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ABSTRACT (200 words) 43 

 44 

Former studies on Arabidopsis glucose-6-phosphate/phosphate translocator isoforms GPT1 45 

and GPT2 reported viability of gpt2 mutants, however an essential function for GPT1, 46 

manifesting as a variety of gpt1 defects in the heterozygous state during fertilization/seed 47 

set. Among other functions, GPT1 is important for pollen and embryo-sac development. 48 

Since previous work on enzymes of the oxidative pentose phosphate pathway (OPPP) 49 

revealed comparable effects, we investigated whether GPT1 might dually localize to plastids 50 

and peroxisomes. In reporter fusions, GPT2 was found at plastids, but GPT1 also at the 51 

endoplasmic reticulum (ER) and around peroxisomes. GPT1 contacted oxidoreductases and 52 

also peroxins that mediate import of peroxisomal membrane proteins from the ER, hinting at 53 

dual localization. Reconstitution in yeast proteoliposomes revealed that GPT1 preferentially 54 

exchanges glucose-6-phosphate for ribulose-5-phosphate. Complementation analyses of 55 

heterozygous gpt1 plants demonstrated that GPT2 is unable to compensate for GPT1 in 56 

plastids, whereas genomic GPT1 without transit peptide (enforcing ER/peroxisomal 57 

localization) increased gpt1 transmission significantly. Since OPPP activity in peroxisomes is 58 

essential during fertilization, and immuno-blot analyses hinted at unprocessed GPT1-specific 59 

bands, our findings suggest that GPT1 is indispensable at both plastids and peroxisomes. 60 

Together with the G6P-Ru5P exchange preference, dual targeting explains why GPT1 exerts 61 

functions distinct from GPT2 in Arabidopsis.  62 

 63 
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INTRODUCTION (1403 words)  64 

In plant cells, the oxidative pentose phosphate pathway (OPPP) is found in plastids and the 65 

cytosol (reviewed in Kruger and von Schaewen, 2003), but transiently also in peroxisomes 66 

(Meyer et al., 2011; Hölscher et al., 2014; 2016). In each subcellular compartment, the OPPP 67 

has distinctive functions and thus requires subcellular distribution of the corresponding enzymes 68 

and their metabolites.  69 

During the day, NADPH is provided by photosynthetic electron flow to ferredoxin-(Fd) NADP+ 70 

oxidoreductase (FNR; Palatnik et al., 2003), whereas at night, the OPPP is the main source of 71 

NADPH in chloroplasts and in heterotrophic plastids of non-green tissues (Dennis et al., 1997). 72 

The oxidation of 1 mole glucose-6-phosphate (G6P) to ribulose-5-phosphate (Ru5P) produces 2 73 

moles of NADPH (at the expense of CO2 release) in three enzymatic steps: i) glucose-6-74 

phosphate dehydrogenase (G6PD), ii) 6-phosphogluconolactonase (6PGL), and iii) 6-phospho-75 

gluconate dehydrogenase (6PGD). These irreversible reactions are followed by reversible OPPP 76 

steps in the stroma, comprising transketolase (TK) and transaldolase (TA) that create a broad 77 

range of phosphorylated intermediates. Since the reversible OPPP reactions share 78 

intermediates with the Calvin cycle, they are essential for plant metabolism (reviewed in Kruger 79 

and von Schaewen, 2003). In the cytosol of plant cells only the irreversible OPPP reactions 80 

occur (Schnarrenberger et al., 1995), linked to the full cycle in plastids via epimerization of Ru5P 81 

to Xu5P and import by the Xylulose-5-phosphate/phosphate translocator (XPT) in the inner 82 

envelope (Eicks et al., 2002).  83 

NADPH is the preferred reducing equivalent of anabolic reactions, both in plastids and the 84 

cytosol, needed mostly for the biosynthesis of amino acids, fatty acids, and nucleotides 85 

(Hutchings et al., 2005; Geigenberger et al., 2005). Furthermore, NADPH is important for redox 86 

homeostasis of the glutathione pool (GSH/GSSG) via NADPH-dependent glutathione-disulfide 87 

reductases (GRs). Arabidopsis GR1 dually localizes in the cytosol and peroxisomes (Marty et 88 

al., 2009; Mhamdi et al., 2010; Kataya and Reumann, 2010) and GR2 in plastids and 89 

mitochondria (Marty et al., 2019). Hence, OPPP reactions play an important role in plant cells 90 

(Kruger and von Schaewen, 2003), particularly with the onset of stress or developmental 91 

change. Such conditions are often linked to physiological sink states induced by pathogen 92 

infection of leaves and related signaling. Resulting callose formation at plasmodesmata leads to 93 

sugar accumulation in the cytosol that stimulates G6PDH activity/expression and NADPH 94 

production via the OPPP (Hauschild and von Schaewen, 2003; Scharte et al., 2009; Stampfl et 95 

al., 2016). Concomitantly activated NADPH oxidases at the plasma membrane (in plants called 96 
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respiratory burst oxidase homologues, Rbohs; Torres et al., 2002) use cytosolic NADPH for 97 

extrusion of reactive oxygen species (ROS) into the apoplast. Superoxide (O2
-) is converted to 98 

hydrogen peroxide (H2O2) that enters the cell via aquaporins, leading to redox signaling in the 99 

cytosol. H2O2 is dissipated by peroxiredoxins (Prx), which in turn retrieve electrons from 100 

glutaredoxins (Grx) and thioredoxins (Trx), and the resulting dithiol-disulfide changes modulate 101 

cognate target enzymes in a similar manner (reviewed in Noctor and Foyer, 2016; Waszczak et 102 

al., 2018; Liebthal et al., 2018). This scenario also accompanies abiotic stress responses (e.g. to 103 

drought or salt), together with phosphorylation cascades activated in parallel (Pitzschke et al., 104 

2006; dal Santo et al., 2012; Fancy et al., 2016; Landi et al., 2016). 105 

OPPP enzymes were also found in purified plant peroxisomes (Corpas et al., 1998; del Río et 106 

al., 2002; Reumann et al., 2007; Hölscher et al., 2016), where they may serve as NADPH source 107 

to establish redox homeostasis via dual cytosolic/peroxisomal GR1 (Kataya and Reumann, 108 

2010). Besides, NADPH is needed for metabolic reactions that occur exclusively in peroxisomes, 109 

like removal of double bonds in unsaturated fatty acid/acyl chains prior to -oxidation, which 110 

includes final steps of  auxin/jasmonic acid biosynthesis (Reumann et al., 2004). We previously 111 

reported that dual targeting of Arabidopsis thaliana OPPP enzymes G6PD1 (At5g35790, OPPP 112 

step 1) and PGL3 (At5g24400, OPPP step 2) to plastids and peroxisomes depends on the 113 

cytosolic redox state (Meyer et al., 2011; Hölscher et al., 2014). Furthermore, plants 114 

heterozygous for peroxisomal isoform PGD2 (At3g02360, OPPP step 3) failed to produce 115 

homozygous offspring due to mutual sterility of the pgd2 gametophytes. This indicated for the 116 

first time an essential function of the OPPP in peroxisomes (Hölscher et al., 2016).  117 

OPPP activity in organelles requires flux of intermediates across the corresponding membranes. 118 

In Arabidopsis, G6P import into plastids involves G6P/phosphate translocator GPT1 119 

(At5g54800) and GPT2 (At1g61800) in the inner envelope membrane (Kammerer et al., 1998; 120 

Eicks et al., 2002; Knappe et al., 2003; Niewiadomski et al., 2005). In case of peroxisomes, 121 

phosphorylated metabolites with a huge hydration shell are likely unable to pass the porin-like 122 

channel described for malate and oxaloacetate (134 and 130 Da) first described in spinach 123 

(Reumann et al., 1996). In mammalian cells, Rokka et al. (2009) measured that only molecules 124 

below 200 Da are able to pass the pore-like channel of Pxmp2. G6P and Ru5P/Xu5P are larger 125 

(258 Da and 230 Da), implying that they are unlikely transported via peroxisomal porins. Thus, 126 

the issue of OPPP substrate and product transport across peroxisomal membranes remained 127 

unclear so far. 128 
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To provide the peroxisomal OPPP reactions with substrate, we reasoned that one of the two 129 

Arabidopsis GPT proteins may dually localize to peroxisomes, similar to originally plastid-130 

annotated OPPP isoforms G6PD1 (Meyer et al., 2011) and PGL3 (Kruger and von Schaewen, 131 

2003; Reumann et al., 2004; Hölscher et al., 2014). GPT1 and GPT2 show 81% identity at the 132 

amino-acid level and catalyze the import of G6P into heterotrophic plastids needed for starch 133 

synthesis and NADPH provision via the stromal OPPP reactions (Kammerer et al., 1998). GPT2 134 

expression is most abundant in heterotrophic tissues (senescing leaves, sepals, seeds) and can 135 

be induced by high light in leaves (Athanasiou et al., 2010; Weise et al., 2019), whereas GPT1 is 136 

ubiquitously expressed, with highest levels in reproductive tissues (Niewiadomski et al., 2005; 137 

Kunz et al., 2010). Loss of GPT2 function reduced starch levels, but yielded vital plants 138 

(Niewiadomski et al., 2005; Kunz et al., 2010; Athanasiou et al., 2010; Dyson et al., 2014; 2015). 139 

However, lack of GPT1 was detrimental, leading to an early arrest of pollen and ovule develop-140 

ment. Resulting gametophyte and embryo lethality showed as incompletely filled siliques 141 

(Niewiadomski et al., 2005; Andriotis et al., 2010; Flügge et al., 2011).  142 

We noticed that GPT1 displays a canonical C-terminal peroxisomal targeting signal type 1 143 

(PTS1 motif AKL) that matches the consensus (S/A)-(K/R)-(L/M/I) of soluble proteins (Gould et 144 

al., 1989; Reumann, 2004; Platta and Erdmann, 2007; Reumann and Bartel, 2016). This 145 

seemed odd, since peroxisomal membrane proteins (PMPs) exhibit independent mPTS motifs of 146 

varying sequence (Rottensteiner et al., 2004). In general, two classes of PMPs are known. 147 

Class-I PMPs are directly inserted into peroxisomal membranes (PerMs) from the cytosol, which 148 

involves peroxins Pex3 and Pex19 (in some organisms also Pex16; Platta and Erdmann, 2007). 149 

By contrast, class-II PMPs are first inserted into the endoplasmic reticulum (ER) via the Sec61 150 

import pore and then transported to the peroxisomal ER (perER), from where peroxisomes are 151 

formed de novo (Theodoulou et al., 2013; Reumann and Bartel, 2016; Kao et al., 2018). The 152 

exact mechanism remains to be resolved, but involvement of Pex16 and Pex3 for ER 153 

recruitment and sorting to peroxisomes is most likely (Aranovich et al., 2014). Interestingly, 154 

mutation of Arabidopsis PEX16 resulted in a shrunken seed phenotype (sse1) with impaired fatty 155 

acid biosynthesis (Lin et al., 1999, 2004), reminiscent of some gpt1 defects (Niewiadomski et al., 156 

2005), but no defects in pollen germination. 157 

Here we report that both GPT1 and GPT2 may insert into the ER, but only the N-terminal part of 158 

GPT1 is able to initiate ER targeting, a prerequisite shared with class-II PMPs. Co-expression of 159 

various reporter fusions was used to analyze subcellular localization and protein interaction of 160 

GPT1 in plant cells. GPT1 formed homodimers at plastids, but not readily at the ER, and 161 

interacted with two cytosolic oxidoreductases listed by the Membrane-based Interactome 162 
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Network Database (MIND) for Arabidopsis proteins with 38% confidence (Lalonde et al., 2010; 163 

Chen et al., 2012; Jones et al., 2014). In addition, we found evidence for transient interaction of 164 

GPT1 with early peroxins involved in PMP delivery via the ER. As rare event, GPT1-reporter 165 

fusions were detected in membrane structures surrounding peroxisomes. Our main questions 166 

were: 1) which protein parts confer dual targeting; 2) how this may be regulated; 3) which OPPP 167 

metabolite leaves peroxisomes; and 4) whether some defects of heterozygous gpt1 mutant 168 

plants (Niewiadomski et al., 2005) may be related to missing transport across peroxisomal 169 

membranes during fertilization.  170 

 171 

 172 

RESULTS (2911 words) 173 

 174 

GPT1 dually targets plastids and the ER  175 

The alignment of GPT1 and GPT2 protein sequences from different Brassicaceae 176 

(Supplemental Figure 1) revealed that the isoforms mostly diverge at their N-terminal ends, 177 

whereas the central transmembrane regions (for substrate binding/transport) are highly 178 

conserved. Subcellular targeting was studied with various N- and C-terminal reporter fusions of 179 

the two Arabidopsis GPT isoforms and examined in transfected protoplasts (Arabidopsis or 180 

tobacco) by confocal laser-scanning microscopy (CLSM).  181 

All N-terminally masked/truncated GPT variants (Supplemental Figure 2A) localized at the ER 182 

(Supplemental Figure 2B, green signals) as determined by co-expression with organelle markers 183 

(magenta signals), i.e. G/OFP-ER (Rips et al., 2014) or peroxisome (Per) marker G/OFP-184 

PGL3_C-short (formerly named G/OFP-PGL3(~50aa)-SKL; Meyer et al., 2011). Note that co-185 

localization of green and magenta signals appears white. Both GPT fusions occasionally formed 186 

Z membranes (Supplemental Figure 2B, white patches), a term coined for overexpressed 187 

integral membrane proteins (Gong et al., 1996). GPT1_C-full labeled ring-like substructures of 188 

the ER, approximately 3 µm in diameter (Supplemental Figure 2C, panel b), and interfered with 189 

import of the peroxisome marker (Supplemental Figure 2B, panel n), which was never observed 190 

for GPT2_C-full (Supplemental Figure 2B, panel p). Mutagenesis of GPT1-AKL to -AKQ (or 191 

GPT2-AKQ to -AKL) had no effect on localization of the fusion proteins (not shown).  192 

