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 16 

Abstract 17 

The differences in transcription start sites (TSS) and transcription end sites (TES) among gene isoforms 18 

can affect the stability, localization, and translation efficiency of mRNA. Isoforms also allow a single 19 

gene different functions across various tissues and cells However, methods for efficient genome-wide 20 

identification and quantification of RNA isoforms in single cells are still lacking. Here, we introduce 21 

single cell Cap And Tail sequencing (scCAT-seq). In conjunction with a novel machine learning 22 

algorithm developed for TSS/TES characterization, scCAT-seq can demarcate transcript boundaries of 23 

RNA transcripts, providing an unprecedented way to identify and quantify single-cell full-length RNA 24 

isoforms based on short-read sequencing. Compared with existing long-read sequencing methods, 25 

scCAT-seq has higher efficiency with lower cost. Using scCAT-seq, we identified hundreds of 26 

previously uncharacterized full-length transcripts and thousands of alternative transcripts for known 27 

genes, quantitatively revealed cell-type specific isoforms with alternative TSSs/TESs in dorsal root 28 

ganglion (DRG) neurons, mature oocytes and ageing oocytes, and generated the first atlas of the 29 

non-human primate cornea. The approach described here can be widely adapted to other short-read or 30 
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long-read methods to improve accuracy and efficiency in assessing RNA isoform dynamics among 31 

single cells. 32 

 33 

Background 34 

The extent of cellular heterogeneity across different tissues and cell types has become 35 

increasingly apparent due to the development of genomics technology, especially 36 

single-cell omics sequencing (1-3). With the launch of initiatives such as the human 37 

single-cell atlas (4, 5), increased attention has been given to the regulatory 38 

mechanisms of cell-specific gene transcription, including both transcript abundance 39 

and alterative isoform usage, which can result in distinct protein sequences and 40 

structures (6, 7). RNA isoform variability includes intron inclusion, exon skipping, 41 

and alternative choice of transcription start sites (TSSs) (8) and transcription end sites 42 

(TESs) (9, 10). Alternative TSSs and TESs account for the majority of tissue-specific 43 

exon usage, are considered the principal drivers of transcript isoform diversity across 44 

tissues, and underlie the majority of isoform-mediated, cell-type specific proteomes 45 

(11). In addition, alternative TSS choices in the 5’-UTR, as well as alternative 46 

polyadenylation (APA) in the 3’-UTR regions play key roles in mRNA stability, 47 

translation, localization (9, 10, 12-14).  48 

Previous studies have demonstrated the widespread heterogeneity of transcript 49 

isoforms with alternative 5’-TSS or 3’-APA across different cell types, resulting in the 50 

discovery of new transcripts with tissue- or cell-type specificity, and allowing updates 51 

to transcript annotations of reference genomes (13, 15). Despite considerable success 52 

in measurements made on bulk populations, current approaches for identifying RNA 53 

isoforms and the dynamics of TSS/TES choices in single cells are limited. 54 

Fundamentally, there is currently no method for accurate, efficient, and quantitative 55 

analysis of RNA isoforms of single cells genome-wide. Most single-cell transcriptome 56 

approaches are based on single-ended quantification of RNA molecules (5’ or 3’) 57 

which give partial information on one end but not the whole transcript (3, 16, 17), 58 

resulting in loss of important information about the other end, especially for 59 

transcripts regulated by UTR regions on both ends (13). Methods based on single-cell 60 
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full-length cDNA amplification such as Smart-seq2 can detect the full-length cDNA, 61 

but its coverage at both ends is low, and it is not possible to accurately distinguish the 62 

start and end positions of different transcript isoforms of the same gene (18, 19). 63 

Recently, approaches based on long-read RNA sequencing technologies identified 64 

RNA isoforms of thousands of cells, but challenges still remain. For example, the 65 

sequencing depth needed to quantitatively assess the RNA isoform transcriptome 66 

makes long-read sequencing too expensive, and the conventional approach has been 67 

to first catalog isoforms using the long reads and then map short reads to the resulting 68 

transcriptome references for quantification. In addition, the requirement of several 69 

micrograms of cDNA input requires extensive PCR amplification from picograms of 70 

mRNA of a single cell, which unavoidably results in higher PCR bias towards specific 71 

isoforms.(13, 15, 20). 72 

In order to address these problems, we developed a simple and efficient approach 73 

based on well-established short-read sequencing platforms to explicitly exploit 74 

transcription initiation and termination sites for the quantification of RNA isoforms in 75 

single cells. When deployed in conjunction with optimized machine learning models, 76 

scCAT-seq is more accurate and cost-effective, and has higher efficiency than existing 77 

methods, making it suitable for quantitative and qualitative analysis of isoform 78 

transcriptomes of single cells, and for analysis of RNA isoform dynamics in different 79 

biological contexts. 80 

 81 

Results 82 

To develop scCAT-seq, we adopted a strategy to capture the boundaries of transcripts 83 

at both 5’ and 3’ ends (21). Full-length cDNAs were first tagged with specific 84 

sequences adjacent to both TSSs and TESs and further amplified, based on a modified 85 

Smart-seq2 protocol (19). Segments of transcript ends with sequence tags were then 86 

tagmented out by Tn5 transposases and captured by targeted PCR amplification. 87 

Illumina sequencing adaptors were further added for standard Illumina sequencing. As 88 

expected, the reads with tags are distributed at the terminal sides of transcripts 89 

(Supplementary Fig. 1a, b). The analysis pipeline precisely determined TSSs by the 90 
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mapped position of reads with a head tag, along with the “GGG” signal added during 91 

reverse transcription. TESs were determined from paired reads (R1 containing a tail 92 

tag and R2 covering polyA sites) by mapping R2 sequences near polyA sites to the 93 

genome (Fig. 1a). Peaks were called using the CAGEr package (22). Internal TES 94 

peaks derived from the internal priming during reverse transcription of mRNA were 95 

excluded.  96 

To improve the accuracy in identification of real TSSs/TESs, we decided to employ 97 

machine learning models. Based on the read distribution of scCAT-seq and 98 

Smart-seq2 of the same single cell samples, we collected potential features that could 99 

affect the identification of a peak as a TSS or TES peak (Table 1), and implemented 100 

three widely used machine learning models: logistic regression classifier (LR), 101 

random forest (RF), and support vector machine (SVM). The random forest model 102 

indicated that “Slope_smart2_curve” and “Percentage” were the most important 103 

features, while the logistic regression classifier and SVM put the highest weights on 104 

“TPM_of_Dominant_Site” and “Trend_of_smart2_read_counts” (Supplementary 105 

Fig. 1d, e). To derive the best predictions, we chose an ensemble learning strategy of 106 

majority voting, integrating predictions from all models to systematically determine 107 

the real TSSs/TESs (Fig. 1b). Our strategy resulted in perfect performance on an 108 

independent test dataset of ERCC spike-in in single cells, with the true positive rate 109 

improved by 3.7- (27% versus 100%) and 2.2-fold (43% versus 95%) for TSS and 110 

TES, respectively (Fig. 1c, d), with sequencing depth of 4 million reads per sample 111 

(Supplementary Table 1). Similarly, ERCC data from other methods, such as C1 112 

CAGE (17), C1 STRT (23), and a method developed by Arguel et al. (24), also 113 

showed high false positive rates for peaks identified as TSSs, (Supplementary Fig. 114 

1c), but the accuracy was also improved to above 95% after using our machine 115 

learning model (Supplementary Fig. 1f), indicating that our model can be applied to 116 

other data sets that contain high false positive rates. 117 

 118 

Table 1. Features used in the machine learning models 119 
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 Features Description of the features 

x1 TPM_of_peak The total TPM value of the peak called by 

CAGEr. 

