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Lung cancer, the leading cause of cancer mortality, exhibits
heterogeneity that enables adaptability, limits therapeutic suc-
cess, and remains incompletely understood. Single-cell RNA se-
quencing (scRNAseq) of metastatic lung cancer was performed
using 44 tumor biopsies obtained longitudinally from 27 pa-
tients before and during targeted therapy. Over 20,000 can-
cer and tumor microenvironment (TME) single-cell profiles ex-
posed a rich and dynamic tumor ecosystem. scRNAseq of can-
cer cells illuminated targetable oncogenes beyond those detected
clinically. Cancer cells surviving therapy as residual disease
(RD) expressed an alveolar-regenerative cell signature suggest-
ing a therapy-induced primitive cell state transition, whereas
those present at on-therapy progressive disease (PD) upregu-
lated kynurenine, plasminogen, and gap junction pathways. Ac-
tive T-lymphocytes and decreased macrophages were present at
RD and immunosuppressive cell states characterized PD. Bio-
logical features revealed by scRNAseq were biomarkers of clini-
cal outcomes in independent cohorts. This study highlights how
therapy-induced adaptation of the multi-cellular ecosystem of
metastatic cancer shapes clinical outcomes.
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Introduction
Heterogeneity is a property of many biological systems and
diseases such as cancer. Biological plasticity in cancer cells
is one form of heterogeneity that allows for early adaptation
to treatment and limits the success of precision approaches

for cancer treatment (Yuan et al., 2019; Xue et al., 2017).
In addition to cancer-cell intrinsic heterogeneity, cells within
the tumor microenvironment (TME) further contribute to tu-
mor heterogeneity in a cancer-cell extrinsic manner. While
these tumor compartments and tumor heterogeneity have
been characterized in many cancer subtypes (Gerlinger et al.,
2012; Alexandrov et al., 2013; Lawrence et al., 2013; Bran-
non et al., 2014; Lee et al., 2014; Vignot et al., 2015; Hata et
al., 2016), our understanding of how these properties evolve
and interact longitudinally in response to systemic treatment
remains incomplete, particularly in metastatic tumors.

Many oncogene-driven cancers such as those with oncogenic
alterations in EGFR, ALK, ROS1, and BRAF are treated with
targeted therapies against the cognate oncoprotein or sig-
naling pathway. This has led to improvements in clinical
outcomes of metastatic solid cancers such as lung cancer
and melanoma as well as hematologic malignancies (Fla-
herty et al., 2012; Mok et al., 2009; Shaw et al., 2013).
A paradigm for molecular therapeutics and the study of tu-
mor evolution is lung cancer, the leading cause of cancer
mortality worldwide (Siegel et al., 2018), with non-small
cell lung cancer (NSCLC) constituting the major subtype
(Swanton and Govindan, 2016). Despite the success of tar-
geted therapy in cancers such as NSCLC, tumors typically
respond incompletely in the form of residual disease that is
a prelude to tumor progression due to therapy-induced tu-
mor evolution. Bulk tumor sampling after tumor progres-
sion on targeted therapy has identified resistance mechanisms
and demonstrated that tumors become increasingly molecu-
larly heterogeneous after therapy progression (Blakely et al.,
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2017a; Camidge et al., 2014; McCoach et al., 2018; Rotow
and Bivona, 2017).

Single-cell RNA sequencing (scRNAseq) is one established
approach to dissect the heterogeneity of complex biological
systems (Chung et al., 2017; Darmanis et al., 2017; Tirosh
et al., 2016). Comparison of single-cell transcriptional pro-
files of individual cells at different treatment timepoints could
lead to deeper insight into the evolution of cell states of
both cancer cells and TME cells occurring during treatment.
There is currently a paucity of single-cell transcriptome stud-
ies that sample metastatic solid malignancies and prior scR-
NAseq studies of metastatic disease largely focused on indi-
vidual treatment timepoints (Chung et al., 2017a; Darmanis
et al., 2017; Lambrechts et al., 2018a; Patel et al., 2014a;
Tirosh et al., 2016a; Wang et al., 2019; Zhang et al., 2019a).
This is due, in part, to challenges associated with obtain-
ing high-quality biopsies from metastatic tumors, instead of
the larger tumor specimens that can be obtained from surgi-
cally resected earlier-stage disease. Obtaining multiple tumor
biopsies longitudinally at different timepoints during sys-
temic therapy of patients, individually and as a cohort, with
metastatic solid tumors is an additional challenge to over-
come to allow for the study of tumor adaptation to systemic
therapy.

Beyond the analysis of tumor biopsies obtained both before
treatment and at tumor progression, analysis of advanced-
stage tumor samples that reflect the residual disease (RD)
state during therapy could reveal clinically relevant biolog-
ical events that permit cancer cell persistence. Developing
a deeper understanding of evolving cell-state changes during
treatment, and particularly at the RD state, is essential to im-
prove the durability and magnitude of response to precision
therapies for cancer. RD sample analysis could help identify
therapeutic targets in cancer and TME cells for exploitation in
a window-of-opportunity during therapy to preempt the sub-
sequent evolution to absolute drug resistance.

We performed scRNAseq analyses on human NSCLC tumor
biopsies collected at different treatment states. Our goal was
to help elucidate cancer cell phenotypic plasticity and the
contribution and dynamic nature of the TME during ther-
apy that individually, and collectively, promote RD and sub-
sequent progressive disease during targeted therapy. To ac-
complish this, we instituted a unique clinical tumor rebiopsy
protocol wherein advanced-stage NSCLC samples were ob-
tained from patients longitudinally before systemic targeted
therapy (treatment naïve, TN), at the residual disease state
during treatment response (residual disease, RD) and upon
the subsequent establishment of acquired drug resistance
(progression, PD). We developed a custom tissue processing
and analytic framework adapted to the relatively small and
challenging advanced-stage lung tumor biopsy samples to:
1) evaluate the expressed mutational landscape of tumor sam-
ples, 2) characterize transcriptional gene signatures unique to
different treatment timepoints, 3) investigate the properties of
the TME as it evolves during treatment, and 4) describe the
interplay between cancer cells and the TME during targeted

therapy.

Results
Longitudinal scRNAseq analysis of advanced-stage
NSCLC during targeted therapy. We used scRNAseq to
profile 44 samples (41 lung adenocarcinomas, 1 squamous
cell carcinoma and 2 normal adjacent tissues) (Figure 1A),
corresponding to 27 individual patients. We used a rapid
processing workflow customized to isolate viable single cells
primarily from fine needle aspirates (FNA), core needle biop-
sies, and thoracentesis samples in addition to standard surgi-
cal resections (Figure 1B). Tumor biopsy samples were col-
lected and immediately processed before and during systemic
targeted therapy (Figure 1C, Supplemental Table 1).

Gene expression profiles of 21,409 cells were retained after
quality control filtering (Supplemental Figure 1A). Following
gene expression normalization, we performed principal com-
ponent analysis (PCA) using a set of variably expressed genes
across all cells. We clustered cells using graph-based cluster-
ing on the informative principal component space (npcs=20).
The resulting cell clusters were annotated as immune cells,
stromal cells (fibroblasts, endothelial cells, and melanocytes),
and epithelial cells (Figure 1D) through gene expression anal-
ysis of established marker genes (Lambrechts et al., 2018;
Schiller et al., 2019; Tabula Muris Consortium et al., 2018;
Treutlein et al., 2014) (Supplemental Table 2). Epithelial
cells (n=5,109), were subset and re-clustered into 31 discrete
epithelial clusters (Supplemental Figure 1B).

Clustering-based copy number variation resolves
cancer from non-cancer epithelial cells. Given the
known association between cancer and large-scale chro-
mosomal alterations, we utilized an established analyt-
ical framework to infer copy number variation (CNV)
from RNA expression to classify epithelial cells as ei-
ther cancer or non-cancer (Patel et al., 2014; Puram et
al., 2017; Tirosh et al., 2016; Venteicher et al., 2017;
https://github.com/broadinstitute/inferCNV). Compared to
fibroblasts and endothelial cells, which were used as controls,
cancer cells displayed larger excursions from relative expres-
sion intensities in multiple regions of the genome (Supple-
mental Figure 1C). Following identification of cancer and
non-cancer epithelial cells, non-cancer epithelial cell clusters
(n=13) were further annotated as either pulmonary alveolar
type 2 (AT2), pulmonary alveolar type 1 (AT1), hepatocytes,
club cells, basal cells, ionocytes or stromal cells (Supplemen-
tal Figure 1D).

As noted by others (Zhang et al., 1997), we found that these
cancer cells expressed an elevated number of unique genes
compared to non-cancer cells (Supplemental Figure 1E). This
difference in the number of uniquely expressed genes was not
explained by sequencing depth (Pearson correlation = 0.17).

All cancer cells (n=3,620) were subset and re-clustered, re-
sulting in 24 unique clusters across 38 total samples (Supple-
mental Figure 2A, 2B). For each cluster, we calculated pa-
tient occupancy, defined as the number of cells of the highest
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Fig. 1. Patient characteristics and experimental overview Tissue processing pipeline for scRNAseq. Patient samples were first mechanically, and enzymatically dis-
aggregated and then single cells were sorted into microtiter plates using FACS. cDNA synthesis was performed using the Smart-seq2 protocol and libraries were sequenced
on Illumina platforms. (B) Consort diagram of sample collection. A total of 51 biopsies were processed. Only samples with cells that passed quality control were used (n =
42). (C) Circle plot illustrating the clinically identified oncogenic driver (outer circle) and treatment timepoint (inner circle) for each sample. (D) t-SNE plot of all 21,409 cells
colored by their cellular identity as inferred from gene expression profiling (Epithelial cells (n= 5,109, Immune Cells (n=12,077), Stromal Cells (n=4,223).

contributing individual patient over the total number of cells
for that cluster for both non-cancer and cancer epithelial cells
(Supplemental Figure 2C). The majority of the cancer cell
clusters are patient specific, having high patient occupancy
scores, similar to findings reported in other studies (Chung et
al., 2017; Darmanis et al., 2017; Puram et al., 2017; Tirosh et
al., 2016). Conversely, non-cancer cell types exhibited lower
patient occupancy, with multiple patients contributing cells to
each cluster (Supplemental Figure 2C). Thus, patient-specific
malignant cell clustering reflects the unique molecular sig-
natures of an individual patient’s tumor rather than potential
technical issues.

scRNA-seq analysis reveals a rich complexity of ex-
pressed gene alterations in cancer cells. Additional ge-
netic alterations detected by bulk tumor DNA-based analysis
can co-exist with a primary targetable oncogenic “driver” al-
teration (e.g. oncogenic EGFR, ALK, BRAF, ROS1, KRAS
and MET) and may help promote tumor progression and

limit therapy response (Blakely et al., 2017; Kim et al.,
2019; Scheffler et al., 2019; Yang et al., 2019). We queried
scRNAseq transcripts from each cancer cell to identify so-
matic alterations, namely single nucleotide polymorphisms
(SNPs), insertions/deletions (indels), and gene fusions (Fig-
ure 2A, 2B, 2C). We identified 17 of 38 tumor biopsy samples
that contained cancer cells harboring the clinically-identified
oncogenic driver (Figure 2B, Supplemental Table 3), consis-
tent with the known potential drop-out occurrence in scR-
NAseq analyses (Kharchenko et al., 2014). Within these 17
samples in which we found at least one cell harboring the
clinically actionable mutation, there were 7 samples in which
at least one other cell harbored an additional oncogenic alter-
ation not detected by clinical-grade testing of a tumor sample
from the same patient (i.e. occult genetic alterations) (Figure
2B). One such example from our data is illustrated by sample
LTS47. This tumor was determined to harbor an EML4-ALK
oncogenic gene rearrangement by clinical-grade bulk DNA
analysis. However, scRNAseq additionally revealed that this
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sample contained cancer cells harboring KRAS G13D and
KRAS G12C occult mutations; neither population of KRAS
mutant cells showed evidence of the ALK gene rearrange-
ment (Supplemental Figure 2D). This sample was obtained
from the patient after multiple lines of therapy which likely
allowed for evolution of multiple mechanisms of resistance,
including the 2 different oncogenic forms of KRAS, which are
known mechanisms of resistance to ALK inhibitor treatment
(Doebele et al., 2012; Hrustanovic and Bivona, 2015; Shaw
and Engelman, 2013).