Among the C-terminal reporter fusions, localization of GPT1 also differed from GPT2. The GPT1 193 

full-length version (Figure 1A), with GFP pointing to the plastid stroma (or cytosol, when inserted 194 

into the ER), was spotted at both plastids and the ER (Figure 1B, panels a,c, arrowheads), but 195 
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GPT2 only at plastids (Figure 1B, panels b,d, green signals; for single channel images, see 196 

Supplemental Figure 3B). A region comprising the N-terminus plus first five membrane domains 197 

(N-5MD, 1-240 amino acids) with OFP pointing to the intermembrane space (IMS), labeled the 198 

plastid surface (Supplemental Figure 4B, panels a-d; green signals). The N-terminus plus first 199 

two membrane domains (N-2MD, 1-155 amino acids) with GFP pointing to the stroma showed 200 

patchy plastid labeling, indicative of partial reporter cleavage (Supplemental Figure 4B, panels e-201 

h), and in case of GPT1 also ER labeling (Figure 4B, panels e, and f, arrowheads), albeit to 202 

varying extent (Supplemental Figure 4C, panels a-e). Again, small ring-like structures of 203 

peroxisomal size were labeled by GFP, but without surrounding the peroxisome marker (Supple-204 

mental Figure 4C, panel e, single sections). With the N-terminal region (N-term, 1-91/92 amino 205 

acids) fused to the reporter, stroma labeling was observed for both GPT proteins (Supplemental 206 

Figure 4B, panels i-l). These results indicated that the region comprising the N-terminus plus first 207 

two transmembrane GPT1 domains is important for alternative targeting to the ER.  208 

   209 

The first 155 amino acids of GPT1 are crucial for ER targeting 210 

To exclude localization artifacts by masking N- or C-terminal targeting signals, we also cloned 211 

GPT-fusions with internal reporter at two different positions (Supplemental Figure 5A). Again, the 212 

GPT1 versions (GPT1_2MD:8MD and GPT1_5MD:5MD) labeled both plastids and the ER 213 

(Supplemental Figure 5B, panels a,b and e,f; arrowheads), whereas the GPT2 versions 214 

(GPT2_2MD:8MD and GPT2_5MD:5MD) only plastids (Supplemental Figure 5B, panels c,d and 215 

g,h). Protoplasts expressing the GPT_2MD:8MD fusions were additionally treated with Brefeldin 216 

A (BFA), which interfered with delivery of peroxisomal ascorbate peroxidase (pxAPX) via the ER 217 

(Mullen et al., 1999). BFA treatment abolished GPT1 signals at the ER, but not at plastids 218 

(neither of GPT2; Supplemental Figure 6). This confirmed direct GPT targeting to plastids, and 219 

that only GPT1 may insert into the ER.   220 

Since alternative GPT1 localization seemed mediated by the soluble N-terminal part that 221 

strongly differs from GPT2 (Figure S1), amino acid positions suspected to be subject to post-222 

translational modification were changed by site-directed mutagenesis in the medial 223 

GPT1_5MD:5MD fusion (Figure 1C). However, neither S27 (listed by PhosPhAt 4.0; Zulawski et 224 

al., 2013) changed to alanine (A, abolishing phosphorylation) or aspartate (D, mimicking 225 

phosphorylation; Ackerley et al., 2003), nor single cysteine C65 changed to serine (S, precluding 226 

redox modification) interfered with ER targeting. Domain swaps among the corresponding 227 

unmodified medial reporter constructs (Figure 2A) resulted in dual localization of 228 

GPT1_2MD:8MD_GPT2 and GPT1_5MD:5MD_GPT2 to plastids and the ER (Figure 2B, panels 229 
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a,b and e,f; arrowheads), but solely plastid localization of GPT2_2MD:8MD_GPT1 and 230 

GPT2_5MD:5MD_GPT1 (Figure 2B, panels e,d and g,h; for single channel images, see 231 

Supplemental Figure 7). These results proved that the GPT1 N-terminus (plus first two MDs) is 232 

crucial for initiating alternative ER targeting.  233 

 234 

GPT1 dimer formation occurs at plastids and substructures of the ER 235 

In functional form, the plastidial phosphate translocators are dimers composed of two identical 236 

subunits (Knappe et al., 2003). We therefore reasoned, if not necessary for ER targeting, amino 237 

acids S27 and/or C65 may be important for preventing GPT1 dimerization prior to reaching the 238 

final location(s). Therefore N- and C-terminal split YFP constructs of GPT1 were cloned and 239 

above described amino-acid changes introduced. Arabidopsis protoplasts were transfected and 240 

analyzed for GPT1-dimer formation (Figure 3) by bimolecular fluorescence complementation 241 

(BiFC; Walter et al., 2004). Reconstitution of the GPT1-split YFP combinations was detected 242 

only at plastids (Figure 3B, panels a-d), without effect of the indicated amino acid changes. In 243 

case of the split YFP-GPT1 fusions (enforcing ER insertion), large signal accumulations in the 244 

ER (including perinuclear structures) were observed for most variants. This signal did not 245 

represent the usually observed ER pattern and even affected distribution of the ER marker (see 246 

Figures 1 and 2). Among the amino acid changes analyzed, only C65S had an effect, resulting in 247 

hollow spherical structures surrounding single peroxisomes (Figure 3C, arrowhead) compared to 248 

the wild-type situation or S27 changes (Figure 3B, compare panels f-g to panel i, arrowhead; for 249 

single channel images, see Supplemental Figure 8). Thus, ER insertion seems not to require 250 

posttranslational modification, but sorting to PerMs may be negatively regulated by C65 251 

modification. 252 

 253 

GPT1 recruitment to the ER involves redox transmitters 254 

To find potential interaction partners of GPT1, the Membrane-based Interactome Database 255 

(MIND) of Arabidopsis proteins (based on split ubiquitin reconstitution in yeast; Lalonde et al., 256 

2010), was searched. Two cytosolic oxidoreductases, Thioredoxin h7 (Trxh7, At1g59730) and 257 

Glutaredoxin c1 (Grxc1, At5g63030), were among the 21 candidates listed with highest score 258 

(Supplemental Table 1). BiFC analyses in Arabidopsis protoplasts confirmed interaction of GPT1 259 

with Trxh7 (Figure 4A) and Grxc1 (Figure 4B) at the ER and its substructures, but not at plastids 260 

(Figure 4A, panel b), and more clearly when the N-terminus of GPT1 was masked (enforcing ER 261 

insertion). Occasionally, ER-derived membranes around peroxisomes were labeled (Figure 4A, 262 

panel b and d; Figure 4B, panel b, arrowheads), which was less obvious when the N-terminus of 263 
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Grxc1 was masked by split YFP (Figure 4B, panels c,d). To enhance interaction among the 264 

Arabidopsis proteins, selected BiFC combinations were co-expressed with the other oxido-265 

reductase as OFP fusion in heterologous tobacco protoplasts. Similar results were obtained 266 

(Figure 4C and D) and also smaller spherical structures (<3 µm) detected. Of note, in simple co-267 

expression studies, both Trxh7-OFP and Grxc1-OFP partially overlapped with the ER marker 268 

(Supplemental Figure 9B, white signals), confirming predicted N-myristoylation, and co-localized 269 

with GPT1_N-2MD-GFP at the ER (Supplemental Figure 9C). These results are consistent with 270 

the two oxidoreductases assisting GPT1 insertion into the ER and/or sorting to peroxisomes. 271 

 272 

GPT1 contacts peroxins Pex3 and Pex16 at the ER  273 

While class-I PMPs are inserted into PerMs directly from the cytosol (involving Pex3 and Pex19), 274 

class-II PMPs are first inserted into the ER (Platta and Erdmann, 2007). Since Pex3, Pex16, and 275 

Pex19 play also central roles during ER insertion, sorting of peroxisomal membrane proteins, 276 

and peroxisome biogenesis (Reumann and Bartel, 2016; Kao et al., 2018), we set out to analyze 277 

potential interaction with GPT1. In Arabidopsis, two Pex3 genes, Pex3-1 (At3g18160) and 278 

Pex3-2 (At1g48635; Hunt and Trelease, 2004), one Pex16 gene (At2g45690; Karnik and 279 

Trelease, 2005) and two Pex19 genes, Pex19-1 (At3g03490) and Pex19-2 (At5g17550; Hadden 280 

et al., 2006) exist. Analysis of N- and C-terminal reporter fusions in protoplasts revealed mainly 281 

PerM labeling for the two Pex3 isoforms, ER and PerM labeling for Pex16 (see also Lansing et 282 

al., 2019), and mostly cytosolic distribution for the two Pex19 isoforms (Supplemental Figure 10, 283 

shown for one of the two Pex3 and Pex19 isoforms). OFP-Pex3-1 displayed weak signals in the 284 

cytosol (not shown). BiFC analyses were conducted with Pex3-1, Pex16 and Pex19-1. GPT1 285 

interaction with Pex3-1 and Pex16 was detected at PerMs, partially contiguous with the ER 286 

(Figure 5A, panels a,b). By contrast, GPT1 interaction with Pex19 was mostly distributed across 287 

the cytosol, but also labeled spherical structures (Figure 5A, panel d), when the C-terminal 288 

farnesylation motif (McDonnell et al., 2016) was accessible. Again, Pex16-GPT1 interaction 289 

interfered with import of the peroxisome (Per) marker (Figure 5A, panel b, magenta signals 290 

largely cytosolic), as already observed for GFP-GPT1_C-full (Supplemental Figure 2, panel n).  291 

Co-expression of GFP-GPT1_C-full with the OFP-based Pex fusions resulted in different 292 

patterns (Figure 5B), suggesting that the Pex interactions are merely transient. Co-expression 293 

with Pex3-1-OFP led in part to perinuclear localization of GFP-GPT1_C-full, reminiscent of the 294 

BiFC data obtained for GPT1 homodimerization (Figure 5B, panel a compared to Figure 3, 295 

panels f-i). Interestingly, Pex16 co-expression had visible effects on GPT1 localization, 296 

promoting concentration/vesiculation at the ER (Figure 5B, panel b), similar to Pex16 alone, but 297 
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distinct from it (Supplemental Figure 10, compare B to C). In co-expression, Pex19-1 seemed to 298 

have no impact on GPT1 localization (Figure 5B, panels c and d). 299 

To make sure that the co-expression patterns obtained with Pex16 are no artifacts due to 300 

expression from the strong constitutive CaMV 35S promoter (Pro35S), two N-terminally 301 

truncated GPT1 versions (designated for stable plant transformation) were expressed also from 302 

the own promoter (ProGPT1), which gave comparable results (Figure 5C, for single channel 303 

images, see Supplemental Figure 11). Together with above BiFC analyses (Figure 5A), this 304 

demonstrated that ER-inserted GPT1 can be dragged to PerMs, and thus behaves like a class-II 305 

PMP that requires a special trigger to contact partner(s) (including Pex3 and Pex16) to reach 306 

mature peroxisomes. 307 

 308 

GPT1 may be recruited to peroxisomes and preferentially exchanges G6P for 309 

Ru5P  310 

After plastid import, the N-terminal transit peptide (TP) of the precursor proteins is usually 311 

cleaved off (Schmidt et al., 1979; Chua and Schmidt, 1979). According to the recent elucidation 312 

of the 3-dimensional structure of the Arabidopsis triose-phosphate/phosphate translocator (Lee 313 

et al., 2017), both N- and C-terminal ends of GPT face the stroma. In case of GPT1 insertion into 314 

the ER, both the unprocessed N-terminus and C-terminal end should point to the cytosol, which 315 

was confirmed by topology analyses using roGFP (Supplemental Figure 12). To test whether N-316 

terminal modification or lack of transit-peptide processing might affect transport activity, we 317 

fused an N-terminal His tag (or GFP) to the full-length and mature GPT1 versions (with mature 318 

GPT2 as control) and measured metabolite exchange of the recombinant proteins in 319 

reconstituted yeast proteoliposomes (Linka et al., 2008). For the physiological exchange of G6P 320 

versus Pi using the mature versions (Figure 6A), His-matGPT1 reached about one third of the 321 

His-matGPT2 rates (with comparable expression levels in yeast cells, not shown). N-terminal 322 

modification by GFP did not affect the transport rates of GPT1, but presence of the transit 323 

peptide (equivalent to localization at the ER/PerMs) reduced transport rates by about half (not 324 

shown).  325 

The Pro35S:GFP-GPT1_C-mat construct was stably introduced into heterozygous gpt1-2 plants 326 

by floral dip transformation (Clough and Bent, 1998). Similar immunoblot patterns were obtained 327 

for the GFP-GPT1 proteins extracted from yeast or plant cells (Figure 6B, green arrowheads). In 328 

leaf cells of soil-grown plants, ER labeling dominated, but also spherical structures (3 µm) were 329 

detected (Figure 6C, top panels). Obviously, ER insertion of mature GPT1 occurs by default, but 330 

sorting to PerMs requires a stimulus. When mesophyll protoplasts were prepared from 331 
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transgenic leaf material and transfected with the peroxisome (Per) marker (OFP-PGL3_C-short), 332 

GFP-labeled structures resembling newly forming peroxisomes appeared (Figure 6C, bottom 333 

panels; arrowheads).  334 

If GPT1 imports G6P into peroxisomes, we wondered what might happen to Ru5P, the product 335 

of the three irreversible OPPP reactions. Especially, since analyses of the ribulose-5-phosphate 336 

epimerase (RPE) isoforms At1g63290 (cytosolic), At3g01850 (cytosolic), and At5g61410 337 

(plastidic) (Kruger and Von Schaewen, 2003) did not give any hint on peroxisomal localization 338 

(unpublished data). We therefore analyzed, whether the mature GPT versions (with N-terminal 339 

