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Abstract 24 

Preventive strategies beyond ART will be required to end the pediatric HIV 25 

epidemic. A maternal vaccine capable of boosting neutralizing antibody (nAb) 26 

responses against circulating viruses in HIV-infected pregnant women could effectively 27 

decrease mother-to-child transmission of HIV. However, it is not known if an HIV 28 

envelope (Env) vaccine administered to infected pregnant women can enhance 29 

autologous virus neutralization. 30 

Here, we assessed autologous virus nAb responses in maternal plasma samples 31 

obtained from AIDS Vaccine Evaluation Group (AVEG) Protocols 104 and 102, 32 

historical Phase I safety and immunogenicity trials of recombinant HIV Env subunit 33 

vaccines in HIV-infected pregnant women (NCT00001041). AVEG 104 participants 34 

were randomized to receive 300 µg Env subunit MN recombinant gp120 with alum 35 

adjuvant or alum alone. AVEG 102 participants were randomized to receive 640 µg Env 36 

subunit recombinant gp160 or placebo. HIV Env-specific maternal plasma binding and 37 

neutralizing responses were characterized before and after vaccination in 15 AVEG 104 38 

(n=10 vaccinee, n=5 placebo) and 2 AVEG 102 (n=1 vaccinee, n=1 placebo) 39 

participants. Single genome amplification (SGA) was used to obtain HIV env gene 40 

sequences from autologous viruses for pseudovirus production in pre- and post-41 

vaccination plasma of HIV-infected pregnant vaccinees (n=6 gp120, n=1 gp160) and 42 

placebo recipients (n=3).  43 

We detected an increase in MN gp120-specific IgG binding in the vaccinee group 44 

between the first immunization visit and the last visit at delivery (p=0.027, 2-sided 45 

Wilcoxon test). However, no difference was observed in the neutralization potency of 46 
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maternal plasma collected at delivery against autologous viruses isolated from early or 47 

late pregnancy. Thus, maternal vaccination with gp120/160 did not boost maternal 48 

autologous virus nAb responses. Immunization strategies capable of more potent B cell 49 

stimulation will likely be required to effectively boost autologous virus nAb responses in 50 

pregnant women and synergize with ART to further reduce infant HIV infections.  51 

 52 

Key Words 53 

Human immunodeficiency virus; mother-to-child transmission; maternal vaccination; HIV 54 

envelope; autologous virus neutralization 55 
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multiplex assay (BAMA), HIV immunoglobulin (HIVIG), mean fluorescent intensity (MFI), 64 

zidovudine (ZDV), Toll-like receptor (TLR), antibody dependent cell cytotoxicity (ADCC) 65 

 66 

Highlights 67 

• Prior maternal HIV Env vaccine trial did not assess autologous virus 68 

neutralization 69 
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• Circulating viruses isolated from mothers were tested against autologous plasma 70 

• Maternal vaccination with HIV Env gp120/160 increased MN gp120-specific IgG 71 

binding 72 

• Maternal HIV Env vaccine regimen did not boost autologous virus neutralization 73 

• More potent B cell stimulation will be required to elicit autologous nAb responses  74 

 75 

Introduction 76 

 77 

Despite widespread efforts to eliminate pediatric HIV infections, mother-to-child 78 

transmission (MTCT) of HIV continues to pose a significant global health challenge. 79 

With the wide availability of antiretroviral therapy (ART) for HIV-infected women during 80 

pregnancy and breastfeeding, as well as for infant prophylaxis, the rate of new HIV 81 

infections among infants have decreased by 41% from 2010 to 2018 [1]. Although 82 

approximately 82% of HIV-infected pregnant women across the globe had access to 83 

ART in 2018, there were still 160,000 newly acquired pediatric HIV infections in the 84 

same year [1]. Some of the factors contributing to these new infections are the 85 

emergence of drug-resistant HIV strains, late maternal diagnosis or presentation for 86 

prenatal care, acute infection during pregnancy or breastfeeding, and poor 87 

implementation of ART in resource-limited areas.  88 

In the absence of ART prophylaxis during pregnancy, the MTCT transmission 89 

rate is 30-40% and can occur antepartum (in utero), intrapartum (during labor and 90 

delivery), or postpartum (during breastfeeding) [2]. Even with optimal implementation of 91 

antenatal triple-drug ART, breakthrough transmission can occur, with rates as high as 92 
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5% [3, 4]. In addition, recent studies have demonstrated that while ART can effectively 93 

reduce the rate of MTCT, this reduction comes at the expense of a notable increase in 94 

preterm birth and neonatal death, particularly for protease inhibitor-based regimens [4-95 

6]. Moreover, recent reports of increased prevalence of neural tube defects in newborns 96 

associated with maternal exposure to dolutegravir-based ART at conception have 97 

raised concerns regarding toxicity of ART and highlight an urgent need for additional 98 

preventative approaches [7-10]. Thus, due to issues of ART access, adherence, 99 

incomplete efficacy, and toxicity, further strategies will be required to eliminate MTCT. 100 

Prior studies have implicated HIV Env-specific antibody responses as being 101 

potentially protective against HIV-1 transmission. In fact, the partially effective RV144 102 

vaccine trial of a recombinant gp120 vaccine indicated that vaccine-elicited IgG against 103 

variable loops 1 and 2 (V1V2) of gp120 was associated with decreased risk of HIV-1 104 

heterosexual transmission [11-14]. While this particular epitope has not been implicated 105 

in protection against MTCT, maternal antibodies against both the variable loop 3 (V3) of 106 