x2 TPM_of_Dominant_Site The highest TPM value of all sites within a peak. 

x3 Gene_length The length of the transcript annotated. 

x4 Peak_width The width of the peak called by CAGEr. 

x5 Dominant_TPM_to_Smart2 The ratio of Dominant_TPM to the RPM value of 

the corresponding gene revealed by Smart-seq2. 

x6 Slope_smart2_curve The slope of Smart-seq2 coverage curve around 

the peaks 

x7 Trend_of_smart2_reads Calculated by dividing the number of reads 

increased/decreased within 50bp distance by 50 

x8 Percentage The percentage of read counts of a peak to the 

total counts of a transcript 

Using the sequencing data from mouse dorsal root ganglion (DRG) neurons for 120 

further benchmarking, we sequenced 18 DRG neurons with a mean of 2.4 million 121 

reads per cell (Supplementary Table 2). As genomic sequence features can specify 122 

the locations of TSSs and TESs, in addition to the eight features of read distribution, 123 

we added an additional 650 and 150 features of motifs related to TESs and TSSs. To 124 

train the TSS machine learning model, we used the data of neuron tissues from the 125 

FANTOM5 database (25), and to train the TES model, we used the mouse polyA sites 126 

peak from PolyA_DB (26). Using these databases, with 70% of the data for training 127 

and 30% for testing, we found the prediction accuracy for TSS and TES to be 94.3% 128 

and 94.2% respectively (Supplementary Fig. 1g). In total, after pooling all 18 cells 129 

together and applying the machine learning model, we identified 11991 and 15481 130 

peaks as TSSs and TESs, which were significantly enriched at annotated TSS and 131 

TES regions, respectively (Fig. 1e). Over 93% of identified TSSs were located within 132 

1 kb of annotated TSSs, and over 86% of identified TESs were within 1kb of 133 

annotated TESs (Supplementary Fig. 1h, i). In summary, our results indicate that 134 
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scCAT-seq together with a machine learning model can identify TSSs and TESs of 135 

transcripts with high accuracy, allowing demarcation of transcription boundaries of 136 

full length isoforms. 137 

Furthermore, we compared detected read counts with the known abundances of ERCC 138 

mRNA molecules to assess quantification performance. The measured abundances 139 

were highly concordant with the ground truth, with a Pearson’s correlation coefficient 140 

of 0.98 for both TSS and TES (Fig. 1f, Supplementary Fig. 2a). For the annotated 141 

genes of the mouse genome, an internal comparison between random pools of 3 single 142 

cells, each from the oocyte population, gave a correlation coefficient of 0.96 and 0.94 143 

for the quantification of TSS and TES, respectively (Fig. 1g, Supplementary Fig. 2b). 144 

Thus, the quantification of TSS and TES is reliable and provides an accurate and 145 

reproducible measure of relative expression of transcript isoforms. 146 

The sensitivity and efficiency were first estimated with ERCC spike-ins. The lowest 147 

detectable concentration was 4.4 molecules per million for both TSS and TES. In 148 

other words, at a detection threshold of TPM>1, at least 4.4 molecules are required to 149 

get one detected read at sequencing depth of one million. Therefore, the sensitivity of 150 

this method is estimated at roughly 22.7% (1/4.4) (Fig. 1f). This sensitivity is 151 

approximately the same as the 22%-26% sensitivity previously reported for detection 152 

of TSSs (24, 27, 28), but much higher than the 5.4% for TESs (29). In addition, the 153 

number of TSSs detected genome-wide by scCAT-seq is highly dependent on the 154 

number of reads mapped to the genome. Compared to existing methods which can 155 

detect only a single end of transcripts (either the 5’-TSS or the 3’-TES), scCAT-seq 156 

also has significantly better or comparable performance. When 1.28 million reads 157 

were mapped to the mouse genome, around 8000 transcripts were detected by 158 

scCAT-seq, comparable to the number for C1 CAGE (17) and the approach developed 159 

by Arguel et al. (24), but much higher than STRT-seq (21) and Smart-seq2 (19), which 160 

are the current single cell TSS profiling methods (Supplementary Fig. 3a). Similarly, 161 

for TES detection with 1.28 million uniquely mapped reads, scCAT-seq can determine 162 

TESs of more than 12000 transcripts, which is comparable to BAT-seq (29), and much 163 

higher than Smart-seq2 (Supplementary Fig. 3b). Further, we compared the 164 
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performance of scCAT-seq to that of scISOr-seq (15, 20) which is the only method 165 

available for profiling the full-length transcript of single cells. We sequenced 6 single 166 

oocytes with the Pacbio sequel platform, with 54,000 circular consensus sequencing 167 

(CCS) reads per single cell (Supplementary Table 3), which is much higher than that 168 

of 270 reads per cell reported by Gupta et al. (15), and similar to that reported by 169 

Byrne et al. on the Nanopore platform (20). By normalizing the sequencing depth to 170 

the cost for both scCAT-seq and scISOr-seq, we found scCAT-seq had a much higher 171 

efficiency in capturing both ends of full length isoforms than scISOr-seq, 3122 versus 172 

919 genes for scCAT-seq versus scISOr-seq at the equal cost for 4 million PE150 173 

short-reads from Illumina (Fig. 1h, Supplementary Fig. 3c). Around 15% of the 174 

genes could be detected by both methods, with a higher overlapping ratio in highly 175 

expressed genes (Supplementary Fig. 3d, e). In addition, for the number of 176 

overlapping genes between single cells, scCAT-seq had a 2-fold higher overlapping 177 

ratio than scISOr-seq (60% versus 30%), highlighting the high consistency of 178 

scCAT-seq (Fig. 1i, Supplementary Fig. 3f, g). Comparison of the expression of the 179 

transcripts detected by scISOr-seq and scCAT-seq showed that scISOr-seq mainly 180 

detected the part of transcripts with the highest abundance (Fig. 1j), which only 181 

account for 1/4 of those detected by scCAT-seq. Furthermore, for the same coverage, 182 

our approach drastically reduces library preparation and sequencing cost. For instance, 183 

scCAT-seq only requires 1/73 of the cost required by scISOr-seq for 1000 transcripts 184 

covered (Supplementary Fig. 2c). These results indicate that scCAT-seq is a more 185 

cost-effective and reliable approach for quantitatively detecting both start sites and 186 

end sites of full-length transcripts at single cell level. 187 

 188 

Identification of novel transcripts with scCAT-seq 189 

Leveraging the capacity to demarcate the boundaries a transcript, we set out to 190 

identify novel isoforms, both alternative TSSs/TESs of annotated genes and novel 191 

transcripts of unannotated genes (Fig. 2a). Data from mouse oocytes and DRG 192 

neurons was used for benchmarking. For annotated genes, we identified both 193 

alternative TSSs and TESs events, as evidenced by 3102 novel TSSs and 5746 novel 194 
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TESs in oocytes (Fig. 2b), and 2031 novel TSSs and 4693 novel TESs in DRG 195 

neurons (Fig. 2c). In addition, 71 and 107 novel, unannotated transcripts were 196 

identified in DRG and oocytes respectively. Of note, many RNA isoforms identified 197 

by scCAT-seq, and validated by Smart2-seq and Sanger sequencing, were drop-out by 198 

scISOr-seq (Fig. 2d, f, h), indicating that scCAT-seq can identify novel transcripts 199 

with higher efficiency than scISOr-seq. 200 

Further, to characterize the full-length information of novel RNA isoforms, such as 201 

alternatively spliced exons, full-length cDNAs were cloned with primers binding to 202 

the terminal ends identified by scCAT-seq (Fig. 2a). Full-length transcripts were 203 

sequenced by Sanger sequencing or scISOr-seq, and validated by Smart2-seq (Fig. 204 

