes detected in most double mutants (data not shown). However, mid1 S523A ark1-T11 and mid1 S531A ark1-T11 double mutants showed cell morphology defects when cells were grown in liquid culture more severe than the single mutant strains (S3 Fig). These defects were not observed in the equivalent mid1 S523D ark1-T11 or mid1 S531D ark1-T11 double mutants. The cell morphology defects observed in mid1 S523A ark1-T11 and mid1 S531A ark1-T11 double mutants were defined as loss of the rod-like shape of cells. This suggests a role for these two phospho-sites in Mid1p function during the S. pombe cell cycle to ensure medial division plane placement, and consequently equal sized and rod-shaped daughter cells.

Mid1p phospho-mutants in plo1-ts35 cells
To examine the role of Mid1p phosphorylation in its interaction with Plo1p, we crossed strains containing phospho-mimetic/resistant versions of mid1 with plo1-ts35 mutant cells and searched for synthetic phenotypes in double mutants. Viable colonies were observed in all cases with no synthetic phenotypes detected for the majority of double mutants (data not shown). However, colony formation on solid medium was slower for mid1 S332A plo1-ts35 double mutants, and more severe cell morphology phenotypes were observed, compared to the single mutant strains (data not shown). These defects were not observed in the equivalent mid1 S332D plo1$t s 35$ double mutants. Such genetic interactions suggest a link between the regulation of Mid1p and Plo1p.

Mid1p phospho-mutants in vps4D cells

To examine the role of Mid1p phosphorylation in its interaction with Vps4p, we crossed strains containing phospho-mimetic/resistant versions of mid1 with vps4 4 mutant cells and searched for synthetic phenotypes in double mutants, Viable colonies were observed in all cases with no synthetic phenotypes detected (data not shown). However, colony formation on solid medium was slower for mid1 S523D S531D vps4 4 double mutants, and more severe cell morphology phenotypes were observed, compared to the single mutant strains. Strikingly, cells had defects in morphology similar to those observed in mid14 cells (Fig 8). The same serine residues changed to alanine S523A or S531A had no such effect when combined with $v p s 4 \Delta$ (data not shown). These genetic interactions suggest a link between the regulation of Mid1p by both Vps4p and Ark1p.

Discussion

In fission yeast the Mid1p protein has important roles during cytokinesis during the cell cycle, with anillin homologues having similar roles in higher eukaryotes. These roles centre around its structural role in predicting and controlling the site of cell division in the equatorial region of the cell. Here we have identified new classes of proteins with which Mid1p interacts, and explored the mechanism by which these proteins cooperate and regulate each other and cell growth/morphology.

Mid1p and Vps4p

Genetic and biochemical approaches revealed a direct physical interaction of Mid1p with the ESCRT-associated protein Vps 4 p . Furthermore, we demonstrated that a chromosomal deletion of the $v p s 4^{+}$gene caused defects in the cellular localization of GFP-Mid1p. These defects included mis-localization of nodes whereby one node is
randomly positioned, or three nodes were present. This suggests a role of Vps4p in the Mid1p-dependent node localization pathway, which led us to hypothesize that the function of Mid1p is regulated by $\operatorname{Vps} 4 p$ during nodes attachment to the plasma membrane (Fig 9).

Two types of nodes are involved in S. pombe actomyosin ring assembly and contraction (Fig 9). Mid1p cortical anchorage first drives the recruitment of cytokinesis proteins, then interactions with myosin filaments causes the condensation of nodes into the actomyosin ring. Mid1p cortical anchorage depends on the PH domain [13] and its potential interaction with Vps 4 p might stabilize this interaction. Since Vps4p physically interacts with residues within the C-terminal domain of Mid1p, which contains membrane binding motifs, we speculate that Vps 4 p may facilitate Mid1p cortical anchorage to promote S. pombe medial division.

We suggest that a physical interaction between Vps4p and Mid1p regulates Mid1pdependent node attachment to the plasma membrane to determine the division plane in S. pombe, and that this interaction directly or indirectly involves Mid1p PH domain cell cortex anchorage (Fig 9). It is interesting to note that the domain of Mid1p that interacts with Vps4p in vitro (Fig 1) contains the PH domain, suggesting that binding of $\operatorname{Vps} 4 p$ to this region may regulate interaction with the cell cortex (Fig 9).

Phosphorylation of Mid1p

Genetic and biochemical approaches revealed a direct physical interaction of Mid1p with the aurora kinase, Ark1p, with Aurora A phosphorylating Mid1p the "N-term" and "Middle" domains. Mapping of the amino acids in Mid1p phosphorylated in vitro by Aurora A and Plk1 revealed 35 potential phospho-sites, with some of these sites independently
identified in four S. pombe global proteomic studies (Fig 5). Such combined analysis suggested six potential phospho-sites in Mid1p: S167, S328, S331, S332, S523 and S531. Subsequent in vitro kinase assay experiments confirmed the in vitro phosphorylation of S167, S331 and S523 phospho-sites of Mid1p by Aurora A and Plk1 kinases (Fig 6).

To complement these studies, we examined the effect of mutations of these phospho-sites in vivo on cell morphology in wild-type, ark1-T11, plo1-ts35 and vps4s S. pombe cells. In wild-type cells defective cell morphology phenotypes were observed for the phospho-mimetic mutants S332, S523 and S531 (Fig 7). These were exacerbated when combined with mutations in ark1, plo1 and vps4 (Fig 8). Therefore, we conclude that the phosphorylation of these amino acid residues is important for Mid1p function and its interaction with these proteins to regulate cell cycle events. It is tempting to speculate that the interaction of Mid1p and $V p s 4 p$ is regulated by the activity of Ark1p and/or Plo1p, but it is important to note that the regions of Mid1p phosphorylated by these kinases do not include the binding region for Vps4p. Clearly, phosphorylation in adjacent regions may modulate binding via conformational changes in Mid1p, as regions containing the phospho-acceptor sites have been shown to regulate the interaction of Mid1p with other proteins, including Plo1p and Sid1p. Plo1p phosphorylates residues within the first 100 amino acids of Mid1p to trigger Myosin II recruitment during contractile ring assembly [25]. Later at contractile ring constriction Sid1p phosphorylates Mid1p to facilitate its export from the cell cortex [7]. Future experiments will be aimed at unraveling how the Mid1p interactome is modified both by association with Vps4p and by phosphorylation by mitotic kinases.

Materials and Methods

Yeast media and general techniques

General molecular procedures were performed, with standard methodology and media used for the manipulation of S. pombe [26,27]. The yeast strains used in this study are shown in S1 Table. Cells were routinely cultured using liquid or solid complete (YE) or minimal (EMM) medium, at $25^{\circ} \mathrm{C}$ or $30^{\circ} \mathrm{C}$.

DNA constructs

The DNA constructs used in this study are listed in S2 Table. Some were synthesized and cloned by either GenScript or Invitrogen. All constructs were sequenced before use.