We also queried scRNAseq transcripts for mutations from
the COSMIC (Catalogue of Somatic Mutations In Cancer)
lung adenocarcinoma tier 1 mutations (Supplemental Table
2), (Forbes et al., 2017; Shihab et al., 2015), focusing on
mutations that are classified as ’pathogenic’. Many of the
mutations we identified had not been previously reported by
the clinical-grade assay conducted on the patient’s tumor de-
spite having been included in the clinical panel (Figure 2C,
Supplemental Tables 2 and 3). Though this may reflect the
difference in biopsy technique or tumor clonality at the time
of clinical testing, these results also demonstrate that clinical-
grade bulk DNA-based testing may underestimate tumor het-
erogeneity. To assess the clinical outcomes of patients har-
boring multiple oncogenic alterations and to determine the
broader translational impact of our findings, we utilized the
MSK-Impact NSCLC dataset, which contains the clinical and
sequencing data for over 800 advanced-stage NSCLC pa-
tients (Zehir et al., 2017). Those patients with greater than
or equal to 2 mutations from the tier one COSMIC mutations
found in the scRNAseq dataset (mutation high), had signif-
icantly lower overall survival (p < 0.01) compared to those
with less than 2 mutations (mutation low) Patients with more
than two cosmic tier 1 mutations (Figure 2D). Thus, scR-
NAseq analysis can complement current clinical-grade bulk
DNA-based assays to provide increased granularity into can-
cer cell genomic heterogeneity and provides insight into the
mutational landscape that is expressed at the RNA level in
cancer cells of advanced-stage tumors, with clinical implica-
tions.

Transcriptional differences between TN and RD can-
cer cells detected by scRNAseq analysis reveal cell
state-specific biological programs. We hypothesized that
defining the biological programs activated in cancer cells dur-
ing therapy response may identify signaling pathways that
promote adaptation and survival of cancer cells that com-
prise residual disease during initial treatment. We compared
the transcriptional profiles of individual cancer cells obtained
from tumor samples from TN to RD (Supplemental Table 4)
and focused our attention on the 691 significantly (p<0.05)
upregulated genes in RD cancer cells as a proxy for evidence
of pathway activation. We found individual genes associated
with specific cancer-associated pathways such as survival,
cell growth, invasion and metastasis (Supplemental Table 5).
As a control and consistent with the expectation that during
targeted treatment cancer cells surviving and persisting drug
therapy are generally less proliferative (Sharma et al., 2010;

Zhu et al., 2001), we found that RD cancer cells expressed
decreased proliferation marker genes compared to both TN
and PD (Supplemental Figure 3A) (Hsiao et al., 2019).

Interestingly, we identified an alveolar cell gene expression
signature composed of 17 established gene markers of alve-
olar cells (Vieira Braga et al., 2019; Wade et al., 2006) that
showed significantly (p< 0.0001) increased expression in RD
versus TN timepoints (Figure 3A, Supplemental Figure 3B,
Supplemental Table 2). Alveolar cells are partitioned into
alveolar type 1 (AT1) and type 2 (AT2) subtypes and form
the lining of the lung alveoli. AT2 cells produce surfac-
tants and can act as stem-like progenitor cells (Nabhan et al.,
2018) which become active and proliferate in the setting of
diverse types of lung injury. AT2 cell are also suspected to
be the cell of origin in oncogene-driven lung cancers (Desai
et al., 2014; Hanna and Onaitis, 2013; Nabhan et al., 2018).
AT1 cells are the dominant population in alveoli and mediate
gas exchange and, when injured or dying, can release pro-
liferation and regenerative signals (Desai et al., 2014). The
alveolar signature we detected in the cancer cells at RD in-
cludes increased expression of both AT1- and AT2-associated
genes (Supplemental Table 2), including AQP4, SFTPB/C/D,
CLDN18, FOXA2, NKX2-1 and PGC for AT2 cells (Desai
et al., 2014; Liu et al., 2003; Nabhan et al., 2018; Wade et
al., 2006; Xu et al., 2016; Zhou et al., 2018) and AGER and
HOPX for AT1 cells (Nabhan et al., 2018a; Serveaux-Dancer
et al., 2019) (Supplemental Figure 3B). Additional analysis
demonstrated that the alveolar cell state we identified in can-
cer cells was not derived from misannotated non-cancer alve-
olar cells within our cancer cell populations (Supplemental
Figure 3C).

We validated the activation of the alveolar cell signature at
RD using orthogonal approaches. First, we used an estab-
lished preclinical model consisting of patient-derived EGFR-
mutant NSCLC cells (PC9) (Lee et al., 1985) to develop
analogs of the TN, RD, and PD clinical states and measured
the expression of a subset of the alveolar cell state genes (by
RT-PCR) detected at RD in the clinical tumor samples. Cells
were treated with vehicle (DMSO) or a standard EGFR in-
hibitor (osimertinib) and sampled under control conditions
(day 2 in DMSO), during RD (days 7 and 19), and at PD
(day 70, acquired resistance). We found significantly in-
creased expression of NKX2-1, a hallmark alveolar cell sig-
nature gene upregulated in the RD clinical samples, at days
7 and 19 compared to control and day 70 (Figure 3B). This
demonstrates that our findings from the scRNAseq analysis
can be reproduced under controlled conditions in vitro. Fur-
thermore, immunohistochemistry (IHC) analysis showed in-
duction of AQP4 protein expression, another marker of the
alveolar cell signature, at the plasma membrane of RD clin-
ical samples compared to both TN and PD clinical samples
(Figure 3C, Supplemental Figure 3D-E). The collective data
support key scRNAseq findings arising from the clinical tu-
mor biopsies.

We next determined whether the alveolar cell signature was
more broadly clinically-relevant by examining whether it is a
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Fig. 2. scRNAseq infers patient mutational status and reveals a complex mutational landscape in cancer cells (A) Clinical characteristics of the 30 NSCLC samples
from which oncogenic drivers and/or COSMIC tier 1 genes were identified. Columns indicate treatment timepoint (TN, RD, PD), primary or metastatic sample origin, biopsy
site, and clinical NGS test performed. Longitudinal samples from the same patient are indicated by chronological encounter numbers (e.g. E1, E2) and grouped with arrows.
(B) Cancer cell mutational landscape for each patient sample as determined by scRNAseq represented as a heatmap. Color indicates the number of mutant reads for each
genomic region and sample divided by the total number of reads for that region in that sample. The expected oncogenic driver, as determined by a clinical NGS assay, is
marked with an “X”. NC-No Coverage for the specific sample. (C) Mutational landscape of COSMIC tier 1 genes. Color indicates the number of mutant reads for each
genomic region and sample divided by the total number of reads for that region in that sample. Genes names in black indicate inclusion in all clinical NGS assays (aside from
the UCSF single gene test), whereas gene names in grey are included in only select assays (Supplemental Table 2). D) Kaplan-Meier plot showing overall survival of 1269
NSCLC patients within the MSK-Impact dataset. Patients were stratified by high (>=2) and low (<2) mutations from the 141 mutations that are found in both the MSK-Impact
dataset and panel (C).

biomarker of patient survival in the TGCA lung adenocarci-
noma bulk RNAseq dataset generated by the TCGA Research
Network (https://www.cancer.gov/tcga, Cancer Genome At-
las Research Network et al., 2013). We found a significant
(p<0.0001) association between high expression of our alve-
olar cell type signature and improved overall survival (OS)
(Figure 3D). These collective findings support the assertion
that there is a distinct alveolar cell type gene expression sig-
nature characterizing RD cancer cells that is associated with
improved patient survival. A plausible model is that our iden-
tified alveolar signature reflects a cell injury and repair sig-
nal in which the machinery of injury-response in malignant
AT1/2 cells activates a regenerative signaling pathway and
transition to a more primitive cell state. This could serve to
aid repair from injury from cell death during treatment to sup-
port cancer cell persistence, while at the same time generat-

ing a less aggressive malignant state. This is consistent with
notion that RD represents a “persister” cell state observed
in preclinical models of slow-cycling cancer cells that sur-
vive without rapid proliferation (as in Supplemental Figure
3A), as a prelude to the onset of aggressive tumor progres-
sion upon absolute drug resistance (Hata et al., 2016).

The molecular details of the alveolar and cell injury repair
signature are notable. In our RD cohort, WNT/β-catenin-
associated pathway genes AFF3, SUSD2, and CAV1 exhib-
ited increased expression (Supplemental Table 5). AFF3
and SUSD2 are activated downstream targets of the WNT
pathway (Lefèvre et al., 2015; Umeda et al., 2018; Xu
et al., 2018) while CAV1 can promote nuclear localization
of β-catenin (CTNNB1) and transcriptional activation of the
WNT/β-catenin pathway (Yu et al., 2014). In NSCLC, the
WNT/β-catenin signaling pathway contributes to tumorige-
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nesis (Juan et al., 2014; Nakayama et al., 2014; Pacheco-
Pinedo et al., 2011), repair, and regeneration after cell injury
(Huch et al., 2013; Tammela et al., 2017). The self-renewal
and injury response in AT2 cells specifically can utilize the
WNT/β-catenin signaling pathway (Nabhan et al., 2018b;
Stewart, 2014). Additionally, in EGFR-mutant NSCLC the
WNT/β-catenin pathway may limit EGFR inhibitor response
and can lead to survival of a persister cell population dur-
ing EGFR inhibitor therapy in vitro (Arasada et al., 2018;
Blakely et al., 2017; Casás-Selves et al., 2012; Nakayama et
al., 2014). Overall, the RD state is characterized by signals
of cellular injury and survival which act, in part, through the
WNT/β-catenin pathway, which may be therapeutically tar-
getable (Krishnamurthy and Kurzrock, 2018).