Env gp120 and the gp41 membrane-proximal external region (MPER) have been shown 107 

to correlate with reduced risk of MTCT [15, 16]. In addition, studies have demonstrated 108 

that heterologous virus HIV-neutralizing antibodies are found more frequently or in 109 

higher titers in non-transmitting compared to transmitting mothers [17, 18]. However, 110 

there is conflicting data regarding the role of maternal antibodies in preventing vertical 111 

transmission, as other studies have failed to confirm this association between maternal 112 

Env-specific neutralizing antibodies and decreased transmission risk [2, 19]. Moreover, 113 

some studies have observed the opposite trend, reporting that transmitting women had 114 

higher concentrations of maternal IgG against the Env V3 region compared to non-115 
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transmitting women [20]. Clearly, further investigation is needed to elucidate the 116 

relationship between maternal antibody responses and risk of transmission to the infant.    117 

We previously investigated immune correlates of vertical HIV-1 transmission in 118 

pregnant, in a large cohort of HIV clade B-infected US women from the Women and 119 

Infants Transmission Study (WITS) [21]. The results demonstrated that maternal IgG 120 

against V3, plasma neutralization of clade-matched tier 1 but not tier 2 HIV-1 variants, 121 

and the potency of the maternal plasma to block CD4 from binding to clade B HIV-1 122 

Envs predicted reduced risk of MTCT. Interestingly, these responses were co-linear in 123 

their prediction of MTCT risk, suggesting that they may be surrogate measures for the 124 

same underlying mechanism of virus neutralization that influences infant transmission. 125 

In fact, isolated V3-specific monoclonal antibodies (mAbs) that could neutralize tier 1, 126 

but not tier 2 heterologous viruses, were able to neutralize most autologous viruses 127 

isolated from maternal plasma [21]. Moreover, it has also been demonstrated that 128 

autologous V3 and CD4 binding site (CD4bs) mAbs isolated from chronically HIV-1-129 

infected individuals can neutralize autologous, but not heterologous, tier 2 viruses [22]. 130 

This indicates that non-broadly neutralizing antibodies can potently neutralize 131 

autologous circulating viruses, which is especially pertinent in the unique setting of 132 

MTCT, as maternal circulating viruses are the source of the vertically transmitted virus. 133 

In recent study, we also characterized vertically transmitted and non-transmitted 134 

maternal HIV Env variants in 16 mother-infant transmitting pairs from the WITS cohort, 135 

and found that, compared to maternal non-transmitted variants, the infant transmitted 136 

virus variants were significantly more neutralization-resistant to paired maternal plasma 137 

[23]. This finding suggests that autologous neutralizing antibody sensitivity may define 138 
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infant transmitted/founder variants, and, therefore, boosting autologous neutralizing 139 

antibody responses in HIV infected pregnant women could be a viable immune strategy 140 

to decrease vertical transmission.  141 

Yet, it is unknown whether vaccination of HIV-infected pregnant women with an 142 

Env vaccine would even temporarily enhance autologous virus neutralizing antibody 143 

responses. In two historic vaccine trials completed in 1993-1995 by the AIDS Vaccine 144 

Evaluation Group (AVEG) Protocols 104 and 102, safety and immunogenicity of 145 

recombinant HIV Env gp120 and gp160 (rgp120, rgp160) respectively as antigens, were 146 

tested in HIV-infected pregnant women [24]. While the Env vaccine was safe and well 147 

tolerated, there was limited enhancement of maternal immune responses against 148 

heterologous viruses in vaccinees compared to placebo recipients [24]. Importantly, 149 

because of the immunological phenomenon of original antigenic sin, it is possible that 150 

immunization with an heterologous Env vaccine may recruit memory immune cells in 151 

HIV-infected pregnant women, leading to an enhancement of their autologous virus 152 

neutralizing immune responses. In the setting of MTCT, evocation of original antigenic 153 

sin for enhancement of autologous virus neutralization could be an effective strategy to 154 

impede perinatal virus transmission. Nevertheless, whether maternal rgp120/160 155 

vaccination enhanced neutralizing antibody responses against the maternal autologous 156 

circulating viruses remained unknown. 157 

In this study, we sought to assess whether immunization of HIV-infected 158 

pregnant women with an alum-adjuvanted recombinant Env vaccine elicited maternal 159 

antibody responses that improved autologous virus neutralization responses. 160 

Additionally, we characterized representative maternal virus population diversity from 161 
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pre- and post-immunization time points in 7 vaccinees and 3 placebo recipients and 162 

assessed the antibody binding kinetics and ability of maternal plasma to neutralize 163 

these autologous viruses. This work offers novel insights into the feasibility of enhancing 164 

maternal autologous virus neutralization and antibody responses through maternal HIV 165 

Env vaccination as an adjunctive strategy to protect the infant against HIV-1 acquisition.  166 

 167 

Materials & Methods 168 

 169 

Study Subjects 170 

Maternal plasma samples were obtained from the AIDS Vaccine Evaluation 171 

Group (AVEG) Protocols 104 and 102, a Phase I study of safety and immunogenicity of 172 