2d-i). For example, Figure 2f shows an example of novel gene with several isoforms, 205 

which were identified by Sanger sequencing of full-length cDNAs. Three isoforms 206 

differing in cDNA length have differential first exon choices (Fig. 2f, g), and 207 

alternative splicing events between isoform 2 and isoform 3 were revealed, which 208 

were also validated by Smart-seq2, including the exon not detected by scISOr-seq. In 209 

total, 96% (68/71) of novel transcripts detected by scCAT-seq were validated by 210 

Smart-seq2, while only 10% (7/71) of them were detected by scISOr-seq, indicating 211 

high drop-out rate of full-length transcripts in scISOr-seq. Our data suggest that when 212 

combined with targeted full-length sequencing, scCAT-seq can achieve higher 213 

coverage to reveal different isoforms of individual genes. In summary, scCAT-seq can 214 

accurately identify not only novel TSSs and TESs, but also completely unannotated 215 

full-length transcripts in single cells. 216 

 217 

scCAT-seq improves upon the performance of scISOr-seq for single cell RNA 218 

isoform quantification. 219 

Due to the higher efficiency and lower cost of scCAT-seq compared to scISOr-seq for 220 

identifying alternative isoforms, we hypothesized that scCAT-seq could also improve 221 

upon performance of scISOr-seq for accurately quantifying alternative isoforms 222 

(Supplementary Fig. 4a). It is currently too expensive to use scISOr-seq to obtain the 223 

sequencing depth required for accurate isoform quantification of multiple samples, 224 
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especially at single cell level. Byrne et al. also tried to quantify isoforms with the 225 

number of CCS reads, but the number of genes covered was very limited. 226 

Concordantly, our data showed that the CCS readout for the majority of genes covered 227 

was less than 3 even though the sequencing depth was 0.5M for one single cell 228 

(Supplementary Fig. 4b). Although CCS read numbers are positively correlated with 229 

the number of reads of scCAT-seq, much higher variation was observed for the former 230 

with 10- to 1000-fold fewer read counts (Supplementary Fig. 4c, d). Intriguingly, 231 

when using the scCAT-seq to quantify the isoforms identified by scISOr-seq, the 232 

squared coefficient of variation (CV2) was reduced at least 10-fold, making isoform 233 

quantification much more accurate (Supplementary Fig. 4d). For example, two 234 

alternative isoforms of Ermp1 were quantified with a CCS number below 5 in both 235 

DRG and oocytes, without sufficient power to differentiate the quantification of the 236 

two isoforms (Supplementary Fig. 4e, f). However, when quantified with scCAT-seq, 237 

with much lower variance, the longer isoform was found to be significantly higher 238 

expressed in oocytes than in DRGs. In summary, scCAT-seq can be used to quantify 239 

isoforms identified by scISOr-seq in single cells to improve accuracy with lower cost.  240 

 241 

Characterization and quantification of cell-type specific transcripts with 242 

scCAT-seq 243 

To further assess differential gene expression between different cell types based on 244 

quantified abundances of TSS and TES tag counts, we performed scCAT-seq on three 245 

different cell types – mouse DRG, oocytes at Day 3, and oocytes at Day 4. Both TSS 246 

and TES transcriptome data clearly discriminated different cell types from each other 247 

(Fig. 3a, Supplementary Fig. 5a). In addition, because our method can identify both 248 

ends of transcripts, we set out to identify cell type specific transcript isoforms. 249 

Comparing DRG and oocyte cell-type specific isoforms, we identified 166 transcript 250 

isoforms encompassing 83 genes that only differed in TSS choices, and 222 isoforms 251 

encompassing 111 genes that only differed in TES choices (Fig. 3b, Supplementary 252 

Fig. 5b, c). For example, Tsc22d1 and Grpe1 had no difference in total gene 253 

expression between DRG and oocytes, but the two isoforms of each gene were 254 
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expressed in a cell-type specific manner (Fig. 3c, Supplementary Fig. 5d-f).  255 

We also used scCAT-seq to assess RNA dynamics during ageing of post-ovulatory 256 

oocytes, and compared oocytes at day 3 post-ovulation (control) with oocytes at day 4 257 

post-ovulation (post-ovulatory ageing oocytes). After assessing the 975 detectable 258 

TSSs and TESs across the control and ageing oocytes, we found that TESs are more 259 

prone to change positions, and the alternative choice of TESs is strongly associated 260 

with TSSs invariability (two-sided Fisher’s exact test, P value = 3.0×10-53), 261 

supporting the notion of interdependency between transcription initiation and 262 

polyadenylation (Fig. 3d). Further, a change in the choice of major isoform from day 263 

3 to day 4 oocytes is observed in 343 genes with alternative TSSs and 1612 genes 264 

with alternative TESs, with a trend that shorter 5’ UTRs (Fig. 3e) or longer 3’ UTR 265 

are preferred (Fig. 3f). Thus, using scCAT-seq we can observe that the dynamics of 266 

major isoform choice during oocyte ageing is accomplished according to a general 267 

rule, which is through degradation of the major isoform on day 3, and activation of 268 

the minor isoform to switch to the alternative major isoform on day 4, as illustrated by 269 

Ska3 (Supplementary Fig. 6a). In addition, the observations made by RT-qPCR 270 

validated our scCAT-seq data analysis (Supplementary Fig. 6b). 271 

 272 

Single cell atlas of non-human primate corneal epithelial based on RNA 273 

expression and APA analysis. 274 

We next employed scCAT-seq to profile a much larger number of single cells. Taking 275 

the non-human primate cornea as an example, we collected single cells and generated 276 

multiplexed cDNA using the 10x genomics platform. scCAT-seq libraries were 277 

subsequently generated and sequenced, and the 7848 single cells successfully 278 

captured were clustered into 5 major groups. Hundreds of marker genes for each cell 279 

type were identified (Supplementary Fig. 7a), with GO items relating to epithelial 280 

development enriched in the genes up-regulated and those relating to cell adhesion 281 

down-regulated (Supplementary Fig. 7b, c). Based on the RNA expression of the 282 

known marker genes, the following subtypes were identified: corneal epithelial cells 283 

(CEC) highly expressing KRT3 and KRT12, transient amplifying cells (TAC) highly 284 
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expressing KRT12 but not KRT3, and limbal epithelial cells (LEC) highly expressing 285 

KRT19 (Fig. 3g). Pseudotime analysis on scCAT-seq data revealed the trajectory from 286 

TAC to LEC and CEC (Fig. 3h). We next identified the cell-type specific isoforms of 287 

the three major subtypes and assessed their dynamics. From TAC to LEC, we found 288 

285 genes and 244 genes switched to proximal and distal APA sites, respectively (Fig. 289 

3i). From TAC to CEC, we found 457 genes and 414 genes switched to proximal and 290 

distal APA sites, respectively (Supplementary Fig. 8a). For example, the longer 291 

isoform of UBE2B preferentially uses the distal TES in CEC, while the shorter 292 

isoform preferentially uses the proximal TES in TAC (Supplementary Fig. 8b). We 293 

also found that expression of genes with proximal APA sites was significantly higher 294 

in TAC than CEC/LEC, while there was no significant difference in expression 295 

between CEC and TAC for genes with distal APA sites in epithelial cells, suggesting a 296 

potential role of proximal APA choices in gene regulation during differentiation of 297 

epithelial cells from TACs (Supplementary Fig. 8c-f).  298 

 299 

Discussion 300 

The approach we introduce here is highly accurate for transcript demarcation and 301 

isoform quantification in single cells. Through a machine learning algorithm that 302 

employs a majority voting strategy, the noisy false positive peaks were filtered out, 303 

enabling scCAT-seq to identify authentic terminal signatures with a true positive rate 304 

of 95%. Previously, machine learning has been successfully used to predict 305 

differential alternative splicing (30, 31), but none of them can be used to identify 306 

authentic demarcation of RNA isoforms to elucidate the transcriptomic complexity of 307 

single cells. The machine learning model developed here can also improve the 308 

accuracy of other methods to 95% , as evidenced by the ERCC data from C1 CAGE 309 