Transcriptional differences between TN and PD cancer
cells reveal immune modulation and cellular invasion
as key features of cancer progression. When comparing
cancer cells from TN and PD samples, we found 958 differ-
entially expressed genes with higher expression in PD cancer
cells (Supplemental Table 4). Within those genes, we identi-
fied genes involved in the kynurenine pathway and multiple
genes and pathways associated with tumor invasion, metasta-
sis, cell viability, and inflammation (Supplemental Table 5).
We observed a significant (p < 0.0001) increase in the ex-
pression of IDO1, KYNU, and QPRT, which are each in-
volved in the kynurenine pathway, in the PD versus TN can-
cer cells (Figure 3E, Supplemental Figure 3F, Supplemental
Table 2). The kynurenine pathway metabolizes tryptophan
generating catabolite intermediates that are further processed
to replenish cellular NAD+ and support immunomodulatory
roles (Triplett et al., 2018; Zhai et al., 2018). Expression
of IDO1, KYNU, and QPRT can result in immunosuppres-
sive behavior (Triplett et al., 2018). Our data indicate that
cancer cells within PD tumors may inhibit the activity of the
immune system during targeted therapy. The identification
of this pathway as a mediator of immune suppression within
PD tumors has important potential therapeutic implications,
as IDO1 is known to be upregulated in many cancers (Cheong
and Sun, 2018; Hornyák et al., 2018; Liu et al., 2018). Multi-
ple clinical trials have attempted to block this pathway using
IDO1 inhibitors as a monotherapy as well as in combination
with immune checkpoint inhibitors or hormone therapy (Ric-
ciuti et al., 2019), albeit with limited success. QPRT also ex-
hibited increased expression specifically at day 70 of EGFR
inhibitor treatment (i.e. acquired resistance and the analog
of clinical PD) of our in vitro model using PC9 cells (Figure
3F), reinforcing the assertion that this pathway is indicative
of cancer progression under the selective pressure of treat-
ment.

To further demonstrate the clinical relevance of the kynure-
nine pathway, we again used the TCGA lung adenocarci-
noma RNAseq dataset. Increased expression of the kynure-
nine pathway signature was a biomarker of worse OS (p =
0.017) (Figure 3G). This is consistent with the notion that
activation of this pathway leads to immunosuppression and
an inability of the immune system to effectively surveil and

eradicate cancer cells.

Longitudinal scRNAseq profiles of cancer cells
change from RD to PD. We compared cancer cells from
RD and PD patient samples to elucidate the differences that
occur during the outgrowth of PD from RD and found a total
of 2011 genes which had significantly (p<0.001) increased
expression in either RD or PD (NRD=874, NPD=1,137) (Sup-
plemental Table 4). Among the differentially overexpressed
genes at RD were genes associated with the alveolar cell sig-
nature, cell growth, differentiation, and cell motility (Sup-
plemental Table 5). RD cancer cells overexpress surfactant
genes (SFTPB/C/D and SFTA3) which are part of the alveo-
lar cell signature (Figure 3A, Supplemental Figure 3B) (De-
sai et al., 2014; Treutlein et al., 2014; Wang et al., 2018).
Furthermore, RD cancer cells also overexpress the putative
tumor suppressor DLC1, which is a member of the RhoGAP
family of negative regulators of Rho GTPases and can be
downregulated in NSCLC (Healy et al., 2008; Yuan et al.,
2004). High expression of DLC1 was associated with an im-
proved survival in NSCLC (Sun et al., 2019). NKX2-1 and
NFIX were overexpressed in RD cancer cell and are associ-
ated with decreased cell motility (Ge et al., 2018; Rahman et
al., 2017a; Winslow et al., 2011). Low expression of NKX2-1
leads to loss of differentiation and enhanced tumor seeding
ability (Winslow et al., 2011). The collective findings arising
from this and the previous RD cancer cell analyses suggest
that an injury-repair and regenerative cell state may promote
cancer cell indolence, increased tumor control, and improved
clinical outcomes.

By contrast, PD cancer cells differentially overexpressed
genes associated with invasion, cell-to-cell communication,
differentiation and immune modulation (Supplemental Ta-
ble 5). Several genes in the plasminogen activation pathway
were significantly overexpressed (ANXA2, PLAT, PLAUR,
PLAU) (Figure 3H) along with the plasminogen inhibitor
SERPINE1 (PAI1) (p<0.0001, Figure 3I, Supplemental Fig-
ure 3G). ANXA2 and PLAUR are the receptor proteins in the
plasminogen activation cascade and involved in inflamma-
tion, angiogenesis, invasion and metastasis, via degradation
of the extracellular matrix (Kubala et al., 2018; Zhu et al.,
2017). Signaling is initiated when ANXA2 or PLAU binds
to PLAT (uTa) or PLAU (uPa), respectively. Plasminogen is
then degraded to plasmin through the activity of PLAT and/or
PLAU leading to activation of metalloproteinases and degra-
dation of fibrin. SERPINE1 shows increased expression in a
number of cancer subtypes and plays important roles in cell
adhesion, invasion, tumor vascularization, radio-resistance,
and immunosuppression (Kubala et al., 2018; Zhu et al.,
2017). High expression of the plasminogen activation signa-
ture correlated with worse OS (p=0.0029) within the TCGA
lung adenocarcinoma RNAseq dataset (Figure 3J). Similarly,
in this independent dataset high expression of SERPINE1
was associated with worse OS (p=0.012) (Figure 3K). In-
terestingly, EGFR inhibitor therapy can induce expression of
SERPINE1 and EGFR mutation positive patients with greater
than two-fold induction of SERPINE1 (PAI1) plasma levels
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Fig. 3. Differential gene-expression analysis between treatment timepoints reveals treatment stage specific transcriptional signatures (A) Boxplots showing the
expression level of the alveolar signature across different treatment timepoints as well as non-cancerous AT2 cells from our cohort. (B) Fold change expression of NKX2-1 as
quantified by RT-PCR in PC9 cells after treatment with vehicle (2 days), osimertinib at 7 days (RD), 19 days (RD) and at the acquired resistance state for this cell line, day 70
(see methods) (AR), *** indicates p < 0.001. (C) Representative IHC images of TN, RD and PD tumor tissue sections stained for AQP4 demonstrating increased expression
at the RD timepoint. Scale bars correspond to 50um. See Supplemental Figure 3D, E for validation cohort. (D) Kaplan-Meier plot of the relationship between the alveolar
signature and patient OS within the TGCA dataset. Patients were stratified by high (n=143) and low (n=141) signature expression. (E) Box plots showing the expression
levels of the kynurenine signature expression across different treatment timepoints. (F) Fold change expression of QPRT as quantified by RT-PCR in PC9 cells after treatment
with osimertinib as in (B) (see methods) (AR), * indicates p < 0.05. (G) Kaplan-Meier plot of the relationship between the kynurenine signature and patient OS within the
TGCA dataset. Patients were stratified by high (n=146) and low (n=141) signature expression. (H, I) Box plots showing the expression levels of the plasminogen activation,
SERPINE1 pathway signatures across different treatment timepoints. (J, K) Kaplan-Meier plots of relationships between the plasminogen activating pathway signature and
SERPINE1 and patient OS within the TGCA dataset, respectively. Patients were stratified by high and low signature expression. (L) Box plot showing the expression levels of
the gap junction signature across treatment timepoints. (M) Kaplan-Meier plots of relationships between the gap junction signature and patient OS within the TGCA dataset.
Patients were stratified by high and low signature expression.
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Fig. 4. Changes in the composition of the tumor microenvironment within each tumor (A) t-SNE plot of all immune cells colored by immune cell type. Number of cells
for each cell type is provided on the figure legend. (B) Patient occupancy for each immune cell type. (C) Fractional changes for each immune cell type across the three
treatment states. Error bars indicate the 95% confidence interval for the calculated relative frequencies. (D) Representative in situ immunofluorescence images of changes
from TN to RD and TN to PD in tumor tissue sections from two separate samples at two separate timepoints; AZ003(TN and RD), TH281 (TN and PD). Scale bars correspond
to 50 µm. (E and F) Quantification of the fractional changes of macrophages and T-cells, respectively, across treatment timepoints from the images in D and Supplemental
Figure 5F.
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during EGFR inhibitor treatment demonstrate shorter pro-
gression free survival (Arasada et al., 2018). Collectively,
our longitudinal scRNAseq-based findings shed light on the
clinical relevance and potential role of the plasminogen acti-
vation cascade in inferior clinical outcomes and targeted ther-
apy resistance.

Additionally, we found several gap junction proteins differ-
entially overexpressed in PD cancer cells compared to RD
cancer cells (p<0.0001, Figure 3L, Supplemental Table 2).
Gap junction proteins (e.g. connexins) are integral membrane
proteins that allow for cytosolic exchange of ions, metabo-
lites and secondary messengers between cells (Aasen et al.,
2016; Sinyuk et al., 2018). While some have been identi-
fied as tumor suppressors, we found that high expression of
GJB2/3/4/5 (Supplemental Figure 3H) was linked to worse
survival in the TCGA lung adenocarcinoma RNAseq dataset
(p=0.00083) (Figure 3M). These collective findings suggest
a pro-tumor effect not only in our cohort but also in NSCLC
more generally.

In summary, within cancer cells we identified a rich complex-
ity of clinically-relevant, expressed mutations that may im-
pact therapy response. Furthermore, evaluation of transcrip-
tional profiles of individual tumor cells longitudinally across
different treatment timepoints identified several clinically-
relevant cell state changes (Supplemental Figure 3I). The
therapy-induced cancer cell adaptions highlighted in our
study offer new potential biomarkers and therapeutic strate-
gies for patients with advanced-stage NSCLC.

Longitudinal scRNAseq analysis of an individual pa-
tient’s tumor during treatment. Obtaining consecutive
clinical tumor biopsies from individual advanced-stage lung
cancer patients before and during treatment is challenging.
Nevertheless, we obtained samples from the same primary tu-
mor site from 3 treatment timepoints from a patient (TH226)
whose tumor contained a standard EGFR exon 19 deletion
oncogenic mutation and was treated with the EGFR inhibitor
osimertinib (Supplemental Figure 4A-C). In all 3 biopsies,
we identified by scRNAseq RNA expression of the EGFR
exon 19 driver mutation in the cancer cells and several other
mutations of interest (Supplemental Figure 4D).