Bacterial expression DNA constructs

Four fragments of the mid1 1^{+}gene encoding the amino acids $1-453$ "N-terminus", 452-579 "Middle", 578-799, 798-920 "C-term" [19] were synthesized and cloned into Bam HI/Xho I of pGEX-4T-1. Full-length vps4 ${ }^{+}$was synthesized and cloned into Nde I/Bam HI of $\mathrm{pET}-14 \mathrm{~b}$. The C-terminal domain of myo2 $^{+}$was synthesized and cloned into Nde I/Bam HI of pET-14b.
mid1 phospho-mimetic/resistant mutants
Eighteen versions of the mid1 gene with different phospho-mimetic/resistant mutations were synthesized, along with a wild-type mid1 ${ }^{+}$control. All had the wildtype $\operatorname{mid} 1^{+}$promoter in $\sim 1 \mathrm{kbp}$ of DNA upstream of mid1 1^{+}open reading frame, and were each cloned into Kpn I/Sac I of pJK148. Integration of the pJK148:mid1 genes (1-19) into S. pombe mid14 cells was through homologous recombination after
linearization of pJK148:mid1 with Nde I in the leu1 ${ }^{+}$gene. The resulting panel of phospho-mimetic/resistant mutant strains is listed in S1 Table and S1 Fig.

Recombinant protein purification

GST-Mid1p, 6His-Vps4p or 6His-C-term Myo2p plasmids were grown in BL21 E. coli until an OD of $0.6-0.8$, with protein production induced by adding 1 mM IPTG. Mid1p 578-799 was not found to be expressed under these conditions, and so was not used for further experiments.

Bacterial pellets were produced by centrifugation with cells re-suspended in 20 ml resuspension buffer with EDTA free protease inhibitors; for GST-Mid1p fusion proteins PBS buffer ($137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO} 4$ and 1.8 mM KH 2 PO 4 , pH 7.4) was used, whereas for 6 His-Vps 4 p , HEPES buffer (25 mM HEPES, 400 mM KCI and $10 \%(\mathrm{v} / \mathrm{v})$ glycerol, pH 7.4$)$ was used. Cells were then lysed by sonication, where a final concentration of $1 \mathrm{mg} \mathrm{ml}^{-1}$ lysozyme was added for cell wall digestion followed by sonication, with $0.1 \%(\mathrm{v} / \mathrm{v})$ Triton X-100 added prior to lysis. A clear lysate was produced by centrifugation. GST-tagged fusion proteins were purified using $1 \mathrm{ml}^{-1}$ glutathione beads in PBS buffer, while 6His-tagged Vps4p or C-term Myo2p were purified using $500 \mu \mathrm{ll}^{-1}$ Ni-NTA beads in HEPES buffer, either for 2 h or overnight at $4^{\circ} \mathrm{C}$. Mid1p was eluted from glutathione beads using Reduced glutathione buffer. Vps4p or C-term Myo2p were washed and eluted from Ni-NTA beads using HEPES buffers. Elution was carried out for 2 h at $4^{\circ} \mathrm{C}$. Samples of proteins from each step were subjected to SDS-PAGE to determine elution efficiency.

Pull-down experiments utilized Ni-NTA beads-immobilized bait proteins (6His-Vps4p or 6His- C-term Myo2p) and prey-eluted proteins (GST-Mid1p: "N-terminus", "Middle" or "C-terminus") to investigate protein-protein interactions. Bait proteins $x x$ ug were loaded onto Ni-NTA beads by incubation in PBS containing 0.01% (v / v) Triton X-100 for $1 \mathrm{~h}\left(4^{\circ} \mathrm{C}\right)$. After loading, the mixture was washed with PBS containing $0.01 \%(\mathrm{v} / \mathrm{v})$ Triton X-100, and beads were blocked for non-specific binding by incubation in PBS containing 0.2% fish-skin gelatin. The beads mixture was incubated with yy ug prey protein in PBS with $0.01 \%(\mathrm{v} / \mathrm{v})$ Triton X-100. Subsequently, beads were washed with PBS containing $0.01 \%(\mathrm{v} / \mathrm{v})$ Triton X-100 three times, $0.5 \%(\mathrm{v} / \mathrm{v})$ glycerol and 0.2% (w/v) fish skin gelatin three times, and with PBS alone four times. Proteins were eluted from beads by boiling in Laemmli sample buffer (LSB) (75 mM Tris pH 6.8, $12 \%(\mathrm{w} / \mathrm{v})$ SDS, $60 \%(\mathrm{v} / \mathrm{v})$ glycerol, 600 mM DTT and $0.6 \%(\mathrm{w} / \mathrm{v})$ Bromophenol Blue) and samples were subjected to SDS-PAGE.

In vitro kinase assays
Assays combined either human Plk1 $(0.023 \mu \mathrm{~g} / \mu \mathrm{l})$, Aurora A $(0.01 \mu \mathrm{~g} / \mu \mathrm{l})$, Aurora B $(0.01 \mu \mathrm{~g} / \mu \mathrm{l})$ and myelin basic protein (MBP; $2.5 \mu \mathrm{~g}$) (Sigma-Aldrich and Biaffin GmbH) or one of the three Mid1p domains ("N-term", "Middle" or "C-term" $2.5 \mu \mathrm{~g}$). Kinase, substrate proteins, $1 \mu \mathrm{Ci}\left[\mathrm{Y}^{-32} \mathrm{P}\right]$ ATP, 10 mM ATP and kinase assay buffer (25 mM MOPS, $25 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA and 0.25 mM DTT, pH 7.2) were mixed in a total volume of 20μ l; the reaction was initiated by adding 5μ I ATP cocktail and incubated at $30^{\circ} \mathrm{C}$ for 1 h and terminated by the addition of LSB; samples were subjected to SDS-PAGE followed by autoradiography or phospho-imaging. Following detection of in vitro phosphorylation signals, mass spectrometric analysis was carried
out by the Dundee FingerPrints Proteomics service (http://proteomics.lifesci.dundee.ac.uk/).

Confocal and light microscopy
Septation and GFP studies were carried out by visualizing S. pombe using calcofluor-white stain and fluorescence microscopy, respectively. S. pombe cells were cultured in 50 ml YE shaking at $28^{\circ} \mathrm{C}\left(25^{\circ} \mathrm{C}\right.$ for ark1-TS strains) for 18 hours. Cell septa were visualized using bright field and DAPI filters of a Zeiss Axiovert 135 fluorescent microscope equipped with a Zeiss 63X Plan-APOCHROMAT oilimmersion objective lens. GFP-tagged mid 1^{+}[28] was examined by a $\mathrm{He} / \mathrm{Ne}$ and Ag laser system of Zeiss LSM microscope using 63X high NA objective lens. Cell images were collected using Zeiss Pascal software and processed using ImageJ, Microsoft PowerPoint and Keynote software. Numerical analysis was completed from three independent experiments where 200-250 cells were counted. Yeast colonies grown on solid medium were imaged using a Zeiss Axioscope microscope and a Sony DSC-75 camera.