(17), C1 STRT (23), and Arguel et al., indicating that our model can be applied to 310 

other data sets that contain previously unrecognized high false positive signals. In 311 

addition to identification, the accuracy of our approach for quantification of the 312 

alternative isoforms is also very high, as the measured abundances are highly 313 

concordant with the ground truth, with a pearson’s correlation coefficient of 0.98. The 314 
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high accuracy of both identification and quantification of isoforms provides an 315 

unprecedented opportunity for detection of previously unannotated genes and 316 

unidentified alternative TSSs and TESs, as well as for quantitation of cell-type 317 

specific RNA isoforms.   318 

Another clear advantage of scCAT-seq is its efficiency. Based on short-read 319 

sequencing, scCAT-seq can identify TSSs and TESs simultaneously from sequencing 320 

data derived from a single library, enabling investigation of transcription initiation and 321 

polyadenylation in a large number of single cells. Compared with methods which 322 

capture only single ends of RNA transcripts, either the TSS or TES, scCAT-seq is 323 

demonstrably better for elucidating transcriptome complexity.  324 

Compared with the recently developed long-read sequencing based method 325 

scISOr-seq, which can profile full-length transcripts for a group of single cells (15, 326 

20), our approach requires 1/73 of the cost to detect the same number of transcripts, 327 

with higher efficiency. In addition, scISOr-seq requires at least 1ug of cDNA input, 328 

necessitating extensive amplification of cDNA with unavoidable PCR bias due the 329 

requirement for extra PCR cycles. This results in a decrease in the number of covered 330 

transcripts (a few hundred per single cell) and a lower transcript overlap ratio among 331 

single cells. In contrast, scCAT-seq only requires 0.1 ng of cDNA to achieve sufficient 332 

coverage of thousands of genes. Most importantly, it is still challenging to use 333 

scISOr-seq to quantify the isoforms differentially expressed between single cells, as 334 

accurate quantification requires deep sequencing that is currently too expensive for 335 

many labs. In contrast, our method can accurately quantify the transcripts (r=0.98) at 336 

an affordable cost for most labs. Due to the high accuracy and efficiency of 337 

scCAT-seq in identifying transcript ends, scCAT-seq also offers an efficient pipeline 338 

for full-length characterization of novel isoforms after targeted construction of 339 

full-length cDNA libraries, simply by PCR from the terminal sites identified by 340 

scCAT-seq in single cells.  341 

In summary, the performance of scCAT-seq is a significant improvement upon that of 342 

scISOr-seq in terms of cost, efficiency, and accuracy of both identification and 343 

quantification of RNA isoforms.  344 
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Like all technologies, scCAT-seq has its limitations. First, the initial accuracy of TSS 345 

and TES identification is dependent on the effective cloning of full length cDNA. 346 

Although we adapted a widely used method Smart-seq2 to obtain cDNA, other 347 

protocols with better performance may be substituted in the future. Second, whereas 348 

the information of full-length isoforms of novel genes can be revealed by PCR using 349 

primers targeted to transcript ends identified by scCAT-seq, in this study we 350 

multiplexed only small number of example genes. However, profiling full-length 351 

transcripts with higher multiplexing can be done by complementing scISOr-seq 352 

downstream of scCAT-seq, in order to efficiently profile the targeted amplified 353 

full-length cDNA libraries. Including the scCAT-seq approach to initially identify 354 

isoforms of interest will help increase the efficiency of scISOr-seq with lower cost. 355 

In conclusion, we believe that this robust and cost-effective approach is an ideal 356 

technology for comprehensive and systematic assessment of RNA isoform dynamics 357 

across heterogeneous single cells and biological conditions. Not only can it help 358 

define cell types with specific isoform expression patterns, but it can also establish a 359 

multi-faceted mammalian cell atlas in conjunction with other methodologies to 360 

identify tissue specific epigenetic elements, genotypes, and cis-elements. It can be 361 

widely implemented and may play important roles in projects such as the Human 362 

Single Cell Atlas. 363 

 364 

Methods 365 

Single cell isolation. The experiment was performed on 4-6 week old C57BL/6 mice 366 

of both genders. Mice were maintained under standard conditions (12 h light and dark 367 

cycles, with sufficient food and water). To obtain single DRG neurons, euthanasia was 368 

performed by CO2 and cervical dislocation, L4-L5 DRG from mice of both sides were 369 

dissected and dissociated into single cells. Single DRG neurons were manually picked 370 

by using a micro-capillary pipette. Single cells were incubated into a 0.2-ml thin-wall 371 

PCR tube containing 4 μl Smart-seq2 lysis buffer according to the published 372 

protocol(19, 32). To obtain postovulatory-aged oocytes, female mice were 373 

administered intraperitoneal injections of 10 IU pregnant mare serum gonadotropin 374 
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and 10 IU human chorionic gonadotropin 48 hours later. Cumulus-oocyte-complexes 375 

(COCs) were collected 24 h after human chorionic gonadotropin injections from the 376 

oviductal ampullae. All cumulus cells were removed from the oocytes enzymatically 377 

by trypsin treatment (Sigma-Aldrich) for 2 min and oocytes were subsequently 378 

washed in DMEM medium containing 10% fetal bovine serum (FBS) 379 

(Sigma-Aldrich). Oocytes were picked into a 0.2-ml thin-wall PCR tube contains 4 μl 380 

Smart-seq2 lysis buffer as described before.  381 

 382 

scCAT-seq library construction. The full-length cDNA was generated through 383 

reverse transcription with transcriptase III and the RT primer 384 

(5’-AAGCAGTGGTATCAACGCAGAGTN4 [16bp of cell barcode] T30VN-3’), 385 

followed by PCR amplification according to Smart-seq2 protocol(19) with minor 386 

modification that Superscript II was replaced by superscript III to improve the yield of 387 

cDNA. ERCC RNA spike-in Mix which contains 92 transcripts (Thermo Fisher) was 388 

added and processed in parallel with poly-A RNA. After purification, 0.1 ng cDNA 389 

was used for Nextera tagmentation and fragments of both ends of the cDNA were 390 

selectively amplified by using the primers targeting TSO and Tn5 adaptors as shown 391 

in Fig. 1a. Library are purified using 1.8 ×  Agencourt AMPure XP beads 392 

(BECKMAN COULTER), and then loaded on an E-Gel 2% SizeSelect, and fragments 393 

of a length of 200-300bp bases were selected. Simultaneously, 0.1 ng of cDNA was 394 

used for standard Smart-seq2 libraries. Library was assessed by using Agilent 395 

Bioanalyzer 2100, and sequenced on Illumina Xten platform. The rest of the cDNA 396 

were used for PacBio ISO-seq analysis. 397 

 398 

Single cell ISO-seq. Single cell ISO-seq was performed on PacBio Sequel platform. 399 

Full-length cDNA of eight single cells were mixed together to reach the total amount 400 

of 2ug for each flowcell. PacBio library construction is done by using SMRTbell 401 