His tag) may exchange G6P for Ru5P. As shown in Table 1, the relative velocity of matGPT1 340 

was higher for G6P-Ru5P (112%) than for Pi-Ru5P exchange (59%), and differed from 341 

matGPT2 (87% for G6P-Ru5P and 75% for Pi-Ru5P). Importantly, exchange rates for 6-342 

phosphogluconate (6PG <10%) were negligible.  343 

 344 

Stress and developmental stimuli enhance ER targeting of GPT1   345 

Since protoplast preparation (which is achieved by treating leaves with fungal enzymes) of stably 346 

transformed leaves led to recruitment of GFP-GPT1_C-mat to peroxisomes, we tested whether 347 

also treatment with a bacterial elicitor (flagellin) may affect GPT localization. Both, GPT1- and 348 

GPT2-N-full-GFP constructs were co-transfected with peroxisome (Per) marker OFP-PGL3_C-349 

short in Arabidopsis protoplasts, samples were split in half, and analyzed after 24 h of mock or 350 

flg22 treatment. The latter led to enhanced GPT1 recruitment to the ER (Figure 7A, arrow-351 

heads), without major effect on plastid localization (GPT2 was neither affected; for single 352 

channel images, see Supplemental Figure 13). 353 

In addition, His-tag versions of the GPT1 and GPT2 N-termini were cloned and (following over-354 

expression in E. coli) affinity-purified and used for raising polyclonal antisera in rabbits. The 355 

obtained -GPT1 antiserum specifically recognized the N-terminus of GPT1 but not GPT2 356 

(Supplemental Figure 14). Immunoblot analyses of different Arabidopsis tissues detected 357 

prominent high molecular weight bands in soluble fractions of flower, silique and seedling tissue 358 

- but not leaf extracts (Figure 7B), with stronger labeling in gpt2 (Niewiadomski et al., 2005) and 359 

xpt-2 (Hilgers et al., 2018), but not tpt-5 mutant plants (Figure 7C). In total, four bands were 360 

found in reproductive tissues/seedlings and three bands in leaves. The latter resembled those 361 

reported for 35S-labeled GPT upon import into isolated plastids, namely: precursor, weak 362 

intermediate and processed mature forms (Kammerer et al., 1998). Intermediates are unlikely to 363 

persist in planta. Thus, as deduced from the stronger labeled top bands in the gpt2 mutants 364 

compared to Col-0 wild-type, we suppose that weak bands 39 kDa in leaf extracts represent a 365 
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minor share of active mature GPT1 in chloroplasts (Figure 7B, lower black arrowhead), migrating 366 

between less active mature (estimated 36.8 kDa) and full-length (estimated 42.3 kDa) versions 367 

(red arrowheads). Conversely, top bands in reproductive flower and silique tissue (black 368 

arrowheads) would represent active GPT1 in the ER/peroxisomes (Figure 7B, compare Col to 369 

gpt2-2 and gpt2-3). This was also observed in seedling extracts, including other transporter 370 

mutants (Figure 7C). Interestingly, the pattern of triose-phosphate/phosphate translocator 371 

mutant tpt-5 resembled wild-type (Ws, Col), whereas unprocessed (top) bands persisted in 4 372 

week-old seedlings of OPPP-relevant mutants xpt-2 and gpt2-3. However, additional treatments 373 

prior to SDS-PAGE/immuno-detection (-/+Lambda Protein Phosphatase, extraction -/+ 374 

phosphatase inhibitors; Supplemental Figure 14 panels F-G) or use of 200 mM DTT for tissue 375 

extraction and sample boiling (not shown), did not result in visible differences.  376 

  377 

GPT1 is required both at plastids and peroxisomes during fertilization  378 

Loss of the last OPPP step in peroxisomes prevented formation of homozygous offspring due to 379 

mutual sterility of the pgd2 gametophytes (Hölscher et al., 2016). In analogy to this, we set out to 380 

rescue plastidial versus ER/peroxisomal defects by ectopic GPT expression in heterozygous 381 

gpt1 lines. First, the coding sequence of GPT2 was placed under control of the constitutive 382 

mannopine synthase (MAS) promoter (Guevara-Garcia et al., 1993) or the GPT1 promoter 383 

(position -1958 to -1), and introduced into heterozygous gpt1 plants by floral dip transformation. 384 

The CaMV-35S promoter-driven GFP-GPT1_C-mat construct (targeting the ER/peroxisomes, 385 

Figure 6C), was included for comparison (Supplemental Figure 15A). Obtained data showed that 386 

ectopic GPT2 expression merely rescued the gpt1 defect of incompletely filled siliques 387 

(Supplemental Figure 15B, panels a, b and f). When driven by the GPT1 promoter, some 388 

siliques of the ProGPT1:GPT2 transformed plants were completely filled with seeds 389 

(Supplemental Figure 15B, panel d), whereas most siliques of the same plant/line showed erratic 390 

seed maturation (panel c) or seed abortion (panel e). The frequencies of unfertilized, aborted 391 

ovules are compiled in Table 2. Compared to the untransformed heterozygous gpt1-1 or gpt1-2 392 

lines (30%), a slight reduction was found for ::ProMAS:GPT2 (27%), compared to 393 

::ProGPT1:GPT2 (21%) and Ws wild-type (~7%), indicating some compensation by GPT2 on 394 

the female side. Attempted ER/peroxisomal rescue by ::Pro35S:GFP-GPT1_C-mat scored the 395 

highest values with 34% aborted ovules.   396 

Despite occasionally filled siliques, analyses of the ProGPT1:GPT2-compensated lines revealed 397 

no gpt1 homozygous plants (Table 3). Therefore, GPT1 gpt1-2::ProGPT1:GPT2 was reciprocally 398 

crossed with ER/peroxisomal GPT1 gpt1-2::Pro35S:GFP-GPT1_C-mat, forming seeds only with 399 
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::ProGPT1:GPT2 as mother plant (Table 3). Since again no homozygous gpt1-2 alleles were 400 

found in the F2, several T2 plants of ::ProGPT1:GPT2 (line 3 #6 with 73% filled siliques; 401 

Supplemental Figure 16A) were super-transformed with ProGPT1:GPT1_N-long mat 402 

(ER/peroxisomal construct driven by the GPT1 promoter; Supplemental Figure 16B), based on 403 

OFP-Pex16 co-expression (Figure 5C) and GPT1-roGFP analyses (Supplemental Figure 12), 404 

but lacking the reporter. 405 

Surprisingly, siliques of heterozygous gpt1 plants carrying ProGPT1:GPT1_N-long mat (T1) 406 

were almost completely filled with seeds, irrespective of whether plastidial ProGPT1:GPT2 was 407 

present or not (Supplemental Figure 16C, compare top to bottom panels). This indicated a major 408 

contribution by GPT1 in the ER/peroxisomes, as also corroborated by the gpt1 transmission 409 

rates (Table 3).  410 

In summary, compared to the untransformed GPT1 gpt1 lines (21-25%), heterozygous progeny 411 

raised only slightly upon presence of ProGPT1-driven GPT2 (29-32%), with highest values 412 

scored for a GPT1 construct lacking the transit peptide region (43%). Thus, substantial recovery 413 

by GPT1 (solely targeting the ER/peroxisomes) was obtained without further contribution by 414 

GPT2 (solely targeting plastids), expressed from the same promoter.  415 

 416 

 417 

DISCUSSION (3196 words)   418 

 419 

GPT1 and GPT2 differ in several aspects 420 

Based on the concept that peroxisomes developed from the proto-endomembrane system of the 421 

Archaebacterial host in an early pre-eukaryote (Tabak et al., 2006; Cavalier-Smith, 2009; van 422 

der Zand et al., 2010), and GPT1 developed a special role related to NADPH provision by the 423 

OPPP in plastids during land plant evolution (Niewiadomski et al., 2005; Andriotis et al., 2010), 424 

as opposed to GPT2 mainly contributing to starch biosynthesis (Athanasiou et al., 2010; Kunz et 425 

al., 2010; Dyson et al., 2015), a preexisting role of GPT transporters in the secretory system is 426 

conceivable. Further support for functional specialization is reflected by the late split of GPT1 427 

from GPT2 sequences in dicots (Figure 8), and dichotomy of orthologous sequences in the 428 

monocot species rice (Oryza sativa) and maize (Zea maize). In rice, ADP-Glc and not G6P was 429 

shown to be imported by heterotrophic plastids as the precursor of starch biosynthesis (Cakir et 430 

al., 2016), except for pollen tissue that imports G6P (Lee et al., 2016). Furthermore, the GPT1-431 

interacting oxidoreductase Grxc1 (Supplemental Table 1, listed by the MIND database also as 432 

interaction partner of GPT2, albeit with lower score) is dicot-specific, while Grxc2 is present in all 433 
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seed plants (Riondet et al., 2012; Li, 2014). In Arabidopsis, GPT2 is predominately expressed in 434 

heterotrophic tissues, whereas GPT1 is found ubiquitously (Niewiadomski et al., 2005), also in 435 

leaves (Supplemental Figure 17). Thus, basal G6P exchange, needed to stabilize the Calvin 436 

cycle in chloroplasts (Sharkey and Weise, 2016), should involve GPT1 rather than GPT2, which 437 

may be additionally induced under stress, e.g. by light (Athanasiou et al., 2010; Preiser et al., 438 

2019).  439 

 440 

The GPT1 N-terminus mediates dual targeting 441 

Our analyses showed that the C-terminal PTS1 motif of GPT1 is inactive, although reporter-442 

GPT1 fusions interfered with import of the SKL-based peroxisome marker. As expected for 443 

PMPs (Rottensteiner et al., 2004), alternative GPT1 targeting was driven by other sequence 444 

motifs. The mPTS1 of class-I PMPs (directly imported into peroxisomes) comprises several 445 

positively charged amino acids on the matrix side adjacent to a transmembrane domain (Mullen 446 

and Trelease, 2006), besides a cytosolic Pex19-binding site (Rottensteiner et al., 2004; Platta 447 

and Erdmann, 2007), whereas for class-II PMPs it is only known that they exhibit an ER sorting 448 

signal (Mullen and Trelease, 2006; Eubel et al., 2008). Although the exact motif mediating ER 449 

import of GPT1 was not determined, domain swapping with GPT2 showed that the sequence 450 

must lie within the first 155 amino acids (N-terminus plus first two MDs). Since the GPT1_N-long 451 

mat version (without TP) was inserted into the ER, the region between K48 and the first MD 452 

(A92) is probably crucial, partly lacking and strongly differing from GPT2 (Supplemental Figure 453 

1).  454 

To exclude that GPT1 and GPT2 might be inserted into the ER prior to plastid import (Baslam et 455 

al., 2016) we tested Brefeldin A (BFA), a fungal toxin that inhibits the formation of ER-derived 456 

coated vesicles (Orcl et al., 1991; Klausner et al., 1992). Although BFA compartments of merged 457 

ER and Golgi vesicles were formed, GPT1 and GPT2 still localized to plastids. Furthermore, all 458 

medial swap constructs headed by GPT2 targeted plastids. Thus, in case of dually-targeted 459 

GPT1, threading into the plastidial Toc/Tic complex should prevent binding of the signal 460 

recognition particle (SRP) that directs proteins to the Sec61 import pore in the ER membrane 461 

(Figure 9A). Alternatively, an ER-targeting suppressor (ETS) region may be exposed by default, 462 

preventing SRP binding, as shown for human PMP70 (Sakaue et al., 2016).  463 

How dual targeting to secretory versus endosymbiontic compartments may be regulated was 464 

discussed by Porter et al. (2015). N-terminal phosphorylation might influence competition 465 

between chloroplast import and SRP binding (as in case of protein disulfide isomerase RB60 466 

from Chlamydomonas reinhardtii). GPT1 exhibits only one potentially phosphorylated serine 467 
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residue in the N-terminus (S27; Supplemental Figure 1) that is conserved among all GPT 468 

sequences, albeit not listed with high score by the PhosPhAt 4.0 database (Heazlewood et al., 469 

2008; Durek et al., 2009; Zulawski et al., 2013). Phosphomimic/preclusion of phosphorylation 470 

had no influence on dual targeting of GPT1, and neither change of the single cysteine (C65, 471 

Figure 9). On the other hand, enforced interaction of GPT1 monomers (visualized by YFP 472 

reconstitution) resulted in labeling of specific ER substructures, and the C65S change enabled 473 

detection at PerMs – as rare event (Figure 3B, panel i and 3C). However, C65 is not present in 474 

all Brassica isoforms (Supplemental Figure 1) nor in GFP-GPT1_C-mature, which was detected 475 

around peroxisomes upon elicitation (Figure 6C). Thus, C65 is not essential for reaching 476 

peroxisomes, but might play a role in negative regulation of GPT1 transfer from the ER to 477 

peroxisomes. 478 

In this respect, GPT1 release to peroxisomes may require interaction with Grxc1 (and Trxh7), 479 

known to engage in monothiol-dithiol mechanisms, including glutathionylation (Riondet et al., 480 

2012; Ukuwela et al., 2018). The latter is known to be triggered by oxidative transients that 481 

accompany stress signaling and developmental change (2GSHGSSG). Sensible cysteine 482 

residues (-S at physiological pH) may become sulfenylated (-S-OH in the presence of H2O2) or 483 

glutathionylated (-S-SG), which protects from over-oxidation (reviewed in Zaffagnini et al., 2019). 484 

Reversion (de-glutathionylation) by GSH alone is slow, but fast together with Grx and Trx (as 485 

recently shown for plastidial Amy3; Gurrieri et al., 2019). Perhaps this mechanism regulates 486 

GPT1 interaction with Pex16 and/or Pex3, given that biochemically distinct ER vesicles were 487 

shown to fuse and form new peroxisomes (Van Der Zand et al., 2012). In any case, GPT1 488 

transport in monomeric form within the ER makes sense, since a potentially active translocator - 489 

still en route to its final destination - is likely not tolerated. This idea is supported by aberrant ER 490 

structure in analyses with enforced GPT1-dimer formation (Figure 3). 491 

 492 

Evidence for redox transmitters in GPT1 recruitment to the ER/peroxisomes 493 

For indirect delivery of PMPs via the ER, it is still unclear how the processes of ER targeting and 494 

sorting to newly forming peroxisomes are regulated. For Pex3 it was suggested that cytosolic 495 

chaperons may guide the protein to the Sec61 translocon (Kim and Hettema, 2015), and for 496 