Acknowledgements

We thank Anne Paoletti, Tomoko Iwaki and Silke Hauf for sharing fission yeast strains used in this study. We thank lan Salt for his contribution to this project, both with experimental and practical advice. We acknowledge the following for contributions to experiments: Rianne Cort, Laura Downie, Bethany Hutton, Christina Jack, Jack Goddard, Susan McGill, Mark McLean, Chiamaka Okoli, Elena Pescuma, Liam Pollock, James Provan, John Riddell, Aizhan Shagadatova, Ellen Shercliff, Haoying Wang, and Wandiahyel Yaduma.

References

1. Hoffman C S, Wood V, Fantes P A. An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics 2015; 201: 403-423.
2. Willet $\mathrm{A} \mathrm{H}, \mathrm{McDonald} \mathrm{N} \mathrm{A}$, Gould $\mathrm{K} L$. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe. Curr Opin Microbiol. 2015; 28: 46-52.
3. Simanis V. Pombe's thirteen - control of fission yeast cell division by the septation initiation network. J. Cell Sci. 2015; 128: 1465-1474.
4. Tomlin G C, Morrell J L, Gould K L. The spindle pole body protein Cdc11p links Sid4p to the fission yeast septation initiation network. Mol. Biol. Cell. 2002; 13: 1203-1214.
5. Akamatsu M, Berro J, Pu K M, Tebbs I R, Pollard T D. Cytokinetic nodes in fission yeast arise from two distinct types of nodes that merge during interphase. J. Cell Biol. 2014; 204: 977-988.
6. Sparks C A, Morphew M, McCollum D. Sid2p, a spindle pole body kinase that regulates the onset of cytokinesis. J. Cell. Biol. 1999; 146: 777-790.
7. Willet A H, DeWitt A K, Beckley J R, Clifford D M, Gould K L. NDR kinase Sid2 drives Anillin-like Mid1 from the membrane to promote cytokinesis and medial division site placement. Curr. Biol. 2019; 29: 1055-1063.e2.
8. Paoletti A, Chang F. Analysis of mid1p, a protein required for placement of the cell division site, reveals a link between the nucleus and the cell surface in fission yeast. Mol. Biol. Cell. 2000; 11: 2757-2773.
9. Hachet O, Simanis V. Mid1p/anillin and the septation initiation network orchestrate contractile ring assembly for cytokinesis. Genes Dev. 2008; 22: 3205-3216.
10. Almonacid M, Moseley J B, Janvore J, Mayeux A, Fraisier V, Nurse P, Paoletti A. Spatial control of cytokinesis by Cdr2 kinase and Mid1/Anillin nuclear export. Curr. Biol. 2009; 19: 961-966.
11. Chang F, Woollard A, Nurse P. Isolation and characterization of fission yeast mutants defective in the assembly and placement of the contractile actin ring. J. Cell Sci. 1996; 109: 131-142.
12. Saha S, Pollard T D. Anillin-related protein Mid1p coordinates the assembly of the cytokinetic contractile ring in fission yeast. Mol. Biol. Cell. 2012a; 23: 3982-3992.
13. Sun L, Guan R, Lee I J, Liu Y, Chen M, Wang J, et al. Mechanistic insights into the anchorage of the contractile ring by Anillin and Mid1. Dev. Cell. 2015; 33: 413-426.
14. Bhutta M S, McInerny C J, Gould G W. ESCRT function in cytokinesis: location, dynamics and regulation by mitotic kinases. Int. J. Mol. Sci. 2014a; 15: 21723-21739.
15. Bhutta M S, Roy B, Gould G W, McInerny C J. A complex network of interactions between mitotic kinases, phosphatases and ESCRT proteins regulates septation and membrane trafficking in S. pombe. PLoS ONE 2014b; 9: e111789.
16. Rincon S A, Paoletti A. Mid1/anillin and the spatial regulation of cytokinesis in fission yeast. Cytoskeleton 2012; 69: 764-777.
17. Iwaki T, Onishi M, Ikeuchi M, Kita A, Sugiura R, Giga-Hama Y, et al. Essential roles of class E Vps proteins for sorting into multivesicular bodies in Schizosaccharomyces pombe. Microbiology 2007; 153: 2753-2764.
18. Chatterjee M, Pollard T D. The functionally important N-terminal half of fission yeast Mid1p anillin is intrinsically disordered and undergoes phase separation. Biochemistry 2019; 58: 3031-3041.
19. Saha S, Pollard T D. Characterization of structural and functional domains of the anillin-related protein Mid1p that contribute to cytokinesis in fission yeast. Mol. Biol. Cell. 2012b; 23: 3993-4007.
20. Carlton J G, Caballe A, Agromayor M, Kloc M, Martin-Serrano J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 2012; 336: 220-225.
21. Koch A, Krug K, Pengelley S, Macek B, Hauf S. Mitotic substrates of the kinase Aurora with roles in chromatin regulation identified through quantitative phosphoproteomics of fission yeast. Sci. Signal. 2011; 4: rs6-rs6.
22. Carpy A, Krug K, Graf S, Koch A, Popic S, et al. Absolute proteome and phosphoproteome dynamics during the cell cycle of Schizosaccharomyces pombe (fission yeast). Mol. Cell. Proteomics 2014; 13: 1925-1936.
23. Kettenbach A N, Deng L, Wu Y, Baldissard S, Adamo M E, Gerber S A, Moseley J B. Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase Pom1. Mol. Cell. Proteom. 2015; 14: 1275-1287.

24. Swaffer M P, Jones A W, Flynn H R, Snijders A P, Nurse P. Quantitative phosphoproteomics reveals the signaling dynamics of cell-cycle kinases in the fission yeast Schizosaccharomyces pombe. Cell Rep. 2018; 24: 503-514.
25. Almonacid M, Celton-Morizur S, Jakubowski J L, Dingli F, Loew D, Mayeux A, et al. Temporal control of contractile ring assembly by Plo1 regulation of Myosin II recruitment by Mid1/Anillin. Curr. Biol. 2011; 21: 473-479.
26. Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991; 194: 795-823.
27. Rezig I M, Bremner S K, Bhutta M S, Salt I P, Gould G W, McInerny C J. Genetic and cytological methods to study ESCRT cell cycle function in fission yeast. Methods Mol. Biol. 2019; 1998: 239-250.
28. Bähler J, Steever A B, Wheatley S, Wang Y I, Pringle J R, Gould K L, McCollum D. Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J. Cell Biol. 1998; 143: 1603-1616.