MN rgp120 and rgp160 HIV-1 vaccines in HIV-infected pregnant women 173 

(ClinicalTrials.gov; NCT00001041). In the AVEG 104 Protocol, 26 HIV-infected pregnant 174 

women with CD4+ T cell counts >400/mm3 were enrolled in the second trimester of 175 

healthy pregnancy and randomized to receive either 300 µg of MN rgp120 (Genentech) 176 

with alum (n=17) as an adjuvant or alum with diluent (n=9) between 16 and 24 weeks of 177 

gestation [24]. Booster immunizations were administered monthly, until delivery, for a 178 

minimum of 3 vaccine doses and a maximum of 5 vaccine doses (Figure 1). Similarly, 2 179 

HIV-infected pregnant women were enrolled with the same criteria in the AVEG 102 180 

Protocol, though instead these women received either 640 µg of rgp160 (VaxSyn, 181 

MicroGeneSys) (n=1) or a placebo (n=1). Maternal plasma samples from multiple visit 182 

time points were available for 15 AVEG 104 participants (n=10 MN rgp120 vaccine, n=5 183 
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alum placebo) and 2 AVEG 102 participants (n=1 rgp160 vaccine, n=1 placebo) (Table 184 

1).  185 

 186 

Ethics statement 187 

Original study protocols AVEG 102 and 104 were approved by local institutional 188 

review boards at the seven sites involved in the original study [24]. Informed consent 189 

was obtained from all women, and also from their partners when available. In the 190 

present study, the use of de-identified maternal samples from the AVEG 102 and 104 191 

protocol cohorts was deemed exempt by the Duke University Institutional Review 192 

Board. Moreover, in this study, individual patient identification (PTID) numbers are 193 

instead represented by PubID numbers.  194 

 195 

Viral RNA extraction and cDNA synthesis 196 

Viral RNA was extracted from the plasma sample from each mother with a 197 

QIAamp Viral RNA Mini Kit (Qiagen) and subjected to reverse transcription and cDNA 198 

synthesis using 1X reaction buffer, 0.5 mM of each deoxynucleoside triphosphate 199 

(dNTP), 5 mM DTT, 2 U/mL RNaseOUT, 10 U/mL of SuperScript III reverse 200 

transcription mix (Invitrogen), and 0.25 mM antisense primer 1.R3.B3R (5’-201 

ACTACTTGAAGCACTCAAGGCA AGCTTTATTG-3’), located in the HIV-1 nef open 202 

reading frame.  203 

 204 

Single genome amplification 205 
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Full-length envelope (env) genes were then amplified by nested PCR from 206 

diluted viral cDNA, as previously described [23, 25]. Briefly, cDNA was endpoint-diluted 207 

in 96-well plates (Applied Biosystems) with the goal of <30% positive amplification, in 208 

order to maximize the likelihood of obtaining a single genome. First round PCR was 209 

carried out with 1X buffer, 2 mM MgSO4, 0.2 mM of each dNTP, 0.2μM of each primer, 210 

and 0.025 U/μl Platinum Taq High Fidelity polymerase (Invitrogen) in a 20μl reaction. 211 

For the first round of PCR amplification, primer pairs were Env 5’ex (5’-212 

TAGAGCCCTGGAAGCATCCAGGAAG-3’) and Env 3’ex (5’-213 

TTGCTACTTGTGATTGCTCCATGT-3’), Env 5’ex and 2.R3.B6R (5’-214 

TGAAGCACTCAAGG CAAGCTTTATTGAGGC-3’), or 07For7 (5’-215 

AAATTAYAAAAATTCAAAATTTTCGGGTT TATTACAG-3’) and 2.R3.B6R. The 216 

following PCR conditions were used for Round 1 amplification: 1 cycle of 94°C for 2 217 

minutes, 35 cycles of 94°C for 15 seconds, 55°C for 30 seconds, and 68°C for 3 218 

minutes and 30 seconds for the Env 5’ex/3’ex primers (4min and 30s for Env 219 

5’ex/2.R3.B6R, 5min and 30s for 07For7/2.R3.B6R), followed by a final cycle of 68°C for 220 

10 minutes. Then, a second round of PCR amplification was carried out with 2μl of the 221 

first round product as template, 0.2μM of each primer, and the same PCR mixture as in 222 

round one, in a 50μl reaction. Primer pairs for second round PCR were Env 5’in (5’-223 

TTAGGCATCTCCTATGGCAGGAAGAAG-3’) and Env 3’in (5’-224 

GTCTCGAGATACTGCTCCCACCC-3’), Env 5’in and 2.R3.B6R (5’-TGAA 225 

GCACTCAAGG CAAGCTTTATTGAGGC-3’), or Low2c (5’-226 

TGAGGCTTAAGCAGTGGGT TCC-3’) and VIF1 (5’-227 

GGGTTTATTACAGGGACAGCAGAG-3’). Round 2 conditions were one cycle of 94°C 228 
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for 2 minutes, 35 cycles of 94°C for 15 seconds, 55°C for 30 seconds, and 68°C for 3 229 

minutes and 30 seconds for the Env 5’in/3’in primers (4min and 30s for Env 230 

5’in/2.R3.B6R, 5min and 30s for Low2c/VIF1), followed by 1 cycle of 68°C for 10 231 

minutes. Round 2 PCR amplicons were visualized using precast 1% agarose E-gels 232 

(Invitrogen), purified with the AMPure XP magnetic bead purification system 233 

(Agencourt), and sequenced for the HIV env gene by Sanger sequencing (Table 1). 234 