When comparing TH226 to the rest of scRNAseq dataset,
we found overlapping differentially expressed genes and sig-
natures (Supplemental Table 4, Supplemental Figure 4E-
H). Intriguingly, we also found numerous genes associated
with squamous cell differentiation (KRT16, KRT14, KRT6A,
KRT5, CLCA2, PKP1, ANXA8, DSG3) overexpressed at PD
compared to TN and RD timepoints (p<0.0001, Supplemen-
tal Figure 4I, Supplemental Tables 4-5) (Ben-Hamo et al.,
2013; Chao et al., 2006; Goodwin et al., 2017). This is
particularly interesting given that the patient’s lung tumor
biopsy at PD demonstrated a histologic shift to squamous
cell carcinoma from that of prior biopsies that showed pure
adenocarcinoma histology (Supplemental Figure 4C). Histo-
logic transformation to squamous cell carcinoma is a mecha-
nism of EGFR inhibitor resistance in EGFR-mutant NSCLC

(Izumi et al., 2018; Jukna et al., 2016). Thus, scRNAseq
has the power to provide a high resolution, gene and pathway
level view of biological and histological plasticity that arises
during cancer drug treatment.

Longitudinal inversion of myeloid and lymphoid infil-
tration within the TME at progressive disease com-
pared to residual disease. We next addressed the evolu-
tion of the TME during targeted treatment. The immune cells
(n=12,077) were separately clustered and annotated as pri-
mary immune cell types (Figure 4A, Supplemental Table 4).
In contrast to clusters of cancer cells, which clustered pri-
marily from a single patient sample (Supplemental Figure
2C), immune cell type clusters were each composed of cells
derived from multiple different patients and biopsies (Figure
4B). This is consistent with the expectation of finding com-
mon immune cell phenotypes across patients and samples.
We compared the immune cell composition across all 3
timepoints, expressed as the correlation between fractional
immune cell abundance vectors. The immune composi-
tion within RD was the most dissimilar from the other two
treatment states (r=0.63 versus TN samples, r=0.7 versus
PD samples, Pearson’s correlation coefficient) (Supplemen-
tal Figure 5A). Across all treatment timepoints, T-cells and
macrophages were the dominant cell populations and demon-
strated an inversion in relative abundance during tumor re-
sponse and resistance to treatment, a finding we examined
further as described below (Figure 4C). T-cells comprised a
larger fraction of all immune cells within the TME at RD
compared to TN or PD samples ( 25% T-cells TN, 46% RD,
32% PD). Macrophage infiltration followed the inverse pat-
tern, with a decrease in macrophages at RD compared to TN
and PD ( 34% Macrophages TN, 15% RD, 37% PD).

In 2 patients, we examined the immune cells from matched
tumor biopsies obtained at different treatment timepoints
(TH226 and TH266, Supplemental Figure 5B and C, respec-
tively). In the 2 tumor biopsies available for patient TH266,
both macrophages and T-cells showed identical patterns to
those observed across the entire cohort: a reduction in the
fraction of macrophages and an increase in the fraction of
T-cells from TN to RD (Supplemental Figure 5D). TH226
exhibited a similar pattern with the fraction of macrophages
decreasing at RD after initiation of treatment and increas-
ing again at PD (Supplemental Figure 5E). In an orthogonal
dataset, we performed immunofluorescence analysis using
macrophage and T-cell specific markers (see methods, Figure
4D, Supplemental Figure 5F). These analyses validated our
scRNAseq findings and demonstrated consistent macrophage
and T-cell populations changes during treatment (Figure 4E-
F). Additionally, we deconvoluted TCGA bulk transcriptome
data for NSCLC into fractions of immune cells types (see
Methods) and found that TCGA samples with high fractions
of macrophages had significantly worse OS (p<0.01) (Sup-
plemental Figure 5G). This suggests additional clinical rele-
vance of our observations.

These findings are particularly intriguing given their similar-
ity to melanoma tumors treated with PD-1 inhibitor (Riaz et
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Fig. 5. Immune cell subpopulations demonstrate unique transcriptional profiles within each treatment timepoint (A) Fraction of cells belonging to each treatment
stage for each lung-derived macrophage cluster in Supplementary Figure 6. Error bars indicate the 95% confidence interval for the calculated relative frequencies. (B)
Violin plots showing the expression level distribution of notable individual genes (C) Fraction of cells belonging to each treatment stage for each lung-derived T-cell cluster in
Supplementary Figure 6. Error bars indicate the 95% confidence interval for the calculated relative frequencies. (D) Violin plots showing the expression level distribution of
notable individual genes. (E) Graphical summary of immune microenvironment changes across treatment timepoints.
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al., 2017), albeit here in the distinct context of oncoprotein-
targeted therapy in lung cancer. Specifically, an increase in
the number of CD8+ T-cells and NK cells and a decrease in
M1 macrophages were observed in melanoma during PD-1
inhibition. There may be common responses in NK/T cells
and macrophages during treatment across different tumor his-
tologies and treatments. Hence, conserved approaches to tar-
geting RD across different cancer subtypes and therapeutic
modalities may exist, an area for future investigation.

An IDO1-expressing macrophage population is en-
riched at PD. Macrophages from lung tumor biopsies
(n=1,034) were subset and clustered into 5 distinct groups
(Supplemental Figure 6A). We then evaluated the differential
gene expression in each resulting cluster (Supplemental Fig-
ure 6B, Supplemental Table 4). We calculated the fraction of
cells originating from each of the three treatment groups in
each of the 5 macrophage clusters (Figure 5A).

Cluster MF0, found equally among all three treatment time-
points, was enriched for THBS1 and PTX3 (Figure 5B, Sup-
plemental Figure 6B), which are associated with resolution
of inflammation, wound healing, and with inhibition of IL-1β
(Bouhlel et al., 2007; Faz-López et al., 2016; Martinez and
Gordon, 2014; Puig-Kröger et al., 2009; Shiraki et al., 2016;
Stein et al., 2016). Macrophage clusters MF3 and MF4 were
relatively enriched for TN cells. Both clusters were char-
acterized by expression of different genes associated with
an immunosuppressive phenotype (FOLR2, MARCO, RETN,
PPARG, CCL13) (Figure 6B, Supplemental Figure 6B, Sup-
plemental Table 4). Macrophages at PD are overrepresented
in group MF1 (Figure 5A), and expressed pro-inflammatory
cytokines CXCL9, CXCL10, and CXCL11 (Figure 5B, Sup-
plemental Figure 6B), which favor lymphocyte recruitment
into the TME (Nagarsheth et al., 2017). Top differentially ex-
pressed genes in this population also included the guanylate-
binding family proteins GBP1and GBP5, which are induced
in IFN-γ-activated macrophages and promote inflammatory
signaling within the innate immune system via inflamma-
some assembly (Shenoy et al., 2012). (Figure 5B, Supple-
mental Figure 6B).

Despite the expression of pro-inflammatory genes within
the MF1 macrophages, the top differentially expressed gene
within this group of PD-specific macrophages was IDO1
(Figure 5B). IDO1 is induced by inflammation within the
TME and promotes a tolerogenic environment through im-
munosuppressive myeloid cell populations, regulatory T cell
(Treg) differentiation, and an immunosuppressive cytokine
milieu (Munn and Mellor, 2016).

An immunosuppressive T-cell phenotype is predomi-
nant within the TME at PD. T-cells and NK cells (n=1,725)
were analyzed in the same manner as macrophages and re-
sulted in 7 distinct T/NK cell populations (Figure 5C). These
included one population (TC2) enriched in TN samples, and
3 populations (TC4, TC5, and TC6) enriched at PD (Figure
5C-D, Supplemental Figure 6D). There was a high fraction
of T-cells in RD tumors (Figure 4C) and there was no single

T-cell cluster which demonstrated an excess of T-cells in RD
(Figure 5C).

Both TN and PD T-cells demonstrated a relative decrease in
T-cell infiltration (Figure 4C). TC2 cluster cells, enriched in
TN, expressed markers consistent with an NKT cell pheno-
type, including both T-cell (CD3, CD8) and NK cell mark-
ers (KIR2DL3, FCGR3A), which were less represented in
RD and PD samples (Figure 5D, Supplemental Figure 6D).
While overall T-cell infiltrate remained limited at PD (Figure
4C), there was relative enrichment for T-cell phenotypes with
immunosuppressive features, including T-cell clusters TC4,
TC5, and TC6 (Figure 5C). TC4 was identified as a CD4+ T-
cell cluster with an exhausted phenotype, characterized by
expression of the inhibitory receptors PDCD1 and CTLA4
(Wherry and Kurachi, 2015) (Figure 5D). The T-cells within
this cluster also expressed CXCL13, which suggests that
these cells may have features of PD-1-expressing T-follicular
helper cells (Tfh). Tfh cells function in crosstalk with the
humoral immune system to promote B-cell activation and
immunologic memory (Crotty, 2014). TC5 was composed
of proliferating Treg cells (expressing FOXP3, IL2RA, Ki67,
TOP2A). Finally, TC6 is composed of NK cells (KIR2DL4,
GNLY), the majority of which did not highly express CD3
or FCGR3A (CD16) (Figure 5D). This suggests limited cy-
totoxic function and is consistent with reports of infiltration
by poorly cytotoxic NK cells within NSCLC more generally
(Carrega et al., 2008), albeit without a prior link to tumors
progressing on targeted therapy.

Tumor biopsies obtained at RD revealed the presence of a
more pro-inflammatory, “hot”, TME which was absent in
TN or PD biopsy samples as manifested by increased overall
proportion of T-cells and enrichment of effector T-cell phe-
notypes (Figure 5E). The majority of the RD T-cells were
contained in TC0 and TC1. Cluster TC0 was composed of
cytotoxic CD8+ T-cells (CD8, IFNG, GZMK), while clus-
ter TC1 was composed of CD4+ T-cells that are negative
for co-inhibitory receptor expression (CD4, CCR7, IL7R)
(Figure 5D, Supplemental Figure 6D), in contrast to the
PDCD1/CTLA4 expressing CD4+ T-cells seen in the PD
samples.

In summary, both the TN and PD TME were characterized
by the relative predominance of macrophage infiltration over
T-cell infiltration; however, the phenotypic characteristics of
these infiltrating immune cells differ between the two groups.
At PD, there was infiltration by an IDO1+ macrophage pop-
ulation, of proliferating regulatory T-cells, and of exhausted
CD4+ T-cells which were minimally present at earlier phases
of treatment. In contrast, the TN state was characterized by
a predominance of more classically immunosuppressive M2-
like macrophages (Sica et al., 2008). By distinction, in RD
there was increased infiltration of effector T-cell populations
with signatures of activity and decreased immunosuppressive
macrophage infiltration (Figure 5E).
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Fig. 6. scRNAseq profiles reveal clinical-state specific features of the tumor cellular ecosystem Features of cancer progression and survival. Common features, found
at all treatment timepoints, are shown in the upper left quadrant and include the presence of multiple oncogenic drivers (1). Features shared in RD and PD are shown in
the upper right quadrant and include various invasive signaling pathways (2). Features unique at RD, shown in the lower right quadrant, include the Alveolar signature (3)
and increased T-cell fraction (4). Features unique to PD, shown in the lower left quadrant, include upregulation of the plasminogen activation pathway (5), expression of gap
junction proteins (6), loss of tumor suppressor genes (7), expression of pro-inflammatory chemokines (8), increased Treg population (9), and increased kynurenine signature
expression (10).