Figure legends

Fig 1. Genetic and physical interactions between mid1 and vps4 in fission
yeast. (A) Synthetic lethality in mid1 1Δ vps 4Δ double mutant cells indicates a genetic interaction between the mid1 and vps4 genes. Tetrad analysis of $h^{-} v p s 4 \Delta$ (vps4::ura4 ${ }^{+}$) mated with $\mathrm{h}^{+} \operatorname{mid} 1 \Delta(d m f 1:: K a n M X 4)$ to identify vps4 4 mid1 1Δ double mutants that show a synthetic lethal growth phenotype. Tetrads created by mating the two strains on solid ME medium, four spores dissected and allowed to grow on solid YE medium until colonies formed. Colonies replicated to solid YE+G418/KanMX4 and EMM-ura media and incubated to identify growth phenotypes and double mutants. (B) Direct physical interaction between Vps4p and the "C-term"
domain of Mid1p. Recombinant GST-tagged (Mid1p domains: "N-term" (aa 1-453), "Middle" (452-579) and "C-term" (793-920)) and 6 His-tagged (Vps4p and "C-term" Myo2p) proteins were expressed in E. coli and purified using GST-sepharose beads and Ni-NTA agarose beads, respectively. Exp. A, eluted prey Mid1p domains were added to bait $\operatorname{Vps} 4 \mathrm{p}$ bound to Ni-NTA agarose beads: (*) represents physical interaction of Vps4p and Mid1p "C-term" domain. Exp. B, eluted prey Mid1p "N-term" and "Middle" domains were added to bait Myo2p bound to Ni-NTA agarose beads as a positive control: (**) represents physical interaction of Mid1p "N-term" and "Middle" domains with "C-term" domain of Myo2p (left panel). The 14.5 kDa "C-term" Myo2p was not detected in this gel; in a separate experiment (right panel) the detected 14.5 kDa "C-term" Myo2p is shown. Asterisks (**) indicate detected physical interactions of Mid1p "N-term" and "Middle" domains with "C-term" domain of Myo2p. Coloured boxes represent predicted proteins: Vps4p purple, Mid1p "N-term" red, Plk1 purple, Mid1p "Middle" green and Mid1p "C-term" dark blue.

Fig 2. GFP-Mid1p cellular localization is disrupted in vps4 Δ cells. Wild-type (WT) and vps4 $4\left(v p s 4:: u r a^{+}\right) S$. pombe strains containing GFP-Mid1p grown at $25^{\circ} \mathrm{C}$ in liquid YE medium to mid-exponential phase and visualized by confocal microscopy. (A) Key to characterised GFP-Mid1p localization phenotypes. Scale bar, $5 \mu \mathrm{~m}$. Bright and green fluorescent images of cells (left) and quantitative analysis (right) of GFPMid1p localization phenotypes for wild-type (W-T) (B) and vps4 (C) cells. Scale bar, $10 \mu \mathrm{~m}$. (D) Two-way ANOVA analysis of frequencies of localization phenotypes in vps4 4 compared to wild-type (W-T). Asterisks (****) denote p values <0.0001 indicating significant differences to wild-type. Error bars, SEM.

Fig 3. Genetic and physical interactions between mid1 and ark1 in fission
yeast. (A) Synthetic lethality in mid14 ark1-T11 double mutant cells indicates genetic interaction between mid1 ${ }^{+}$and ark1 ${ }^{+}$genes. Tetrad analysis of h^{+}ark1-T11 (ark1$T 11 \ll K_{a n}{ }^{R}$) crossed with h^{-}mid1 $\Delta\left(\right.$ mid1::ura ${ }^{+}$) to identify mid1 Δ ark1-T11 double mutants that show a synthetic lethal growth phenotype. Tetrads created by mating the two strains on solid ME medium, four spores dissected and allowed to grow on solid YE medium until colonies formed. Colonies replicated to solid YE+G418/KanMX4 and EMM-ura media and incubated to identify growth phenotypes and double mutants. (B) Plk1 and Aurora A kinases phosphorylate Mid1p "N-term" and "Middle" domains. Recombinant GST-tagged Mid1p domain proteins "N-term" (aa 1-453), "Middle" (452-579) and "C-term" (798-920) were purified and analysed by in vitro phosphorylation assays. In "Exp. A" myelin basic protein (MBP) was a positive control. In "Exp. B", "Exp. C" and "Exp. D" the "N-term", "Middle" and "Cterm" domains of Mid1p were substrates with the kinases Plk1, Aurora A or Aurora B, respectively. Asterisks (*) indicate detected in vitro phosphorylation signals. Coloured boxes represent predicted proteins: MBP yellow, Mid1p "N-term" species red, and Mid1p "Middle" species green.

Fig 4. GFP-Mid1p cellular localization is disrupted in ark1-T11 and ark1-T8 cells. Wild-type (W-T), ark1-T11 and ark1-T8 S. pombe strains containing GFPMid1p were grown at $25^{\circ} \mathrm{C}$ in liquid YE medium to mid-exponential phase and visualized by confocal microscopy. (A) Key to characterised GFP-Mid1p localization phenotypes. Scale bar, $5 \mu \mathrm{~m}$. Bright and green fluorescent images of cells (left) and quantitative analysis of GFP-Mid1p localisation phenotypes (right) for ark1-T11 (B) and ark1-T8 (D). Scale bar, $10 \mu \mathrm{~m}$. (C, E) Two-way ANOVA analysis of frequencies
of localization phenotypes in ark1-T11 and ark1-T8 compared to wild-type (W-T). Asterisks (****) denote p values <0.0001 indicating a significant difference to wildtype. Error bars = SEM.

Fig 5. Identification of Mid1p phospho-sites by mass-spectrometry analysis (MSA) and published studies. (A) Mid1p full-length amino acid sequence with " N term" and "Middle" domains indicated in red and green. Highlighted peptides show 35 phosphorylated amino acid residues identified by MSA of in vitro phosphorylation reactions for the kinases Plk1 (bold), Aurora A (underlined) or both (bold and underlined). (B) Five Mid1p phospho-sites generated from comparison of the 35 MSA amino acids with Mid1p phosphorylated amino acids identified in four published proteomic studies [21-24]. Amino acids identified by MSA and four independent studies (pink), MSA and three studies (light blue), and MSA and two studies (dark blue and orange). Asterisk (*) indicates a sixth serine phospho-site at position 531 derived from [23] and [24].

Fig 6. Reduced in vitro phosphorylation of Mid1p "N-term and "Middle" phospho-resistant mutants by Plk1 and Aurora A kinases. Recombinant GSTtagged Mid1p "N-term" (A) and "Middle" (B) domains phospho-resistant mutants were expressed and purified in E. coli. Proteins subjected to in vitro phosphorylation experiments with Aurora A (Exp. A) or Plk1 (Exp. B) kinases. Asterisks (* and **) indicate wild-type Mid1p "N-term" and Mid1p "Middle" recombinant proteins used as positive controls. Coloured boxes represent predicted proteins: MBP yellow, Mid1p "N-term" species red, Plk1 purple, and all Mid1p "Middle"-related species green. "Multiple" indicates mutations in all four phospho-sites.

