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Abstract 

Background 

Precision medicine approaches require genotype-phenotype associations that have translational 

utility and hence can impact disease management and outcomes. To date, approximately one-

quarter of patients with pulmonary arterial hypertension harbour rare mutations in disease-

causing genes. We hypothesised that integrating deep phenotyping data with whole-genome 

sequencing data will reveal additional disease variants that are extremely rare and/or have a 

unique phenotypic signature. 

Methods  

We analysed whole-genome sequencing data from 13,037 participants enrolled in the NIHR 

Bioresource - Rare Diseases (NIHRBR-RD) study, of which 1148 were recruited to the PAH 

domain. In order to test for genetic associations between genes and selected phenotypes of 

pulmonary hypertension (PH), we used the Bayesian, rare-variant association method BeviMed. 

We defined the groups for comparison by assigning labels (‘tags’) inferred from the current 

diagnostic classification of PAH, stratification by age at diagnosis and transfer coefficient of 

carbon monoxide (KCO).  

Results 

Protein truncating variants (PTV) in KDR were strongly associated with lower KCO tertile 

(posterior probability (PP)=0.985) and higher age tertile group (PP=0.889). None of the patients 

harbouring PTV in KDR (n=4) had significant parenchymal lung changes that could explain the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.871210doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.871210
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

reduced KCO. KCO stratification also highlighted an association between Isocitrate 

Dehydrogenase 3 Gamma (IDH3G) and moderately reduced KCO in patients with pulmonary 

hypertension (PP=0.787). The US PAH Biobank was used to independently assess these findings 

and identified four additional PAH patients with PTV in KDR and two IDH3G. We also confirmed 

associations between previously established genes and PAH.  

Conclusions  

PTVs in KDR, the gene encoding vascular endothelial growth factor receptor 2 (VEGFR2), are 

significantly associated with two specific phenotypes of PAH, reduced KCO and later disease 

onset, deepening our understanding of the role of VEGF signalling in the pathogenesis of PAH. 

We also report IDH3G as a new PAH risk gene. In addition, we demonstrate that the use of deep 

clinical phenotyping advances the identification of novel causative rare variants. 
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Introduction 

Pulmonary arterial hypertension is a rare condition characterised by pulmonary vascular 

narrowing and obliteration, causing elevation of pulmonary vascular resistance and ultimately, 

right ventricular failure. Multiple concepts have been proposed to explain the mechanisms 

leading to pulmonary vessel remodelling1. More recently, hallmarks of cancer, such as aberrant 

angiogenesis2, metabolic reprogramming3 and resistance to apoptosis4, have been proposed. A 

breakthrough in our understanding of PAH pathobiology was the discovery of heterozygous 

germline mutations in the gene encoding bone morphogenetic protein type 2 receptor 

(BMPR2)5,6. It is now established that BMPR2 mutations are responsible for over 70% of familial 

cases of PAH (HPAH) and 15-20% of idiopathic cases of PAH (IPAH). Interestingly, the 

penetrance of BMPR2 mutations is incomplete, so only a fraction of carriers develop the 

disease7. A smaller proportion (up to 10%) of PAH is caused by mutations in activin-like kinase 

1 (ACVRL1)8, endoglin (ENG)9, SMAD family member 9 (SMAD9)10, caveolin-1 (CAV1), involved 

in colocalization of BMP receptors11, and the potassium channel, KCNK3, responsible for 

membrane potential and vascular tone12. Using burden tests, we have recently identified rare 

pathogenic variants in growth differentiation factor 2 (GDF2), which encodes BMP9, a major 

ligand for BMPR2, as well as in ATPase 13A3 (ATP13A3), aquaporin 1 (AQP1) and SRY-box 17 

(SOX17), and reported a list of additional putative genes potentially contributing to the 

pathobiology of PAH13. Together, these, and previous findings explain approximately 25% of 

cases with idiopathic/hereditary pulmonary arterial hypertension (I/HPAH). To further decipher 

the molecular genetic network of PAH in the remaining 75% of cases, we increased the cohort 

size and deployed a Bayesian framework incorporating refined phenotype data.  
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Methods 

Study design, ethics, and subject recruitment 

The National Institute for Health Research BioResource - Rare Diseases study (NIHRBR-RD), the 

Rare Disease pilot for Genomics England Ltd. 100,000 Genomes Project, was established to 

identify genetic causes, improve rates of molecular diagnosis and develop new treatments for 

rare diseases through whole-genome sequencing and deep phenotyping14. Of the 18 domains, 

15 were defined either as a single rare disease or a group of rare disorders (Table S1). The PAH 

domain comprised 1148 subjects including individuals diagnosed with either idiopathic or 

heritable PAH, pulmonary veno-occlusive disease (PVOD) or pulmonary capillary 

haemangiomatosis (PCH) and a small number of healthy relatives. Adult and paediatric onset 

cases were eligible, as well as incident and prevalent cases. Recruitment was carried out across 

the nine PAH specialist centres in the UK and retrospectively by international collaborators at 

the University of Paris (France), University of Giessen and Marburg (Germany), and hospitals in 

Graz (Austria), Pavia (Italy) and Amsterdam (The Netherlands). Patients recruited to the NIHRBR-

RD study provided written, informed consent for genetic analysis and clinical data capture (REC 

REF: 13/EE/0325); patients recruited by European collaborators consented to genetic testing 

and clinical data collection locally. 

Patients with rare diseases recruited to domains other than PAH were used as non-PAH controls 

in the genetic analysis (Table 1).  

For validation, we used the US PAH Biobank cohort comprising exome sequencing data from 

2572 subjects diagnosed with group 1 PAH15 and a biobank of 440 PAH patients established at 

Columbia University Medical Center composed of 29 FPAH, 195 IPAH and 216 APAH 

individuals16. 
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Phenotyping of patients 

Clinical phenotyping and case-control cohort using phenotypic ‘tags’ 

Pseudonymised results of routinely performed clinical tests reported in either clinical case notes 

or electronic medical records were stored in the OpenClinica data capture system. Twenty-one 

electronic Clinical Case Report Forms (eCRFs) distributed across seven events (diagnostic data, 

continuous data, follow-up data, epidemiology questionnaire, suspension information, data on 

relatives and unrelated healthy controls) were constructed to accommodate routinely available 

clinical information (Table S2). All cases were diagnosed between January 2002 to December 

2017, and the diagnostic classification was made according to international guidelines using a 

multidisciplinary assessment that included echocardiography, comprehensive blood testing, 

pulmonary function testing, overnight oximetry, isotope perfusion scanning, high-resolution 

computed tomography, and right heart catheterisation. To aid data analysis and improve data 

quality, a number of quality assurance procedures were introduced (see Supplemental Material). 

