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Abstract 17 

Background: Methods for p-value correction are criticized for either 18 

increasing Type II error or improperly reducing Type I error. This problem is 19 

worse when dealing with hundreds or thousands of paired comparisons 20 

between waves or images which are performed point-to-point. This text 21 

considers patterns in probability vectors resulting from multiple point-to-point 22 

comparisons between two ERP waves (mass univariate analysis) to correct p-23 

values. These patterns (probability waves) mirror ERP waveshapes and might 24 

be indicators of consistency in statistical differences.  25 

New method: In order to compute and analyze these patterns, we convoluted 26 

the decimal logarithm of the probability vector (p') using a Gaussian vector 27 

with size compatible to the ERP periods observed. For verify consistency of 28 

this method, we also calculated mean amplitudes of late ERPs from Pz (P300 29 

wave) and O1 electrodes in two samples, respectively of typical and ADHD 30 

subjects.  31 

Results: the present method reduces the range of p'-values that did not show 32 

covariance with neighbors (that is, that are likely random differences, type I 33 

errors), while preserving the amplitude of probability waves, in accordance to 34 

difference between respective mean amplitudes. 35 
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Comparison with existing methods: the positive-FDR resulted in a different 36 

profile of corrected p-values, which is not consistent with expected results or 37 

differences between mean amplitudes of the analyzed ERPs.  38 

Conclusion: the present new method seems to be biological and statistically 39 

more suitable to correct p-values in mass univariate analysis of ERP waves. 40 

 41 

Introduction 42 

When we analyze event-related potentials (ERP), we primarily focus on 43 

latencies and amplitudes of the arbitrarily determined elements in these 44 

waves. We generally calculate the maximum and mean amplitudes (mean of 45 

amplitudes within an interval) in these elements, and statistically infer the 46 

difference in these parameters between two samples of that wave. Wave 47 

latency is determined based on its maximum amplitude. These elements are 48 

the components (or waves) of a set of signals that are systematically 49 

observed in a population of individuals under the same experimental 50 

conditions. For instance, the P100 wave obtained from human brain activity 51 

under visual stimulation of a reverse pattern [1]. However, the definition and 52 

delimitation of this ERP is historically arbitrary "to the naked eye". Moreover, 53 

traditional p-correction analyses have lost several pieces of information 54 

regarding the identity of these waves, e.g., differences between periods and 55 

phases of these ERPs.  56 

Mass univariate analysis (MUA) brings a new perspective to assess ERP 57 

behavior, as it consists of describing the differences between two waves that 58 

are explored when they are compared point to point, and we plot the statistical 59 

differences, using a method we call here raster pairwise comparison (RPC), 60 

which returns a raster diagram of p-values as a function of time [2]. See figure 61 

1. Hence, by using RPC we can observe the difference between waves over 62 

time, combining latencies and amplitudes in one single measurement [3].  63 

These pairwise comparisons can be tested with the most suitable statistical 64 

method according to sample features. In MUA, hundreds, even thousands of 65 

comparisons are performed according to the temporal extensions of waves. 66 

These comparisons are explanatory, i.e., we broadly seek for differences. 67 

This brings us to the issue of multiple comparisons, which substantially 68 

increase type I errors [4]. Historically, the concern with spurious differences 69 

has led to the development of methods to correct the probability of having 70 

differences due to the number of comparisons. The most traditional method is 71 

Bonferroni correction. However, as other methods of the same class, it is 72 

quite conservative [4].   73 

Benjamini & Hockberg developed a method of False Discovery Rate (FDR), 74 

which is less conservative and is indicated, along with its variations, for 75 
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multiple comparisons of MUA scale [5, 6]. After, other variants of FDR method 76 

were developed, which concern interdependence among comparisons [7, 8]. 77 

These correction methods are used to compare, e.g., genomes and 78 

resonance imaging (pixel to pixel). We used this method in a previous study 79 

for a point-to-point comparison of ERP waves (RPC). 80 

Although FDR methods presume that pairwise compared data vectors are 81 

correlated to each other in terms of covariance (which would explain the fact 82 

that they correct p-values with a lower degree of rigor), these methods do not 83 