Fig 7. The S332 phospho-site is required for Mid1p function. Three phosphoresistant mid1 mutant strains mid1 S332A, mid1 S167A S328A S331A S332A, and mid1 S167A S328A S331A S332A S523A S531A, and the three phospho-mimetic mutants mid1 mutant strains S332D, mid1 S167D S328D S331D S332D, and mid1 S167D S328D S331D S332D S523D S531D streaked to single colonies on solid YE at $25^{\circ} \mathrm{C}$ to compare growth rates (A) and colony morphology (B). Controls: mid1 and wild-type (W-T) cells. Scale bar, $10 \mu \mathrm{~m}$.

Fig 8. The Mid1p S523 and S531 phospho-sites regulate its interaction with

 Vps4p. Strains streaked to single colonies on solid YE medium and grown at 25° to compare growth rates and colony morphology. Controls: vps4 4 and wild-type (W-T) cells. Scale bar, $10 \mu \mathrm{~m}$.Fig 9. Interaction of Mid1p and Vps4p to regulate S. pombe septation. (A)
Schematic representation of Mid1p localization during S. pombe cell cycle stages. $C R=$ contractile ring. (B) Mid1p is phosphorylated by Plo1p to promote mitotic entry, during which Rng2p and other proteins interact with the N -terminal domain of Mid1p. (C) In mitosis, Mid1p forms nodes which are attached to the plasma membrane via the lipid binding motifs present within the Mid1p C-terminal domain. Green box represent the overall structure of Mid1p C-terminal region (aa 579-920) containing: the C2 domain (cyan), the connector domain (red) and the PH domain (yellow); dotted lines represent the lipid binding loop. Structure adapted from [13]. The Vps4p interaction with the C-terminal domain of Mid1p potentially regulates this process.

S1 Fig. Summary of Mid1p phospho-mimetic/resistant fission yeast mutant strains used in this study. Top Panel: full length Mid1p with S167, S328, S331, S332, S523 and S531 phospho-sites indicated. Lower Panel: summary of single or combinatorial ("Multi") phospho-mimetic or phospho-resistant mutations of the mid1 gene, to generate eighteen versions integrated into mid14 cells, with each yeast strain given a "GG" lab collection number.

S2 Fig. mid1 phospho-resistant/mimetic mutants reveal cell division

 phenotypes. Wild-type (W-T), mid1 Δ, mid1 Δ pJK148:mid1 ${ }^{+}$, mid1 Δ pJK148:mid1S523A, mid14 pJK148:mid1S523D, mid1 Δ pJK148:mid1S531A, mid1 Δ pJK148:mid1S531D, mid14 pJK148:mid1S523A S531A and mid14 pJK148:mid1S523D S531D strains grown at $25^{\circ} \mathrm{C}$ in liquid YE medium to midexponential phase. Cells visualized by confocal microscopy under bright field. Scale bar, $10 \mu \mathrm{~m}$. Characterised cell morphology phenotypes indicated by red arrows. (A) Two-way ANOVA analysis of frequencies of localization phenotypes in wild-type (WT), mid1 Δ and mid1 Δ pJK148:mid1 ${ }^{+}$cells. (B) Key to characterised cell morphology phenotypes. Scale bar, $5 \mu \mathrm{~m}$. (C-E) Two-way ANOVA analysis of frequencies of localization phenotypes of mid1 phospho-resistant/mimetic mutants. Asterisks (****) denote p values <0.0001 indicating significant difference to wild-type. Error bars = SEM.S3 Fig. mid1 phospho-resistant/mimetic ark1-T11 double mutants reveal cell division phenotypes. ark1-T11, mid14 ark1-T11 pJK148:mid1 ${ }^{+}$, mid1 Δ ark1-T11 pJK148:mid1S523A, mid14 ark1-T11 pJK148:mid1S523D, mid14 ark1-T11 pJK148:mid1S531A, mid1 Δ ark1-T11 pJK148:mid1S531D, mid1 Δ ark1-T11
pJK148:mid1S523A S531A and mid14 ark1-T11 pJK148:mid1S523D S531D strains grown at $25^{\circ} \mathrm{C}$ in liquid YE medium to mid-exponential phase. Cells visualized by confocal microscopy under bright field. Scale bar, $10 \mu \mathrm{~m}$. Characterised cell morphology phenotypes indicated by red arrows. (A) Two-way ANOVA analysis of frequencies of localization phenotypes in wild-type (W-T), ark1-T11 and mid1s pJK148:mid1 ${ }^{+}$ark1-T11 cells. (B) Key to characterised cell morphology phenotypes. Scale bar, $5 \mu \mathrm{~m}$. (C-E) Two-way ANOVA analysis of frequencies of localization phenotypes in wild-type (W-T), mid1 phospho-resistant/mimetic and ark1-T11 cells. Asterisks $\left({ }^{* * * *}\right)$ denote p values <0.0001 indicating significant difference to wild-type. Error bars = SEM.

mid1 $\Delta \mathrm{X}$ vps4 4 Tetrads

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875211; this version posted December 13, 2019. The copyright holder for this preprint (which was not certifiedpy peer review) is the author/funder, who has granted bioRxiv a license to elisplay the preprint in
perpetuity. It is made available under aCZ- 4.0 International license.

Odmf1/mid1:: KanMX4 (G418) and vps4:: ura4+ \square dmf1/mid1:: KanMX4 (G418)
\square vps4:: ura4+
(B)

Exp. A
Exp. B

(B)

W-T

(C)

(D)
 mid1 $\Delta \mathrm{X}$ ark1-T11 Tetrads
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875211; this version posted December 13, 2019The copyright holder for this preprint (which was not certified by peer review) is the author/fundel, who has granted bioRxiv a license to display the preprint in

mid1::ura4+ and ark1-T11<<kan ${ }^{R}$
\square mid1::ura4+
\square ark1-T11<<kan ${ }^{R}$
(B)

Surrounding two
nuclei in short cells

Surrounding three nuclei in short cells

Surrounding four
Surrounding fou
nuclei
in short cells
Surrounding fou
nuclei
in short cells

(A) Surrounding nucleus
in elongated cells
(A) Surrounding nucleus in elongated cells

Surrounding nucleus

Surrounding nucleus in short cells

ark1-T8
(C)

(E)

-

(A)
(B)

TVQHPYQSHNELST
SFDRS SASST

(A)
bioRxiv preprint doi: https;/doi.oforl 01/2019.12.13.875211; this version posted December

mid14

 pJK148:mid1 S167A S328A S331A S332A S523A S531Amid1 Δ pJK148:mid1 S332A
mid14

A
Early interphase interphase

Septation

1 S1 Table. S. pombe strains used in this study. "GG" number refers to the

laboratory reference collection. All strains ade $^{-}$, unless indicated.