 235 

HIV env gene genetic analysis 236 

Sequences were assembled using the Sequencher program (Gene Codes) and 237 

manually edited. Chromatograms were examined for sites of ambiguity, or double peaks 238 

per base read, and sequences containing multiple base peaks at a single position were 239 

marked as such and not studied further.  Envelope sequences were aligned using the 240 

Gene Cutter tool available in the HIV Sequence Database of the Los Alamos National 241 

Laboratory (LANL) website 242 

(http://www.hiv.lanl.gov/content/sequence/GENE_CUTTER/cutter.html) and manually 243 

edited further in Seaview (Version 4) [26]. Phylogenetic trees were constructed using 244 

Seaview and highlighter plots were created using the Highlighter tool on the LANL 245 

website (https://www.hiv.lanl.gov/content/sequence/HIGHLIGHT/highlighter_top.html).  246 

 247 

Pseudovirus production and infectivity analysis 248 

Using a previously described sequence selection algorithm [23], approximately 8-249 

10 maternal Env variants were selected from the pre-immunization time point (Visit 1) 250 

and post-immunization time point (Visit 9) for Env pseudovirus production. Variants 251 
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representing major clusters of the phylogenetic trees were selected to represent the full 252 

range of env genetic diversity in maternal plasma. To produce functional pseudoviruses 253 

from the HIV-1 env sequences, CMV promoter was added to the env genes by 254 

overlapping PCR as previously described [27] and the products were co-transfected 255 

with a backbone plasmid lacking the env gene (SG3Δenv) in 293T cells (American 256 

Tissue Culture Collection, Manassas, Virginia). 293T cells (approx. 4.5×106) were 257 

seeded in a T-75 flask (Corning, Corning, NY) containing growth media (GM) 258 

(Dulbecco's modified Eagle's medium (DMEM)-10% fetal bovine serum (FBS)-1% 259 

penicillin-streptomycin containing HEPES, ThermoFisher, Waltham, MA) and incubated 260 

overnight at 37°C and 8% CO2. 4μg of Env DNA containing CMV promoter was 261 

combined with 4μg of SG3Δenv backbone and FuGene 6 transfection reagent (Roche 262 

Diagnostics) was added as per manufacturer's instructions. The mixture was then 263 

added to the T-75 flask and it was incubated at 37°C for 48 hours. Supernatant 264 

containing pseudovirus was harvested and stored at -80°C with a final concentration of 265 

20% FBS. To measure the infectivity of the pseudoviruses, 20μl of pseudovirus was 266 

added in duplicate to a 96-well flat bottom plate and then 100μl TZM-bl cells (catalog 267 

no. 8129; NIH AIDS Reagent Program; from John Kappes and Xiaoyun Wu) were 268 

added (10,000 cells/100μl GM with 10μg/ml of DEAE-dextran). After a 48-hour 269 

incubation at 37°C and 8% CO2, 100μl of culture medium was removed and 100μl of 270 

Bright-Glo luciferase reagent (Promega) was added. The mixture was incubated for 2 271 

minutes at 25oC, 100μl was subsequently transferred to a 96-well black plate, and 272 

luminescence was measured immediately on a Victor X3 multilabel plate reader 273 

(PerkinElmer).  274 
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 275 

TZM-bl neutralization assay 276 

Neutralization of autologous pseudoviruses by maternal plasma was measured 277 

using a luciferase (Luc) reporter gene assay in TZM-bl cells (catalog no. 8129; NIH 278 

AIDS Reagent Program; from John Kappes and Xiaoyun Wu), as previously described 279 

[28]. Before performing the assay, plasma was heat inactivated by incubating for 30 280 

minutes at 56°C. Plasma samples were added at a starting dilution of 1:20 and diluted 281 

threefold serially. Then, the plasma samples were incubated with virus for 1 hour at 282 

37°C. TZM-bl cells were added, and the mixture was incubated for 48 hours. 283 

Luminesence was then measured using the Bright-Glo luciferase reagent and Victor X3 284 

luminometer and luminescence values used to calculate the ID50, or dilution at which 285 

relative luminescence units (RLU) were reduced by 50% compared to virus control 286 

wells. VRC01 was used as a positive control in each experiment and murine leukemia 287 

virus (SVA.MLV) served as a negative control for the assay [29].  288 

 289 

Binding antibody multiplex assay (BAMA)  290 

HIV-1 Env-specific IgG responses in maternal plasma against a panel of HIV-1 291 

antigens were detected using a customized BAMA, as previously described [30]. HIV-1 292 

antigens were covalently coupled to carboxylated fluorescent beads (Bio-Rad 293 

Laboratories) and IgG binding to the bead-coupled antigens was measured. The 294 

antigen panel for IgG BAMA assays included biotinylated linear V3 loop peptide V3.B 295 

(Bio V3 B) and the following 4 proteins: MNgp120, Gp70 B.MN V3, Gp70 296 

B.CaseA_V1V2, and HIV-1 MN recombinant gp41 (REC MN gp41, ImmunoDiagnostics) 297 
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(Table S1). The antigen-coupled beads were incubated with diluted plasma samples 298 

(1:100 for MNgp120, Gp70 B.MN V3, Gp70 B.CaseA_V1V2; 1:2000 for V3.B and REC 299 

MN gp41) for 30 minutes at room temperature (20-25°C). HIV Env-specific IgG was 300 

then detected with phycoerythrin (PE)-conjugated mouse anti-human IgG (Southern 301 