Template Prep Kit (PacBio cat#100-991-900), and sequenced using SMRTcells 402 

(PacBio cat#101-008-000), with eight single sample per SMRTcell.  403 

 404 
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Single cell isolation of crab-eating monkey cornea epithelium and library 405 

construction. Whole eyes were dissected from a healthy crab-eating monkey. The 406 

lens, retina, iris, and trabecular network were removed and most of the conjunctiva 407 

was dissected and discarded. The corneal rims were subsequently treated with 1.5mL 408 

of 10mg/mL Dispase Ⅱ in PBS at 37℃ for 2 hours and 0.25% trypsin and 1 mM 409 

EDTA solution at 37°C for 15 minutes with gentle pipetting to yield single cells 410 

suspension. The disassociated corneal epithelial cells were captured on the 10x 411 

Genomics Chromium controller according to the Chromium Single Cell 3’ Reagent 412 

Kits V2 User Guide (10x Genomics PN-120237). Library was prepared using 0.3ng 413 

cDNA from 10x Genomics following the scCAT-seq protocol as described above.  414 

 415 

Data processing of next generation sequencing data. TSS and TES raw data were 416 

extracted and processed separately. For TSS data, reads with the sequencing tag 417 

5’-GTGGTATCAACGCAGAGTACATGGG-3’ were selected, and TSO sequences 418 

5’-GTGGTATCAACGCAGAGTACAT-3’ were trimmed away with the “GGG” tag 419 

retained. Then, these reads were aligned to mouse genome (mm10) with STAR 420 

(version 2.6.1a) with parameters (--outFilterMultimapNmax 1 421 

--outFilterScoreMinOverLread 0.6 --outFilterMatchNminOverLread 0.6). Uniquely 422 

mapped reads were kept but discarded if the 5’ GGG was mapped. Reads that aligned 423 

to ribosomal RNA region were also discarded.  424 

For the TES data, we first processed to remove 3’ adaptor sequences with cutadapt 425 

(version 1.18), and then extract pairing reads with R1 has 3’ Tag and R2 contains at 426 

least 10 polyA sequences at the 3’ side. Poly A sequences in the end of R2 were 427 

further trimmed with 5 A bases left at the 3’ side. By using STAR with parameters 428 

described above, reads were aligned to mouse genome (mm10). The reads with the 429 

terminal 5 A bases not mapped to the genome were retained for downstream analysis 430 

for polyadenylation sites. Reads mapped to multiple sites, with low quality alignment, 431 

and aligned to mitochondrial or ribosomal RNA region were discarded.  432 

For Smart-seq2 data, raw reads past quality control were aligned by STAR using 433 

parameter as described above. Only reads that uniquely mapped to mm10 were 434 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.873505doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.873505


retained and read count on each gene in each sample was computed using 435 

featureCounts (33). Differentially expressed gene analysis was performed using 436 

SCDE (version 2.10.1) (34). 437 

For comparison, we downloaded BAT-seq data (accession number: GSE60768), C1 438 

STRT (accession number: GSE60361) data and data generated by Arguel et al. 439 

(accession number: GSE79136) from the Gene Expression Omnibus database. C1 440 

CAGE data were downloaded from DDBJ (Project ID: PRJDB5282). For the BAT-seq 441 

data, we picked 192 mouse ES cells. For the C1 STRT data, 80 mouse cerebellum 442 

cells from the single-cell dataset were randomly picked. Same strategies were used 443 

with small modification to process C1 STRT data and BAT-seq data. For all data, we 444 

converted bam files to bed files with BEDtools (version 2.27.1). For 5’ end data, we 445 

extract the 5’ end from bed files for further analysis. Likewise, we extract the 3’ end 446 

from bed files for 3’ end data. 447 

 448 

Data processing of scISOr-Seq data  449 

Circular consensus reads (CCS) were obtained from the raw data of subreads Bam 450 

files by using PacBio Sequel SMRT-Link 7.0 Soft, with the default setting of 451 

parameters: minLength 10, maxLength 21000, minReadScore 0.75, minPasses 3. 452 

Then, reads were considered FLNC if they contained 5’ and 3’ primers in addition to a 453 

polyA tail. Primer and polyA tails were removed by cutadapt. Further, FLNC reads 454 

were aligned to reference genome mm10 using Minimap2(35) (version 2.17) with 455 

parameters (-t 30 -ax splice -uf --secondary=no -C5 -O6,24 -B4). CCS count on each 456 

gene in each sample was computed using featureCounts. The output Sam files were 457 

fed into Cupcake ToFU to collapse the mapped FLNC reads into unique transcripts. 458 

Scripts are available at: https://github.com/Magdoll/cDNA_Cupcake. Eventually, 459 

isoforms were identified and filtered using SQANTI2 against mm10 transcriptome 460 

annotation. 461 

 462 

Peak calling. To identify TSSs and TESs, we used CAGEr (version 1.24.0) package 463 

in R. Peaks were called using distclu (threshold = 5, nrPassThreshold = 1, 464 
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thresholdIsTpm = TRUE, removeSingletons = FALSE, keepSingletonsAbove = 10, 465 

maxDist = 20). The position of dominant TSS/TES in each peak was set to represent 466 

the position of peak. TSS and TES annotation reference was based on gencode 467 

release_M18, and peaks mapped between 2kb upstream the annotated TSSs and 2k 468 

downsteam the annotated TESs were considered to belonging to the said gene. We 469 

then extracted 5’-end and 3’-end of all annotated transcripts and converted to bed files 470 

with a custom R script, and distance between the called peaks and the nearest 471 

annotated TSS/TES was calculated by a custom script. We adopted the following 472 

priority in calculating the distribution of TSS peaks mapped to genome features: 473 

TSS±1000 > 5’ UTR > first exon > first intron > other exon > other intron > 3’ UTR > 474 

intergenic. Similarly, The priority in calculating distribution of TES peaks mapped to 475 

genome features is TES±1000 > 3’ UTR > last exon > last intron > other exon > other 476 

intron > 5’ UTR > intergenic.  477 

 478 

 479 

Machine learning analysis. To predict a peak is real or false TSS/TES, we employed 480 

three widely used models, including logistic regression classifier, random forest and 481 

support vector machine. 482 

 483 

Firstly, we use eight features of read distribution to train the three machine learning 484 

models and they are summarized in the table 1. To perform the analysis, we used two 485 

independent data sets derived from ERCC spike-ins which can serve as a standard for 486 

true TESs/TSSs determination, one is for training data, and the other is for test data. 487 

The features were normalized, “TPM_of_peak”, “TPM_of_Dominant_Site” are firstly 488 

being taken a log and secondly normalized to be in the range of [0,1]. Training data 489 

was generated by using scCAT-seq for ERCC spike-ins, and the test data was derived 490 

from the ERCC spike-ins mixed in the single cells. The True positive and False 491 

positive of TSSs and TESs predicted was calculated. Secondly, for the genomic data, 492 

in addition to the eight features of read distribution, we added an additional 650 and 493 

150 features of motifs related to TESs and TSSs, and used FANTOM5 database (25) 494 
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and PolyA_DB (26) to train the model for TSS and TES prediction respectively. 495 

TSSs/TESs were predicted from the peaks of single cells based on scCAT-seq. We 496 

utilize the popular open source python machine learning library scikit-learn to train 497 

these models.  498 

With a logistic regression model, the probability () of a peak with the given values of 499 

the features (x1, x2, x3, x4, x5, x6, x7, x8) was determined as: 500 

π = p(y = 1|x;𝑤𝑤) = 1
1+e−wTx ; 501 

wTx = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 + w7x7 + w8x8 

Where the (x1, x2, x3, x4, x5, x6, x7, x8) are the observed value of the features 502 

shown in Table 1, and w0, w1, w2, w3, w4, w5, w6, w7, w8 are the coefficients 503 

of the corresponding features of the training model. The decision was made based on 504 

the following function: 505 

y =  ln
π

1 − π
  

We also applied l2 regularization and the coefficient is determined using cross 506 

validation on the training set. 507 

 508 

Random forest model(36) consists of a large number of individual decision trees that 509 

operate as an ensemble. Every tree in the random forest makes its own class 510 

prediction and the class with the most votes becomes the random forest model’s 511 

prediction. In random forest, each decision tree is independently trained using partial 512 

features and bootstrap sampled training data. To generate a tree, it has to go over each 513 

feature, and find the best one has the maximum gini index reduction(37) after splitting. 514 