Diagnosis in all patients was verified based on haemodynamic criteria, reported comorbidities 

(history of pulmonary embolism, chronic obstructive pulmonary disease, interstitial lung disease 

(ILD), left heart disease, connective tissue disease, structural heart abnormalities, anorexigen 

use) and results of pulmonary function tests, heart and lung imaging and clinical blood tests 

(autoantibody screen). Cases in which the diagnosis was questionable were reported back to 

recruiting centres for verification. Appropriate diagnostic and phenotypic tags were assigned to 

all recruited patients to be used in the subsequent case-control analysis (Figure S1). The full set 

of tags, with corresponding numbers of cases, controls and excluded relatives, can be found in 

Table 1. 
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Analysis of computerised tomography scans 

Diagnostic chest computerised tomography (CT) scans were performed and reported in 613 

study participants. The analysis of these scans was done in PAH centres and subsequently 

transcribed to study eCRFs. Of 613 scans, 294 were available for repeated analysis. The scans 

were anonymised and transferred to Department of Infection, Immunity and Cardiovascular 

Disease, University of Sheffield, Sheffield, the UK where they were reviewed by two independent 

cardiothoracic radiologists with expertise in pulmonary hypertension (AS and SR), who were 

blinded to the underlying diagnosis, mutation and smoking status. For consistency and 

reproducibility, all measurements were reported on a customised proforma (Table S3). 

CT scans were obtained between 2002 and 2018 (n=269), CT pulmonary angiogram (CTPA, 

n=241), high resolution computed tomography (HRCT no CTPA, n=28). Slice thickness was less 

than 5mm for all studies, typically ≤1mm. Images were analysed on open source software Horos 

(Annapolis, MD USA). Cardiac and vascular measurements were taken by one observer (MC) 

and reviewed by the Consultant Radiologist (AS). Thoracic Radiological features were scored 

semi-quantitatively by two independent Cardiothoracic Radiologist observers each with 9 years 

experience in pulmonary hypertension imaging (AS, SR) with a very good interobserver 

agreement (see Supplement, Table S11) 

Whole-genome sequencing, short read alignment and variant 

calling 

Samples were received as either DNA extracted from whole blood or as whole blood EDTA 

samples that were extracted at a central DNA extraction and QC laboratory in Cambridge (UK). 
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They were subsequently tested for adequate DNA concentration, DNA degradation and purity. 

Next-generation paired-end whole-genome sequencing, using three read lengths 100bp (377 

samples), 125bp (3,154 samples) and 150bp (9,656 samples), was performed on cases and 

controls using Illumina HiSeq2500 and HiSeq X (Illumina Inc, San Diego, USA). 

Reads were aligned against the Genome Reference Consortium human genome build 37 

(GRCh37, https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/) using the Illumina 

Isaac Aligner version SAAC00776.15.01.2717 and variants were called using the Illumina Starling 

software version 2.1.4.2 

(https://support.illumina.com/help/BS_App_TS_Amplicon_OLH_15055858/Content/Source/Info

rmatics/Apps/IsaacVariantCaller_appENR.htm). The variants were then left-aligned, normalized 

with bcftools and loaded into our Hbase database to produce multi-sample variant calls to 

undertake the genetic association studies14. 

Genetic association between rare variants and selected 

diagnostic and phenotypic tags 

In order to identify novel genetic associations with subsets of PAH patients defined by selected 

diagnostic and phenotype features, we deployed the approach outlined in Figure 1A. In brief, 

phenotype and diagnostic tags were derived from the collected phenotype data (Figure S1). 

Filtered variants combined with the defined tags were used as input for the Bayesian-based 

algorithm BeviMed18, which calculates a posterior probability of genetic association by model 

comparison for each tag. 

This Bayesian inference procedure is based on the comparison of baseline and association 

models (dominant and recessive). Considering that distinct groups of patients who share a 

particular characteristic feature may also share a similar genetic aetiology19, we used the current 
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diagnostic classification of pulmonary arterial hypertension and stratification of continuous 

variables such as age at diagnosis or KCO (% predicted) to define a set of phenotypic tags as 

described above (Table 1). 

The case-control analysis was performed with subjects that had assigned a relevant tag as 

cases, while both cases without the specific tag or missing data were excluded from the analysis 

(Figure 1C). The individuals from the non-PAH domains served as controls14. 

Variants were extracted from each gene using the rules described in detail in the NIHRBR-RD 

manuscript14 including a PMAFx (probability that the minor allele count is at least the observed 

minor allele count, given that MAF=1/X) <0.05 with x=1,000 for the recessive and x=10,000 for 

the dominant association model, a CADD Phred score ≥10 and restricting the analysis to the by 

Ensembl annotated canonical transcript. For each gene-tag pair, BeviMed was applied to the 

extracted rare variants from a set of unrelated individuals selected to maximise the number of 

cases14. The baseline model assumed fixed disease risk across all study participants. Under the 

association model, a latent bipartition of rare variants at a gene locus, into pathogenic and non-

pathogenic, the ploidy at each individual variant and the mode of inheritance determined the 

disease risk. Patients which were labelled as “explained” by genotype (based on identified rare 

deleterious variants in at least one of the previously established PAH disease genes [BMPR2, 

ACVRL1, ENG, CAV1, SMAD1, SMAD4, SMAD9, KCNK3, EIF2AK4, TBX4, AQP1, ATP13A3, 

GDF2, SOX17]) and being deemed disease-causing by a genetic multidisciplinary team (MDT) 

according to the ACMG standards and guidelines20, were excluded from the association testing 

for other genes to reduce the likelihood of false-positive associations.  

Importantly, in order to improve power in scenarios where only a specific variant consequence 

type was associated with the disease risk, association models were fitted to different subsets of 

variants according to the severity (impact) rating and consequences provided by Ensembl 

(https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html): the High 
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category, comprise only variants of “high” impact, including PTVs and large deletions; the 

Moderate category contains variants of impact “moderate”, including missense variants or 

consequence “non_coding_transcript_exon_variant”; the combined category Moderate and 

High, combining the respective consequence types. The prior probability of association across 

all association models was set to 0.001. Our choice of prior was informed by the estimation that 

approximately 30 genes might be involved in the pathogenesis of pulmonary arterial 

hypertension out of the 32,606 protein-coding and non-coding genes (defined by the selected 

gene biotypes provided by Ensembl, see supplemental material) tested after applying the filtering 

described above. The association testing was also performed using the variance component test 

SKAT-O21 implemented in the R package SKAT (version 1.3.2.1) using default parameters to 

compare with results generated using BeviMed. 