Discussion

Though emerging, there remains an incomplete catalogue of
single-cell transcriptional data to understand the cell states
and therapy-induced evolution of biological heterogeneity of
major diseases such as cancer. Precision medicine treatments
such as small molecule targeted therapies and immunother-
apies have improved cancer patient survival. However, tu-
mors continuously evolve and resistance to these therapies
is nearly inevitable. Tumor heterogeneity impacts treatment
response and resistance and pertains to cancer cells and the

immune and stromal components of the TME (Andor et al.,
2016; Morris et al., 2016; Rybinski and Yun, 2016; Swan-
ton, 2012). Cellular plasticity, as a contributor to heterogene-
ity, has been under-explored in longitudinal clinical tumor
biopsies of advanced-stage solid malignancies and is likely
to be a key contributor to tumor resilience to systemic ther-
apy and the development of treatment resistance. Single-cell
transcriptional data are invaluable in our attempt to under-
stand the cell states and therapy-induced evolution of biologi-
cal heterogeneity in cancer, particularly in metastatic disease.
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Our scRNAseq analyses of advanced-stage NSCLC biopsies
obtained longitudinally from individual patients and the clin-
ical cohort as a whole elucidate the rich mutational and tran-
scriptional diversity within individual tumor samples and the
dynamic changes in the transcriptional profiles of cancer cells
and the TME composition during treatment. These features
are clinically-relevant in NSCLC, as we link them to dis-
tinct treatment timepoints and clinical states and to differen-
tial survival outcomes in independent clinical cohorts such as
the MSK-IMPACT and TCGA datasets. Our findings provide
a roadmap that highlights the underlying cellular ecosystem
and mechanisms to further explore to improve response to
treatment.

An important first step was to develop and optimize a clin-
ical pipeline to capture tumor biopsy samples from a treat-
ment phase that is infrequently captured in solid malignan-
cies: namely the phase of RD during initial molecular treat-
ment. Our study offers a rare view of the clinically-relevant
biological processes that characterize this poorly-understood
phase of the evolution of advanced-stage solid malignancies
(here, lung cancer) and creates a resource for both discovery
purposes and validation of pre-clinical studies (Blakely et al.,
2015; Ramirez et al., 2016; Sharma et al., 2010; Spitzer et al.,
2017). We demonstrate successful use of these tumor sam-
ples in combination with plate-based scRNAseq in metastatic
NSCLC samples. This is critical, as patients with metastatic
disease do not routinely receive surgical resection as part of
their treatment. Thus, techniques for single-cell profiling that
require larger amounts of tissue are not suitable for the in-
terrogation of tissue samples from metastatic disease (Lam-
brechts et al., 2018; Schelker et al., 2017).

Our scRNAseq data was leveraged to query for the presence
of cancer-relevant mutations within expressed regions of the
genome. This revealed widespread intra-tumoral heterogene-
ity in oncogenic alterations that are expressed in cancer cells.

The scRNAseq data complement and extend current clini-
cal analyses which typically: (1) profile a limited subset of
genes, (2) provide a view of DNA changes without valida-
tion of gene expression, and (3) are performed at bulk cellular
scale (Figure 2). Our data suggest that individual cancer cell
populations can show expression of the putative oncogenic
driver and multiple additional mutations in genes of known
oncogenic importance (Figure 6, #1). This is relevant as it
provides a potential explanation for why complete responses
to treatment are rare. Cancer cells, and their occult genetic
subpopulations as revealed by high-resolution scRNAseq, in
human tumors already harbor the appropriate genetic frame-
work and evolutionary playbook to evolve resistance. These
‘hard-wired’ properties that can remain undetected by current
bulk sampling analysis are further bolstered by the therapy-
induced transcriptional plasticity that we demonstrated by
longitudinal scRNAseq profiling.

We uncovered transcriptional signatures specific to different
treatment time points and clinical states (Figure 3, Figure 6
#3, #5, #6, #7). The majority of these signatures (kynurenine
pathway, plasminogen activation pathway, SERPINE1, and
gap junction genes) were biomarkers of significantly worse
overall survival in TCGA lung adenocarcinoma samples and
were most pronounced at PD. Conversely, we found the alve-
olar cell signature was enriched at RD and was associated
with improved survival. Our data highlight a connection from
the alveolar cell signature to the WNT/ β-catenin pathway
as a mechanism of injury-response regeneration. Though
the WNT/ β-catenin pathway is potentially therapeutically-
targetable, (Krishnamurthy and Kurzrock, 2018) it will be
critical to determine how to best modulate this pathway to
impact residual cancer cell survival. A general principle our
data highlight is that by employing targeted treatments that
take advantage of specific cell states we may be able to en-
gineer cancer cell fate(s) to improve therapeutic responses in

ID Feature Therapeutic approach References
1 Multiple targetable mutations Combination targeted therapy (McCoach and Bivona, 2019)

2 Invasion pathways Targeted inhibition
(Rahman et al., 2017b;
Zhang et al., 2016, 2019b)

3
Increased immunostimulatory
T-cells Immune system modulation

(Ha etal., 2019; Jenkins et al., 2018;
Souza-Fonseca-Guimaraes et al., 2019;
Valkenburg et al., 2018)

4 Alveolar signature Targeted inhibition (Nabhan et al., 2018c; Zhang et al., 2019b)
5 Plasminogen activation signature Targeted inhibition (Mahmood et al., 2018; Zhang et al., 2019b)

5 SERPINE1 signature
Targeted inhibition and
immune modulation (Placencio and DeClerck, 2015)

6 Gap Junction signature Targeted inhibition
(Wu and Wang, 2019;
Mulkearns-Hubert et al., 2019)

7 Loss of Tumor suppressors Targeting acquired vulnerabilities (Ding et,al., 2019)

8
Increased pro-inflammatory
chemokines Immune system modulation (Tokunaga et,al., 2018)

9 Increased Tregs Immune system modulation (Tanaka and,Sakaguchi, 2019)

10 Kyurenine signature
Targeted inhibition and
immune modulation (Labadie et al., 2019)

Table 1. Table of common and unique features in different treatment timepoints and possible therapeutic approaches

Maynard et al. | Heterogeneity and targeted therapy-induced adaptations in lung cancer revealed by longitudinal single-cell RNA sequencing bioRχiv | 13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.08.868828doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.08.868828
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

metastatic solid malignancies, expanding upon this concept
in practice in acute promyelocytic leukemia (Chomienne et
al., 1990). If deployed at the appropriate time, treatments
that target liabilities of a specific cell state or prevent fur-
ther adaptation may help improve patient survival by con-
straining continued tumor evolution towards complete drug
resistance. It is possible that inhibition of the factors driv-
ing the primitive cell state transition at RD could remove
this protective biological state and eliminate RD cancer cells.
It remains unclear whether the cell state(s) present at RD is
unique to cancer cells receiving targeted therapy or also ap-
plies to chemotherapy and immunotherapy, an area for future
investigation. We have highlighted ongoing efforts targeting
signatures we discovered in Table 1 that could be explored to
improve targeted therapy response.

Beyond cancer cell-intrinsic signatures, we also explored
changes in the TME during treatment. We found a rela-
tively low T-cell infiltration in the TME of TN and PD pa-
tients (Figure 5C-D), consistent with prior reports of low
cytotoxic T-cell infiltration in treatment-naive EGFR-mutant
NSCLC (Gainor et al., 2016). Our results uncovered an in-
duction of a more inflammatory phenotype during RD on
targeted therapy, hallmarked by infiltration of cytotoxic T-
cells (Figure 6, #4) and decreased infiltration of immunosup-
pressive macrophages (Figure 5E). This inflammatory state
may represent a complement to the alveolar cell, injury-repair
and regenerative state present in the cancer cell compartment
(described above), with the potential for crosstalk between
the cancer cells and TME. These TME changes were tran-
sient, as at PD there was enrichment for IDO1-expressing
macrophages, regulatory T-cells, and other immunosuppres-
sive T-cell populations. These are all features of an environ-
ment hostile to the establishment of an effective immunologic
response (Figure 6, #9, #10). The induction of a more im-
munostimulatory phenotype during targeted therapy (i.e. in
RD) may offer a window-of-opportunity to introduce novel
TME target-based combination therapies around the time of
RD in the context of a more favorable TME to increase ini-
tial response and consolidate treatment in a multi-modal ap-
proach.

Cancer cell signaling and the TME are linked and there may
be treatment strategies which target both compartments con-
currently. We identified two such examples: the kynure-
nine pathway and SERPINE1. In the kynurenine path-
way, we identified increased pathway activation in cancer
cells and myeloid cells at PD (Figure 6, #5). IDO1, as a
rate limiting enzyme in the kynurenine pathway, can influ-
ence diverse components of the TME including T-cell and
myeloid cell populations as well as angiogenesis in favor
of immunosuppression (Munn and Mellor, 2016). The use
of IDO1 inhibitors as part of a combination immunother-
apy strategy with PD1/PDL1 checkpoint inhibitors showed
promise in early-phase studies (Siefker-Radtke et al., 2018),
yet ultimately failed to demonstrate improved outcomes in
advanced-stage melanoma (Long et al., 2018). We demon-
strated distinct evolving TME states, suggesting that there
may be a window-of-opportunity at which point kynurenine

pathway inhibitors may be more effective (Figure 6, Table 1).
Similarly, SERPINE1 is notable for its activity in both can-
cer cells, as we identified, and the immune system (Placencio
and DeClerck, 2015). Utilizing therapies that leverage this
multi-cellular crosstalk may improve patient outcomes.

In summary, the scRNAseq dataset presented here demon-
strates the feasibility of performing scRNAseq on tumor
biopsies obtained longitudinally at clinically-relevant time-
points during the active targeted treatment of advanced-stage
solid malignancy patients. Understanding each of the fea-
tures we discovered and highlighted (Figure 6) in individual
cells, as revealed by scRNAseq, is critical to deconvolute tu-
mor biological heterogeneity and evolution during systemic
therapy. The data provide a more granular biological foun-
dation to develop strategies for the elimination or neutraliza-
tion of RD to induce more durable responses for patients with
advanced-stage NSCLC and potentially other solid malignan-
cies across different therapeutic modalities.
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Code

All code can be found on github �czbiohub/scell_lung_adenocarcinoma and �czbiohub/cerebra.

Materials and Methods
Patient population. All patients gave informed consent for collection of clinical correlates, tissue collection, research test-
ing under Institutional Review Board (IRB)-approved protocols (CC13-6512 and CC17-658, NCT03433469). Formalin-fixed
paraffin embedded (FFPE), frozen, and fresh tissue samples were obtained according to the safety standards of the interven-
tional radiologist, pulmonologist, or surgeon. Demographic and clinical history for each patient was obtained from chart review.
Days until progression were determined based on imaging studies which demonstrated definitive growth of a known tumor site
or new extra-CNS metastatic deposits. Residual disease state was determined by serial imaging demonstrating continued re-
duction or stability tumor with no evidence of progression. Patient studies were conducted according to the Declaration of
Helsinki, the Belmont Report, and the U.S. Common Rule.