Pex16 that the protein may recruit Pex3 and other PMPs to the ER (Hua et al., 2015). We 497 

already published on the importance of thioredoxins as redox-dependent targeting regulators for 498 

OPPP enzymes before. Since Trx co-chaperon function (holdase versus foldase) depends on 499 

the local redox state, dual targeting of Arabidopsis G6PD1 and PGL3 is regulated by either 500 

preventing folding, allowing plastid import, or supporting folding, as pre-requisite for peroxisome 501 
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import (Meyer et al., 2011; Hölscher et al., 2014). Here we show that co-expression of GPT1 502 

with the cytosolic oxidoreductases Trxh7 or Grxc1 enhanced ER localization. Moreover, GPT1 503 

interaction with both oxidoreductases was spotted at structures reminiscent of PerMs.  504 

Thioredoxins and glutaredoxins were previously reported to promote protein folding directly, via 505 

protein-disulfide reduction or disulfide-bond formation (Berndt et al., 2008), besides enhancing 506 

co-chaperon activities in a redox state-dependent manner. Both, foldase function of the 507 

monomeric thioredoxin and holdase function in the oligomeric state, prevented 508 

folding/aggregation of client proteins, as demonstrated for Trx h and m types (Park et al., 2009; 509 

Sanz-Barrio et al., 2012). The oligomerization state of Grxc1 was also shown to be influenced by 510 

the surrounding redox medium, and conversely activated under oxidizing conditions, implying a 511 

function as cytosolic redox sensor (Riondet et al., 2012; Ströher and Millar, 2012). Considering 512 

that Grx and Trx serve as electron donors for peroxiredoxins that detoxify H2O2 directly (Dietz, 513 

2011), and regulation of h-type Trx via GrxC1 was demonstrated previously (Meng et al., 2010; 514 

Rouhier, 2010), a complex co-regulation of the two protein classes exists in plant cells. 515 

Furthermore, Trxh7 and Grxc1 were found to be N-myristoylated in planta (Meng et al., 2010; 516 

Riondet et al., 2012; Traverso et al., 2013; Majeran et al., 2018). For Grxc1, which had been 517 

detected in the cytosol and nucleus before (Riondet et al., 2012), our results show that the 518 

protein partially resides at the ER. Grxc1 promoted ER targeting of GPT1, also without N-519 

myristoylation motif (G2A) in grxc1 mutant protoplasts (not shown), indicating functional 520 

redundancy with (an)other isoform/member(s) of the Grx/Trx superfamily. Interestingly, GPT1 is 521 

listed as palmitoylation candidate by the plant membrane protein database Aramemnon 522 

(http://aramemnon.uni-koeln.de) with high score. Protein S-acylation (via cysteine residues) is 523 

still a poorly understood posttranslational process that is usually preceded by N-myristoylation, 524 

to promote membrane association, targeting, and/or partitioning into membrane subdomains 525 

(Aicart-Ramos et al., 2011; Hemsley, 2015). A potential role of Grx/Trx N-myristoylation for 526 

putative S-palmitoylation of GPT1 will have to be analyzed by a complex experimental setup, a 527 

difficult task considering partial redundancy among cytosolic Trx h2, h7, h8, h9 as well as Grx c1 528 

and c2 isoforms (Riondet et al., 2012; Traverso et al., 2013; Majeran et al., 2018). Clearly, GPT1 529 

is inserted into the ER membrane in monomeric form, and may be modified at C65 (Figure 9A, 530 

question mark) for retention. Dimer formation beyond the perER would occur after de-protection, 531 

likely triggered by cytosolic redox signaling that accompanies a/biotic stress responses 532 

(Vandenabeele et al., 2004; Foyer et al., 2009) or specific developmental stages, like pollen tube 533 

elongation (Considine and Foyer, 2014) and navigation to ovules (Hölscher et al., 2016). 534 

  535 

GPT1 behaves like a class-II PMP 536 
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Our BiFC data suggested that GPT1 contacts at least two of the three early peroxins (Kim and 537 

Mullen, 2013). Interaction with Pex3 and Pex16 was detected at the ER and PerMs, whereas 538 

interaction with Pex19 was mostly distributed across the cytosol, reflecting its function as 539 

cytosolic cargo receptor (Hadden et al., 2006). Since simple co-expression with Pex19-reporter 540 

fusions did not show any change in GPT1 localization, dot-like structures labeled by GPT1-541 

Pex19 BiFC analyses might be a false-positive result. This would be in line with Pex19 being 542 

mainly involved in targeting of class I, but not class II PMPs. Focal localization of GPT1 at the 543 

ER, previously described for Pex3 in yeast and for pxAPX in cottonseed/APX3 in Arabidopsis 544 

(Lisenbee et al., 2003; Narendra et al., 2006), was mainly seen upon BiFC, indicating that 545 

dimerization occurs beyond the perER. GPT1 dimers may therefore represent a forced 546 

interaction at the ER, which does not (yet) occur under physiological conditions. As a side note, 547 

Pex3 of plant cells had not been detected at the ER before (Hunt and Trelease, 2004).  548 

Usually, GPT1 distributed evenly across the ER, unless co-expressed with Pex16 that coexists 549 

at both the ER and PerMs (Lin et al., 2004; Karnik and Trelease, 2005). Interestingly, presence 550 

of Pex16 influenced GPT1 localization at the ER, resulting in a similar but distinct pattern – also 551 

when driven by the own promoter (dark incubation in the presence of sugars activates GPT1 552 

mRNA expression, Supplemental Figure 18). Considering that BiFC is not dynamic, and fluores-553 

cent signals persist once the split YFP halves are reconstituted (Robida and Kerppola, 2009), 554 

GPT1 was likely dragged to PerMs upon (otherwise transient) interaction with the peroxins. In 555 

any case, this demonstrated that GPT1 can reach PerMs (although not detected there, unless 556 

triggered), wherefore the transporter may first interact with Pex16 (for ER insertion/transport to 557 

the perER; Hua et al., 2015), and then Pex3 (and possibly Pex19, during sorting to PerMs). By 558 

contrast to APX3, GPT1 is only needed at peroxisomes when the OPPP is required (Meyer et 559 

al., 2011; Hölscher et al., 2014; Lansing et al., 2019). Of note, aside from continuously imported 560 

PGD2, no other OPPP enzyme has been found by peroxisomal proteomics so far (see Hölscher 561 

et al., 2016; Lansing et al., 2019 and references cited therein). 562 

 563 

GPT1 transport preference differs from GPT2  564 

After plastid import, TP sequences are cleaved off by the essential stromal processing peptidase 565 

(SPP), which is usually important for maturation, stabilization, and activation of the proteins (van 566 

Wijk, 2015). Here we show that also unprocessed GPT1 is an active transporter. Addition of a 567 

small tag or large reporter did not influence transport activity. Furthermore, topology analyses of 568 

roGFP fusions indicated that upon ER insertion, both N- and C-termini of GPT1 face the cytosol 569 

(Supplemental Figure 12), similar to Arabidopsis PMP22 (Murphy et al., 2003) and the human 570 
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glucose transporter (Mueckler and Lodish, 1986). These findings support the theory of Shao and 571 

Hegde (2011) that during post-translational ER import of membrane proteins, type-I topology (N-572 

terminus facing the lumen) is strongly disfavored. This leads to obligate type-II topology (N-573 

terminus facing the cytosol), and integration of the following MDs owing to the ‘positive inside 574 

rule’ (von Heijne, 1986; Goder et al., 2004) for the cytosolic hinge regions. The latter is not 575 

entirely true for the GPT proteins (marked red in Supplemental Figure 1 and the topology 576 

models), which may facilitate posttranslational ER insertion. 577 

The phosphate translocator family is known to form dimers that mediate strict counter-exchange 578 

of various phosphorylated metabolites with inorganic phosphate (Pi). The ability to transport 579 

other OPPP intermediates, although possible (e.g. triose-phosphates), is usually disfavored due 580 

to the prevailing metabolite concentrations or competition with the preferred substrate (Flügge, 581 

1999; Eicks et al., 2002). Here we show that GPT1 and GPT2 can exchange G6P for Ru5P, but 582 

GPT1 has a stronger preference for Ru5P. Thus, import of the OPPP substrate and export of its 583 

product is warranted across PerMs (Figure 9B). Moreover, poor rates obtained with 6-phospho-584 

gluconate (6PG) as counter-exchange substrate strongly suggest that sugar-derived NADPH 585 

production occurs by all three OPPP steps (Meyer et al., 2011; Hölscher et al., 2014; Lansing et 586 

al., 2019), making a short-cut via solely Arabidopsis PGD2, catalyzing the last OPPP step in 587 

peroxisomes (Fernández-Fernández and Corpas, 2016; Hölscher et al., 2016), unlikely.  588 

In principle, the discovered transport preference should also apply to metabolite exchange at 589 

plastids. This may explain why Arabidopsis tpt xpt double mutants are viable (although strongly 590 

growth-compromised; Hilgers et al., 2018) and why rpi2 mutants, lacking one of the two cytosolic 591 

ribose-phosphate isomerase (RPI) isoforms form less starch in leaves (Xiong et al., 2009). 592 

Minute amounts of active GPT1 could drain G6P from chloroplasts due to preferred exchange 593 

with Ru5P, likely more abundant in rpi2 mutants (Supplemental Figure 19). Besides G6P 594 

exchange needed to stabilize the Calvin cycle (Sharkey and Weise, 2016), this argues for a role 595 

of ubiquitously expressed GPT1, considering that GPT2 is absent from unstressed leaves 596 

(Supplemental Figure 14F). On the other hand, lower transport capacity of GPT1 compared to 597 

GPT2 is not surprising, since our data confirm a specialization of the two transporters. For 598 

GPT1’s function, flux rates are not necessarily a limiting parameter, but substrate specificity 599 

obviously is. This is in line with our complementation analyses, demonstrating that GPT2 cannot 600 

compensate for the absence of GPT1.  601 

 602 

Dual targeting of GPT1 is essential during fertilization 603 
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Niewiadomski et al. (2005) and Andriotis et al. (2010) found that loss of GPT1 function in 604 

plastids strongly affects pollen maturation and embryo-sac development, resulting in aberrant 605 

morphological changes. Interestingly, in plants with reduced GPT1 levels, embryo development 606 

is normal up to the globular stage, but then embryos fail to differentiate further and accumulate 607 

starch (Andriotis et al., 2010; Andriotis and Smith, 2019). According to the Arabidopsis eFP 608 

Browser (Winter et al., 2007), in this stage mRNA expression of GPT2 is up to 3.5-fold higher 609 

than of GPT1 (Supplemental Figure 17), which can explain the observed starch accumulation 610 

upon GPT1 loss. 611 

In accordance with these premises, we suspected that ectopic GPT2 expression may rescue 612 

some plastidial functions, but not all phenotypes of the mutant gpt1 alleles, because swap 613 

constructs headed by GPT2 were never detected at the ER. For heterozygous gpt1-2 614 

transformed with GPT2 (driven by the GPT1 promoter), filled siliques with green, non-aborted 615 

embryos, and fertilized, but later aborted brownish embryos were observed. Plants homozygous 616 

for the gpt1-2 T-DNA were absent from the progeny of this line and also from ER/peroxisomal 617 

compensated Pro35S:GFP-GPT1_C-mat. 618 

Upon reciprocal crossing of these two lines, only one direction worked (Table 3), indicating that 619 

besides partial rescue of the female gpt1 defects (showing as filled siliques), plastid-confined 620 

GPT2 was unable to fully rescue GPT1’s functions during pollen maturation/tube growth. Pollen 621 

grains appeared normal, but no homozygous gpt1-2 plants were found among the progeny of 622 

combined complementation constructs. This suggested that the remaining defects result mainly 623 

from absence of GPT1 from plastids, due to a unique function GPT2 cannot fulfill. Furthermore, 624 

GPT1 transfer from the ER to peroxisomes might be impeded by artificial construct composition.  625 

Of note, Pro35S:GFP-GPT1_C-mat (transport-competent ER/PerM control) did not rescue ovule 626 

abortion (Table 2), but led to a substantial increase in heterozygous offspring compared to the 627 

parental line (Table 3). This may be even an underestimation, since the CaMV-35S promoter is 628 

not well expressed in pollen, and generally fluctuates in floral tissues (Wilkinson et al., 1997). By 629 

contrast, the ProGPT1-driven GPT1_N-long mat construct (without TP) rescued seed set and 630 

raised gpt1 transmission up to 43%, independent of additional GPT2 in plastids. Thus, together 631 

with the pollination defect (mentioned above) and complementation by a genomic GPT1 632 

construct (Niewiadomski et al., 2005), our results indicate that for full rescue GPT1 is additionally 633 

needed in plastids, where the OPPP is mainly required for Ru5P provision to nucleotide bio-634 

synthesis (Figure 9B), as recently shown by Andriotis and Smith (2019).   635 

The findings nicely support our previous analyses that loss of Ru5P formation in peroxisomes 636 

(by missing PGD2 activity; Hölscher et al., 2016) prevents homozygous offspring due to mutual 637 

sterility of the male and female pgd2 gametophytes. Moreover, the low transport rates for 6PG 638 
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and redundancy at the PGL step in Arabidopsis (Lansing et al., 2019) suggest that no other 639 