Descriptive statistics 
 
Statistical analysis and data visualisation were performed in R (www.r-project.org). Summary 

statistics are shown as mean (±SD) or median [IQR] according to data distribution (normality 

testing was performed with the Shapiro-Wilk test and QQ plots). The number of available data 

points is reported in tables. Comparisons between the categorical variables were performed 

using Fisher’s exact and Chi-square test, comparisons between continuous non-normally 

distributed variables were performed with Mann-Whitney’ test (for two groups) or the Kruskal-

Wallis test (three and more groups). Adjustment for multiple comparisons was performed when 

appropriate. The Kaplan-Meier method was used to visualise survival curves; the log-rank test 

was used to compare survival between two or more groups; Cox proportional hazards regression 

was used to examine the effect of variables on survival. Testing for proportional hazards 

assumption, influential observations and non-linearity were done, and the assumptions were 
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met. To measure the magnitude of agreement between CT scan readers, 22 randomly selected 

tests were assessed by both radiologists. For categorical variables weighted (ordinal data) and 

unweighted (for non-ordinal data), Cohen’s Kappa for two readers was calculated and for 

continuous variables, intraclass correlation coefficient (ICC) was computed with R package 

(“irr”). 

Results 

Characterization of study cohorts and tag definition 

Whole-genome sequencing was performed in 13,037 participants of the NIHRBR-RD study, of 

which 1148 were recruited to the PAH domain. The PAH domain included 23 unaffected parents 

and 3 cases with unknown phenotype, which were subsequently removed from the analysis 

(Table S1 and Figure 1B). Of the remaining 1122 participants, 972 (86.6%) had a clinical 

diagnosis of IPAH, 73 (6.5%) of HPAH, and 20 (1.8%) were diagnosed with PVOD/PCH. 

Verification of diagnosis based on the collected clinical information revealed that 57 participants 

(5%) had a diagnosis other than IPAH, HPAH or PVOD/PCH. These cases were subsequently 

relabelled and used in the analysis (see Table S4 and Table 1). The population structure of the 

PAH cohort was comparable to previously studied European PAH populations, with a median 

age at diagnosis of 49[35;63] years, and female predominance of 68% (760 individuals). Among 

the most common comorbidities were hypertension (24%), diabetes mellitus type 2 (12%) and 

hypothyroidism (12%). Most patients were treated with combination therapies (44%) followed 

by monotherapy with sildenafil (24%) (Table S4). Overall survival in the studied population was 

97% at 1-year, 91% at 3-years and 84% at 5-years. When the cohort was divided into prevalent 
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and incident cases 1-, 3-, and 5-year survival was 98%, 93%, 87% and 97%, 84%, 72% 

respectively. 

Transfer coefficient of carbon monoxide (KCO) measured at diagnosis was available for 644 

patients (57%) (see Supplemental Material, Table S5 and Figure S1). Median KCO in the entire 

studied population was 71[52;86]% predicted (Figure S2). Cases in the lower tertile or below the 

KCO threshold of 50% predicted were more commonly men, older at diagnosis, had a current 

or past history of cigarette smoking and an increased number of cardiorespiratory comorbidities 

(Table S6 and S7). Survival in these groups was significantly worse than in those with preserved 

or mildly reduced KCO (Figure S3 A&B). Even after adjusting for confounding factors (age, sex, 

comorbidities, smoking status and whether the case was prevalent or incident), KCO remained 

an independent predictor of survival (Table S8).  

Age at diagnosis was calculated as age at the time of diagnostic right heart catheter (RHC) and 

was available in all but 10 cases. When patients were divided by age, those in higher age tertile 

showed more functional impairment despite milder haemodynamics, lower FEV1/FVC ratio and 

KCO % predicted as well as milder emphysematous and fibrotic changes on CT scans (Figure 

S2 and Table S9). 

Rare variants in previously established genes 

We identified variants in previously established genes (namely, BMPR2, ACVRL1, ENG, SMAD1, 

SMAD4, SMAD9, KCNK3, TBX4, EIF2AK4, AQP1, ATP13A3, GDF2, SOX17) in 271 (24.2%) of 

the 1122 cases and interpreted them based on the ACMG standards and guidelines20. The 

majority of these variants have already been described in Gräf et al.13 (see supplemental material). 

The list of comprehensively annotated SNVs and indels is provided in Table S10. Larger deletions 

are depicted in Figure S4 A-F. 
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Rare variant association testing 

We used the rare variant association tests BeviMed and SKAT-O to consolidate previously 

reported and discover novel genotype-phenotype associations. The BeviMed analysis identified 

41 significant gene-tag associations with posterior probability (PP) above 0.6 (Table 2 and Figure 

2A). BMPR2, TBX4, EIF2AK4, ACVRL1 show the highest association (PP ≥0.98) and further 

confirmed significant associations in the majority of other previously established genes13. Our 

analysis showed that individuals with rare variants in BMPR2, TBX4, EIF2AK4 (autosomal 

recessive model) and SOX17 have a significantly earlier age of disease onset (tag: young age). 

We also demonstrated the association of rare variants in AQP1 with HPAH (PP=0.625) supported 

by familial segregation. The refined phenotype approach corroborated the association between 

mutations in BMPR2 and preserved KCO (KCO higher tertile, PP=0.889) as well as an association 

between biallelic EIF2AK4 mutations and significantly reduced KCO (KCO <50% predicted, 

PP=1). 

Under an autosomal dominant mode of inheritance, protein-truncating variants (PTVs) in kinase 

insert domain receptor (KDR) were associated with a significantly reduced KCO (KCO lower 

tertile, PP=0.989), as well as older age at diagnosis (tag: old age, PP=0.889). Interestingly, KCO 

stratification also highlighted an association between Isocitrate Dehydrogenase 3 Gamma 

(IDH3G) and moderately reduced KCO in patients with pulmonary hypertension (PP = 0.787). We 

were able to confirm these genotype-phenotype associations independently with the alternative 

variance component test SKAT-O (data not shown). 