Biotech, Birmingham, AL) at 2 μg/ml.  Beads were washed, resuspended, and acquired 302 

on a Bio-Plex 200 instrument (Bio-Rad Laboratories). Blank beads were used to 303 

account for non-specific binding and HIV immunoglobulin (HIVIG) was used as a 304 

positive control for all assays. The magnitude of antibody binding to the panel of HIV-1 305 

Env antigens was measured as mean fluorescent intensity (MFI). MFI values for 306 

conformational antigens containing gp70 were background-adjusted by subtracting the 307 

MFI values of gp70 MulV. All MFI values were background-adjusted by subtracting the 308 

MFI values of coupled beads without sample. A positive HIV Env-specific antibody 309 

response was considered to be an MFI > 100. The criteria for reporting sample MFI 310 

values included coefficient of variation ≤20% with a bead count ≥100 for each sample. 311 

All assays tracked the 50% effective concentration and maximum MFI of the positive 312 

control HIVIG and protein standards CH58, B12, and 7B2 by Levey-Jennings charts to 313 

ensure data consistency.  314 

 315 

Statistics 316 

We tested for differences in antibody binding and neutralization responses 317 

between placebo and vaccinees using 2-sided Wilcoxon tests comparing the values at 318 

the first visit to those at the last visit. Because time intervals between visits differed 319 
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across study subjects, we also tested the change per day between visits. All statistical 320 

analyses and graphs were produced using R [31].   321 

 322 

Results 323 

 324 

Env-specific antibody binding responses in vaccinees compared to placebo 325 

recipients 326 

 327 

The magnitude of HIV Env epitope-specific IgG responses prior to and following 328 

Env vaccination in HIV-1 infected vaccinated women and placebo recipients was 329 

assessed by BAMA. We measured maternal vaccine-elicited responses against clade B 330 

MN gp120 protein (Env matched to the vaccine immunogen), gp70 V1V2 protein, and a 331 

linear V3 peptide. When comparing the change in clade B MN gp120-specific binding 332 

responses between the first and last visit among study participants, all placebo 333 

recipients (n=6) did not show increase in binding, whereas 8 out of 11 vaccinees 334 

showed increase in binding over time. Statistically, the overall increase in binding to MN 335 

gp120 was significantly higher in vaccinees compared to placebo recipients (p=0.027 by 336 

Wilcoxon test, Figure 2). To account for differences in the timing of visits for each 337 

mother, we calculated the change in MN gp120-specific binding response per day 338 

between the first (Visit 1, 4) and last visit (Visit 9). Per day increase in clade B MN 339 

gp120-specific binding responses between the first and last visit was statistically 340 

significantly higher in vaccinees as compared to placebo recipients (p=0.015 by 341 

Wilcoxon test, Figure S1). We observed more than 3-fold increase in antibody binding 342 
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responses against MN gp120 in 1/11, 2/11, and 3/11 vaccinees against antigens MN 343 

gp120, linear V3.B, and gp70 V1V2, respectively. No change in change in antibody 344 

binding responses was observed in placebo recipients except in one against gp70 V1V2 345 

(Figure 3, Figure S2). 346 

 347 

Autologous virus neutralizing antibody responses in vaccinees compared to 348 

placebo recipients 349 

 350 

To determine if gp120 or gp160 vaccination enhanced functional, virus-specific 351 

neutralizing antibody responses, we assessed the ability of maternal plasma to 352 

neutralize autologous virus variants isolated from plasma collected in early pregnancy 353 

before vaccination and late pregnancy after vaccine boosting. There was no difference 354 

between vaccinees and placebo recipients in the ability of maternal plasma collected at 355 

delivery to neutralize autologous virus populations isolated from early and late 356 

pregnancy visits (Figure 4A-B, Figure S3). Moreover, the difference in the ability of 357 

maternal plasma collected at the first visit (Visit 1,4) versus last visit (Visit 9) to 358 

neutralize early pregnancy plasma viruses (Visit 1, 4) was comparable between 359 

vaccinees and placebo recipients (Figure 4C-D).  360 

Additionally, we tested the ability of maternal plasma collected from the pre-361 

vaccination visit (Visit 1), the booster visits (Visits 3, 4, 5, & 6), and the post-vaccination 362 

visits (Visits 7 & 9) to neutralize autologous virus populations from the pre-vaccination 363 

or early pregnancy visit (Visit 1, 4) (Figure 5). Interestingly, there appears to be a boost 364 

over time in neutralization potency against autologous virus populations isolated from 365 
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the pre-vaccination visit in the gp160 vaccinee as compared to the corresponding 366 

placebo recipient, yet this trend was only observed in the one vaccinee from which 367 

samples were available for testing. Taken together, there was no significant change in 368 

autologous virus neutralization potency over time for Env vaccinees as compared to 369 

placebo recipients.   370 

 371 

Plasma HIV env gene sequence diversity in vaccinees compared to placebo 372 

recipients  373 

 374 

Through single genome amplification, we obtained 282 total HIV env gene 375 

sequences from vaccinees (n=7) and 118 total HIV env gene sequences from placebo 376 

recipients (n=3) (Table 1). To characterize viral evolution between visits in study 377 

participants, we measured viral diversity through the mean pairwise Hamming distance, 378 

which was calculated as the number of mutations between all pairs of env sequences 379 

isolated from one sample divided by the total number of bases in the alignment. The 380 