consider covariance of sampling vectors when calculating p-value correction. 84 

We propose here a new paradigm for the correction of multiple comparisons 85 

in test sets where the variables tested have a natural correlation to each 86 

other, which can be considered a priori. P-values form a probability vector 87 

with behavioral patterns that might indicate that differences are statistically 88 

consistent in wave regions with p ≤ α.  89 

 90 

91 
Figure 1. Mass univariate analysis with and without p-correction in a random 92 

scenario. Top: raster diagram of multiple pairwise comparisons (t-tests) between two 93 

samples with 50 random waves each (means in black and grey), and 1000 time 94 

points. Each blue diamond represents p ≤ 0.01, while the red ones represent p ≤ 0.05 95 

regarding the null hypothesis for each pair of point vectors. We found 57 significant 96 

differences (p < 0.05, ~ 5% of all points). Bottom: non-corrected probability vector 97 

(blue) and corrected one (red) by the present method, observing that all significances 98 

were rejected.   99 

 100 
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Theory and Method Application. 101 

A probability vector might have a visibly stochastic profile (figure 2), in which 102 

the distribution of statistically significant p-values does not follow any pattern. 103 

In order to observe this behavior, we derived the original p-value vector into a 104 

p’ vector, where p’ = log10(p). This vector, as a whole, suggests that these 105 

significant p-values might be erratic (i.e., type I errors).  106 

 107 

Figure 2. Probability waves. Vector of probability of rejecting the null hypothesis 108 

(bottom), from the raster pairwise comparison between two ERPs (top), showing 109 

collective behavior patterns of p’-values, organizing “probability waves” with profiles 110 

similar to the ERP. Shaded areas are the ones where the null hypotheses were 111 

rejected by α = 0.05 (red diamonds). p’ = log10(p). 112 

 113 

However, another probability vector might show patterns of order that denote 114 

covariance between sampling data of neighbors (figure 3). This pattern 115 

observed is the gradual and massive evolution of p’-values forming a 116 

“probability wave” equivalent to that of the analyzed ERP (figure 3, dashed 117 

window). 118 

We are not analyzing these behavioral patterns with unaided eye. One way of 119 

isolating such patterns is using mathematical convolution of p’-value in the to-t 120 

interval, using a vector of n-values, according to the equation: 121 
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p’’(to-t) = p’(to-t) * n 122 

where to = [1, 2,...tmax-t], tmax is the total size of the wave under analysis (in 123 

time points) and n is a value vector that sets one regular curve with size t: 124 

n = exp(-x2/2) 125 

where x is the vector [x1,x2,...,xt], where x1 = -√2, xt = √2, and t is the number 126 

of points in the wave compatible with the period of ERPs to be compared. We 127 

used here 60 points (equal to 100ms, at a 600Hz sampling rate). In the 128 

convolution algorithm, n slides on the p’ vector, thus creating a smoothing 129 

wave, where erratic values (with periods much lower than t) tend to be 130 

suppressed. We studied the effect of the convolution of p' by n (t = 60 bins ~ 131 

100ms) on the probability waveform resulting from multiple U-tests (Mann-132 

Whitney) between two ERP waves (case and control), from the O1 and Pz 133 

electrodes (10-20 montage), obtained in an experiment that evaluated 134 

neurophysiological correlates of behavior in the Attention Network Test of 135 

both typical (n = 20) and ADHD children (n = 19) [3]. We show the 136 

uncorrected probability waves (figure 3, bottom of Pz and O1 panels, in black) 137 

and those corrected by the proposed method (blue). We also used the Storey 138 

method for p-correction (positive False Discovery Rate, p-FDR, orange) [9], 139 

which is less conservative than the Benjamini-Hockberg [6] and Benjamini-140 

Yekutieli [7,8] methods. 141 
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 144 