The gini index for each node is defined as: 515 

Gini(D) = 1 −  � pk2
N

k=1

 

Where D is a node in the tree, N is the number of different classes, and pk is the 516 

percentage of data in this node that is labeled class k. Conceptually, gini index reflect 517 

how different they are if we randomly choose two samples from the node. The smaller 518 

the gini index, the more pure the node is. After the split, if the child node still contains 519 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.873505doi: bioRxiv preprint 

https://en.wikipedia.org/wiki/Ensemble_learning?source=post_page---------------------------
https://doi.org/10.1101/2019.12.11.873505


more than one class, it will go through the search process again to split it. This 520 

process generally ends when all the leaf nodes contain only one class samples. An 521 

example of a decision tree learned is shown as below: 522 

 523 

 524 

In every node of the tree in this plot, it first shows the selected feature and splitting 525 

criteria to maximize gini index reduction. Then it shows the gini index for this node. 526 

The “samples” represents number of distinct samples this node has. And the value has 527 

two numbers, corresponding to the number of negative and positive training data 528 

(some training data can have multiple copies since they are bootstrapped from the 529 

original dataset).After we have learned a number of decision trees, we’ll do a majority 530 

vote using all the trees’ predictions. In statistical theory, this step helps reduce model 531 

variance. 532 

The SVM(38) is another widely used supervised machine learning models for two 533 

class classification (can be extended for multi-class classification and regression as 534 

well.) The SVM algorithm tries to find a hyper plane in a mapped high dimensional 535 

space (with kernel trick) that separates the two classes that achieves largest margin. 536 
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From any textbook, the SVM with soft margin and regularization is formularized as: 537 

min{w,b,ξi}   
1
2
�|w|�

2
 + C�ξi

m

i=1

 

s. t.     yi(θTxi + b) ≥ 1 −  ξi,  

ξi  ≥ 0, i = 1, 2, … , m 

Where 𝜉𝑖 is used to allow soft margin, and m is the number of training data you have. 538 

The C controls the relative regularization and is determined using cross validation 539 

method. And 𝑤𝑤 is the vector of weights, and x is the feature vector. 540 

Lastly, we try to further improve model performance by ensemble all three models. 541 

Dietterich (39) indicated statistical, computational and representational benefits of 542 

combining models. This theory is also validated here as the ensembled model 543 

achieves better performance than any one of the three models alone, despite the fact 544 

that the three models already achieve good performance on their own. 545 

 546 

Quantification of cell-type specific isoforms  547 

Expression values for each peak (TSS/TES) were quantified as tags per million (TPM) 548 

generated by CAGEr. To identify cell-type specific isoforms, the major TSS/TES 549 

positions of genes co-expressed between the two types of cells are compared by 550 

intersect the bed files of each with BEDtools (40). Genes with either alternative TSS 551 

or alternative TES between the two were selected. Then, the differential expression 552 

analysis on the TPM value of the major isoform of each cell type between the two was 553 

performed with DESeq2. Further, we performed qRT-PCR with Unique AptamerTM 554 

qPCR SYBR® Green Master Mix (Novogene) on the RocheLightCycler480 (Roche) 555 

using the same samples used for next-generation sequencing to validate the alternative 556 

TES in different cell types. All assays were run in triplicate for six individual samples. 557 

The qRT-PCR conditions used were as follows: 5 min at 95˚C, 45 cycles of 10 sec at 558 

95˚C and 30 sec at 60˚C. The qRT-PCR primers sequences used were listed in 559 

Supplementary Table 4. Gene body primers were used to quantify total gene 560 

abundance. 3’ UTR primers were used to quantify long 3’ UTR isoform. Data were 561 

analyzed using the 2-∆∆Ct method. 562 
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 563 

Sequencing full-length cDNA of target genes. Primers were designed according to 564 

the coordinates of TSS/TES identified by scCAT-seq. Full-length cDNA of all 565 

isoforms of a target gene was amplified by PCR from the cDNA pool of single cells 566 

generated with Smart2-seq. Briefly, 1 ng full length cDNA was used to perform 567 

35-cycle PCR with Premix TaqTM (TaKaRa). PCR products were purified with 568 

QIAquick Gel Extraction Kit (Qiagen) and Sanger-sequenced with corresponding 569 

primers. All assays were performed for three individual single cell samples. PCR 570 

primers used for novel genes are listed in Supplementary Table 5. 571 

 572 

Data processing of corneal single-cell data. Each 10x droplet sequencing data was 573 

processed using the Cell Ranger (version 2.1.1) pipeline from 10x Genomics. In brief, 574 

reads was demultiplexed and aligned to the Macaca fascicularis genome. UMI counts 575 

was quantified to generate a gene-barcode matrix. Cells were filtered to remove those 576 

containing less than 500 genes. Genes that were detected in less than 3 cells were also 577 

removed. Further analyses of these cells were performed using the Seurat (version 578 

3.0.2) R packages, as described in the tutorials (“https://satijalab.org/seurat/”)(41). 579 

Briefly, cells were normalized using LogNormalize and multiplied by a scale factor of 580 

10000. HVGs (high variable genes) were identified and used for further analysis. 581 

Shared cell states were identified using integration procedure in Seurat. 582 

Dimensionality reduction was performed using principal component analysis (PCA). 583 

Statistically significant PCs were identified using the Jackstraw function. The score of 584 

cells in those significant PCs were used to build a k-nearest neighbor (KNN) graph. 585 

Louvain algorithm was used for identifying cell clusters in KNN graph (parameter 586 

resolution=0.06). Uniform manifold approximation and projection (UMAP) 587 

dimensionality reduction was used to project these populations in two dimensions. 588 

Pseudotime analyses of CEC was performed using Monocle2 (42) (version 2.12.0) R 589 

package. Differentially expressed genes among LEC, CEC and TAC were identified 590 

using differentialGeneTest function and used as input for temporal ordering of those 591 

cells along the differentiation trajectory. 592 
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 593 

Code availability. Custom computer code used in this study is freely available at 594 

https://github.com/huyoujinlab/scCAT-seq. 595 

 596 

Availability of data and material 597 

All the related data can be downloaded from GEO with the accession number 598 

GSE134311. 599 
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Figure 703 

 704 

Figure 1. The scCAT-seq method and performance. a, Schematic of the scCAT-seq 705 

method. Template switching reverse transcription of full-length cDNA was performed 706 

with oligo-dT primer containing a unique molecular identifier (UMI), a cell identifier 707 

(CI), and a common sequence (CS). After PCR amplification, cDNA was tagmented 708 

with Tn5 transposases. Both 5’ and 3’ ends of the cDNA were captured and amplified 709 

by PCR using primers binding to CS and TSO sequences, during which Illumina 710 

sequencing indexes were tagged. In addition, Smart-seq2 libraries are generated from 711 

cDNA of the same cell. Sequencing data was processed and transcription start sites 712 