OPPP intermediate is transported across PerMs. Transport preference for Ru5P may also 640 

explain why GPT1 is indispensable in heterotrophic plastids (Figure 9B), probably accepting Pi 641 

released by GPT2-driven starch synthesis as counter-exchange substrate. Finally, dual targeting 642 

is supported by immuno-detection of unprocessed (ER/peroxisomal) GPT1 in flower/silique and 643 

seedling tissues. In the latter, a shift in the GPT1 pattern seems to reflect gradual adaptation to 644 

the photoautotrophic state. Besides, relative mobility and band intensities in wild-type versus 645 

gpt2 (and other transporter mutants) indicates that GPT1 transport activity may be regulated by 646 

post-translational modification at both locations, perhaps phosphorylation of the mature protein 647 

part (up to 5 sites; Supplemental Figure 1, blue frames). Potential glutathionylation (300 Da) of 648 

the single cysteine in the GPT1 N-terminus (C65; Figure 9A) cannot explain the observed size 649 

shifts, rather palmitoylation (Greaves et al., 2008). Of note, S-palmitoylation is usually preceded 650 

by N-myristoylation (Wang et al., 1999), and both Grxc1 and Trxh7 were found to be N-651 

myristoylated in planta (Majeran et al., 2018). For sure Grx isoforms are important during 652 

fertilization, since grxc1 grxc2 double mutants exhibited a lethal phenotype early after pollination 653 

(Riondet et al., 2012). Together, this may add to the recently discovered role of palmitoylation 654 

during male and female gametogenesis in Arabidopsis (Li et al., 2019). However, a definite link 655 

of these aspects to dual targeting of GPT1 will require more detailed studies.  656 

 657 

In summary, our data present compelling evidence for dual targeting of GPT1 to both plastids 658 

and peroxisomes. Imported G6P is converted by the oxidative OPPP part to NADPH and Ru5P, 659 

which is the preferred exchange substrate (likely at both locations), thus contributing to 660 

gametophyte and embryo development as well as pollen-tube guidance to ovules. Since the 661 

latter dominates the reproductive success, further analyses are required to determine the exact 662 

physiological context of GPT1’s presence at the ER/peroxisomes. 663 

 664 

 665 

MATERIALS AND METHODS (1704 words) 666 

 667 

Bioinformatics 668 

For general information about Arabidopsis thaliana, the TAIR website (www.arabidopsis.org), 669 

Araport (www.araport.org/), PhosPhAt 4.0 (http://phosphat.uni-hohenheim.de/), and the National 670 

Center for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov) were consulted. Routine 671 

analyses were performed with programs of the ExPASy proteomics server (www.expasy.ch) and 672 
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Clustal Omega (www.ebi.ac.uk). For the phylogenetic tree, sequence information on different 673 

higher plant clades was retrieved from the National Center for Biotechnology Information (NCBI; 674 

www.ncbi.nlm. nih.gov), and for the moss Physcomitrella patens from www.cosmoss.org. 675 

Sequence alignments and phylogenetic analyses were performed in MEGA7 (Jones et al., 1992; 676 

Kumar et al., 2016) using the Maximum Likelihood method based on the JTT matrix-based 677 

model (Jones et al., 1992). 678 

 679 

Cloning of Fluorescent Reporter Fusions 680 

Open reading frames of candidate genes were obtained by RT-PCR using Arabidopsis total leaf 681 

RNA as described in Hölscher et al. (2016), except for Trxh7 which was amplified from genomic 682 

DNA. Appropriate oligonucleotide primers are listed in Supplemental Table 2. Reporter 683 

constructs were cloned in plant expression vectors as described before (Meyer et al., 2011; 684 

Hölscher et al., 2016) and indicated in the table below. 685 

 686 

Reporter vector Sites for N-terminal fusions Sites for C-terminal fusions 

pGFP2* XbaI (SpeI), Acc65I [not used] 

pGFP2-∆NcoI* XbaI, Acc65I [not used] 

pOFP-∆NcoI* 

(pSY526) 
EcoRI, NcoI SpeI, BamHI 

pGFP2-SDM* XbaI, Acc65I SpeI, BamHI 

pG/OFP-NX*  XbaI, NcoI, Acc65I SpeI, BamHI 

pUC-SPYNE 

pUC-SPYCE(M) 
SpeI, Acc65I, BamHI [not used] 

pUC-SPYNE(R) 

pUC-SPYCE(MR) 
[not used] SpeI, BamHI 

*For vector details see (Meyer et al., 2011; Hölscher et al., 2016); split YFP vectors (Walter et al., 2004) 687 

 688 

Site-directed Mutagenesis 689 

Single base changes, for destroying restriction sites or changing amino acids, were introduced 690 

by the Quick-Change PCR mutagenesis kit protocol (Stratagene), using the primer combinations 691 

listed in Supplemental Table 2 and PhusionTM High-Fidelity DNA Polymerase (Finnzymes). All 692 

base changes were confirmed by sequencing. 693 

 694 

Heterologous Protein Expression in Yeast Cells 695 

For in vitro-uptake studies, full-length or mature GPT1 and GPT2 versions were amplified with 696 

the corresponding primers from cDNA and inserted into yeast vectors pYES2 or pYES-NTa via 697 
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Acc65I (KpnI)/BamHI sites (Thermo Scientific). For full-length GPT1, primer combinations were 698 

GPT1_Acc65I_s with GPT1+S_BamHI_as; for mature GPT1, GPT1_C-mat_Acc65I_s with 699 

GPT1+S_BamHI_as; and for mature GPT2, GPT2_C-mat_Acc65I_s with GPT2+S_BamHI_as 700 

(Supplemental Table 2). For the GFP-GPT1_C-mat version, PCR fragments (primers: GPT1_C-701 

mat_SpeI_s and GPT1+S_BamHI_as) were first inserted into pGFP2-SDM via SpeI/BamHI 702 

sites, released with KpnI/BamHI, and cloned in pYES2. The resulting constructs were 703 

transformed into strain INVSc1 (MATa, his3∆1, leu2, trp1-289, ura3-52/MATα,his3∆1, leu2, trp1-704 

289, ura3-52) using the lithium acetate/PEG method (Gietz and Schiestl, 2007). Yeast cells were 705 

selected on synthetic complete medium (SC-Ura; 0.67% (w/v) YNB supplemented with 706 

appropriate amino acids and bases for uracil auxotrophy and 2% (w/v) glucose as carbon 707 

source). Since protein expression is under control of the galactose-inducible promoter pGAL1, 708 

yeast cells were grown aerobically in SC-Ura supplemented with 2% (w/v) galactose for 6 h at 709 

30°C. Harvest and enrichment of total yeast membranes without and with recombinant GPT 710 

proteins was performed according to Linka et al. (2008). 711 

 712 

Uptake Studies Using Proteoliposomes 713 

Yeast membranes were reconstituted into 3% (w/v) L-α-phosphatidylcholine by a freeze-thaw-714 

sonication procedure for in vitro-uptake studies as described in Linka et al. (2008). Proteolipo-715 

somes were either preloaded with 10 mM KPi, G6P, Ru5P, 6PG or produced without pre-loading 716 

(negative control). Counter-exchange substrate not incorporated into proteoliposomes was 717 

removed via gel filtration on Sephadex G-25M columns (GE Healthcare). Transport assays were 718 

started either by adding 0.2 mM [α-32P]-phosphoric acid (6,000 Ci/mmol) or 0.2 mM [14C]-719 

glucose-6-phosphate (290 mCi/mmol). The uptake reaction was terminated by passing 720 

proteoliposomes over Dowex AG1-X8 anion-exchange columns. The incorporated radiolabeled 721 

compounds were analyzed by liquid scintillation counting. Time-dependent uptake data were 722 

fitted using nonlinear regression analysis based on one-phase exponential association using 723 

GraphPad Prism 5.0 software (GraphPad, www.graphpad.com). The initial uptake velocities 724 

were calculated using the equation slope = (Plateau - Y0)*k, whereas Y0 was set to 0. The 725 

values for the plateau and k were extracted from the non-linear regression analyses using a 726 

global fit from three technical replicates. 727 

 728 

Arabidopsis Mutants 729 

Heterozygous gpt1-1 and gpt1-2 lines (Arabidopsis ecotype Wassilewskia, Ws-2) were kindly 730 

provided by Anja Schneider (LMU Munich) and analyzed via PCR amplification from genomic 731 
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DNA as suggested for the two T-DNA alleles (Niewiadomski et al., 2005). All oligonucleotide 732 

primers are listed in Supplemental Table 2. For the Feldman line, primers 733 

GPT1_EcoRI_s/GPT1-R5 were used for the wild-type allele, and F-RB/GPT1-R5 (Niewiadomski 734 

et al., 2005) for the gpt1-1 T-DNA allele. For the Arabidopsis Knockout Facility (AKF) line, 735 

primers GPT1-F3/GPT1-R3 were used for the wild-type allele, and GPT1-F3/JL-202 736 

(Niewiadomski et al., 2005) for the gpt1-2 T-DNA allele. To improve PCR analyses, GPT1-F3 737 

was later replaced by primer gpt1-2_WT_s. Further mutants used were gpt2-2 (GK-950D09), 738 

gpt2-3 (GK-780F12), and xpt-2 (SAIL_378C01) in the Columbia (Col) background, and tpt-5 739 

(FLAG_124C02) in the Ws background. Mutant plants were identified by genomic PCR using the 740 

suggested gene-specific and T-DNA-specific primer combinations (Supplemental Table 2). 741 

 742 

Plant Growth  743 

Arabidopsis seeds were surface-sterilized by ethanol washes (vortexed for 5 s each in 70% 744 

EtOH, EtOH absolute, 70% EtOH), dried on sterile filter paper, and spread on sterile germination 745 

medium (0.5 Murashige & Skoog salt mixture with vitamins, pH 5.7-5.8, 0.8% agar; Duchefa, 746 

Haarlem, NL) supplemented with 1% sucrose and stratified for 2-3 days at 4°C. After 747 

propagation in growth chambers for one week (short day regime: 8 h light 21°C, 16 h dark 19°C) 748 

seedlings were transferred to sterile Magenta vessels (Sigma) and grown for 4-5 weeks until 749 

harvesting rosette leaves for protoplast isolation. Alternatively, seedlings were transferred to 750 

fertilized soil mix at the 4-leaf stage and grown in short day regime, prior to transfer to long day 751 

regime (16 h light 21°C, 8 h dark 19°C) to promote flowering. In case of tobacco (Nicotiana 752 

tabacum var. Xanthi), sterile apical cuttings were cultivated on MS agar supplemented with 2% 753 

sucrose. The top leaves of four week-old plants were used for protoplast isolation. 754 

 755 

Protoplast Transfection and Microscopy 756 

Localization of fluorescent reporter fusions (all constructs driven by the CaMV-35S promoter, if 757 

not indicated otherwise) was determined by confocal laser scanning microscopy (CLSM) in 758 

freshly transfected mesophyll protoplasts (Meyer et al., 2011). For co-expression analyses, 759 

25 µg of test DNA (BiFC: 20 µg of each plasmid) was pre-mixed with 5 µg of a reporter construct 760 

(20 µg in case of Pex16-OFP) prior to PEG transfection. After cultivation for 12 to 48 h at 21-761 

25°C in the dark (without or with the drug/elicitor indicated), fluorescent signals were recorded 762 

using a Leica TCS SP5 microscope with excitation/emission wavelengths of 405 vs. 488/490-763 

520 nm for roGFP, 488/490-520 nm for GFP, 514/520-550 nm for YFP, and 561/590-620 nm for 764 

OFP (mRFP).  765 
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 766 

Immunoblot analyses 767 

Arabidopsis tissues were harvested from plants grown in soil, or seedlings growing on 768 

germination plates (1% sucrose) after different time points. Our standard protein-extraction 769 

buffer was 50 mM HEPES-NaOH pH 7.5, 2 mM sodium pyrosulfite (Na
2
S

2
O

5
), 1 mM Pefabloc 770 

SC, Protease Inhibitor Cocktail (1:100) for use with plant extracts (Sigma), and 280 mM 771 

-mercaptoethanol (-ME) - if not stated otherwise. Immunoblot analyses were conducted as 772 

described previously (Meyer et al., 2011; Hölscher et al. 2016; Lansing et al., 2019) using 10% 773 

separating gels with 10% glycerol. Polyclonal rabbit antisera were obtained from Eurogentec 774 

(Seraing, B), raised against the N-terminal GPT sequences (91 amino acids of GPT1 or 92 775 

amino acids of GPT2) with His tag as antigen (His-N1, His-N2) after overexpression in E. coli 776 

BL21 from pET16b-based plasmids and affinity purification via Ni-NTA (Qiagen), followed by 777 

specificity tests (Supplemental Figure 14).  778 

 779 

GPT Constructs for Rescue Analyses 780 

For one of the plastidial rescue lines, expression from the Mannopine synthase promoter was 781 

used (pBSK-pMAS-T35S, Supplemental Figure 20). The ORF of GPT2 was amplified from 782 

cDNA with primer combination GPT2_s_EcoRI/GPT2_as_PstI (all primers are listed in 783 

Supplemental Table 2) and inserted into pBSK-pMAS-T35S via EcoRI/PstI sites (pBSK-784 

pMAS:GPT2). The entire expression cassette (pMAS:GPT2-T35S) was released with SalI/XbaI 785 

and inserted into binary vector pGSC1704-HygR (ProMAS:GPT2). For GPT1 promoter-driven 786 

GPT2, the 5’ upstream sequence of GPT1 (position -1 to -1958) was amplified from genomic 787 

DNA using PhusionTM High-Fidelity DNA Polymerase (Finnzymes) and inserted blunt end into 788 

pBSK via EcoRV (orientation was confirmed by sequencing). The GPT2-T35S part was 789 

amplified with primers GPT2_NdeI_s/T35S_SalI_as from pBSK-pMAS:GPT2 and inserted 790 

downstream of the GPT1 promoter via NdeI/SalI in pBSK. The final expression cassette 791 

(ProGPT1:GPT2-T35S), amplified with primers pGPT1_s/T35S_SalI_as, was digested with SalI, 792 

and inserted into pGSC1704-HygR via SnaBI/SalI sites.  793 

For the CaMV promoter-driven 35S:GFP-GPT1_C-mat construct, the expression cassette was 794 

released from vector pGFP2-SDM with PstI/EcoRI, the EcoRI site filled (using Klenow Fragment, 795 

Thermo Fisher) and inserted into binary vector pGSC1704-HygR via SdaI/SnaBI sites. For 796 