Sample preparation of core and resection samples. Tissue was first cut sample into small pieces and placed into a 1.5
mL tube (or multiple tubes if necessary). 1.5 mL of collagenase buffer (10mL DMEM (GE Life Sciences, SH30081.01), 0.20 g
Collagenase Type 2 (Worthington Biochemical, LS004176)) was added to the tube and the sample was digested for 30 minutes
at 37°C, shaking in a thermomixer @ 800-1000 rpm. The sample was manually agitated by pipetting up and down 15 times
then returned to the thermomixer for 25 minutes. After incubation, the sample was removed from the thermomixer, agitated
again by pipetting the sample up and down 15 times before passing the sample through a 100-micron filter (Fisherbrand,
22363548) into a new 15 mL falcon tube. The filter was washed with 1-2 mL of collagenase buffer before the sample was
spun in the centrifuge at 500xg for 10 minutes. If the resulting cell pellet was red, 0.5 mL RBC lysis buffer (Thermo Fisher
Scientific, A1049201) was added to sample tubes and allowed to sit at room temperature for 3 minutes before quenching
with 1.0 mL DMEM (GE Life Sciences, SH30081.01) + 6% FBS (Omega Scientific, Inc, FB-11) and spun in the centrifuge
at 500xg for 5 minutes. Remaining cells were stained with 10 µl CD45-FITC (Miltenyi Biotec, 130-080-202) and 1 µl of
Hoechst stain (Thermo Fisher Scientific, H3570). Samples incubated on ice in the dark for 20 minutes. One mL of FACS
Buffer was then added to the stained cells and spun at 500xg for 10 minutes before aspirating off supernatant. Cells were
resuspended with 0.5 mL of FACS Buffer. PI (Life Technologies, P3566) was added immediately prior to sorting (protocols.io:
dx.doi.org/10.17504/protocols.io.65rhg56).

Sample preparation of thoracentesis. samples Cells were filtered through a 100 µm strainer (Fisherbrand 22363548), pel-
leted (500xg, 5 min, 4°C), and resuspended in FACS buffer. Cells were then stained with CD45-FITC (Miltenyi Biotec,
130-080-202) for 20 min at 4°C in the dark. Cells were then pelleted (500xg, 5 min, 4°C) and resuspended in FACS buffer
before being transferred to a FACS tube (Falcon 14-956-3C). Sytox Blue dead cell stain (Thermo Fisher Scientific, S34867)
was added immediately prior to sorting.

Lysis plate preparation. Lysis plates were created by dispensing 0.4 µl lysis buffer (0.5U Recombinant RNase Inhibitor
(Takara Bio, 2313B), 0.0625% TritonTM X-100 (Sigma, 93443-100ML), 3.125 mM dNTP mix (Thermo Fisher, R0193),
3.125 µM Oligo-dT30VN (IDT, 5’AAGCAGTGGTATCAACGCAGAGTACT30VN-3’) and 1:600,000 ERCC RNA spike-in
mix (Thermo Fisher, 4456740)) into 384-well hard-shell PCR plates (Biorad HSP3901) using a Tempest liquid handler (For-
mulatrix). All plates were then spun down for 1 minute at 3220xg and snap frozen on dry ice. Plates were stored at -80°C until
used for sorting.

FACS sorting. Cells were sorted into 384-well plates using SH800S (Sony) sorter. Cells were sorted using the “Ultra purity”
setting on the sorter. For a typical sort, a tube containing 0.3-1ml the pre-stained cell suspension was vortexed gently and
loaded onto the FACS machine. A small number of cells were flowed at low pressure to check cell concentration and amount of
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debris. Then the pressure was adjusted, flow was paused, the first destination plate was unsealed and loaded. Single-cell sorting
was done where half the plate was sorted for CD45+/PI-/Hoechst+ while the second half was sorted for CD45-/PI-/Hoechst+.
Immediately after sorting, plates were sealed with a pre-labeled aluminum seal, centrifuged and flash frozen on dry ice.

cDNA synthesis and library preparation. cDNA synthesis was performed using the Smart-seq2 protocol (Picelli et al.,
2013, 2014). Briefly, 384-well plates containing single-cell lysates were thawed on ice followed by first strand synthe-
sis. 0.6 µl of reaction mix (16.7 U/µl SMARTScribe Reverse Transcriptase (Takara Bio, 639538), 1.67 U/µl Recombi-
nant RNase Inhibitor (Takara Bio, 2313B), 1.67X First-Strand Buffer (Takara Bio, 639538), 1.67 µM TSO (Exiqon, 5’-
AAGCAGTGGTATCAACGCAGACTACATrGrG+G-3’), 8.33 mM DTT (Bioworld, 40420001-1), 1.67 M Betaine (Sigma,
B0300-5VL), and 10 mM MgCl2 (Sigma, M1028-10X1ML)) was added to each well using a Tempest liquid handler or
Mosquito (TTP Labtech). Reverse transcription was carried out by incubating wells on a ProFlex 2x384 thermal-cycler (Thermo
Fisher) at 42°C for 90 min and stopped by heating at 70°C for 5 min.
Subsequently, 1.5 µl of PCR mix (1.67X KAPA HiFi HotStart ReadyMix (Kapa Biosystems, KK2602), 0.17 µM IS PCR primer
(IDT, 5’-AAGCAGTGGTATCAACGCAGAGT-3’), and 0.038 U/µl Lambda Exonuclease (NEB, M0262L)) was added to each
well with a Mantis liquid handler (Formulatrix) or Mosquito, and second strand synthesis was performed on a ProFlex 2x384
thermal-cycler by using the following program: 1. 37°C for 30 minutes, 2. 95°C for 3 minutes, 3. 23 cycles of 98°C for 20
seconds, 67°C for 15 seconds, and 72°C for 4 minutes, and 4. 72°C for 5 minutes.
The amplified product was diluted with a ratio of 1 part cDNA to 10 parts 10mM Tris-HCl (Thermo Fisher, 15568025). 0.6 µl
of diluted product was transferred to a new 384-well plate using the Viaflow 384 channel pipette (Integra). Illumina sequencing
libraries were prepared as described in (Darmanis et al., 2015). Briefly, tagmentation was carried out on double-stranded cDNA
using the Nextera XT Library Sample Preparation kit (Illumina, FC-131-1096). Each well was mixed with 0.8 µl Nextera
tagmentation DNA buffer (Illumina) and 0.4 µl Tn5 enzyme (Illumina), then incubated at 55°C for 10 min. The reaction was
stopped by adding 0.4 µl “Neutralize Tagment Buffer” (Illumina) and spinning at room temperature in a centrifuge at 3220xg
for 5 min. Indexing PCR reactions were performed by adding 0.4 µl of 5 µM i5 indexing primer, 0.4 µl of 5 µM i7 indexing
primer, and 1.2 µl of Nextera NPM mix (Illumina). All reagents were dispensed with the Mantis or Mosquito liquid handlers.
PCR amplification was carried out on a ProFlex 2x384 thermal cycler using the following program: 1. 72°C for 3 minutes, 2.
95°C for 30 seconds, 3. 12 cycles of 95°C for 10 seconds, 55°C for 30 seconds, and 72°C for 1 minute, and 4. 72°C for 5
minutes.

Library pooling, quality control, and sequencing. Following library preparation, wells of each library plate were pooled
using a Mosquito liquid handler. Pooling was followed by two purifications using 0.7x AMPure beads (Fisher, A63881).
Library quality was assessed using capillary electrophoresis on a Fragment Analyzer (Agilent) or Tapestation (Agilent), and
libraries were quantified by qPCR (Kapa Biosystems, KK4923) on a CFX96 Touch Real-Time PCR Detection System (Biorad).
Plate pools were normalized to 2 nM and equal volumes from library plates were mixed together to make the sequencing sample
pool.

Sequencing libraries from 384-well plates. Libraries were sequenced on the NextSeq or NovaSeq 6000 Sequencing System
(Illumina) using 2 x 100bp paired-end reads and 2 x 8bp or 2 x 12bp index reads. NextSeq runs used high output kits, whereas
NovaSeq runs used either a 200 or 300-cycle kit (Illumina, 20012860). PhiX control library was spiked in at 1%.

Alignment and gene counts. Sequences from the Illumina sequencing were demultiplexed using bcl2fastq version
2.19.0.316. Reads were aligned using the hg38 genome using STAR version 2.5.2b with parameters TK. Gene counts were pro-
duced using HTSEQ version 0.6.1p1 with default parameters except stranded was set to false and mode was set to intersection-
nonempty.

General clustering. Standard procedures for filtering, variable gene selection, dimensionality reduction, and clustering were
performed using the Seurat package (Satija et al., 2019) (version 2.3.4) in R (R Core Team (2013). R: A language and en-
vironment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/),
where cells with fewer than 500 genes and 50,000 reads were excluded. Samples with less than 10 total cells were filtered
from the analysis. Counts were log-normalized, then scaled by linear regression against the number of reads. Variable genes
(Ngenes=6,112) were selected using a threshold for dispersion, with z-scores normalized by expression level. The variable
genes were projected onto a low-dimensional subspace using principal component analysis. The number of principal com-
ponents (Npcs) were selected based on inspection of the plot of variance explained (Npcs = 20). A shared-nearest-neighbors
graph was constructed based with metric the Euclidean distance in the low-dimensional subspace. Cells were visualized using
a 2-dimensional tSNE on the same distance metric (Res = 0.5, Kparam = 30, script 03). Cell types were assigned to each cluster
of cells using the abundance of known marker genes (Supplemental Table 2, script S01-03 and script NI01).
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Epithelial subset clustering, identification of tumor cells, and annotation of non-tumor epithelial cells. Cells
previously annotated as epithelial (n = 5,109) were subset and re-clustered using methods described above and the following
parameters: Ngenes = (6,919), Npcs = 20, Res = 0.9, Kparam = 10 (script NI02). Malignant epithelial cells were identified
using inferCNV (Tickle T, Tirosh I, Georgescu C, Brown M, Haas B (2019). inferCNV of the Trinity CTAT Project. Klarman
Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA,USA.https://github.com/broadinstitute/inferCNV.).
inferCNV which works by finding cells with large copy number variations as determined by sorting expressed genes by their
chromosomal location and applying a moving average, a sliding window of 100 genes within each chromosome, to the relative
expression values (Patel et al., 2014; Puram et al., 2017; Tirosh et al., 2016). All epithelial cells as well as 300 fibroblasts
and 300 endothelial cells were used as input (script NI03). An additional 500 fibroblasts and 500 endothelial cells were used
as reference controls. We scored each cell for the extent of CNV signal and plotted cells on a dendrogram which was then
cut at the highest point in which all the spiked in endothelial and fibroblasts cells belonged to one cluster (k = 3). All cells
that clustered together with spiked in controls were labeled “nontumor”, whereas the remaining two clusters were labeled as
“tumor”.