changes in viral diversity between visits observed in the placebo recipients were not 381 

significantly different from those observed in the vaccinees (Figure 6). Yet, in a per day 382 

analysis of mean Hamming distance since the pre-vaccine visit, we observed a trend in 383 

which vaccinees consistently demonstrated lower HIV env gene sequence diversity than 384 

placebo recipients (Figure S4). However, this trend did not reach significance, 385 

potentially due to limited statistical power given the small sample size. 386 

 387 

Discussion 388 
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Unlike other modes of HIV transmission, MTCT is a unique setting since it occurs 389 

in the presence of pre-existing humoral immunity. Maternal IgG antibodies that are 390 

passively acquired by the fetus through transplacental transfer during pregnancy and by 391 

the infant through breastfeeding are known to provide critical protection against 392 

perinatal pathogens for neonates during the first few months of life [32]. Despite the 393 

potential source of transmitted virus in a mother-infant pair being confined to the 394 

maternal autologous circulating virus pool, our limited understanding of how maternal 395 

antibody responses that coevolved with circulating virus populations impact vertical HIV 396 

transmission remains a major barrier in developing a maternal immunization strategy for 397 

the prevention of MTCT. Yet, there are reasons to believe that enhancing the ability of 398 

maternal plasma to neutralize co-circulating viruses may impede vertical virus 399 

transmission. Thus, augmentation of maternal autologous virus neutralizing antibody 400 

responses through vaccination during pregnancy is a potentially viable strategy to 401 

further reduce the rate of MTCT in synergy with ART. 402 

In this study, we investigated the induction of neutralizing antibodies against 403 

autologous circulating viruses in the AVEG 102 and 104 maternal HIV Env vaccine trials 404 

(1993-1995), which assessed the safety and immunogenicity of alum-adjuvanted gp120 405 

and gp160 subunit vaccines in HIV-infected, pregnant women. Importantly, while the 406 

Env vaccines were reported to be safe and immunogenic, the ability of the vaccines to 407 

raise neutralizing responses against maternal circulating autologous viruses was not 408 

assessed [24]. With the development of novel techniques to isolate and analyze single 409 

HIV variants from plasma, as well as more sensitive, bead-based binding antibody 410 

detection, we are now better equipped to answer this important question. Another 411 
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limitation to the present study is incomplete information from the original study related to 412 

which subset of participants may have received antiretroviral therapy, as 413 

recommendations for clinical management of HIV-infected pregnant women were 414 

updated during the study following the first recognition that zidovudine was effective in 415 

decreasing the risk of MTCT of HIV [33]. Additionally, sample quality and restricted 416 

availability of time points limited the successful isolation of sufficient number of single 417 

genome amplicons from each participant for larger analyses. While the small sample 418 

size of 11 vaccinees and 6 placebo is a caveat to this study, these cohorts of HIV-419 

infected pregnant women enrolled in a Phase I HIV Env subunit vaccine clinical trial 420 

represented a unique opportunity to understand the ability of HIV Env vaccination to 421 

enhance neutralizing antibody responses in the setting of MTCT. 422 

 Although enhanced autologous virus neutralization was not observed in the 423 

AVEG 102 and 104 study cohorts, our work offers key insight in that it suggests more 424 

potent B cell stimulation must be achieved for an HIV Env vaccination to be effective in 425 

boosting autologous neutralizing antibody responses in pregnancy. There are valuable 426 

lessons to be gained and key opportunities for improvement in trial design based on our 427 

analysis of this first Phase I trial of HIV Env subunit recombinant gp120 and gp160 428 

protein vaccines adjuvanted with alum in HIV-infected, pregnant women. While the first 429 

formal recognition that zidovudine (ZDV) was effective in reducing the risk of MTCT 430 

occurred during the AVEG 102 and 104 trial periods [33], next-generation maternal HIV 431 

Env vaccination strategies should be developed within the contemporary context of 432 

widespread availability of ART for pregnant women. Consequently, studies or trials of 433 

future maternal vaccine regimens aimed at preventing vertical transmission of HIV 434 
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should model the conditions of antiretroviral therapy and viral suppression during 435 

pregnancy. 436 

Though the majority of vaccines currently licensed for human use in the United 437 

States are formulated with an aluminum-based adjuvant, alternative adjuvant selection 438 

may play a critical role in the elicitation of protective humoral responses against HIV 439 

transmission [34, 35]. In a systematic comparison of the ability of adjuvant formulations, 440 

including Toll-like receptor (TLR) agonists, to induce antibody binding, neutralizing, and 441 

ADCC responses against transmitted/founder HIV-1 envelope gp140 (B.63521) in 442 

rhesus macaques, Moody et al. demonstrated that combination of a TLR7/8 agonist with 443 

a TLR9 agonist in a squalene-based oil-in-water emulsion resulted in enhanced HIV 444 

Env-specific antibody responses [36]. These potent TLR-based adjuvants may be 445 

exploited to synergize with highly antigenic HIV immunogens to induce more potent and 446 

durable protective antibody titers. During the 2009 influenza A (H1N1) pandemic, an 447 