Rare variants in the new PAH risk genes: KDR and IHD3G 

We identified a total of five rare protein-truncating variants in KDR in the study cohort, four in 

PAH cases, 1 frameshift variant in exon 3 of 30 (c.183del, p.Tryp61CysfsTer16), 2 nonsense 
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variants, one in exon 3 (c.183G>A, p.Trp61Ter) and one in exon 22 (c.3064C>T, p.Arg1022Ter) 

and 1 splice acceptor variant in intron 4 of 29 (c.490-1G>A) as well as one nonsense variant in 

exon 27 (p.Glu1206Ter) in a non-PAH control (Table 3). Although this nonsense variant only 

appears very late in the amino acid chain, is not located in the last exon, thus the resulting 

modified mRNA sequence is likely to be subject to nonsense-mediated decay. Furthermore, 13 

PAH cases (1%) and 102 non-PAH controls (0.9%) harboured rare predicted deleterious KDR 

missense variants (Figure 3). The missense variant carriers, however, did not exhibit a reduced 

KCO or older age of diagnosis. Instead, these patients seemed to show the opposite trend in 

KCO (Table 4 and Figure 2 C and D). Importantly, seven of the 13 KDR missense variants seen 

in the PAH cases also were detected in several non-PAH controls. Furthermore, three of the KDR 

missense variants co-occurred with predicted deleterious variants in established PAH risk genes 

(Table 13). 

We also identified three missense variants (c.74C>T, p.Pro25Leu; c.1037C>T, p.Thr346Ile; 

c.1067T>C, p.Met356Thr) and one large deletion (X:147511939-154854072) in five individuals in 

the gene encoding isocitrate dehydrogenase subunit gamma (IDH3G). The missense variant 

(c.74C>T, p.Pro25Leu) was present in two IPAH individuals, whereas the large deletion 

(X:147511939-154854072) was present in one IPAH and one control case. The “Moderate and 

high” impact category contributed to the detected association. IPAH patients harbouring variants 

in IDH3G were all females with early-onset disease and relatively preserved KCO.  

Additionally, two individuals carrying missense variants in IDH3G locus were found in US PAH 

Biobank and Pulmonary Hypertension Center at Columbia University cohorts; one male neonate 

diagnosed with Scimitar syndrome, hypoplastic right lung and ASD (c.1091C>T, p.Pro364Leu) 

and a 55-year-old female with large ASD (c.217G>C, p.Val73Leu). 
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Clinical characterisation of KDR mutation carriers 

Patients with PTV in KDR were older and exhibited significantly reduced KCO when compared 

with KDR missense variant carriers and BMPR2 mutation carriers (Figure 2C). In order to exclude 

that the reduction in KCO is the result of coexistent emphysema secondary to smoking or other 

parenchymal lung diseases, we performed a detailed analysis of imaging studies. Three of the 

four patients did not have a history of smoking. The CT scans in two out of four patients showed 

mild parenchymal changes that could account for some of the reduction in KCO but not fully 

explain it. Two of the four patients carrying a PTV in KDR presented with mild centrilobular 

ground glass opacities (GGO) that are commonly shown in PAH22, and one had a trace and one 

a mild non-specific GGO both centrally distributed. Two of the four patients harbouring PTV in 

KDR had mild fibrotic lung changes, whereas the other groups showed less than 10% incidence 

of fibrotic changes. None of the patients had emphysema, but three showed air trapping (a trace 

in one patient and mild in two patients). There were no signs of intralobular septal thickening but 

mediastinal lymphadenopathy was seen in three individuals. Comparisons between patients 

harbouring deleterious mutations in BMPR2, EIF2AK4, KDR, other PAH risk genes and patients 

without mutations are presented in Table S11. In summary, there were no major differences 

between groups, but patients with KDR PTVs had significantly less mediastinal 

lymphadenopathy than patients harbouring deleterious variants in BMPR2 or other PAH risk 

genes. Of note, patients with BMPR2 mutations had the largest bronchial arteries. There were 

no differences in the frequency of comorbidities between patients harbouring missense and PTV 

in KDR although the frequency of systemic hypertension was high in both groups (44 and 50%, 

respectively) (Table 4 and Table S12). None of the PTV carriers had a family history of PAH. 

Survival in this group could not be assessed because of the small number of patients harbouring 

the mutation, as well as only one event occurring in this group. 
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Additional cases in the US PAH Biobank and Pulmonary 

Hypertension Center at Columbia University cohorts 

To replicate our findings, we used patients recruited to the US PAH Biobank15 and the Pulmonary 

Hypertension Center at Columbia University16 to identify patients carrying predicted pathogenic 

rare variants in the new PAH risk genes. Four individuals harbouring KDR PTVs were identified. 

These comprised, 2 nonsense variants, one in exon 3 (c.303C>A, p.Tyr101Ter) and one in exon 

22 (c.3064C>T, p.Arg1022Ter) and two splice donor variants, one in intron 2 of 29 (c.161+1G>T) 

and one in intron 5 (c.658+1G>A). Interestingly, the nonsense variant p.Arg1022Ter appears in 

both cohorts (Figure 3). Patient-level data for these individuals are summarised in Table S13. 

Three of the four patients were diagnosed with idiopathic PAH at 72, 65 and 42 years 

respectively, whereas one patient was diagnosed at age 4 with PAH associated with double 

outlet right ventricle. Diffusion capacity of carbon monoxide was available for one patient and 

was significantly decreased at 35% predicted, and only minor pleural scarring in the left upper 

lobe was found in this individual. Two out of four patients harbouring PTV in KDR had also been 

diagnosed with systemic hypertension. 

Discussion 

One of the critical translational steps in identifying novel, causative genes in rare disorders is the 

discovery of genotype-phenotype associations to inform patient care and impact outcomes. A 

pragmatic focus on deeply-phenotyped individuals and “smart” experimental design cannot be 

overestimated23. With this in mind, we continued to study the molecular genetic architecture of 

PAH using the Bayesian approach BeviMed18. To generate case/control labels, we tagged PAH 
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cases with diagnostic labels and stratified them by age at diagnosis and KCO. Analyses were 

then performed to identify associations between tags and rare gene variants. 

Our findings strongly suggest a link between rare protein-truncating KDR variants and 

significantly reduced KCO and older age at diagnosis. The human KDR, located on chromosome 

4q11–q12, encodes vascular endothelial growth factor receptor 2 (VEGFR-2)24. VEGFR-2 is 

composed of an extracellular domain, which comprises seven Ig-like domains (I–VII), of which 

domains II and III bind VEGF-A, a critical growth factor for physiological and pathological 

angiogenesis in vascular endothelial cells. In mice, even though VegfA haploinsufficiency is 

embryonically lethal25, heterozygosity of its receptor, Vegfr2, is compatible with life and 

unimpaired vascular development26. 