GG No.	Genotype	Annotation
1	h-972	wild-type (W-T)
397	h^{+}ade6-210 leu1-32 ura4-D18	
400	h^{-}ade6-216 leu1-32 ura4-D18	
1129	h^{-}mid1::ura4 ${ }^{+}$ura4-D18 leu1-32	mid1s
1347	pmid-mid1-4GFP (integrated; pAP221; leu1 ${ }^{+}$) h^{-}dmf1::ura 4^{+}ura4-D18 leu1-32	Mid1p-GFP
1349	pmid-NLS**-mid1-GFP (integrated; pAP167\#2; leu1 ${ }^{+}$) h^{-}dmf1::ura 4^{+}ura4-D18 leu1-32	
1384	pAM19 (D450-506 mid1:12myc:leu1 ${ }^{+}$) h^{-}dmf1::ura4 ${ }^{+}$ura4-D18 leu1-32	
1388	pAM23 (NLS*mid1:12myc:leu1+) h^{-}dmf1::ura 4^{+}ura4-D18 leu1-32	
1554	h^{+}dmf1::kanMX4 ura4-D18 leu1-32 ade ${ }^{+}$	mid1s
1622	h^{-}vps4::ura4 ${ }^{+}$leu1-32 ura4-D18 ade ${ }^{+}$	vps4 4
2417	h^{+}ark1-T11<<kanR leu1-32 ade^{+}	ark1-T11
2432	h^{+}ark1-T8<<kanR leu1-32 ade^{+}	ark1-T8
2673	h^{+}vps4::ura4 ${ }^{+}$leu1-32 ura4-D18 ade ${ }^{+}$	vps4 4
2674	pmid-mid1-4GFP (integrated; pAP221; leu1 ${ }^{+}$) h^{-}dmf1::ura4 H^{+}ura4-D18? leu1-32 vps4::ura4 ${ }^{+}$	$v p s 4 \Delta$ Mid1p-GFP
2709	pmid-mid1-4GFP (integrated; pAP221; leu1 ${ }^{+}$) h^{-}dmf1::ura4 ${ }^{+}$ura4-D18? leu1-32 vps4::ura4 ${ }^{+}$	vps4 4 Mid1p-GFP
2886	pmid-mid1-4GFP (integrated; pAP221; leu1 ${ }^{+}$) h^{-}dmf1::ura4 ${ }^{+}$ura4-D18? leu1-32 ark1-T11<<kanR	ark1-T11 Mid1p-GFP
2922	pmid-mid1-4GFP (integrated; pAP221; leu1+) h^{+}dmf1::ura4 ${ }^{+}$ura4-D18 leu1-32 ark1-T8<<kanR	ark1-T8 Mid1p-GFP
3100	NLS* mid1:12myc:leu1+ h^{-}dmf1::ura4 ${ }^{+}$vps4::ura4 ${ }^{+}$ura4-D18 leu1-32	
3107	D450-506 mid1:12myc:leu1 ${ }^{+}$ h^{-}dmf1::ura 4^{+}vps4::ura4 ${ }^{+}$ura4-D18 leu1-32	
3181	pJK148:mid1 ${ }^{+}$(wild-type) h^{-}mid1::ura4 ${ }^{+}$ura4-D18 leu1-32	mid14 pJK148:mid1 ${ }^{+}$
3185	pJK148:mid1 S523 to A523 h^{-}mid1::ura ${ }^{+}$ura4-D18 leu1-32	
3189	pJK148:mid1 S523 to D523 h^{-}mid1::ura4 ${ }^{+}$ura4-D18 leu1-32	
3193	pJK148:mid1 S531 to A531 h^{-}mid1::ura ${ }^{+}$ura4-D18 leu1-32	
3197	pJK148:mid1 S531 to D531 h^{-}mid1::ura 4^{+}ura4-D18 leu1-32	
3201	pJK148:mid1 S523+S531 to A523+A531 h^{-}mid1::ura ${ }^{+}$ura4-D18 leu1-32	
3205	pJK148:mid1 S523+S531 to D523+D531 h $^{-}$mid1::ura4 ${ }^{+}$ura4-D18 leu1-32	
3218	pJK148:mid1 S523 to A523 h $^{?}$ mid1::ura 4^{+}ark1-T11<<kanR ade ${ }^{+}$	
3224	pJK148:mid1 S523 to A523 $h^{?}$ mid1::ura4 ${ }^{+}$vps4::ura4+ura4-D18 leu1-32	
3230	pJK148:mid1 S523 to D523 $h^{?}$ mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32	

3235	pJK148:mid1 S531 to A531 $h^{?}$ mid1::ura4 4^{+}ark1-T11<<kanR ura4-C190T leu1-32
3239	pJK148:mid1 S531 to D531 $h^{\text {? }}$ mid1::ura 4^{+}ark1-T11<<kanR ura4-C190T leu1-32
3242	pJK148:mid1 S523 to A523+S531 to A531 h^{2} mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3246	pJK148:mid1 S523+S531 to D523+D531 $h^{\text {? }}$ mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3250	pJK148:mid1 (wild-type) h? 2 mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32 mid1 \quad pJK148:mid1 ${ }^{+}$ark1-T11
3257	pJK148:mid1 S523+S531 to D523+D531 h^{-}mid1::ura4 ${ }^{+}$vps4::ura4+ ura4-D18 leu1-32
3258	pJK148:mid1 S523+S531 to D523+D531 h^{-}mid1::ura4 ${ }^{+}$vps4::ura4+ ura4-D18 leu1-32
3260	pJK148:mid1 S523+S531 to A523+A531 $\mathrm{h}^{?}$ mid1::ura 4^{+}vps $4::$ ura 4^{+}ura4-D18 leu1-32
3264	pJK148:mid1 S531 to D531 $\mathrm{h}^{?}$ mid1 $:: u r a 4^{+}$vps4::ura 4^{+}ura4-D18 leu1-32
3267	pJK148:mid1 S167 to A167 h^{-}mid1::ura ${ }^{+}$ura4-D18 leu1-32
3271	pJK148:mid1 S167 to D167 h^{-}mid1::ura4 ${ }^{+}$ura4-D18 leu1-32
3275	pJK148:mid1 S328 to A328 h $^{-}$mid1::ura4 ${ }^{+}$ura4-D18 leu1-32
3280	pJK148:mid1 S328 to D328 h $^{-}$mid1::ura4 ${ }^{+}$ura4-D18 leu1-32
3283	pJK148:mid1 S331 to A331 h^{-}mid1::ura4 ${ }^{+}$ura4-D18 leu1-32
3290	pJK148:mid1 S331 to D331 h^{-}mid1::ura ${ }^{+}$ura4-D18 leu1-32
3291	pJK148:mid1 S332 to A332 h^{-}mid1 $1:$ ura 4^{+}ura4-D18 leu1-32
3295	pJK148:mid1 S332 to D332 h^{-}mid1::ura ${ }^{+}$ura4-D18 leu1-32
3299	pJK148:mid1 S167+S328+S331+S332 to A167+A328+A331+A332 h^{-}mid1::ura4 ${ }^{+}$ura4-D18 leu1-32
3305	pJK148:mid1 S167+S328+S331+S332 to D167+D328+D331+D332 h^{-}mid1::ura4 4^{+}ura4-D18 leu1-32
3307	pJK148:mid1 S167+S328+S331+S332+S523+S531 to A167+A328+A331+A332+A523+A531 h^{-}mid1::ura 4^{+}ura4-D18 leu1-32
3311	pJK148:mid1 S167+S328+S331+S332+S523+S531 to D167+D328+D331+D332+D523+D531 h^{-}mid1::ura4 ${ }^{+}$ura4-D18 leu1-32
3315	pJK148:mid1 S523 to D523 $h^{?}$ mid1::ura4 ${ }^{+}$vps4::ura4+ ura4-D18 leu1-32
3318	pJK148:mid1 S531 to A531 $h^{?}$ mid1::ura4 ${ }^{+}$vps4::ura4+ ura4-D18 leu1-32
3321	pJK148:mid1 S167 to A167 h^{2} mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3324	JK148:mid1 S167 to D167 $\mathrm{h}^{\text {? }}$ mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3327	pJK148:mid1 S328 to A328 $h^{\text {? }}$ mid1::ura 4^{+}ark1-T11<<kanR ura4-C190T leu1-32
3330	pJK148:mid1 S328 to D328 $\mathrm{h}^{\text {? }}$ mid1::ura4 4^{+}ark1-T11<<kanR ura4-C190T leu1-32
3333	pJK148:mid1 S331 to A331 $h^{?}$ mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32