GPT1_N-long mat (also driven by the GPT1 promoter), fragments were amplified with primers 797 

GPT1_long mat-s and G6P_peroxi_Trans_full_BamHI from existing cDNA clones upon insertion 798 

into the pGFP-NX backbone via XbaI and BamHI (removing GFP). The GPT1 promoter was 799 
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then amplified with primers P_GPT1_s and P_GPT1_as and inserted via PstI/SpeI into PstI/XbaI 800 

in the target plasmid, replacing the CaMV-35S promoter. The resulting cassette with GPT1 801 

promoter, GPT1_N-long mat and NOS terminator was then amplified via primers P_GPT1_s and 802 

NosT_as upon SalI digestion and insertion into SalI and SnaBI-opened binary vector pDE1001 803 

(Ghent University, B). 804 

All binary constructs were transformed into Agrobacterium strain GV2260 (Scharte et al., 2009). 805 

Floral dip transformation of heterozygous gpt1 plants was conducted as described by Clough 806 

and Bent (1998). Seeds were selected on germination medium containing 15 µg ml-1 Hygromycin 807 

B (Roche) or 50 µg ml-1 Kanamycin (ProGPT1-GPT1_N-long mat) including 125 µg ml-1 Beta-808 

bactyl (SmithKline Beecham), and transferred to soil at the 4-leaf stage. After three weeks, wild-809 

type and T-DNA alleles were genotyped as described above. ProMAS:GPT2 and 810 

ProGPT1:GPT2 constructs were amplified from genomic DNA using primers GPT2_C-811 

4MD_SpeI_s and T35S_SalI_as. For testing presence of Pro35S:GFP-GPT1_C-mat, primer 812 

combinations P35S_s and GPT1_EcoRI_as or NosT_as were used. Presence of 813 

ProGPT1:GPT2 was detected with primers GPT2_XbaI_s and GPT2-Stop_BHI_as 814 

(discrimination between the cDNA-based complementation construct and wild-type sequence is 815 

based on size, i.e. absence or presence of introns), while GPT1_N-long mat was detected with 816 

primers GPT1_long mat_s and NosT_as”. 817 

 818 

Determination of Ovule-Abortion Frequencies 819 

Siliques number 10 to 12 of the main inflorescence (counted from the top) were harvested and 820 

incubated in 8 M NaOH overnight. Images of bleached and unbleached siliques were recorded 821 

with transmitting light using a Leica MZ16 F stereo microscope connected to a Leica DFC420 C 822 

camera. Aborted ovules were counted and frequencies were calculated. 823 
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Tables (601 words) 884 

 885 

Table 1.  Initial velocities of Pi or G6P import for various exchange substrates.  886 

Time-dependent uptake of [32P]-Pi or [14C]-G6P (0.2 mM) into liposomes reconstituted with total 887 

yeast membranes of cells expressing the indicated mature GPT versions (nmol mg-1 total 888 

protein). Proteoliposomes were preloaded with 10 mM G6P, Ru5P, 6PG, or Pi. Relative 889 

velocities given in brackets were compared to the counter-exchange experiment Pi/G6P or 890 

G6P/Pi, which was set to 100%. 891 

 892 

 His-matGPT1 His-matGPT2 

 G6P 9.9  (100 %) 19.3  (100 %) 

Pi versus Ru5P 5.8  (  59 %) 14.4  (  75 %) 

 6PG 0.8  (    8 %) 1.2  (    6 %) 

 Pi 10.5  (100 %) 32.6  (100 %) 

G6P versus Ru5P 12.2  (116 %) 28.3  (  87 %) 

 6PG 0.9  (    9 %) 3.1  (  10 %) 

 893 
 894 
 895 

896 
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Table 2.  Seeds and aborted ovules without and upon ectopic GPT expression. 897 

Arabidopsis thaliana ecotype Ws-2 and heterozygous gpt1-1 and gpt1-2 T-DNA lines compared 898 

to plastid compensated GPT1 gpt1-2::ProMAS:GPT2 or ::ProGPT1:GPT2 lines (T2 generation), 899 

and ER/peroxisomal compensated line ::Pro35S:GFP-GPT1_C-mat (T3 generation). 900 

Transformed progeny was initially selected on Hygromycin B. SD, standard deviation.  901 

Genotype 
Normal 

seeds 
Aborted 

ovules 

Frequency 

(%  SD) 

GPT1 GPT1 (Ws-2)  439 39   8.3 ± 4.3 

GPT1 GPT1*  755 53   6.6 

GPT1 gpt1-1 86 26 30.2 (mean) 

GPT1 gpt1-1* 507 236 32.0 

GPT1 gpt1-1::ProMAS:GPT2 (line 3) 1195 495 28.8 ± 7.2 

GPT1 gpt1-1::ProMAS:GPT2 (line 7) 1587 585 27.2 ± 8.8 

GPT1 gpt1-2 371 164 29.4 ± 6.9 

GPT1 gpt1-2* 1357 530 28.0 

GPT1 gpt1-2::ProGPT1:GPT2 (line 3) 2082 529 20.6 ± 8.9 

GPT1 gpt1-2::Pro35S:GFP-GPT1_C-mat (line 14.5) 1412 690 33.8 ± 9.8 

gpt1-2 gpt1-2::gGPT1-3.10* 1461 104   6.6 
*Data of Niewiadomski et al. (2005) for comparison; n.d., not determined.  902 

 903 

904 
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Table 3.  Transmission of the gpt1 alleles with and without ectopic GPT expression.  905 

Segregation analysis of heterozygous gpt1-1 and gpt1-2 lines upon selfing or transformation 906 

with the indicated GPT rescue constructs: GPT2 cDNA was driven either by the constitutive 907 

ProMAS (T2 generation) or the GPT1 promoter (T2 and T3 generation). ER/peroxisomal 908 

Pro35S:GFP-GPT1_C-mat was analyzed in parallel (transformed plants were selected on 909 

Hygromycin). No homozygous gpt1 plants were found. Therefore plastid-compensated GPT1 910 

gpt1-2::ProGPT1:GPT2 was reciprocally crossed with ER/peroxisomal rescue construct GPT1 911 

gpt1-2::Pro35S:GFP-GPT1_C-mat. Only one combination set seeds, indicating that GPT2 is 912 

unable to rescue GPT1 function during pollen maturation. Still no homozygous gpt1 plants were 913 

found. Thus, GPT1 gpt1-2::ProGPT1:GPT2 was super-transformed with ER/peroxisomal rescue 914 

construct ProGPT1:GPT1_N-long mat (lacking the TP region) and selected on Kanamycin. 915 

Among the progeny of individuals carrying all three T-DNA alleles, gpt1-2 transmission markedly 916 

improved, although no homozygous plants were found. Of note, this was also true for lines 917 

devoid of ProGPT1:GPT2. Values are given in percent with number (n) of plants analyzed. 918 

Genotype 
GPT1 GPT1 

+/+ 
GPT1 gpt1 

+/- 
gpt1 gpt1 

-/- 

GPT1 gpt1-1 
79.3 

(wt = 184) 
20.7 

(he = 48) 
0 

(n = 232) 

GPT1 gpt1-1::ProMAS:GPT2 (lines 3 & 7, T2) 
67.8 

(wt = 214) 
32.2 

(he = 102) 
0 

(n = 316) 

GPT1 gpt1-2 
74.8 

(wt = 95) 
25.2 

(he = 32) 
0 

(n = 127) 

GPT1 gpt1-2::ProGPT1:GPT2 (line 3, T2) 
71.0 

(wt = 115) 
29.0 

(he = 47) 
0 

(n = 162) 

GPT1 gpt1-2::Pro35S:GFP-GPT1_C-mat (T3) 
65.8 

(wt = 100) 
34.2 

(he = 51) 
0 

(n = 151) 

GPT1 gpt1-2::ProGPT1:GPT2 (♀) x  
GPT1 gpt1-2::Pro35S:GFP-GPT1_C-mat (F2)* 

80.0 
(wt = 152) 

20.0 
(he = 38) 

0 
(n = 190) 

GPT1 gpt1-2::ProGPT1:GPT2 (line 3, T3) 
::ProGPT1:GPT1_N-long mat (T2)* 

56.1 
(wt = 184) 

43.9 
(he = 144) 

0 
(n = 328) 

GPT1 gpt1-2::ProGPT1:GPT1_N-long mat (T2) 
56.5 

(wt = 48) 
43.5 

(he = 37) 
0 

(n = 85) 

*progeny of plants containing all three T-DNAs; wt, wildtype; he, heterozygous; n, number analyzed; n.d., not 919 

determined 920 

 921 
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Figure legends (2283 words) 923 

 924 

Figure 1.  GPT1 reporter fusions dually localize to plastids and the ER.  925 

A, Topology model of Arabidopsis glucose-6-phosphate/phosphate translocator (GPT) isoforms 926 

with 10 membrane domains (MD) depicted as barrels (roman numbering), connected by hinge 927 

regions (red, positive; blue, negative; grey, neutral net charge), and both N-/C-terminal ends 928 

facing the stroma (Lee et al. 2017). Relevant positions are indicated: Plastidic transit peptide 929 

(TP, green), TP processing site (upward arrow), N-terminal amino acids potentially 930 

modified/regulatory in GPT1 (arrowheads), medial OFP insertion (5MD:5MD) and C-terminal 931 

GFP fusion (N-full). ER, endoplasmic reticulum; IMS, intermembrane space. B-C, Localization of 932 

the depicted GPT-reporter fusions upon transient expression in Arabidopsis protoplasts (24-48 h 933 

post transfection). B, With free N-terminus, GPT1 targets both plastids and the ER (panels a and 934 

c, arrowheads), but GPT2 only plastids (Pla; panels b and d). C, The medial GPT1_5MD:5MD 935 

construct (wt, wildtype) was used for analyzing potential effects of single amino acid changes in 936 

the N-terminus: S27A (abolishing phosphorylation), S27D (phospho-mimic) and C65S 937 

(precluding S modification). All images show maximal projections of approximately 30 optical 938 

sections (Merge, for single channel images, see Supplemental Figure 5). Candidate fusions in 939 

green, ER marker (panel B, OFP-ER; panel C, GFP-ER) or peroxisome marker (Per; OFP-940 

PGL3_C-short) in magenta, and chlorophyll fluorescence in blue. Co-localization of green and 941 

magenta (or very close signals less than 200 nm) appear white in the Merge of all channels. 942 

Bars = 3 μm.  943 

Figure 2.  Domain swaps demonstrate that the N-terminus of GPT1 confers ER targeting.  944 

A, Topology models of the GPT medial swap constructs, with orientation of the inserted 945 

reporters: GFP facing the stroma/cytosol and OFP the intermembrane space (IMS)/lumen of the 946 

endoplasmic reticulum (ER). Membrane domains (depicted as barrels, roman numbering) of 947 

GPT1 in blue and of GPT2 in green. The upward arrows indicate transit peptide cleavage sites 948 

(plastid stroma). B, Localization of the indicated medial swap constructs in Arabidopsis 949 

protoplasts (24-48 h post transfection). When headed by GPT1 (GPT1_2MD:8MD_GPT2 or 950 

GPT1_5MD:5MD_GPT2), plastids and the ER (arrowheads) are labeled (panels a,b and e,f); 951 

when headed by GPT2 (GPT2_2MD:8MD_GPT1 or GPT2_5MD:5MD_GPT1), only plastids (Pla) 952 

are labeled (panels c,d and g,h). All images show maximal projections of approximately 30 953 

optical sections (Merge, for single channel images, see Supplemental Figure 7). Candidate 954 
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fusions in green, ER marker (G/OFP-ER) or peroxisome marker (Per; G/OFP-PGL3_C-short) in 955 

magenta, and chlorophyll fluorescence in blue. Co-localization of green and magenta (and very 956 

close signals less than 200 nm) appear white in the Merge of all channels. Bars = 3 μm. 957 

Figure 3.  GPT1 dimer formation occurs at plastids and ER substructures. 958 

A, Topology model of GPT1 with N-terminal transit peptide (green) and cleavage site (upward 959 

arrow) plus position of amino acids S27 and C65 (arrowheads). The membrane domains are 960 

depicted as barrels (roman numbering) connected by hinge regions of different net charge (red, 961 

positive; blue, negative; grey, neutral).  B, Localization of yellow BiFC signals (reconstituted split 962 

YFP, N+C halves) due to interaction of the GPT1 parts in Arabidopsis protoplasts (24-48 h post 963 

transfection). With unmasked N-terminus, GPT1 may label plastids and the ER (left panels), but 964 

with masked N-terminus only the ER (right panels). In addition to unmodified GPT1 wild-type 965 

(wt), mutant combinations S27A (non-phosphorylated), S27D (phospho-mimic) and C65S 966 

(precluding S modification) were analyzed. GPT1 dimer formation occurred at plastid rims (left 967 

panels) or ER substructures (right panels), with little impact of the S27 changes, but visible effect 968 

of C65S (hollow sphere in panel i; surrounding a peroxisome in C, arrowheads). Note that 969 

structures with BiFC signals on the right (panels f-i) are also labeled by the ER marker (most 970 

obvious in panel g).  C, Localization of the indicated split YFP combinations in co-expression 971 

with the peroxisome (Per) marker. Note that in case of C65S, the ring-like BiFC signal surrounds 972 

a peroxisome (arrowhead). All images show maximal projections of approximately 30 optical 973 

sections (Merge; for single channel images, see Supplemental Figure 8). Organelle markers 974 

(OFP-ER or OFP-PGL3_C-short) in magenta, chlorophyll fluorescence in blue. Co-localization of 975 

yellow and magenta (or very close signals less than 200 nm) appear whitish in the Merge of all 976 

channels. Bars = 3 μm.  977 

Figure 4.  GPT1 interacts with cytosolic oxidoreductases Trx
h7

 and Grx
c1

 at the ER.  978 

A-B, Localization of GPT1 upon interaction with Trx h7 or Grx c1 in Arabidopsis protoplasts (24-979 