(TSSs) and transcription end sites (TESs) were identified by machine learning models, 713 

following by quantification of transcript isoforms. b, Schematic of the machine 714 

learning model. Features were collected and three machine learning models were 715 

implemented. Predictions from all models were integrated by majority voting. c, True 716 

positive for identification of TSSs and TESs with and without optimization by the 717 

majority voting strategy based on machine learning models. d, Genome browser 718 

shows the example of TSS/TES identification with or without machine learning (ML). 719 
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The false positive peaks filtered out by ML were indicated by arrows. e, Distance of 720 

TSSs/TESs identified by scCAT-seq in the genome to those annotated in mm10. f, 721 

Scatter plot of observed transcript expression levels (y axis) and true abundance (x 722 

axis) of ERCC spike-ins through 5’-end quantification (n = 92). Each point represents 723 

a transcript. The Pearson’s correlation coefficient is shown in the upper right corner. 724 

The capture efficiency is estimated by the probability of an individual transcript could 725 

be detected at sequencing depth of one million. g, Scatter plots shows the Pearson’s 726 

correlation of transcriptional level of isoforms between replicated pools of 3 single 727 

cells. h, The number of transcripts with both ends captured using scCAT-seq, 728 

Smart-seq2, or ScISOr-Seq, versus cost. The shaded regions represent 95% 729 

confidence interval. i, Barplot shows the overlapping rate of genes detected among 730 

single cells, by scCAT-seq versus ScISOr-Seq (n = 3 single cells). Significance was 731 

computed using two sided t-test. Error bars represent standard error of the mean. j, 732 

Violin plot for expression level comparison between genes detected by scCAT-seq and 733 

ScISOr-Seq. Gene expression levels were quantified by Smart-seq RPM value. 734 

Significance was computed using two-sided Wilcoxon test. 735 

 736 
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 743 

Figure 2. Characterization of novel transcripts and isoforms of single cells with 744 

scCAT-seq. a, Schematic of the functions of scCAT-seq. b, Barplot showing the 745 

number of novel isoforms of annotated genes and novel, unannotated transcripts in 746 

DRG neurons. The number of transcripts for each category is indicated above the box. 747 

c, Barplot showing the number of novel isoforms of annotated genes and novel, 748 

unannotated transcripts in oocytes. d, Genome browser track for an example of novel 749 

genes with single isoform. e, Gel image showing validation result of novel gene in d. f, 750 

Genome browser track for an example of novel genes with alternative TSSs on a 751 

different exon. g, Gel image showing validation result of novel gene in f. h, Genome 752 

browser track for an example of novel genes with alternative polyadenylation sites on 753 

a different exon. i, Gel image showing validation result of novel gene in h. 754 

  755 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.873505doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.873505


 756 
Figure 3. Quantification of cell specific isoforms discriminate cell types and illustrates 757 

the dynamics of isoform choices during oocyte ageing and corneal epithelial 758 

regeneration. a, Heatmap for Pearson’s correlation coefficient of transcriptomes of 759 

DRG neuron and oocytes, based on 5’-end quantification of RNA isoforms. b, 760 

Heatmap showing RNA isoforms of alternative TSS choices with cell type specificity. 761 

The major isoforms either in oocytes or in DRG neurons are shown (n = 166 762 

isoforms). c, Genome browser tracks showing the alternative choices of TSS of 763 

Tse22d1 between oocytes and DRG neurons. d, Heatmap showing the number of 764 

transcripts with or without TSSs/TESs changes during oocyte post-ovulatory ageing. e, 765 

Expression data with isoform specificity reveals isoform expression dynamics during 766 

oocyte post-ovulatory ageing (n = 1,161 genes). f, Expression data with isoform 767 

specificity reveals TES changes and isoform expression dynamics during oocyte 768 

post-ovulatory ageing (n = 1,754 genes). g, UMAP plot depicting cell clusters 769 

identified with scCAT-seq, including corneal epithelial cell (CEC), limbal corneal 770 

epithelial cell (LEC), and transient amplifying cell (TAC), and their specific marker 771 

genes (n = 7,848 cells). h, A pseudotime trajectory of single cells constructed using 772 
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Monocle. Indicated in color are the three presumptive states corresponding to CEC, 773 

TAC, and LEC. i, Expression data with isoform specificity reveals TES changes and 774 

isoform expression dynamics during differentiation of CEC from TAC (n = 584 775 

genes). 776 
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 778 

Supplementary figure 1. Machine learning improves accuracy of scCAT-seq 779 

demarcated isoform boundaries in single cells. a, Distribution of sequencing reads 780 

along the genes from head to tail from Smart-seq2 and scCAT-seq. b, Dppa3 as an 781 

example gene, showing the distribution of sequencing reads of Smart-seq2 and 782 

scCAT-seq. c, TSS peaks identified in the data of scCAT-seq, as well as public data 783 

sets of ERCC for C1 CAGE, C1 STRT and Arguel et al. True positive peaks located 784 

around the annotated TSSs and false positive TSS peaks located elsewhere are 785 

indicated respectively. d, Relative feature importance of the eight features for TSS 786 

identification in random forest model (RF), support vector machine (SVM), and 787 

logistic regression classifier (LR). e, Relative feature importance of the eight features 788 

for TES identification in the three machine learning models. The value of importance 789 

for SVM and LR are first transformed to absolute value and normalized to the highest 790 

value of the eight features. f, True positive for identification of TSSs for the public 791 

data sets with and without optimization by the majority voting strategy based on 792 

machine learning models. g, True positive for identification of TSSs and TESs for the 793 

pooled single DRG neurons data sets with optimization by the majority voting 794 
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strategy based on machine learning models. h, Pie chart with the genomic distribution 795 

of the identified TSSs. The total number of TSS peaks identified after optimization by 796 

the machine learning models is indicated under the pie chart. i, Pie chart with the 797 

genomic distribution of the identified TESs. 798 
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 801 

Supplementary figure 2. Accuracy and consistency of scCAT-seq performance for 802 

isoform quantification. a, Scatter plot of observed transcript expression levels (y axis) 803 

and true abundance (x axis) of ERCC spike-ins through 3’-end quantification. b, 804 

Scatter plots showing the correlation of transcriptional level of isoforms between 805 

replicated samples (3 cells pooled) based on 3’-end quantification. c, Comparison of 806 

the cost for the same number of transcripts (1,000) between PacBio ScISOr-Seq, 807 

scCAT-seq. The price is estimated based on the market price in China. Error bars 808 

represent 95% confidence interval. 809 
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 811 
Supplementary figure 3. The number of genes covered by scCAT-seq. a, The number 812 

of transcripts with 3’ tail detected by scCAT-seq, BAT-seq, and Smart-seq2 at variable 813 

sequencing depth. Error bars represents standard error of the mean. b, The number of 814 

transcripts with 5’ head detected by scCAT-seq, C1 STRT, Smart-seq2, Arguel et al., 815 

and C1 CAGE at variable sequencing depth. Error bars represents standard error of 816 

the mean. c, Number of genes and transcripts covered by scCAT-seq and ScISOr-Seq 817 

respectively (n = 3). The number of reads for scCAT-seq was 4 million per single cell 818 

and the CCS number for ScISOr-Seq is 50,000 per cell. Significance was computed 819 

using two sided t-test. Error bars represents standard error of the mean. d, Stacked 820 

barplots showing the number of genes with different expression levels detected in 821 

oocytes by scCAT-seq and ScISOr-Seq. e, Boxplot for expression level comparison 822 

between genes detected by scCAT-seq only and by both scCAT-seq and ScISOr-Seq (n 823 