Nonmalignant epithelial cells (n = 1,489), as determined as those cells lacking large chromosomal aberrations from InferCNV
analysis, were subset and re-clustered using the following parameters: Ngenes = (7,213), Npcs = 20, Res = 0.3, Kparam = 30
(script NI05). Cell types were assigned to each cluster of cells using the abundance of known marker genes (Supplemental
Table 2) and differentially expressed genes as found by using the Seurat function FindAllMarkers using the default Wilcoxon
rank sum test (arguments used: only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25).

Tumor cell subset clustering and differential gene expression. Malignant epithelial cells (n = 3,620), as determined
as those cells harboring large chromosomal aberrations from InferCNV analysis, were subset and re-clustered using the
following parameters: Ngenes = 6,797, Npcs = 15, Res = 0.9, Kparam = 30 (script NI04). We found the differences in
gene expression between the three treatment response groups (TN, RD, and PD) using the Seurat function FindMarkers
using the default Wilcoxon rank sum test. Three separate tests were used to ascertain the differences between: 1) TN and
RD, 2) TN and PD and 3) RD and PD (Supplemental Tables 5). Resulting differential gene lists were then filtered to limit
patient specific effects. This is achieved by setting a threshold for non-zero expressing cells per patient (RD = 3, 37%
of RD patients and PD = 6, 33% of PD patients) and removing differentially expressed genes explained by less than the
thresholds set. The top 100 genes from each comparison were manually curated to evaluate for pathway activation. Decreased
expression could indicate lack of detection due to the stochasticity of scRNAseq and thus for analysis of activated pathways
we focused on upregulated genes. Gene signatures (Supplemental Table 2) were compiled using differential expressed as
well as known cell marker genes. Specifically, the alveolar signature (Supplemental Figure 3B) is made of differentially
expressed AT1/AT2 genes among the cancer cell timepoint comparisons as well has additional known AT1/AT2 genes (Vieira
Braga et al., 2019; Wade et al., 2006). The remaining signatures were identified directly from top differentially expressed genes.

To ensure that we were not misclassifying healthy AT2 cells as cancer cells, we compared the expression levels of our
combined alveolar gene signature between the three timepoints (TN, RD, PD) and non-cancer AT2 cells from our dataset as
well as additional non-cancer AT2 cells from an external dataset (Vieira Braga et al., 2019). Non-cancer AT2 cells from our
dataset were more similar to the external AT2 cells than any of our cancer cells across all timepoints (ρ=0.73, -0.14, 0.23,
-0.19, for non-cancer AT2 cells, and TN, RD, PD cancer cells respectively) (Supplemental Figure 3C).

Longitudinal analysis of a single patient was done by subsetting all cell originating from patient TH226. As above, the dif-
ferences in gene expression between the three treatment response groups (TN, RD, and PD) was found by applying the Seurat
function FindMarkers using the default Wilcoxon rank sum test. Three separate tests were used to ascertain the differences
between: 1) TN and RD, 2) TN and PD and 3) RD and PD (script NI07-08, Supplemental Table 5)

Survival analysis using cancer cell gene signatures within the TCGA. TCGA LUAD data were downloaded from
xenabrowser.net/datapages/. Metadata was downloaded from An Integrated TCGA Pan-Cancer Clinical Data Resource (Liu
et al., 2018a). Mean expression of each cancer cell expression signature (alveolar, kynurenine, plasminogen activating, SER-
PINE1, and gap junction) was calculated per TCGA sample. TCGA samples were then split by quartile groups. Only quartile 4
(high expression) and quartile 1 (low expression) were plotted using library packages survival (Therneau T (2015). A Package
for Survival Analysis in S. version 2.38, https://CRAN.R-project.org/package=survival.) and survminer (Aldoukadel Kassam-
bara, Marcin Kosinski and Przemylslaw Biecek (2019). survminer: Drawing Survival Curves using ‘ggplot2’. R package
version 0.4.5. http://CRAN.R-project.org/package=surviminer) in R (script NI10).

Immunohistochemistry. All specimens were acquired from individuals with NSCLC as noted above. 4-micron thick
formalin-fixed paraffin embedded (FFPE) human tissue sections were processed using previously published method (Haderk
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et al., 2019) and manufacturer’s recommendations for antigen retrieval. Staining was performed overnight AQP4 rabbit mono-
clonal antibody (#59678, Cell Signaling Technology, 1:100 dilution). Stained slides were digitized using an Aperio ScanScope
XT Slide Scanner (Leica Biosystems) with an either an 20X or 40X objective. Tumor populations were annotated, then scored
in a blinded, randomized analysis by a pathologist for percent tumor positivity and subcellular staining intensity at the mem-
brane, cytosolic, and nuclear compartments. Staining intensity was graded as negative, weak, intermediate, or strong and
received scores of 0, 1, 2, or 3 respectively. Percent tumor positivity coefficient was graded as 0, negative; 1, less than 10% im-
munopositive; 2, between 10-50% immunopositive; 3, between 51-80% immunopositive; 4, greater than 80% immunopositive.
Calculation of immunoreactivity scores was performed by multiplying the staining intensity score (0-3) with the percent tumor
positive coefficient (0-4) to yield a value between 0 and 12 (Fedchenko and Reifenrath, 2014).

Mutation detection from scRNAseq. Alignment bams for all non-immune cells (stroma and epithelial) were passed to
GATK HaplotypeCaller which was run from the latest available Docker container (broadinstitute/gatk:4.0.11.0) using the
following options:

–disable-read-filter MappingQualityReadFilter
–disable-read-filter GoodCigarReadFilter
–disable-read-filter NotSecondaryAlignmentReadFilter
–disable-read-filter MappedReadFilter
–disable-read-filter MappingQualityAvailableReadFilter
–disable-read-filter NonZeroReferenceLengthAlignmentReadFilter
–disable-read-filter NotDuplicateReadFilter
–disable-read-filter PassesVendorQualityCheckReadFilter
–disable-read-filter WellformedReadFilter

Disabling these specific read filters proved necessary for scRNAseq, as inherent low-coverage causes the vast ma-
jority of reads to be flagged for removal otherwise. The full human variant set (dbSNP) was downloaded from
NCBI (https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/), and every variant call was assessed for its pres-
ence/absence in the human variant database. dbSNP is a public, living catalog of 674 million human somatic SNPs and indels
that have been reported by peer-reviewed publications.
Cloud-based parallelization of HaplotypeCaller jobs was achieved with Reflow, a workflow engine for distributed, incremental
data processing in the cloud (https://github.com/grailbio/reflow). HaplotypeCaller outputs a separate variant calling format file
(VCF) for each cell, which were processed with the python package cerebra (https://github.com/czbiohub/cerebra). Variants
found in dbSNP were removed, not to be included in further analysis. We reasoned that by removing ‘common’, population-
level variants, we could better hone-in on disease specific variation.
In addition to scRNAseq reads, we obtained bulk DNA reads from peripheral blood for the majority of our patients (with the
exception of three). These PBMC reads were run through HaplotypeCaller to establish ‘germline’ mutation profiles for each of
our patients. Germline mutations were then subtracted out from each of that patient’s single cell VCFs. This filtering step was
omitted for the three patients for which we did not obtain peripheral blood, however, these single cell VCFs were still passed
through our dbSNP filter.
We also applied a fathmm filter to all cells (Shihab et al., 2015). fathmm takes a machine learning approach to predict the
likelihood of a given SNP to be pathogenic, integrating ENCODE annotations for things like transcription factor binding sites,
histone modifications, cross-species sequence alignment and conservation scores, etc. Only variants computationally predicted
to be pathogenic were included in our analysis, i.e. those variants with a fathmm score > 0.7.
The remaining variants were then filtered through the COSMIC (Catalogue of Somatic Mutations in Cancer) complete mutation
– genome screens database (https://cancer.sanger.ac.uk/cosmic/download). Only SNPs/indels associated with ‘Lung’ as per
their COSMIC annotation were kept. Variant calls were mapped to their corresponding genes, and per-patient / per-sample
mutational profiles were established. We used the ERCCs spiked into each cell sample as a negative control for false positive
mutations, which can arise due to technical artifacts such as PCR errors. We found the median false positive mutation rate to
be 0.000256% per base (Enge et al., 2017).

Fusion detection from scRNAseq. Fusion transcripts were detected with STAR-fusion (https://github.com/STAR-
Fusion/STAR-Fusion/wiki) version 1.6.0, run from a Docker container (trinityctat/ctatfusion:1.5.0). The following options
were used:
–FusionInspector validate
–examine_coding_effect
–denovo_reconstruct
Distributed processing of STAR-fusion jobs was accomplished with Reflow. Output files were processed with cerebra, then
combined with variant calls to create per-cell and per-sample summary tables.
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Mutational analysis of tumor cells. Information extracted from cerebra was summarized by sample. Coverage informa-
tion was provided by a secondary output from cerebra summarized by sample and gene. Where all cells are summarized
by sample and all fathmm filtered ROIs are summarized by corresponding gene (script NI06). Plots were generated using
the R pheatmap package(Raivo Kolde (2019). pheatmap. Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-
project.org/package=pheatmap).
Survival analysis using number of mutations within the MSK-Impact data MSK-Impact data was downloaded from cBioPortal
(Cerami et al., 2012; Gao et al., 2013) and subset to only NSCLC samples MSK-Impact data was subset to only those mutations
that were also found in the scRNAseq dataset of mutations (n=141 unique mutations). We stratified MSK-Impact samples
by those with greater than or equal to 2 mutations from the tier one COSMIC mutations found in the scRNAseq dataset
(mutation high), and those less than 2 mutations (mutation low) (Figure 2D). Kaplan-Meier plots were visualized with the
lifelines package in python (Cameron Davidson-Pilon, Jonas Kalderstam, Paul Zivich, Ben Kuhn, Andrew Fiore-Gartland,
Luis Moneda, . . . André F. Rendeiro. (2019, September 4). CamDavidsonPilon/lifelines: v0.22.4 (Version v0.22.4). Zenodo.
http://doi.org/10.5281/zenodo.3386382; Python Software Foundation. Python Language Reference, version 3.4. Available at )
(script NI12).