48 h post transfection). The schemes illustrate different orientation of the candidate proteins with 980 

respect to free N- and C-terminal ends. GPT1 interacts with both oxidoreductases (green 981 

signals) at the endoplasmic reticulum (ER) and its spherical sub-structures (arrowheads), except 982 

when the N-terminus of Grx c1 is masked (B, panels c and d). Note that these substructures 983 

differ from those labelled in Figure 3B. Merge of BiFC signals (green) with ER marker (OFP-ER) 984 

or peroxisome marker (Per, OFP-PGL3_C-short) in magenta, and chlorophyll fluorescence in 985 
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blue. C-D, Localization of split YFP reconstitution (BiFC, yellow signals) in heterologous tobacco 986 

protoplasts (24-48 h post transfection), testing a potential effect of the other oxidoreductase (co-987 

expressed as OFP fusion, magenta). Note that similar ER substructures are labelled (Merge, 988 

single sections). All other images show maximal projections of approximately 30 optical sections. 989 

Chlorophyll fluorescence in blue. Co-localization and very close signals (less than 200 nm) 990 

appear white in the Merge of all channels. Bars = 3 μm. 991 

Figure 5. Interaction versus co-localization of GPT1 with Pex factors at the ER.  992 

A, Localization of the indicated split YFP combinations (yellow BiFC signals) in Arabidopsis 993 

protoplasts (24-48 h post transfection). Pex3, Pex16, and Pex19 are important for sorting a class 994 

of peroxisomal membrane proteins via the ER to peroxisomes. Per; soluble peroxisome marker 995 

(OFP-PGL3_C-short) in magenta. B, Co-expression of GFP-GPT1 and the corresponding Pex-996 

OFP fusions indicates that interaction with the Pex factors is transient (isoforms Pex3-2 = 997 

At1g48635 and Pex19-2 = At5g17550 gave comparable results, not shown). Note that Pex16 998 

co-expression has a vesiculating effect on GPT1 at the ER (Merge; for single channel images, 999 

see Supplemental Figure 10C). A-B, Maximal projections of approximately 30 optical sections. 1000 

C, Co-expression of the indicated GFP-GPT1 fusions with Pex16-OFP in Arabidopsis 1001 

protoplasts (72 h post transfection). The C_mat version lacks the entire N-terminal part 1002 

(including C65), whereas C_long mat version lacks only the transit peptide (Supplemental Figure 1003 

1). Besides the 35S promoter (Pro35S), these GFP fusions were also expressed from the GPT1 1004 

promoter (ProGPT1), with similar results. Images show single optical sections (Merge; for single 1005 

channel images, see Supplemental Figure 11). GFP fusions in green, Pex16-OFP in magenta 1006 

and chlorophyll fluorescence in blue. Co-localization of green and magenta (or very close signals 1007 

less than 200 nm) appear white in the Merge of all channels. Bars = 3 µm.  1008 

Figure 6.  Transport activity and localization of mature GPT1 in yeast and plant cells.  1009 

A, Time-dependent uptake of radioactively labeled [
14

C]-G6P (0.2 mM) into reconstituted 1010 

proteoliposomes preloaded with 10 mM Pi (closed symbols) or without exchange substrate 1011 

(open symbols) prepared from yeast cells harboring the empty vector (pYES) or the indicated 1012 

GPT constructs. Note that transport rates of GPT1 are not influenced by the N-terminal tag 1013 

(compare His-matGPT1 to GFP-matGPT1). In all graphs, the arithmetic mean of 3 technical 1014 

replicates (±SD) was plotted against time (see Table 1 for substrate specificities). B, Immunoblot 1015 

analysis upon expression in yeast and plant cells. Left, SDS gel of total yeast membrane 1016 
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fractions, stained with Coomassie brilliant blue (CBB) or blot detection by anti-His (-His) or anti-1017 

GFP (-GFP) antibodies: 1, empty vector; 2, His-matGPT1 (grey open triangle); 3, GFP-1018 

matGPT1 (green closed and open triangles). Right, blotted pellet fractions of leaf extracts 1019 

(without detergent) prepared from Arabidopsis GPT1 gpt1-2::Pro35S:GFP-GPT1_C-mat plants 1020 

(T2 progeny without (w/o) or with the transgene) developed with anti-GFP (-GFP) antibodies. 1021 

The Ponceau S-stained blot serves as loading reference. Note that GFP-GPT1 (closed green 1022 

and open triangles) extracted from yeast or plant membranes migrate similarly. Bands of 1023 

molecular masses are indicated (kDa). C, Localization of GFP-GPT1_C-mat in heterozygous 1024 

GPT1 gpt1-2 plants. Top, Green net-like structures (ER) in leaf epidermal cells (left), and 1025 

spherical structures in seedlings (right); bars = 10 µm. Bottom, Pattern upon protoplast 1026 

preparation and transfection with the peroxisome marker (Per; OFP-PGL3_C-short, magenta) in 1027 

membranes surrounding peroxisomes (arrowheads). Chlorophyll fluorescence in blue. All 1028 

images show single optical sections. Co-localization (and very close signals less than 200 nm) 1029 

appear white in the Merge of all channels (bright field images shown as reference). Bars = 3 µm. 1030 

Figure 7.  GPT1 detection at the ER is increased by stress treatment and in reproductive 1031 

Arabidopsis tissues. 1032 

A, Arabidopsis protoplasts were co-transfected with the indicated GPT-GFP fusions and the 1033 

peroxisome marker (Per, OFP-PGL3_C-short), samples were split in half, one was treated with 1034 

0.2 µM flagellin peptide (+flg22), and the other mock-incubated for 24 h. Note that flg22 1035 

treatment did not change GPT localization to plastids, but enhanced the ER fraction of GPT1-1036 

GFP (arrowheads). All images show maximal projections of approximately 30 single sections 1037 

(Merge; for single channel images, see Supplemental Figure S13). GFP fusions in green, 1038 

peroxisome marker in magenta, and chlorophyll fluorescence in blue. Co-localization of magenta 1039 

and green or very close signals (less than 200 nm) appear white in the Merge of all channels. 1040 

Bars = 3 µm. B-C, Protein extracts (without detergent) of flower, leaf, and (green) silique tissue 1041 

were prepared from wild-type plants (Col, Ws) and the indicated homozygous mutant lines. 1042 

Supernatant fractions were separated on 10% SDS gels and blotted to nitrocellulose. After 1043 

Ponceau-S staining, the blots were developed with GPT1-specific antibodies (-GPT1) raised 1044 

against the N-terminus with His-tag (Supplemental Figure S14). Arrowheads mark double bands 1045 

of full-length GPT1 (predicted size: 42.3 kDa) and mature GPT1 (ca. 37-39 kDa, depending on 1046 

TP processing). Red arrowheads point to bands suspected to represent a largely ‘off’ situation 1047 

and black arrowheads the corresponding ‘on’ situation at either location (as deduced from 1048 

comparison of leaf to silique tissue), likely due to protein modification. C, Immunoblot of 1049 
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seedlings harvested from germination plates (1% sucrose) after 1- or 4-week (w) growth in short-1050 

day regime. Included mutant alleles: gpt2-2 (GK-950D09, T-DNA intron 2/exon 3), gpt2-3 (GK-1051 

780F12, T-DNA in exon 4), tpt-5 (FLAG_124C02, T-DNA in exon 9), and xpt-2 (SAIL_378C01, 1052 

single exon; Hilgers et al., 2018). Note that the band pattern differs in OPPP-relevant gpt2 and 1053 

xpt transporter mutants compared to Col wildtype and tpt-5 (Ws wildtype corresponds to tpt-5, 1054 

grey dashed line). Ponceau S-stained blots (protein) are shown as loading reference; RbcL, 1055 

large subunit of RubisCO. Molecular masses are indicated in kDa (PageRuler Prestained Protein 1056 

Ladder, Fermentas). 1057 

  1058 

Figure 8.  Phylogenetic analysis of GPT sequences from different plant clades. 1059 

Selected GPT isoforms of the Brassicaceae, Fabaceae, Solanaceae and Poaceae in 1060 

comparison to the moss Physcomitrella patens. The phosphoenolpyruvate/phosphate 1061 

translocator (PPT) accessions serve as outgroup (red). Glucose-6-phosphate/phosphate 1062 

translocators (GPT) of Physcomitrella patens (Pp, violet) form the base of the phylogenetic tree. 1063 

GPT2 accessions (green) of monocotyledonous plants split off early (monocots, dark green), 1064 

whereas the GPT1 accessions (blue) split much later from the GPT2 accessions (light green) in 1065 

the dicotyledonous branch (dicots). For sequence identifications see Table S3. Abbreviations: Al: 1066 

Arabidopsis lyrata subsp. lyrata; At: Arabidopsis thaliana; Bn: Brassica napus; Gm: Glycine max; 1067 

La: Lupinus angustifolius; Nt: Nicotiana tabacum; Os: Oryza sativa; St: Solanum tuberosum; Zm: 1068 

Zea mays. Evolutionary history was inferred by using the Maximum Likelihood method based on 1069 

the JTT matrix-based model (Jones et al., 1992). The tree with highest log likelihood (-5414.98) 1070 

is shown. Initial tree(s) for the heuristic search were obtained automatically by applying 1071 

Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT 1072 

model, and then selecting the topology with superior log likelihood value. The tree is drawn to 1073 

scale, with branch lengths measured in the number of substitutions per site. The analysis 1074 

involved 34 amino acid sequences (Supplemental Table 3). All positions containing gaps and 1075 

missing data were eliminated. There were a total of 252 positions in the final dataset. 1076 

Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016). 1077 

 1078 

Figure 9.  Model of dual GPT1 targeting for OPPP function in plastids and peroxisomes.  1079 

A, GPT1 precursors in the cytosol are covered with chaperons (grey spheres) and co-chaperons 1080 

Trx
h7

 and Grx
c1

 as putative redox sensors/transmitters (orange = reduced state, -SH; yellow = 1081 

oxidized state, -S-S-). The hydrophobic membrane domains (barrels) of GPT1 are labeled with 1082 
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roman numerals. Hinge regions of negative net charge (blue) may facilitate ER insertion. Left, In 1083 

largely reduced state of the cytosolic glutathione pool (GSH), the N-terminus of GPT1 (green) 1084 

enters the TOC/TIC complex (translocon of the outer/inner chloroplast envelope), the membrane 1085 

domains (MDs) integrate into the inner envelope membrane (IEM), and the transit peptide is 1086 

processed (open arrow)/degraded in the stroma (dotted line). Local oxidation (flash sign) of the 1087 

cytosolic glutathion pool (GSSG) likely retains GPT1 in the cytosol by a functional change in the 1088 

bound redox transmitters (Grx
c1

 and Trx
h7

). Whether this involves 
65

C in the GPT1 N-terminus is 1089 

unclear (question mark). ER insertion involves Sec61 and sorting to peroxisomal membranes 1090 

specific peroxins (Pex). Brefeldin A (BFA) blocked ER import of GPT1. B, Scheme of sugar 1091 

metabolism in a physiological sink state. Sucrose (suc) is cleaved by cytosolic invertase yielding 1092 

two hexoses (hex) that are activated by hexokinase (HXK), consuming ATP provided by 1093 

glycolysis and mitochondrial respiration (not shown). By contrast to GPT2, GPT1 imports G6P 1094 

into both plastids (in exchange for Pi released by GPT2-driven starch synthesis) and 1095 

peroxisomes (in exchange for Ru5P that may also enter plastids via GPT1, dashed red arrows), 1096 

yielding 2 moles of NADPH in the oxidative part of the OPPP. NADP inside peroxisomes is 1097 

formed by NAD kinase (NADK3) that relies on ATP and NAD imported into peroxisomes via 1098 

PNC (At3g05290; At5g27520) and PXN (At2g39970). The cytosolic OPPP reactions are usually 1099 

linked via RPE and XPT to the complete pathway in the plastid stroma. Abbreviations: G6PD, 1100 

Glucose-6-phosphate dehydrogenase; PGL, 6-Phosphogluconolactonase; PGD, 6-1101 

phosphogluconate dehydrogenase; RPE/I, ribulose-phosphate epimerase/isomerase. 1102 
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GPT2_N-full-GFP