The role of VEGF signalling in the pathogenesis of PAH has been a matter of research since the 

reports of increased expression of VEGF, VEGFR1 and VEGFR2 in rat lung tissue in response to 

acute and chronic hypoxia27. An increase in lung VEGF has also been reported in rats with PH 

following monocrotaline exposure28. In humans, VEGFA is highly expressed in plexiform lesions 

in patients with IPAH29, tracheal aspirates from neonates with a persistent PH of the newborn30 

and small pulmonary arteries from infants with PH associated with a congenital diaphragmatic 

hernia31. In view of these findings, it is surprising that the overexpression of VEGFA ameliorates 

hypoxia-induced PAH32. In contrast, inhibition of VEGF signalling by SU5416 (sugen) combined 

with chronic hypoxia triggers severe angioproliferative PH33. SU5416, a small-molecule inhibitor 

of the tyrosine kinase segment of VEGF receptors inhibits VEGFR134 and VEGFR235 causing 

endothelial cell apoptosis, loss of lung capillaries and emphysema36. In combination with chronic 

hypoxia, SU5416 causes cell-death dependent compensatory pulmonary endothelial cell 

proliferation and severe PH33. Interestingly, sugen in combination with other stimuli such as 

immune insufficiency37 or overexpression of HIF-1α38 also leads to severe PH in rats. Further 

evidence supporting the role of VEGF inhibition in the pathobiology of PAH comes from reports 
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of PH in patients treated with bevacizumab39 and the multi-tyrosine kinase inhibitors, dasatinib40 

and bosutinib, have also been associated with PAH41. Both preclinical and patient data show 

that inhibition of VEGF is associated with considerable cardiovascular side effects42. Among 

common side effects of VEGF inhibitors are systemic hypertension (HTN), proteinuria, renal 

impairment and thyroid dysfunction. The overall incidence of HTN induced by bevacizumab and 

RTKIs scale from 9 to 67% and is dose-dependent43. Mechanisms implicated in HTN include 

impairment of nitric oxide (NO) signalling, increased arterial stiffness44, reduced capillary 

density45 or functional rarefaction46 and activation of the endothelin system47, all of which are 

relevant to the pathobiology of PAH. Notably, two out of four of our cases with PTVs at the KDR 

locus had systemic hypertension, also the frequency of thyroid dysfunction seemed to be higher 

(although not statistically significant) in patients with KDR PTVs (25% UK cohort, 50% US cohort) 

than in patients without mutations in PAH risk genes (13.2%). The proportion of patients with 

renal impairment was not different between KDR PTV and missense variant carriers or the rest 

of the study population. Mutations in KDR were also reported in other cardiovascular diseases; 

Bleyl et al. reported that KDR might be a candidate for familial total anomalous pulmonary venous 

return48. Besides, haploinsufficiency in KDR locus has also been associated with tetralogy of 

Fallot49. We report one patient (US cohort) with PAH associated with congenital heart disease 

and KDR protein-truncating splice donor variant (c.161+1G>T). The impact of these variants on 

congenital heart malformations remains to be elucidated but previous research indicates that 

Flk1+ cells contribute to normal development, capillarity and metabolism of both cardiac and 

skeletal muscle50,51. 

Isocitrate dehydrogenase (NAD(+)) 3 non-catalytic subunit gamma (IDH3G) is a protein-coding 

gene encoding enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-

ketoglutarate, a tricarboxylic acid (TCA) cycle intermediate. Metabolomic3 and imaging studies52 

have previously shown disrupted bioenergetics in IPAH characterised by the accumulation of 
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TCA cycle intermediates. This indicates suppression of mitochondrial glucose oxidation, central 

to which is inhibition of pyruvate dehydrogenase (PDH)53. Alpha-ketoglutarate is a required 

cofactor for PHD, the enzyme that under normal conditions causes proteasomal degradation of 

hypoxia-inducible factor (HIF)54. Citrate and alpha-ketoglutarate have also been implicated in 

acetylation55 and methylation56 of nuclear histones. Interestingly IDH activity has been reported 

to be increased both in PAEC and serum in patients harbouring BMPR2 pathogenic variants57. 

IDH has the capacity to catalyze against TCA flow so to convert alpha-ketoglutarate to isocitrate 

leading to depletion of PHD co-factor alpha-ketoglutarate and causing decreased hydroxylation 

of HIF necessary for its proteasomal degradation57. Those findings have potential therapeutic 

implications, as pyruvate dehydrogenase kinase inhibitor (dichloroacetate) has shown some 

efficacy in genetically susceptible PAH patients58. 

With this study, we highlight that deep clinical phenotyping in combination with genotype data 

can accelerate the identification of novel disease risk genes and disease subtypes, which may 

have prognostic and therapeutic implications. Of particular interest is the association of KDR 

PTVs with significantly reduced KCO. Reduced KCO, which reflects impairment of alveolar-

capillary membrane function, has been noted in the analysis of early registry data59 to be an 

independent predictor of survival. Decreased KCO was also found in patients with PVOD/PCH 

with or without biallelic EIF2AK4 mutations60. Although some reduction in KCO is one of the 

typical features of PH, PVOD patients show the lowest KCO values when compared to IPAH or 

CTEPH. In contrast, KCO is relatively preserved in BMPR2 mutation carriers61. Strong 

association with survival and a link with other causative mutations makes the KCO phenotype 

particularly attractive for genetic studies, and KCO should be consistently collected in future 

PAH registries. 

As lung disease should always be taken under consideration as a cause of low KCO, we applied 

the World Symposium on PH criteria62 to exclude lung disease as a cause of PH: TLC ≥70% 
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pred., FVC ≥70% pred., FEV1 ≥60% pred., and no severe fibrosis and/or emphysema on chest 

HRCT. None of the PTV KDR cases met these criteria although two of the four patients did show 

evidence of early ILD. Another potential reason for low KCO in the PAH population is the 

diagnosis of PVOD/PCH63. Again, careful analysis of CT scans and clinical data did not reveal 

convincing evidence for this diagnosis in KDR PTV carriers. Cigarette smoking is a well-known 

factor leading to the decrease of KCO, which can be explained by increased carboxyhemoglobin 

levels64 and smoking-induced emphysema65; only one of the 4 KDR PTV carriers was a previous 

smoker with 15 pack-years of exposure but non-smoker for over 20 years prior to diagnosis and 

with no signs of emphysema on HRCT. After excluding known causes of significantly reduced 

KCO, one can hypothesize that PTVs in the KDR locus leads to severe angioproliferative 

obstruction of small capillaries and subsequent decreased capillary blood volume available for 

gas exchange. An alternative explanation could be that PTVs in KDR are associated with the 

development of ILD. The latter hypothesis can be indirectly supported by the high percentage of 

air trapping seen in these patients (75%); small airway obstruction has been previously reported 

in ILD66. Further studies are needed to determine the contribution of lung capillary volume and 

alveolar-capillary membrane diffusing capacity to the overall diffusing capacity in patients with 

PTVs in KDR. 