Immune subset clustering and differential gene expression. All cells annotated as immune (n=12,077) were subset and
clustered as described above (script IM01) using the following parameters (Ngenes=1,690, Npc=20, Res=0.3, k.param=10).
The resulting 17 clusters were assigned to different major immune cells types using a list of curated gene markers (Supplemental
Table 2) and by manual curation of differentially expressed genes for each cluster (Supplemental Table 5). The different cell
types and number of cells belonging to each type are described in the main text.
To assess changes in fractional abundance of different immune cell populations we used all cells though excluded thoracentesis
and brain samples due to difference in the immune makeup of these tumor environments which would skew the data. The func-
tion freqCI from the R package REdaS (Maier MJ (2015). Companion Package to the Book R: Einfuhrung durch angewandte
Statistik. R package version 0.9.3. htt://CRAN.R-project.org/package=RedaS) (script IM02) was used to calculate confidence
intervals for relative frequencies.
Macrophages (n=1,034) and T-cells (n=1,725) from lung biopsies were subset and clustered as described above (script IM03
and IM04 respectively) using the following parameters for MFs (Ngenes=1,637, Npc=10, res=0.3, k.param=10) and T-cells
(Ngenes=1,475, Npc=10, res=0.3, k.param=10). The resulting clusters are discussed in the main text and the lists of differen-
tially expressed genes are provided (Supplemental Table 5). We repeated this analysis where we subset the data to only patients
with multiple biopsies and sufficient cells (TH226 and TH266) (script IM05).

Multiplex Immunofluorescence. Multiplex immunofluorescence staining was performed on sequential 4 micron FFPE slides,
utilizing the Opal IHC Multiplex Assay (Perkin Elmer). Slides were stained with one of two 6 antibody panels. Panel 1
contained primary antibodies against PD-L1 (clone E1L3N, dilution 1:50, Cell Signaling Technologies), CD68 (clone KP1,
dilution 1:500, Dako), IDO (clone D5J4E, dilution 1:100, Cell Signaling Technologies), HLA-DR (clone CR3/43, dilution
1:250, Abcam), CD14 (clone SP192, dilution 1:100, Abcam), and cytokeratin (polyclonal Z0622, dilution 1:250, Dako). Panel
2 consisted of primary antibodies against CD3 (clone LN10, Leica), PD-1 (clone NAT105, dilution 1:100, Abcam), CD14, CD8
(clone C8/144B, dilution 1:100, Dako), FoxP3 (clone 236A/E7, dilution 1:200, Abcam), and cytokeratin. Whole slide scans
were acquired at 10X via the Vectra imaging system (Perkin Elmer, version 3.0). Three to six regions from each slide containing
tumor and stroma were selected utilizing Phenochart (v1.0.8, Perkin Elmer) for high resolution multispectral acquisition on
the Vectra system at 20X magnification. Spectral libraries were generated from single color stains on human tonsil tissue.
Spectral unmixing, cell segmentation, and cell phenotype assignment as tumor, macrophage, T cell, or other cell population
were performed utilizing InForm image analysis software (Perkin Elmer, version 2.4). Fractions of macrophage and T-cell
populations were calculated as: (population of interest) / (macrophage + T-cell populations) and plotted using ‘ggplot2’ in R
(H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016) (script NI15).

Survival analysis using fractional immune population within the TCGA. As with the survival analysis using can-
cer cell gene signatures, we used the downloaded TCGA LUAD dataset and metadata to access patient survival out-
comes as they pertain to the fractional changes of immune populations within a given tumor. We used CIBER-
SORT (Newman et al., 2015) to deconvolute the bulk TCGA samples into relative fractions of immune cell pop-
ulations as determined by using the LM22 reference. The total macrophage population was found by combining
fractions for Monocytes, Macrophages.M0, Macrophages.M1, and Macrophages.M2. The total T-cell population was
found by combining fractions of T.cells.CD8, T.cells.CD4.naive, T.cells.CD4.memory.resting, T.cells.CD4.memory.activated,
T.cells.follicular.helper, T.cells.regulatory..Tregs, T.cells.gamma.delta, NK.cells.resting, and NK.cells.activated. TCGA sam-
ples were then split by quartile groups. Only quartile 4 (high population fraction) and quartile 1 (low population frac-
tion) were plotted using library packages survival (Therneau T (2015). A Package for Survival Analysis in S. version
2.38, https://CRAN.R-project.org/package=survival) and survminer (Aldoukadel Kassambara, Marcin Kosinski and Prze-
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mylslaw Biecek (2019). survminer: Drawing Survival Curves using ‘ggplot2’. R package version 0.4.5. http://CRAN.R-
project.org/package=surviminer) in R (script NI10).

Generation of in vitro drug tolerant persister and acquired resistance cells and RT PCR. For validation of candidate
gene expression via a RT2 Profiler PCR array (Qiagen, CLAH34795), human lung cancer PC9 (EGFR del19) cells were treated
for 48 hours (day 2) with DMSO (TN) or for 7 and 19 days with 2µM Osimertinib (Selleck Chemicals LLC, S7297) with
replenishment of drug every 3-4 days (RD), respectively. PD samples were derived from an acquired resistant PC9 cell line
(Osimertnib IC50 = 89µM), that was generated by continuous treatment with 2µM Osimertinib with replenishment of drug
every 3-4 days and presented active proliferation under drug when resistance was called. RNA was extracted via RNeasy Mini
Kit (Qiagen, 74104). RNA quality was confirmed as RIN ³ 7.5 via Bioanalyzer RNA 6000 Pico kit (Agilent, 5067-1514) and
RNA was quantified via Qubit RNA HS Assay kit (Thermo Fisher Scientific, Q32852). A total of 400ng of RNA was reverse
transcribed using the First Strand Synthesis Kit (Qiagen, 330401) and then loaded into a custom 384 well RT2 profiler array
(Qiagen, CLAH34795). Fold Change was calculated by determining the ratio of mRNA levels to control (day 2) values using
the delta threshold cycle (Ct) method (DCt). A t-test was used to find the significance of change between baseline (day 2) and
treated timepoints (days 7, 19 and 70) based on normalized Cts to baseline (script NI14).

Supplementary Figures
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Fig S1 related to Figure 1 (A) Scatterplot with marginal histograms showing the number of unique genes plotted against
the number of reads for all cells passing quality control. (B) t-SNE of all epithelial cells (n=5109), numbers correspond to
individual clusters. (C) Inferred large-scale copy number variations (CNVs) help identify cancer (pink) and non-cancer cells
(purple). Epithelial and spike in control cells are included in the x-axis and chromosomal regions on the y-axis. Amplifications
(red) or deletions (blue) were inferred by averaging expression over 100-gene stretches on the respective chromosomes. (D)
Bar plot of cell counts for annotated epithelial cells. (E) Bar plot of the number of unique genes across all annotated epithelial
cell types.
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Fig S2 related to Figure 2 (A) t-SNE plot of 3620 cancer cells from 38 samples, numbers indicate individual clusters. (B)
Circle plot illustrating the clinically identified oncogenic driver (outer circle) and timepoints (inner circle) of each biopsy, only
for cancer cells. C) Density distribution of cluster occupancy of cancer (red) and non-cancer (blue) epithelial cell clusters,
calculated as the percentage of the highest contributing individual patient over the total number of cells for that cluster. (D)
Illustration of heterogeneity of primary driver mutated cancer cells found in exemplary sample LTS47 (* in Figure 2A).
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Fig S3 related to Figure 3 (A) Dot plot of the relative expression of established cellular proliferation genes (x-axis) across
treatment timepoints (y-axis). The color intensity scale reflects the average gene expression and the size scale indicates the
number of cells expressing the gene within that treatment timepoint. Applying grouped, pairwise comparisons of treatment
timepoints of the average scaled expression of all genes demonstrated significantly different expression (p < 0.000001) in
all comparisons. (B) Heatmap showing the expression of genes in the alveolar signature. Cells are grouped by treatment
timepoint. (C) Box plot of Spearman correlations of cancer cells from all treatment timepoints and healthy AT2 cells to an
external reference of healthy AT2 cells. Non-cancer AT2 cells from our dataset were more similar to the external, healthy
AT2 cells than any of our cancer cells across all timepoints (mean spearman correlation=0.73, -0.14, 0.23, -0.19, for healthy
AT2 cells, and TN, RD, PD cancer cells, respectively. (D) Scoring of IHC stains for AQP4 in TN (n=19), RD (n=9), and PD
(n=5) tumor tissue sections. Chi-square testing demonstrated a significant difference (p = 0.0038) in proportions of staining
intensity groups between treatment timepoints. (E) Immunoreactivity score for AQP4 across all timepoints from S3D. (F, G,
H) Heatmaps showing the expression of genes within each signature (kynurenine, SERPINE1/plasminogen activation, and
gap junction, respectively) grouped by treatment timepoint. (I) Graphical summary of cancer cell expression changes across
treatment timepoints. RD features include (1) Alveolar signature, and (2) various RD specific invasive signaling pathways. PD
features include: (3) kynurenine signature, (4) plasminogen activation and SERPINE1 signatures, (5) gap junction proteins, (6)
expression of pro-inflammatory chemokines, (7) loss of tumor suppressor genes, and (8) various PD specific invasive signaling
pathways.
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Fig S4 related to Figure 3 (A, B, C) Longitudinal timeline of patient treatment (A) Chest CT scan at each clinical evaluation
timepoint (B) Biopsy timepoint with procedural CT scan (C) HE from treatment naïve and progression timepoints demonstrat-
ing adenocarcinoma and squamous cell carcinoma, respectively, scale bar indicates 50 µm (D) Heatmap of mutation state in
COSMIC tier 1 mutated genes, where color represents mutated reads/all reads across treatment. Mutated genes as identified by
clinical NGS are indicated by “X” (E-I) Boxplots of pathway signature changes (alveolar, plasminogen activating, SERPINE1,
gap junction and squamous histology, respectively) across treatment timepoints.
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Fig S5 related to Figure 4 (Α) Pairwise Pearson correlations between each treatment group’s immune cell compositions which
corresponds to the fraction of each immune cell type’s abundance in the total immune cell population (B) Total immune cells
for each biopsy of patient TH266. (C) Total immune cells for each biopsy of patient TH226. (D) Fraction of each immune
cell sub-type for the two biopsies of patient TH266. Error bars indicate the 95% confidence interval for the calculated relative
frequencies. (E) Fraction of each immune cell sub-type for the three biopsies of patient TH226. Error bars indicate the 95%
confidence interval for the calculated relative frequencies. (F) Representative in situ immunofluorescence images from two
patients with matched samples at different treatment timepoints, demonstrating fractional changes in the immune populations of
macrophages and T-cells. Scale bars correspond to 50 µm (G) Kaplan-Meier plot of deconvoluted TCGA lung adenocarcinoma
data showing the relation between OS and the fraction of macrophages for each patient. Patients were stratified by high and
low macrophage fraction.
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Fig S6 related to Figure 5 (A) t-SNE plot of all lung-derived macrophage cells. The cluster of cells enriched at PD (MF1) is
highlighted (B) Heatmap showing the expression level of the top 10 differentially expressed genes for each macrophage cluster
(C) t-SNE plot of all lung-derived T-cells. The clusters of cells enriched at PD (TC4 and TC5) are highlighted (D) Heatmap
showing the expression level of the top 10 differentially expressed genes for each T-cell cluster.
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