H1N1 vaccine in combination with a novel squalene-based AS03 adjuvant was safely 448 

used among pregnant women in Norway and resulted in reduced risk of both influenza 449 

diagnosis and fetal death [37]. Thus, the demonstrated safety profile of AS03 adjuvant 450 

among pregnant women has opened the door for implementation of novel adjuvants 451 

beyond alum in pregnancy. 452 

Moreover, the nature of vertical transmission of HIV necessitates a vaccination 453 

strategy that can mount a protective immune response specific to the autologous 454 

circulating virus pool of each HIV-infected mother. Thus, the choice of vaccine 455 

immunogen must reflect the broad diversity of HIV strains circulating today, specifically 456 

clade C and B virus subtypes prevalent in Sub-Saharan Africa and the United States 457 
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and Europe, respectively. One potential approach to overcome this barrier is to employ 458 

a multi-clade (B/C) HIV Env immunogen that would leverage the immunological 459 

phenomenon of original antigenic sin to provoke an anamnestic response against 460 

maternal autologous circulating viruses.  461 

Additionally, future studies may explore the potentially protective role of antibody-462 

mediated effector functions beyond neutralization in reducing the risk of MTCT of HIV. 463 

Notably, a previous study by Overbaugh et al. suggested that HIV Env-specific IgG-464 

mediated antibody dependent cell cytotoxicity (ADCC) activity in breastmilk correlates 465 

with reduced risk of postnatal vertical transmission [38]. Moreover, we have previously 466 

demonstrated that passive infusion with a cocktail of non-neutralizing antibodies 467 

provided partial protection against postnatal SHIV acquisition in an infant non-human 468 

primate oral challenge model [39]. Further investigation into the potentially protective 469 

roles of other Fc-mediated effector functions including antibody dependent cell 470 

phagocytosis (ADCP) and complement activation activity in the setting of MTCT of HIV 471 

is warranted. Perhaps elicitation of the full breadth of polyfunctional antiviral activity of 472 

the humoral immune response, not only autologous neutralization response, will be the 473 

critical target of maternal HIV vaccine design to eliminate MTCT.  474 

 475 

Conclusion 476 

In this study, we assessed the autologous virus neutralization responses of 477 

maternal plasma collected at delivery against circulating viruses isolated from early and 478 

late pregnancy in HIV-infected women vaccinated with an HIV Env subunit recombinant 479 

gp120/160 adjuvanted with alum from historical AVEG 102 and 104 Phase I trials.  We 480 
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found that vaccination of HIV-infected pregnant women with recombinant MN gp120 or 481 

gp160 adjuvanted with alum boosted HIV Env-specific antibody binding responses 482 

between the first and last visit against clade B MN.3 gp120, the original vaccine antigen, 483 

compared to placebo recipients. However, vaccination failed to augment the ability of 484 

maternal plasma collected at delivery to neutralize clade B MN.3 virus, a tier 1 485 

heterologous virus, between the first and last visit. Maternal HIV Env vaccination did not 486 

enhance the ability of maternal plasma collected at delivery to neutralize autologous 487 

viruses isolated from early pregnancy. Moreover, vaccination had no evident impact on 488 

viral diversity. These findings indicate that further optimization in choice of vaccine 489 

immunogen and adjuvant will be necessary to effectively augment autologous virus 490 

neutralization responses in HIV-infected pregnant women to synergize with ART and 491 

reduce MTCT of HIV.  492 
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Study Visit       1         2         3        4         5         6         7         8       
  
Weeks of Gestation 16-24   +4      +8      +12     +16                          L&D 

FIGURE 1. Immunization schedule in AVEG102/104 studies. Pregnant, HIV-

infected women with CD4
+
 T cell counts > 400/mm

3 
were enrolled in the AVEG 

102/104 studies. In the AVEG 102 protocol, women were administered 640 µg of 
gp160 (n=1) or placebo (n=1). In the AVEG 104 protocol, women received 300 µg of 
gp120 + alum (n=17) or placebo (alum + diluent) (n=9). The primary immunization 
was given at Visit 2, between 16-24 weeks of gestation. Monthly booster injections 
were subsequently given 4 weeks apart for the duration of pregnancy (Visits 3-6) for 
up to 5 total immunizations (median: 5; range 4-5). Visit 9 was labor and delivery.  
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FIGURE 2. MN gp120-specific binding in vaccinees and placebo recipients at first
last visit. Comparison of changes in gp120-specific binding from the first to the last visi
between vaccinees (red) and placebo (blue). The between-visits change in gp120-spec
binding was statistically significantly higher in vaccinees (p=0.027 by 2-sided Wilcoxon 
Light gray lines link the same mother.  
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FIGURE 3. Change in antibody binding response against 
MN.3 gp120, linear V3.B, gp70 V1V2 and neutralization 
response against MN.3 before and after vaccination. 
Vaccinees (red) or placebo recipients (blue). Check marks indicate 
a three-fold increase. 
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FIGURE 4. Neutralization of viruses isolated from vaccine and placebo recipient plasma 
during early and late pregnancy by autologous maternal plasma collected at delivery. For 
each vaccine and placebo recipient, the neutralization potency of maternal plasma at delivery 
was assessed against the early pregnancy (Visits 1,4) (A) and late pregnancy (Visits 5-9) (B) 
autologous virus populations. The left y-axis depicts neutralization potency, in log10ID50. Study 
participants are displayed on the X axis (A,B). AVEG104 study participants are depicted with 
circles; AVEG 102 study participants with triangles. Vaccine recipients are shown in red; 
placebos in blue.  Bars represent geometric means. Change in neutralization potency of 
autologous maternal plasma from Visits 1 (pre-immunization) and 9 (delivery) are shown 
against early pregnancy plasma viruses (C,D), with the exception off autologous viruses 
isolated from Visit 4 in mother 104FHY.  