Recent registries have shown a considerable shift in PAH demographics59,67. Particularly in 

ageing western populations, PAH is now diagnosed in older patients, with a significant burden 

of comorbidities, a weaker response to treatment and poorer survival68. Although genetic 

disorders tend to present earlier in life, better phenotypic and genetic characterisation of older 

patients is required as this group now constitutes the majority of the adult PAH population. The 

occurrence of PAH at a relatively old age in KDR PTV carriers may be indicative of the necessity 

of a second hit (similarly to what is seen in animal sugen-hypoxia PH model) for the development 

of the disease. Although not identified in our study, such a hit might be an environmental 
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exposure or age-related accumulation of somatic mutations. The latter concept has recently 

gained traction. It is estimated that new somatic mutations occur at rate of 40 per year per cell 

across various tissues69 and they vary in number from <500 in newborns to >3000 per cell in 

centenarians contributing to various age-related diseases including cancer69,70. 

In our study deep phenotyping enabled patient stratification into subgroups with shared 

pathobiology and therefore increased power to detect genotype-phenotype associations. We 

provided statistical evidence of a strong association between PTVs in the gene KDR and 

significantly decreased KCO as well as later age of disease onset, and moderate impact variants 

in IDH3G and preserved KCO. Based on in silico analysis we showed that the associated variants 

were predicted to be deleterious while occurring at highly conserved positions. Finally, we 

performed an in-depth literature review supporting the functional importance of these genes in 

the pathogenesis of PAH. 
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Figure 1. Design of the genetic association study. A. Overview of the analysis approach. Using deep phenotyping 
data tags were assigned to sub sets of patients with shared diagnostic and phenotypic features (see Figure S1 for 
more details). Rare sequence variants called from whole genome sequencing data were filtered and explained cases 
were labelled. These data served as input to BeviMed in order to estimate genome-wide the posterior probability of 
gene loci being associated with any of the given tags. B. Consort diagram summarising the size of the study cohort. 
C. Schematic representation of the definition of cases to account for missing data and minimise the likelihood of false 
positive associations exemplified by the KCO lower tertile tag.
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Figure 2. Genetic association study results revealing established and novel genotype-phenotype links. (A) With BeviMed 
estimated posterior probability of rare predicted deleterious variants in a given gene being associated with a diagnostic or 
phenotypic tag for both. Shape and colour of points indicate mode of inheritance and consequence type of variants 
driving the association. Box-and-whisker plots showing the distribution of (B) transfer factor and (C) age at diagnosis 
stratified by genotype across the PAH domain. Significant differences in the means of the distributions are indicated by 
the bars at the top of the figures providing the respective p-values.
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Figure 4. Pulmonary computerised tomography (CT) scans of patients carrying protein-truncating KDR 
mutations. (A) Axial image of pulmonary CT angiogram at the level of the right ventricle (RV) moderator band showing 
flattening of intraventricular septum, leftwards bowing of the interatrial septum and the enlargement of right atrium (RA) 
and RV, indicative of RV strain; bilateral pleural effusion, larger on right side. (B) Axial image of a pulmonary CT 
angiogram demonstrating enlarged pulmonary artery and mild central lung ground glass opacity (GGO). (C) Axial high-
resolution CT slice of the chest in the lung window showing trace of non-specific GGO with a central 
distribution. (D) Coronal image showing the trace of central GGO and enlarged central pulmonary arteries. Axial high-
resolution CT slice of the chest in the lung window showing (E) apical subpleural fibrosis, and (F) very minor subpleural 
fibrosis at the lung bases. Axial high-resolution CT slice of the chest in the lung window showing (G) subpleural GGO at 
apical level, and (H) mild GGO at mid thoracic level. Patients: E001392 (A, B), E003448 (C, D), W000229 (E, F), 
W000274 (G, H).
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Figure S1. Summary of missing data. The missing rate (A) and missing pattern (B) in KCO in relation to missingness in 
diagnosis, age at diagnosis and other lung function tests (FEV1: forced expiratory volume in 1st, FVC: forced vital 
capacity, TLC: total lung capacity).
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Figure S2. Flowchart describing the definition of diagnostic and phenotypic tags. For detailed description see 
supplementary information.
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Figure S3. A-C. Distribution of transfer factor coefficient A. Coloured by KCO tertiles B. Coloured by KCO below and above 
threshold at 50% predicated. C. Distribution of age tertiles. D-F. Kaplan-Meier survival curves for KCO tertiles. There was a 
significant difference in survival between higher and lower and middle and lower tertile. Only lower tertile achieved median 
survival at  6.3 years. B. Kaplan-Meier survival curves for KCO below and above threshold at 50% predicted. Patients with 
KCO below 50% threshold median survival of 5.5 years. C. Kaplan-Meier survival curves for age tertiles. Survival in the 
higher age group was significantly lower than in low and middle tertile groups.
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Figure S4. Summary of large deletions identified in previously established disease genes. A. Affected region containing 
BMPR2. B. Zoom into BMPR2 locus. C. Affected region containing GDF2. D. Zoom into GDF2 locus. E. Affected region 
containing TBX4. B. Zoom into TBX4 locus.
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Table 1. Definitions of labels and number of unrelated cases and controls for genetic association analysis with BeviMed.

Tag Tag description Cases Controls 
Excluded 
relatives

PH Individuals with mPAP > 25 mmHg 1112 9134 2786

PAH Patients with one of the following diagnoses: IPAH, HPAH, PVOD, PCH, APAH:
CHD-PAH, APAH:CTD-PAH, APAH:HIV-PAH, APAH:PH-PAH

1085 9134 2786

I/HPAH Patients with a clinical diagnosis of IPAH or HPAH 1036 9134 2786

IPAH Patients with aclinical diagnosis of IPAH 972 9134 2785

HPAH Patients with aclinical diagnosis of HPAH 67 9136 2779

PVOD/PCH Patients with a clinical diagnosis of PVOD/PCH 20 9136 2778

I/HPAH/PVOD/PCH Patients with one of the following diagnoses: IPAH, HPAH, PVOD, PCH 1056 9134 2786

FPAH Patients with one of the following diagnoses: IPAH, HPAH, PVOD, PCH and a 
positive family history

80 9136 2781

APAH Patients with one of the following diagnoses: APAH:CHD_PAH, APAH:CTD-PAH, 
APAH:HIV-PAH, APAH:PH-PAH

29 9136 2778

APAH: CHD-PAH Patients with PAH associated with congenital heart disease 17 9136 2778

APAH: CTD-PAH Patients with PAH associated with connective tissue disease 10 9136 2778