Figure 1. GPT1 reporter fusions dually localize to plastids and the ER.
A, Topology model of Arabidopsis glucose-6-phosphate/phosphate translocator (GPT) isoforms with 10 membrane domains
(MD) depicted as barrels (roman numbering), connected by hinge regions (red, positive; blue, negative; grey, neutral net
charge), and both N-/C-terminal ends facing the stroma (Lee et al. 2017). Relevant positions are indicated: Plastidic transit
peptide (TP, green), TP processing site (upward arrow), N-terminal amino acids potentially modified/regulatory in GPT1
(arrowheads), medial OFP insertion (5MD:5MD) and C-terminal GFP fusion (N-full). ER, endoplasmic reticulum; IMS,
intermembrane space. B-C, Localization of the depicted GPT-reporter fusions upon transient expression in Arabidopsis
protoplasts (24-48 h post transfection). B, With free N-terminus, GPT1 targets both plastids and the ER (panels a and c,
arrowheads), but GPT2 only plastids (Pla; panels b and d). C, The medial GPT1_5MD:5MD construct (wt, wildtype) was
used for analyzing potential effects of single amino acid changes in the N-terminus: S27A (abolishing phosphorylation), S27D
(phospho-mimic) and C65S (precluding S modification). All images show maximal projections of approximately 30 optical
sections (Merge, for single channel images, see Supplemental Figure 5). Candidate fusions in green, ER marker (panel B,
OFP-ER; panel C, GFP-ER) or peroxisome marker (Per; OFP-PGL3_C-short) in magenta, and chlorophyll fluorescence in
blue. Co-localization of green and magenta (or very close signals less than 200 nm) appear white in the Merge of all
channels. Bars = 3 μm.
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Figure 2. Domain swaps demonstrate that the N-terminus of GPT1 confers ER targeting.
A, Topology models of the GPT medial swap constructs, with orientation of the inserted reporters: GFP facing the
stroma/cytosol and OFP the intermembrane space (IMS)/lumen of the endoplasmic reticulum (ER). Membrane
domains (depicted as barrels, roman numbering) of GPT1 in blue and of GPT2 in green. The upward arrows
indicate transit peptide cleavage sites (plastid stroma). B, Localization of the indicated medial swap constructs in
Arabidopsis protoplasts (24-48 h post transfection). When headed by GPT1 (GPT1_2MD:8MD_GPT2 or
GPT1_5MD:5MD_GPT2), plastids and the ER (arrowheads) are labeled (panels a,b and e,f); when headed by
GPT2 (GPT2_2MD:8MD_GPT1 or GPT2_5MD:5MD_GPT1), only plastids (Pla) are labeled (panels c,d and g,h).
All images show maximal projections of approximately 30 optical sections (Merge, for single channel images, see
Supplemental Figure 7). Candidate fusions in green, ER marker (G/OFP-ER) or peroxisome marker (Per; G/OFP-
PGL3_C-short) in magenta, and chlorophyll fluorescence in blue. Co-localization of green and magenta (and very
close signals less than 200 nm) appear white in the Merge of all channels. Bars = 3 μm.
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Figure 3. GPT1 dimer formation occurs at
plastids and ER substructures.
A, Topology model of GPT1 with N-terminal
transit peptide (green) and cleavage site
(upward arrow) plus position of amino acids
S27 and C65 (arrowheads). The membrane
domains are depicted as barrels (roman
numbering) connected by hinge regions of
different net charge (red, positive; blue,
negative; grey, neutral). B, Localization of
yellow BiFC signals (reconstituted split YFP,
N+C halves) due to interaction of the GPT1
parts in Arabidopsis protoplasts (24-48 h post
transfection). With unmasked N-terminus,
GPT1 may label plastids and the ER (left
panels), but with masked N-terminus only the
ER (right panels). In addition to unmodified
GPT1 wild-type (wt), mutant combinations
S27A (non-phosphorylated), S27D (phospho-
mimic) and C65S (precluding S modification)
were analyzed. GPT1 dimer formation
occurred at plastid rims (left panels) or ER
substructures (right panels), with little impact
of the S27 changes, but visible effect of C65S
(hollow sphere in panel i; surrounding a
peroxisome in C, arrowheads). Note that
structures with BiFC signals on the right
(panels f-i) are also labeled by the ER marker
(most obvious in panel g). C, Localization of
the indicated split YFP combinations in co-
expression with the peroxisome (Per) marker.
Note that in case of C65S, the ring-like BiFC
signal surrounds a peroxisome (arrowhead).
All images show maximal projections of
approximately 30 optical sections (Merge; for
single channel images, see Supplemental
Figure 8). Organelle markers (OFP-ER or
OFP-PGL3_C-short) in magenta chlorophyll
fluorescence in blue. Co-localization of yellow
and magenta (or very close signals less than
200 nm) appear whitish in the Merge of all
channels. Bars = 3 μm.
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Figure 4. GPT1 interacts with cytosolic oxidoreductases Trxh7 and Grxc1 at the ER.
A-B, Localization of GPT1 upon interaction with Trx h7 or Grx c1 in Arabidopsis protoplasts (24-48 h post transfection).
The schemes illustrate different orientation of the candidate proteins with respect to free N- and C-terminal ends. GPT1
interacts with both oxidoreductases (green signals) at the endoplasmic reticulum (ER) and its spherical sub-structures
(arrowheads), except when the N-terminus of Grx c1 is masked (B, panels c and d). Note that these substructures differ
from those labelled in Figure 3B. Merge of BiFC signals (green) with ER marker (OFP-ER) or peroxisome marker (Per,
OFP-PGL3_C-short) in magenta, and chlorophyll fluorescence in blue. C-D, Localization of split YFP reconstitution (BiFC,
yellow signals) in heterologous tobacco protoplasts (24-48 h post transfection), testing a potential effect of the other
oxidoreductase (co-expressed as OFP fusion, magenta). Note that similar ER substructures are labelled (Merge, single
sections). All other images show maximal projections of approximately 30 optical sections. Chlorophyll fluorescence in
blue. Co-localization and very close signals (less than 200 nm) appear white in the Merge of all channels. Bars = 3 μm.
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Figure 5. Interaction versus co-localization of GPT1 with Pex factors at the ER.
A, Localization of the indicated split YFP combinations (yellow BiFC signals) in Arabidopsis protoplasts (24-48 h
post transfection). Pex3, Pex16, and Pex19 are important for sorting a class of peroxisomal membrane proteins via
the ER to peroxisomes. Per; soluble peroxisome marker (OFP-PGL3_C-short) in magenta. B, Co-expression of
GFP-GPT1 and the corresponding Pex-OFP fusions indicates that interaction with the Pex factors is transient
(isoforms Pex3-2 = At1g48635 and Pex19-2 = At5g17550 gave comparable results, not shown). Note that Pex16 co-
expression has a vesiculating effect on GPT1 at the ER (Merge; for single channel images, see Supplemental Figure
10C). A-B, Maximal projections of approximately 30 optical sections. C, Co-expression of the indicated GFP-GPT1
fusions with Pex16-OFP in Arabidopsis protoplasts (72 h post transfection). The C_mat version lacks the entire N-
terminal part (including C65), whereas C_long mat version lacks only the transit peptide (Supplemental Figure 1).
Besides the 35S promoter (Pro35S), these GFP fusions were also expressed from the GPT1 promoter (ProGPT1),
with similar results. Images show single optical sections (Merge; for single channel images, see Supplemental
Figure 11). GFP fusions in green, Pex16-OFP in magenta and chlorophyll fluorescence in blue. Co-localization of
green and magenta (or very close signals less than 200 nm) appear white in the Merge of all channels. Bars = 3 µm.
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Figure 6. Transport activity and localization of mature GPT1 in yeast and plant cells.
A, Time-dependent uptake of radioactively labeled [14C]-G6P (0.2 mM) into reconstituted proteoliposomes preloaded with 10 mM Pi
(closed symbols) or without exchange substrate (open symbols) prepared from yeast cells harboring the empty vector (pYES) or the
indicated GPT constructs. Note that transport rates of GPT1 are not influenced by the N-terminal tag (compare His-matGPT1 to
GFP-matGPT1). In all graphs, the arithmetic mean of 3 technical replicates (±SD) was plotted against time (see Table 1 for
substrate specificities). B, Immunoblot analysis upon expression in yeast and plant cells. Left, SDS gel of total yeast membrane
fractions, stained with Coomassie brilliant blue (CBB) or blot detection by anti-His (-His) or anti-GFP (-GFP) antibodies: 1, empty
vector; 2, His-matGPT1 (grey open triangle); 3, GFP-matGPT1 (green closed and open triangles). Right, blotted pellet fractions of
leaf extracts (without detergent) prepared from Arabidopsis GPT1 gpt1-2::Pro35S:GFP-GPT1_C-mat plants (T2 progeny without
(w/o) or with the transgene) developed with anti-GFP (-GFP) antibodies. The Ponceau S-stained blot serves as loading reference.
Note that GFP-GPT1 (closed green and open triangles) extracted from yeast or plant membranes migrate similarly. Bands of
molecular masses are indicated (kDa). C, Localization of GFP-GPT1_C-mat in heterozygous GPT1 gpt1-2 plants. Top, Green net-
like structures (ER) in leaf epidermal cells (left), and spherical structures in seedlings (right); bars = 10 µm. Bottom, Pattern upon
protoplast preparation and transfection with the peroxisome marker (Per; OFP-PGL3_C-short, magenta) in membranes surrounding
peroxisomes (arrowheads). Chlorophyll fluorescence in blue. All images show single optical sections. Co-localization (and very
close signals less than 200 nm) appear white in the Merge of all channels (bright field images shown as reference). Bars = 3 µm.
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Figure 7. GPT1 detection at the ER is increased by stress treatment and in reproductive Arabidopsis tissues.
A, Arabidopsis protoplasts were co-transfected with the indicated GPT-GFP fusions and the peroxisome marker (Per, OFP-
PGL3_C-short), samples were split in half, one was treated with 0.2 µM flagellin peptide (+flg22), and the other mock-
incubated for 24 h. Note that flg22 treatment did not change GPT localization to plastids, but enhanced the ER fraction of
GPT1-GFP (arrowheads). All images show maximal projections of approximately 30 single sections (Merge; for single
channel images, see Supplemental Figure S13). GFP fusions in green, peroxisome marker in magenta, and chlorophyll
fluorescence in blue. Co-localization of magenta and green or very close signals (less than 200 nm) appear white in the
Merge of all channels. Bars = 3 µm. B-C, Protein extracts (without detergent) of flower, leaf, and (green) silique tissue were
prepared from wild-type plants (Col, Ws) and the indicated homozygous mutant lines. Supernatant fractions were separated
on 10% SDS gels and blotted to nitrocellulose. After Ponceau-S staining, the blots were developed with GPT1-specific
antibodies (-GPT1) raised against the N-terminus with His-tag (Supplemental Figure S14). Arrowheads mark double bands
of full-length GPT1 (predicted size: 42.3 kDa) and mature GPT1 (ca. 37-39 kDa, depending on TP processing). Red
arrowheads point to bands suspected to represent a largely ‘off’ situation and black arrowheads the corresponding ‘on’
situation at either location (as deduced from comparison of leaf to silique tissue), likely due to protein modification. C,
Immunoblot of seedlings harvested from germination plates (1% sucrose) after 1- or 4-week (w) growth in short-day regime.
Included mutant alleles: gpt2-2 (GK-950D09, T-DNA intron 2/exon 3), gpt2-3 (GK-780F12, T-DNA in exon 4), tpt-5
(FLAG_124C02, T-DNA in exon 9), and xpt-2 (SAIL_378C01, single exon; Hilgers et al., 2018). Note that the band pattern
differs in OPPP-relevant gpt2 and xpt transporter mutants compared to Col wildtype and tpt-5 (Ws wildtype corresponds to
tpt-5, grey dashed line). Ponceau S-stained blots (protein) are shown as loading reference; RbcL, large subunit of RubisCO.
Molecular masses are indicated in kDa (PageRuler Prestained Protein Ladder, Fermentas).
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Figure 8. Phylogenetic analysis of GPT sequences from different plant clades.
Selected GPT isoforms of the Brassicaceae, Fabaceae, Solanaceae and Poaceae in comparison to the moss
Physcomitrella patens. The phosphoenolpyruvate/phosphate translocator (PPT) accessions serve as outgroup
(red). Glucose-6-phosphate/phosphate translocators (GPT) of Physcomitrella patens (Pp, violet) form the base of
the phylogenetic tree. GPT2 accessions (green) of monocotyledonous plants split off early (monocots, dark green),
whereas the GPT1 accessions (blue) split much later from the GPT2 accessions (light green) in the dicotyledonous
branch (dicots, right). For sequence identifications see Table S3. Abbreviations: Al: Arabidopsis lyrata subsp.
lyrata; At: Arabidopsis thaliana; Bn: Brassica napus; Gm: Glycine max; La: Lupinus angustifolius; Nt: Nicotiana
tabacum; Os: Oryza sativa; St: Solanum tuberosum; Zm: Zea mays. Evolutionary history was inferred by using the
Maximum Likelihood method based on the JTT matrix-based model (Jones et al., 1992). The tree with highest log
likelihood (-5414.98) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then
selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured
in the number of substitutions per site. The analysis involved 34 amino acid sequences (Supplemental Table 3). All
positions containing gaps and missing data were eliminated. There were a total of 252 positions in the final
dataset. Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016).
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A

B

Figure 9. Model of dual GPT1 targeting for OPPP function in plastids and peroxisomes.
A, GPT1 precursors in the cytosol are covered with chaperons (grey spheres) and co-chaperons Trxh7 and Grxc1 as putative redox sensors/transmitters (orange = reduced
state, -SH; yellow = oxidized state, -S-S-). The hydrophobic membrane domains (barrels) of GPT1 are labeled with roman numerals. Hinge regions of negative net charge
(blue) may facilitate ER insertion. Left, In largely reduced state of the cytosolic glutathione pool (GSH), the N-terminus of GPT1 (green) enters the TOC/TIC complex
(translocon of the outer/inner chloroplast envelope), the membrane domains (MDs) integrate into the inner envelope membrane (IEM), and the transit peptide is processed
(open arrow)/degraded in the stroma (dotted line). Local oxidation (flash sign) of the cytosolic glutathion pool (GSSG) likely retains GPT1 in the cytosol by a functional
change in the bound redox transmitters (Grxc1 and Trxh7). Whether this involves 65C in the GPT1 N-terminus is unclear (question mark). ER insertion involves Sec61 and
sorting to peroxisomal membranes specific peroxins (Pex). Brefeldin A (BFA) blocked ER import of GPT1. B, Scheme of sugar metabolism in a physiological sink state.
Sucrose (suc) is cleaved by cytosolic invertase yielding two hexoses (hex) that are activated by hexokinase (HXK), consuming ATP provided by glycolysis and
mitochondrial respiration (not shown). By contrast to GPT2, GPT1 imports G6P into both plastids (in exchange for Pi released by GPT2-driven starch synthesis) and
peroxisomes (in exchange for Ru5P that may also enter plastids via GPT1, dashed red arrows), yielding 2 moles of NADPH in the oxidative part of the OPPP. NADP inside
peroxisomes is formed by NAD kinase (NADK3) that relies on ATP and NAD imported into peroxisomes via PNC (At3g05290; At5g27520) and PXN (At2g39970). The
cytosolic OPPP reactions are usually linked via RPE and XPT to the complete pathway in the plastid stroma. Abbreviations: G6PD, glucose-6-phosphate dehydrogenase;
PGL, 6-phosphogluconolactonase; PGD, 6-phosphogluconate dehydrogenase; RPE, ribulosephosphate-3-epimerase; RPI, ribose-5-phosphate isomerase.
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