 145 

Figure 3. Methods for p-correction in UVA. Top: comparing waves from Pz 146 

electrode between groups (control in blue, cases in red), correlated to Attention 147 

Network Test behavior, performed by typical and ADHD youths (see text). P3 wave is 148 

inside the dashed window. The non-corrected probability wave (bottom, black) shows 149 

several rejected null hypotheses (red diamonds: p < 0.05). P-correction was 150 

performed by positive FDR (“pFDR”, orange) and the proposed method (“wave”, 151 

blue). The gray dashed line corresponds to the statistical boundary (p < 0.05). 152 

Bottom: for waves from O1 electrode. 153 

 154 

To convolve over the probability wave, we used a normal curve with a period 155 

of t = 100ms, with order of magnitude of the expected waves and that is thus 156 

able to isolate patterns with periods equal to or greater than 100ms. To 157 

estimate the reliability of p-correction methods, we compared the mean 158 

amplitude of the cognitive target-related potentials (dashed line) on the Pz 159 

electrode, which is the P300 wave [10], and on the O1 electrode. We tested 160 

the null hypothesis between those mean amplitudes using the Mann-Whitney 161 

U Test. 162 

 163 
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Observing the effect of the proposed method on a stochastic scenario (figure 164 

1), all statistical differences were rejected, as they should be. After 165 

convolution, the resulting probability wave shows very low amplitudes (figure 166 

1, bottom, red wave). 167 

In the real-life scenario, the mean amplitudes of the target-related potential 168 

from Pz were significantly different between groups (control: 6.70 ± 3.16 μV; 169 

cases: 4.18 ± 4.24 μV; p = 0.028). However, significance was not observed in 170 

the corresponding differences from O1 electrode (control: 9.66 ± 2.52 μV; 171 

cases: 7.82 ± 3.17 μV; p = 0.053). As observed in figure 3, the p-correction 172 

methods resulted in different p'-vectors. Here, the proposed method rejected 173 

the null hypotheses, thus behaving consistently with the differences found 174 

between the mean amplitudes. 175 

 176 

Discussion 177 

The P3 wave is an attention-related cognitive neurofunctional complex that 178 

manifests on parietal site, and which appears around 300 milliseconds after 179 

the corresponding event [10]. Thus, we would expect some effect of the test 180 

on the P3 wave only on the Pz electrode. The proposed method corrected the 181 

p-values more consistently with the expected behavior of the P3 wave than 182 

the pFDR method. In the universe of event-related potentials, the method of 183 

probability wave using convolution of compatible magnitude to the biologically 184 

expected one was more reliable.  185 

We presume that in Nature, collateral points of a biological wave are 186 

correlated to each other, as they derive from deterministic processes, 187 

although they have a chaotic nature. Thus, the behaviors of both equivalent 188 

waves, which are produced by the same source, follow the same causal 189 

mechanisms. The differences between these waves, statistically speaking, 190 

would also follow, by principle, a variation pattern that mirrors the profile of 191 

these waves.  192 

Considering waves resulting from two different processes derived from the 193 

same causal mechanism (for instance, potential related to rare and frequent 194 

stimuli in an OddBall paradigm, resulting from different neural processes 195 

derived from the same neural mechanism [10]), theoretically, the chance of 196 

observing a false negative test result (type II error) is much lower than a false 197 

positive result (type I error). This is because different processes have a causal 198 

relationship with the same mechanisms (non-randomization). 199 

Therefore, since a set of points is statistically different (rejecting the null 200 

hypothesis), because they correspond to the lowest values in a subset of 201 

points of the probability vector, which shows an organized behavioral pattern 202 
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(a probabilistic wave), these statistically determined differences might be 203 

considered to be true.  204 

Hence, in a Mass Univariate Analysis between two ERP waves presumably 205 

derived from the same biological processes, values lower than log10(α) of the 206 

probability pattern vector (p’’) do not correspond to type I errors.  207 

 208 
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