A. B. 

C. D. 

AVEG102 Vaccinee 
AVEG104 Placebo 
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 32 768 

FIGURE 5. Neutralization potency of autologous maternal plasma against plasma viruses 
isolated from early pregnancy. Maternal plasma from pre-immunization (Visit 1), booster visits 
(Visits 3, 4, 5, & 6) and post-immunization (Visits 7 & 9) was tested against individual virus 
variants from Visit 1 (except for 104FHY; virus variants are from Visit 4). Each colored line 
represents a different virus. The left y-axis depicts neutralization potency, in log10ID50. AVEG 102 
study participants are shown on the top row, shaded in gray. With additional gp160 doses, there is 
a greater boost in neutralization potency against autologous viruses in the gp160 vaccine 
recipient compared to the placebo. There does not appear to be an increase in autologous virus 
neutralization with gp120 vaccination compared to placebo.
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FIGURE 6. Comparison of change in intersequence Hamming distance per base p
env sequences obtained from vaccinees (n=7) and placebo recipients (n=3) acros
study visits in days. Each shape is an individual mother. Gp120 (red), gp160 (pink), p
(blue). 
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TABLE 1. Number of maternal env gene sequences isolated and 
functional pseudoviruses produced from each maternal plasma 
sample. 
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FIGURE S1. Change in MN gp120-specific binding per day in vaccinees and place
recipients between first and last visit. Comparison of changes in gp120-specific bind
day from the first to the last visit between vaccinees (red or pink) and placebo (blue). Th
specific binding increase per day was higher in vaccinees compared to placebo (p=0.01
sided Wilcoxon test). 
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FIGURE S2. HIV Env gp120, V1V2, and V3-specific IgG binding and neutralizing Ab 
responses in HIV-infected, pregnant women following immunizations with MN gp120 or 
gp160. The left y-axis depicts binding antibody response, in log10MFI, and gp120 binding responses 
are indicated by the blue lines, V3 responses by the red lines, and V1V2 responses by the green 
lines. The right y-axis depicts neutralization potency, in log10ID50, and is indicated by the purple 
lines. AVEG 102 study participants are shown on the top row, shaded in gray. Red boxing indicates 
3-fold increase in gp120, V1V2, V3, or neutralizing antibody responses over time.
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FIGURE S3. Neutralization of viruses isolated from vaccine and placebo recipien
plasma during early and late pregnancy by autologous maternal plasma collecte
delivery. For each vaccine and placebo recipient, the neutralization potency of matern
plasma at delivery was assessed against the early (Visits 1,4) and late pregnancy (Visi
9) autologous virus populations. Higher ID50 (darker color) represents greater 
neutralization potency. 
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FIGURE S4. Comparison of change in intersequence Hamming distance per base 
pair per day of env sequences obtained from vaccinees (n=7) and placebo 
recipients (n=3) across study visits. Each shape is an individual mother. Gp120 
(red), gp160 (pink), placebo (blue). 
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Assay Protein Peptide Sequence

MN gp120

TEKLWVTVYYGVPVWKEATTTLFCASDAKAYDTEAHNVWATHACVPTDPNPQEVELVN

VTENFNMWKNNMVEQMHEDIISLWDQSLKPCVKLTPLCVTLNCTDLRNTTNTNNSTDN

NNSKSEGTIKGGEMKNCSFNITTSIGDKMQKEYALLYKLDIEPIDNDSTSYRLISCNT

SVITQACPKISFEPIPIHYCAPAGFAILKCNDKKFSGKGSCKNVSTVQCTHGIRPVVS

TQLLLNGSLAEEEVVIRSEDFTDNAKTIIVHLKESVQINCTRPNYNKRKRIHIGPGRA

FYTTKNIKGTIRQAHCIISRAKWNDTLRQIVSKLKEQFKNKTIVFNPSSGGDPEIVMH

SFNCGGEFFYCNTSPLFNSIWNGNNTWNNTTGSNNNITLQCKIKQIINMWQKVGKAMY

APPIEGQIRCSSNITGLLLTRDGGEDTDTNDTEIFRPGGGDMRDNWRSELYKYKVVTI

EPLGVAPTKAKRRVVQREKR

Rec MN gp41

TVQARLLLSGIVQQQNNLLRAIEAQQNMLQLTVWGIKQLQARVQAVERYLKDQQLLGF

WGCSGKLICTTTVPWNASWSNKSLDDIWNNMTWMQWEREIDNYTSLIYSLLEKSQTQQ

EKNEQELLGLDKWESLWNWFDITNWLENRVRQGYSPLSLQTRPPVPRGPDRPEGIEEE

GGERDRDTSGRLVHGFLAIIWVD

Bio-V3.B NNTRKSIHIGPGRAFYATGDIIGDIRQAHC

gp70 B.MN V3 TRPNYNKRKRIHIGPGRAFYTTKNIKGTIRQAH

gp70 B.CaseA V1V2
CIDLRNATNATSNSNTTNTTSSSGGLMMEQGEIKNCSFNITTSIRDKVQKEYALFYKL

DIVPIDNPKNSTNYRLISC

BAMA

TABLE S1. Amino acid sequences for antigens used in AVEG102/104 plasma 
binding antibody multiplex assays (BAMA). 
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