APAH: PPH-PAH Patients with PAH associated with portopulmonary hypertension 1 9136 2778

APAH: HIV-PAH Patients with PAH associated with HIV 1 9136 2778

PH-LHD Patients with pulmonary hypertension associated with left heart disease (Group 2) 7 9136 2778

PH-LD Patients with pulmonary hypertension associated with lung disease(Group 3) 8 9136 2778

CTEPH Chronic thromboembolic pulmonary hypertension (Group 4) 6 9136 2778

PH-multifactorial Multifactorial pulmonary hypertension (Group 5) 6 9136 2778

young age Lower age tertile; age (0.96 - 40.7 years) 378 9136 2785

middle age Lower age tertile; age (0.96 - 40.7 years) 376 9134 2779

old age Old age tertile; age (58.6 - 88.1 years) 355 9136 2778

low KCO KCO < 50% pred. 152 9136 2778

KCO lower tertile KCO range 17-59% pred. 211 9136 2778

KCO middle tertile KCO range 60-80% pred. 215 9136 2778

KCO higher tertile KCO range 80-142% pred. 215 9134 2779
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Table 2. BeviMed analysis results. Posterior probabilities of gene-tag associations. The "High" category, comprise only variants of “high” impact, 
including PTVs and large deletions; the Moderate category contains variants of impact “moderate”, including missense variants or consequence 
“non_coding_transcript_exon_variant”; the combined category Moderate and High, combining the respective consequence types. 

Gene Tag Bayes Factor Posterior prbability Consequence type Mode of inheritance

BMPR2 HPAH 151 1.000 Moderate and high dominant

BMPR2 FPAH 149 1.000 Moderate and high dominant

BMPR2 young age 151 1.000 Moderate and high dominant

BMPR2 IPAH 146 1.000 High dominant

TBX4 I/HPAH/PVOD/PCH 25 1.000 High dominant

TBX4 I/HPAH 26 1.000 High dominant

TBX4 PH 25 1.000 High dominant

TBX4 PAH 25 1.000 High dominant

TBX4 IPAH 22 1.000 High dominant

EIF2AK4 young_age 23 1.000 Moderate and high recessive

EIF2AK4 low KCO 32 1.000 Moderate and high recessive

EIF2AK4 KCO lower tertile 28 1.000 Moderate and high recessive

BMPR2 PH 265 0.998 High dominant

BMPR2 KCO middle tertile 55 0.997 Moderate and high dominant

BMPR2 PAH 267 0.995 High dominant

ACVRL1 HPAH 17 0.989 Moderate and high dominant

KDR KCO lower tertile 13 0.989 High dominant

BMPR2 I/HPAH/PVOD/PCH 265 0.924 High dominant

KDR old age 11 0.915 High dominant

BMPR2 KCO higher tertile 102 0.889 High dominant

TBX4 young age 13 0.876 High dominant

GDF2 I/HPAH 11 0.872 Moderate and high dominant

EIF2AK4 FPAH 14 0.865 High recessive

EIF2AK4 I/HPAH/PVOD/PCH 17 0.855 Moderate and high recessive

GDF2 I/HPAH/PVOD/PCH 11 0.846 Moderate and high dominant

EIF2AK4 PAH 17 0.845 Moderate and high recessive

IDH3G KCO middle tertile 11 0.830 Moderate and high dominant

EIF2AK4 PH 17 0.820 Moderate and high recessive

EIF2AK4 PVOD/PCH 16 0.819 Moderate and high recessive

GDF2 PAH 10 0.801 Moderate and high dominant

ATP13A3 KCO higher tertile 10 0.741 High dominant

BMPR2 middle age 65 0.740 Moderate and high dominant

GDF2 PH 10 0.731 Moderate and high dominant

SOX17 young age 10 0.725 Moderate and high dominant

KDR low KCO 9 0.665 High dominant

AQP1 PAH 12 0.663 Moderate and high dominant

AQP1 I/HPAH/PVOD/PCH 13 0.660 Moderate and high dominant

AQP1 PH 12 0.649 Moderate and high dominant

AQP1 I/HPAH 13 0.649 Moderate and high dominant

BMPR2 I/HPAH 267 0.640 High dominant

AQP1 HPAH 13 0.625 Moderate dominant
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Table 3. Gene changes for IPAH patients harbouring protein truncating variants (PTV)  in the KDR gene and PTV and missence variants in the IDH3G gene. WHO FC - World Health Organisation functional class, 6MWD - six minute walk distance, SpO2 - arterial oxygen saturation, mRAP - mean right atrial pressure, 
mPAP - mean pulmonary artery pressure, mPAWP - mean pulmonary artery wedge pressure, CO - cardiac output, PVR - pulmonary vascular resistance, FEV1 - forced expiratory volumen in 1 sec, FVC - forced vital capacity, KCO - transfer factor coefficient for carbon monoxide. None of the KDR variants has been 
previously reported in gnomAD,  ExAC or internal controls. For KDR HGVSc notations are based on transcript sequence ENST00000263923.4. HGVSp notations are based on amino acid sequence ENSP00000263923.4. None of the patients harborung PTV in KDR  had capillary hemanngioma,  * DLCO% predicted; For 
IDH3G  HGVSc notations are based on transcript sequence ENST00000217901.5, HGVSp notations are based on amino acid sequence ENSP00000217901.5. Protein truncating variants were defined as stop gained, splice acceptor variants or frameshift variants. 

Gene KDR IDH3G

Cohort UK US UK US

WGS ID W000229 E003448 W000274 E001392 CUMC-JM161 CCHMC12-190 CCHMC-19-023 CCHMC-27-015 E004190 E004149 E004194 E001063 W000031 CCHMC_22-105 CCHMC_10-074

Exon 3 22 3 2 3 5 22 1-13 1 1 12 12 13 4

HGVSc c.183G>A c.490-1G>A c.3064C>T c.183del c.161+1G>T c.303C>A c.658+1G>A c.3064C>T c.1067T>C c.1037C>T c.74C>T c.74C>T c.1091C>T c.217G>C

HGVSp p.Trp61Ter - p.Arg1022Ter p.Trp61CysfsTer16 p.Tyr101Ter p.Arg1022Ter p.Met356Thr p.Thr346Ile p.Pro25Leu p.Pro25Leu p.Pro364Leu p.Val73Leu

Consequence type stop gained splice acceptor 
variant

stop gained frameshift variant splice donor 
variant

stop gained stop gained stop gained large deletion missense variant missense variant missense variant missense variant missense variant missense variant