= 9,626). Significance was computed using two-sided Wilcoxon test. f, Venn diagram 824 

for genes detected concordantly among single cells by scCAT-seq. g, Venn diagram 825 

for genes detected concordantly among single cells by ScISOr-Seq.  826 
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828 
Supplementary figure 4. scCAT-seq improves upon the performance of scISOr-seq for 829 

single cell RNA isoform quantification. a, Schematic showing performance 830 

improvement of ScISOr-Seq via scCAT-seq quantification. b, Density plot showing 831 

the comparison of genes read count values among ScISOr-Seq, scCAT-seq and 832 

Smart-seq2. c, Boxplot for the expression level comparison among genes with 833 

different CCS numbers detected by ScISOr-Seq. d, Squared coefficients of variation 834 

of scCAT-seq and ScISOr-Seq, versus the means of normalized read counts. The 835 

shaded regions represent 95% confidence interval. e, Genome browser track showing 836 

an example of Ermp1. which has two isoforms detected by both scCAT-seq and 837 

ScISOr-Seq. f, Boxplot for the example gene Ermp1, which has two isoforms 838 

differentially expressed in oocytes or in DRG neurons, while the expression value 839 

assessed by ScISOr-Seq is not differential between the two cell types. Significance 840 

was computed using two-sided Wilcoxon test. 841 
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 842 

Supplementary figure 5. Identification and quantification of cell-type specific 843 

transcript isoforms. a, Heatmap for Pearson’s correlation coefficient of transcriptomes 844 

of DRG neuron and oocytes, based on 3’-end quantification of RNA isoforms. b, 845 

Heatmap showing RNA isoforms of alternative TSS choices with cell type specificity 846 

(left panel), and the expression of corresponding genes assessed by Smart-seq2 (right 847 

panel). c, Heatmap showing RNA isoforms of alternative TES choices with cell type 848 

specificity (left panel), and the expression of corresponding genes assessed by 849 

Smart-seq2 (right panel). d-f, Boxplot for the example gene Grpe1, which has two 850 

isoforms differentially expressed in oocytes or in DRG neurons (e, f), while the 851 

overall gene expression assessed by Smart-seq2 is not differential between the two 852 

cell types (d). For d-f, significance was computed using two-sided Wilcoxon test (n = 853 

35). 854 
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 856 

Supplementary figure 6. Examples of full-length isoforms with alternative TES during 857 

oocyte post-ovulatory ageing. a, Genome browser track showing the TSS dynamic 858 

choices during oocytes post-ovulatory ageing. b, Fold change in expression of the 859 

Ska3 long 3’ UTR isoform (long) relative to total Ska3 expression (total) between 860 

oocyte D3 and oocyte D4 single cells, measured by RT-qPCR. Error bars represent 861 

standard error of the mean (n = 6 biological replicates). Significance was computed 862 

using two-sided t-test. 863 
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 865 

Supplementary figure 7. Cell-type and marker-gene identification in the crab-eating 866 

monkey cornea. a, Heatmap shows the top 20 marker genes expressed in LEC, CEC 867 

and TAC respectively. Color bars on the top are used to discriminate different cell 868 

types. b,  GO items enriched in the genes up-regulated in CEC compared to TAC. c, 869 

GO items enriched in the genes down-regulated in CEC compared to TAC. 870 
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 872 

Supplementary figure 8. Differences between LEC and TAC in terms of RNA 873 

expression and APA choices. a, Expression data with isoform specificity reveals 874 

isoform expression differences between LEC and TAC (n = 956 genes). b, Genome 875 

browser track shows an example of APA choices for the gene UBE2B during 876 

differentiation of CEC from TAC (n = 414 genes). c, Boxplot comparing expression 877 

of genes in LEC and TAC, which have distal TESs in LEC (n = 414 genes). d, 878 

Boxplot comparing expression of genes in LEC and TAC, which have proximal TESs 879 

in LEC (n = 457 genes). e, Boxplot comparing expression of genes in CEC and TAC, 880 

which have distal TESs in CEC (n = 244 genes). f, Boxplot comparing expression of 881 

genes in CEC and TAC, which have proximal TESs in CEC (n = 285 genes). For c-f, 882 

significance was computed using two-sided Wilcoxon test. 883 
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Supplementary table 1. 886 

Sample Sequencing depth 
ERCC_01 1,052,270 
ERCC_02 1,571,949 
ERCC_03 3,799,426 
ERCC_04 3,989,246 
ERCC_05 2,291,544 
ERCC_06 3,835,792 
ERCC_07 3,986,186 
ERCC_08 7,964,775 
ERCC_09 7,645,733 
ERCC_10 5,223,629 
Average 4,136,055 

 887 

Sequencing depth for each ERCC spike-in libraries generated by scCAT-seq methods 888 

are listed. 889 
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Supplementary table 2.  891 

Library 
name 

Sequencing 
Depth 

TSS 
number 

TES 
number 

Gene number 

D41_71 2,493,578 11,155 4,867 3,917 
D44_52 3,100,138 12,906 5,667 4,594 
D44_72 1,612,099 10,693 4,601 3,558 
D45_52 2,723,321 12,858 4,866 4,066 
D45_72 2,080,059 11,355 4,352 3,570 
D46_71 3,955,396 13,570 5,547 4,674 
D47_52 1,628,466 10,786 5,433 4,295 
D47_72 1,056,585 9,567 4,276 3,232 
D48_52 1,484,463 10,165 4,180 3,346 
D48_72 1,869,191 10,710 4,407 3,501 
D49_72 1,330,893 9,587 3,671 2,902 
D50_52 1,518,348 10,201 4,288 3,474 
D50_71 2,249,770 10,802 4,104 3,343 
D50_72 2,717,055 11,725 5,136 4,262 
D51_52 3,733,854 12,258 5,437 4,600 
D51_72 2,474,653 11,314 3,860 3,253 
D52_52 2,624,766 12,142 5,692 4,689 
D52_72 4,015,130 13,347 5,869 4,998 
Average 2,370,431 11,397 4,792 3,904 

 892 

Information about 18 single DRG neurons generated by scCAT-seq method for further 893 

benchmarking in this study are listed in this table. A gene is detected only if there are 894 

TSS peaks and TES peaks mapped to the said gene. 895 
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Supplementary table 3. ScISOr-Seq information in this study 897 

Sample 
Subreads 
base (G) 

Number of 
Subreads 

Average subreads 
length 

Number 
of CCS 

Number 
of FLNC 

DRG_1 0.32 214,295 1,487 19,947 4,289 
DRG_2 0.35 237,777 1,481 23,070 3,835 
OC_1 0.89 612,741 1,446 47,152 8,171 
OC_2 0.24 165,171 1,436 13,305 780 
OC_3 1.03 703,398 1,462 54,258 22,549 
OC_4 3.52 2492,563 1,414 193,637 13,932 
OC_5 0.22 145,585 1,483 14,857 1,009 
OC_6 1.31 912,567 1,441 68,471 27,559 

 898 

Information about 6 single oocytes and 2 single DRG neurons generated by scISO-seq 899 

are listed.  900 
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Supplementary table 4. Cloning primers used in this study 903 

Target gene Sequences (5’ → 3’) 

Novel gene 1 F CTGCATCAGCTTCTGTTTCCT 

Novel gene 1 R GCTTAACAGTTTCGGAGGGT 

Novel gene 2-1 F CACTCCTCCACGGCCTC 

Novel gene 2-1 R TTCTTTACAGATATTTAAGGCACCC 

Novel gene 2-2 F GCTGGTCACGGTTGTACCTT 

Novel gene 2-2 R ATCATGGGAAGGGCATGAGC 

Novel gene 3-1 F TTACATGCTCTGACTTGGGCT 

Novel gene 3-1 R GTGTGCTCTGGCTTGCCATT 

Novel gene 3-2 F AGCCAACTCTAAGATGGCACC 

Novel gene 3-2 R CTGAGCTTCGGTTTGGTGTG 

 904 

Primer sequences used to clone full-length novel genes are listed. 905 
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