3336	pJK148:mid1 S331 to D331 h $^{\text {? mid1::ura4 }}{ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3339	pJK148:mid1 S332 to A332 $h^{?}$ mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3342	pJK148:mid1 S332 to D332 $h^{?}$ mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3345	pJK148:mid1 S167+S328+S331+S332 to A167+A328+A331+A332 h $^{\text {? mid1::ura }}{ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3349	pJK148:mid1 S167+S328+S331+S332 to D167+D328+D331+D332 $h^{?}$ mid1::ura4 ${ }^{+}$ark1-T11<<kanR ura4-C190T leu1-32
3352	pJK148:mid1 S167+S328+S331+S332+S523+S531 to A167+A328+A331+A332+A523+A531 h mid1::ura 4^{+}ark1-T11<<kanR ura4-C190T leu1-32
3355	$\begin{aligned} & \text { pJK148:mid1 S167+S328+S331+S332+S523+S531 to } \\ & \text { D167+D328+D331+D332+D523+D531 } \\ & \text { h? }^{?} \text { mid1::ura4 }{ }^{+} \text {ark1-T11<<kanR ura4-C190T leu1-32 } \end{aligned}$
3375	pJK148:mid1 S167 to A167 $\mathrm{h}^{?}$ mid1::ura 4^{+}plo1-ts35 ura4-D18 leu1-32
3377	pJK148:mid1 S167 to D167 h? mid1::ura 4^{+}plo1-ts35 ura4-D18 leu1-32
3383	pJK148:mid1 S167 to A167 $h^{?}$ mid1::ura 4^{+}vps4::ura 4^{+}ura4-D18 leu1-32
3392	pJK148:mid1 S328 to A328 h? mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3386	pJK148:mid1 S328 to D328 $\mathrm{h}^{\text {? }}$ mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3392	pJK148:mid1 S328 to A328 h? mid1::ura 4^{+}plo1-ts35 ura4-D18 leu1-32
3397	pJK148:mid1 S331 to A331 $\mathrm{h}^{\text {? }}$ mid1:: ura 4^{+}plo1-ts 35 ura4-D18 leu1-32
3400	pJK148:mid1 S332 to A332 $\mathrm{h}^{?}$ mid1:: ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3403	pJK148:mid1 S523 to D523 h^{-}mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3407	pJK148:mid1 S523 to A523 h^{-}mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3411	pJK148:mid1 S332 to D332 h^{-}mid1::ura 4^{+}plo1-ts35 ura4-D18 leu1-32
3415	pJK148:mid1 S531 to A531 h^{-}mid1::ura ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3419	pJK148:mid1 S167+S328+S331+S332 to A167+A328+A331+A332 h^{-}mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3422	pJK148:mid1 S167+S328+S331+S332 to D167+D328+D331+D332 h^{-}mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3425	pJK148:mid1 S167+S328+S331+S332+S523+S531 to A167+A328+A331+A332+A523+A531 h^{-}mid1::ura ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3428	pJK148:mid1 S531 to D531 h $^{-}$mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3437	pJK148:mid1 ${ }^{+}$(wild-type) mid14 pJK148:mid1 ${ }^{+}$plo1-ts35 h $^{-}$mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3441	pJK148:mid1 S167+S328+S331+S332+S523+S531 to D167+D328+D331+D332+D523+D531 h- mid1::ura 4^{+}plo1-ts35 ura4-D18 leu1-32
3444	pJK148:mid1 S523 to A523 + S531 to A531 h^{-}mid1::ura4 ${ }^{+}$plo1-ts35 ura4-D18 leu1-32
3447	pJK148:mid1 S523 to D523 + S531 to D531 h- mid1::ura4+ plo1-ts35 ura4-D18 leu1-32

3450	pJK148:mid1 S167 to A167 $h^{?}$ mid1::ura 4^{+}vps4::ura4+ ura4-D18 leu1-32
3456	pJK148:mid1 S328 to A328 h? mid1::ura 4^{+}vps $4::$ ura4+ ura4-D18 leu1-32
3461	pJK148:mid1 S167+S328+S331+S332 to D167+D328+D331+D332 h? mid1::ura4 ${ }^{+}$vps4::ura4+ ura4-D18 leu1-32
3463	pJK148:mid1 S167+S328+S331+S332+S523+S531 to D167+D328+D331+D332+D523+D531 $\mathrm{h}^{?}$ mid1::ura 4^{+}vps4::ura4+ ura4-D18 leu1-32
3467	pJK148:mid1 S167+S328+S331+S332+S523+S531 to A167+A328+A331+A332+A523+A531 $\mathrm{h}^{?}$ mid1::ura 4^{+}vps4::ura4+ ura4-D18 leu1-32
3469	pJK148:mid1 S332 to D332 h? mid1::ura4 ${ }^{+}$vps4::ura4+ ura4-D18 leu1-32
3473	pJK148:mid1 S332 to A332 $\mathrm{h}^{?}$ mid1::ura 4^{+}vps4::ura4+ ura4-D18 leu1-32
3481	pJK148:mid1 S328 to D328 h? mid1::ura 4^{+}vps4::ura4+ ura4-D18 leu1-32
3485	pJK148:mid1 S331 to A331 h? mid1::ura 4^{+}vps4::ura4+ ura4-D18 leu1-32
3486	pJK148:mid1 ${ }^{+}$(wild-type) mid1 pJK148:mid1 $^{+}$vps4 4Δ $\mathrm{~h}^{?}$ mid1::ura 4^{+}vps4::ura4+ ura4-D18 leu1-32
3488	$\begin{aligned} & \text { pJK148:mid1+ }{ }^{+} \text {S167+S328+S331+S332 to A167+A328+A331+A332 } \\ & \text { h }^{?} \text { mid1::ura4 }{ }^{+} \text {vps4::ura4+ ura4-D18 leu1-32 } \end{aligned}$

S2 Table. Vector DNA constructs used in this study. "GB" number refers to the

laboratory reference collection.