Shared PAH(1) PAH(1) PAH(1) PAH(1) No No No No GEL(1); PAH(1) PAH(1) PAH(1) PAH(2) PAH(2) gnomAD_exome_
ALL 5.47E-06

gnomAD_exome_
ALL-1.09E-05

CADD_PHRED_v1.4 40 34 36 33 26 38 24 37 23.9 17.15 23.7 23.7 23.3 21.7

GerpN 5.93 5.75 5.95 5.93 5.83 5.83 5.8 5.95 5.46 5.46 5.22 5.22

Ansestry European European European European East-Asian European European European East-Asian European European European European European European

Sex male female male female female male female female female female female female female female male 

Diagnosis IPAH IPAH IPAH IPAH APAH-CHD 
secondary to 
double outlet RV

IPAH IPAH IPAH IPAH IPAH IPAH IPAH IPAH CHD-PAH CHD-PAH

Age at diagnosis [years] 71 62 67 61 4 72 65 42 23 27 34 51 68 0 55

WHO FC 2 3 3 3 NA NA NA 4 3 4 4 2 3 3

6MWD [m] 472 422 660 180 380 NA 245 350 414 414 NA 316

SpO2 pre [%] 95 97 98 97 NA NA NA NA 99 96 95 98 96

SpO2 post [%] 86 86 91 NA NA NA NA 97 99 96 95

FEV1 [% pred.] 116 90 83 67.3 85% NA 77% NA 74 87 104 95 99.1

FVC [% pred.] 115 94 91 72.8 92% NA 83% NA 76 90 109 95.8 96.3

TLC [% pred.] NA NA NA NA NA NA 65% NA NA NA 105 76 98

KCO [% pred.] 44 46 46 55.2 NA NA 35%* NA 73 71 64 78 73

Smoking history Never Never Ex-smoker Never Never Never Ex-smoker Never Never Ex-smoker Never Never Never Never

mRAP [mmHg] 5 8 8 3 NA 5 29 14 15 14 8 12 6 3 7

mPAP [mmHg] 62 57 41 44 NA 49 66 60 58 64 49 50 62 46 69

PAWP [mmHg] 4 15 12 9 NA 5 16 15 15 8 10 12 7 10

CO [L/min] 3.6 4.58 5.966667 5.23 NA 4.33 1.8 4.6 2.37 3.23 3.29 4.1 4.4

PVR 16.11 9.17 4.86 6.69 NA NA 27.9 9.8 18.1 17.3 11.6 13.4

Comrobidities hyperlipidemia, 
HTN, DM type 2

HTN, 
hypothyrodism

DM type 2 CAD, DM type 2 No HTN, 
hyperlipidemia,

HTN, 
hypothyrpoidism, 
OA

Obesity, CAD, DM 
type 2, 
hypothyroidism

No No No PFO No Scimitar 
syndrome, 
hypoplastic rght 
lung, ASD with 
spontaneous 
closure

Large ASD

Family history No No No No ? No No No No No No No No ? ?

Status alive alive alive dead ? alive alive alive alive alive alive death alive alive alive
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Table 4. Clinical characteristics of IPAH patients harbouring protein truncating variants in the KDR gene. IPAH - idiopathic pulmonary 
arterial hypertension, WHO FC - World Health Organisation functional class, 6MWD - six minute walk distance, SpO2 - arterial oxygen 
saturation,  mRAP - mean right atrial pressure, mPAP - mean pulmonary artery pressure, mPAWP - mean pulmonary artery wedge 
pressure, CO - cardiac output, PVR - pulmonary vascular resistance, NO - nitric oxide challenge, FEV1 - forced expiratory volume in 1 
second, FVC - forced vital capacity, KCO - transfer factor coefficient for carbon monoxide, COPD - chronic obstructive pulmonary 
disease, OSA - obstructive sleep apnea, CAD - coronary artery disease, HTN - sytemic hypertension, CKD - chronic kidney disease, Hb 
- haemoglobin, WBC - white blood cells, TSH - thyroid-stimulating hormone. Comorbidities are reported as the number and percentage 
of cases possessing a disease entity. None of of the patients had a history of pulmonary embolism or asthma. Three of the KDR 
missense variants co-occurred with predicted deleterious variants in established PAH risk genes (BMPR2 and AQP1)

KDR missense  N=13 KDR PTV N=4 p.overall N

Diagnosis verified: IPAH 13 (100%) 4 (100%) . 17

Age[years] 46 [36;59] 64 [62;68] 0.113 17

Sex: female 9 (69%) 2 (50%) 0.584 17

BMI[kg/m^2] 29 [24;32] 26 [26;30] 1 13

WHO FC: II/III/IV [%] 23.1/9.2/7.7 25/75/0 1 17

6MWD[m] 312 [150;355] 301 [240;362] 0.814 11

SpO2 pre 95 [93;97] 97 [96;97] 0.335 11

SpO2 post 90 [80;96] 86 [86;88] 0.926 12

mRAP[mmHg] 8 [6;13] 6 [4;8] 0.431 14

mPAP[mmHg] 53 [42;62] 50 [43;58] 0.896 15

mPAWP[mmHg] 10 [8;13] 10 [8;13] 0.642 13

CO[L/min] 4.0 [3.0;5.5] 4.9 [4.3;5.4] 0.514 15

PVR[WU] 10.2 [4.56;14.3] 7.93 [6.23;10.9] 1 13

Acute NO challenge: vasoresponder 1 (33.3%) 1 (25.0%) 1 7

FEV1[% pred.] 84 [65;94] 86 [79;96] 0.48 14

FVC[% pred.] 86 [72;97] 92 [86;99] 0.723 14

FEV1/FVC ratio 0.78 [0.75;0.87] 0.78 [0.76;0.79] 0.671 14

KCO [% pred.] 89 [74;93] 46 [46;48] 0.008 11

Smoking history 6 (54.5%) 1 (25.0%) 0.677 15

COPD 1 (7.69%) 0 (0.00%) 1 17

Pulmonary fibrosis 0 (0.00%) 2 (50.0%) 0.044 17

CAD 1 (7.69%) 1 (25.0%) 0.426 17

HTN 5 (38.5%) 2 (50.0%) 1 17

CKD 1 (7.69%) 0 (0.00%) 1 17

Hb[g/l] 154 [140;166] 148 [135;152] 0.214 15

WBC[x10e9/l] 9.20 [6.30;11.0] 8.80 [8.23;9.55] 0.844 15

Platelets[x10e9/l] 262 [209;294] 216 [188;251] 0.361 15

Creatinine[umol/l] 78.0 [61.5;98.0] 67.0 [66.5;96.5] 0.866 13

TSH[mU/l] 3.65 [1.80;6.90] 1.76 [1.72;1.84] 0.234 12
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