GB No.	Abbreviated plasmid vector description
880	pET-14b - His tagged, Vps4p full length, Nde I/Bam HI Invitrogen order 13AB6ZFP
881	pGEX4T1 - GST tagged, Mid1p 1-453, Bam HI/Xho I - "N-term" GenScript order U2640BJ110
882	pGEX4T1 - GST tagged, Mid1p 452-579, Bam HI/Xho I - "Middle"
883	pGEX4T1 - GST tagged, Mid1p 578-799, Bam HI/Xho I
884	pGEX4T1 - GST tagged, Mid1p 798-920, Bam HI/Xho I - "C-term"
889	pET-14b - His tagged, Myo2p C-terminus amino acids 1394-1526, Nde I/Bam HI GenScript order U9540CD270_2
907	mid1 $^{+}$wild-type +1 kb upstream of ORF $-3,853$ base pairs in total Kpn I/Sac I fragment cloned into pJK148 GenScript order U2002DH100
909	mid1 mutant (1) S523 to A523 in pJK148
911	mid1 mutant (1) S523 to D523 in pJK148
913	mid1 mutant (1) S531 to A531 in pJK148
915	mid1 mutant (1) S531 to D531 in pJK148
917	mid1 mutant (2) S523 to A523 + S531 to A531 in pJK148
919	mid1 mutant (2) S523 to D523 + S531 to D531 in pJK148
923	mid1 mutant (1) S167 to A167 in pJK148 GenScript order U894VEB050
924	mid1 mutant (1) S167 to D167 in pJK148
925	mid1 mutant (1) S328 to A328 in pJK148
926	mid1 mutant (1) S328 to D328 in pJK148
927	mid1 mutant (1) S331 to A331 in pJK148
928	mid1 mutant (1) S331 to D331 in pJK148
929	mid1 mutant (1) S332 to A332 in pJK148
930	mid1 mutant (1) S332 to D332 in pJK148
931	mid1 mutant (4) S167 to A167 + S328 to A328 + S331 to A331+ S332 to A332 in pJK148
932	mid1 mutant (4) S167 to D167 + S328 to D328 + S331 to D331+ S332 to D332 in PJK148
933	mid1 mutant (6) S167 to A167 + S328 to A328 + S331 to A331+S332 to A332 + S523 to A523 + S531 to A531 in PJK148
934	mid1 mutant (6) S167 to D167 + S328 to D328 + S331 to D331 + S332 to D332 + S523 to D523 + S531 to D531 in pJK148
935	pGEX4T1 - GST tagged, Mid1p 1-453, Bam HI/Xho I - "N-term" S167 to A167 GenScript order U8198EF120
936	pGEX4T1 - GST tagged, Mid1p 1-453, Bam HI/Xho I - "N-term" S328 to A328
937	pGEX4T1 - GST tagged, Mid1p 1-453, Bam HI/Xho I - "N-term" S331 to A331
938	pGEX4T1 - GST tagged, Mid1p 1-453, Bam HI/Xho I - "N-term" S332 to A332
939	pGEX4T1 - GST tagged, Mid1p 1-453, Bam HI/Xho I - "N-term" S167 to A167 + S328 to A328 + S331 to A331 + S332 to A332
940	pGEX4T1 - GST tagged, Mid1p 452-579, Bam HI/Xho I - "Middle" S523 to A523
941	pGEX4T1 - GST tagged, Mid1p 452-579, Bam HI/Xho I - "Middle" S531 to A531
942	pGEX4T1 - GST tagged, Mid1p 452-579, Bam HI/Xho I - "Middle" S523 to A523 + S531 to A531

$1 \quad$ S3 Table. Summary of S. pombe global proteomic studies of identified Mid1p
2 phospho-sites.

Study	Total number of phosphory -lation events	Mid1p phospho-sites				Reference
		Ref. No.	Mid1p Residue position	Ref. No.	Mid1p Residue position	
1	8000	7140	S15	7150	S335	[21]
		7141	S18	7151	S110	
		7142	S167	7152	S112	
		7144	S24	7153	S344	
		7145	S27	7154	S347	
		7146	S328	9637	T336	
		7148	S331	9638	T111	
		7149	S332	10,040	Y333	
2	3682	3150	S7	3156	S328	[22]
		3151	S167	3157	S331	
		3153	S24	3158	S109	
		3154	S27	3159	S344	
		3155	28	3160	S347	
				20,982	S523	
3	12,524	10,736	S218	10,749	S434	[23]
		10,738	S24	10,750	T435	
		5831	S167	10,755	S440	
		10,742	S331	10,756	S444	
		10,743	S328	10,757	S445	
		10,744	S332	10,758	S532	
		10,745	T336	10,759	S527	
		10,746	S403	10,760	S531	
		10,747	S432	10,764	T34	
		10,748	S433	10,765	S42	
				10,767	S335	
4	7298	5835	S167	5844	S403	[24]
		5836	S218	5845	S434	
		5837	S24	5846	S444	
		5838	S27	5847	S531	
		5839	S28	5848	S541	
		5840	S328	5849	S7	
		5842	S331	5850	T34	
		5843	S395	5851	T405	

3

Amino acid	167	328	331	332	523	531	GG No.

mid1 W-T	S	S	S	S	S	S	3181
S167A	A	-	-	-	-	-	3267
S167D	D	-	-	-	-	-	3271
S328A	-	A	-	-	-	-	3275
S328D	-	D	-	-	-	-	3279
S331A	-	-	A	-	-	-	3283
S331D	-	-	D	-	-	-	3287
S332A	-	-	-	A	-	-	3291
S332D	-	-	-	D	-	-	3295
S523A	-	-	-	-	A	-	3185
S523D	-	-	-	-	D	-	3189
S531A	-	-	-	-	-	A	3193
S531D	-	-	-	-	-	D	3197
Multi	A	A	A	A	-	-	3299
Multi	D	D	D	D	-	-	3303
Multi	-	-	-	-	A	A	3201
Multi	-	-	-	-	D	D	3205
Multi	A	A	A	A	A	A	3307
Multi	D	D	D	D	D	D	3311

mid1
mid1
pJK148:mid1
S531A pJK148:mid1 S531D

Branched

Pointed tip

Misplaced septa
Bulged號

Capped tip

(A)

(E)

(C)

mid1 Δ
mid1 Δ pJK148:mid1 S523A PJK148:mid1 S523D

(A)

(20)

(C)

(D)
mid14 ark1-T11 mid14 ark1-T11 pJK148:mid1 S531A pJK148:mid1 S531D

(B)

Elongated, bent cells with multi-septa

(E)

