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Abstract 
Motivation: Genome-scale metabolic networks and transcriptomic data represent complementary 
sources of knowledge about an organism’s metabolism, yet their integration to achieve biological in-
sight remains challenging. 
Results: We investigate here condition-specific series of metabolic sub-networks constructed by suc-
cessively removing genes from a comprehensive network. The optimal order of gene removal is de-
duced from transcriptomic data. The sub-networks are evaluated via a fitness function, which estimates 
their degree of alteration. We then consider how a gene set, i.e. a group of genes contributing to a 
common biological function, is depleted in different series of sub-networks to detect the difference be-
tween experimental conditions. The method, named metaboGSE, is validated on public data for Yar-
rowia lipolytica and mouse. It is shown to produce GO terms of higher specificity compared to popular 
gene set enrichment methods like GSEA or topGO. 
Availability: The metaboGSE R package is available at https://cran.r-project.org/web/packages/metab-
oGSE. 
Contact: marco.pagni@sib.swiss 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
The advent of high throughput sequencing techniques, especially RNA se-
quencing, has greatly facilitated the experimental investigation of an or-
ganism’s transcriptome under different physiological conditions. RNA-
seq data consists of reads mapped onto an annotated genome, which per-
mits quantitation of the transcript abundance of all predicted genes. These 
values can be used as a proxy to quantify gene expression or may provide 
hints about protein abundance for protein-coding genes. Differential ex-
pression between two conditions or co-expression profiles across many 
conditions are currently the fundamental statistical approaches to analyze 
RNA-seq data (Conesa et al., 2016). However, to obtain a biological in-
terpretation from these analyses, genes also need to be carefully annotated 
with prior biological knowledge. For example, the Gene Ontology (GO) 

provides genome annotations by grouping genes into sets, each one iden-
tified by a unique GO term that corresponds to a process, function or sub-
cellular location. GO terms are hierarchically arranged in a directed acy-
clic graph (DAG) whose structure can be exploited by computational 
methods such as topGO (Alexa and Rahnenführer, 2016) together with 
gene expression data. Another popular method, GSEA (Subramanian et 
al., 2005) considers two-condition expression profiles and attempts to 
identify functionally enriched sets of genes by investigating the change in 
the expression-based orderings of the genes. The incorporation of gene 
connectivity information has been shown as a way to improve gene set 
enrichment methods (Alexeyenko et al., 2012; Glaab et al., 2012). Such 
connectivity information could be provided by a genome scale metabolic 
network (GSMN). 

GSMNs have been successfully used to study and model metabolism in 
living organisms (Feist and Palsson, 2008; McCloskey et al., 2013; 
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Oberhardt et al., 2009). These are complex biological networks that in-
clude thousands of interconnected nodes of four main types: metabolites; 
biochemical and transport reactions; enzymes and transporters; and genes. 
The last three elements are usually referred to as GPR (gene-protein-reac-
tion). A GSMN can be turned into a predictive tool to model if and how 
an organism can reach a certain objective, for instance biomass produc-
tion, under defined environmental constraints. Flux Balance Analysis 
(FBA) (Varma and Palsson, 1994) can then be used for this purpose. For 
the sake of simplicity, we will designate here a model as viable, if it can 
produce biomass at a non-zero rate. A viable GSMN can be used to predict 
the essentiality of genes, for example, by simulating the effect on viability 
of a gene knockout, which can be further validated against experimental 
data (Imam et al., 2015; O’Brien et al., 2015; Simeonidis and Price, 2015). 
Model viability is sometimes referred to as model consistency in the liter-
ature. 

Existing methods for integrating RNA-seq data with GSMN can be 
classified in two broad categories: those constraining FBA flux distribu-
tion in the network and those extracting context-specific sub-networks 
(Machado and Herrgård, 2014; Kim and Lun, 2014; Vivek-Ananth and 
Samal, 2016; Vijayakumar et al., 2017; Opdam et al., 2017). In Machado 
and Herrgård (2014), the first category is benchmarked and the authors 
concluded with two ambiguous observations: absolute and relative gene 
expression seem to perform similarly; and using gene expression as addi-
tional FBA constraints is not clearly superior to what is obtained with par-
simonious FBA, an algorithm that does not depend on transcriptomic data 
at all. The second category, reviewed by Opdam et al. (2017), contains 
methods that: remove genes whose products are supposed to be absent in 
a given condition, by minimizing the flux through reactions with low gene 
expression (GIMME (Becker and Palsson, 2008)); optimize the trade-off 
between removing reactions with low gene expression and keeping reac-
tions with high gene expression (iMAT (Zur et al., 2010), INIT (Agren et 
al., 2012)) ; keep an active set of core reactions while removing other re-
actions if possible (MBA (Jerby et al., 2010), FASTCORE (Vlassis et al., 
2014), mCADRE (Wang et al., 2012)). With all these methods, the choice 
of one or several cut-offs for gene expression strongly impact the sub-
model produced and its properties. Relatively little biological insight has 
been published from contrasting such context-specific sub-networks, with 
the exception of the predictions and validations of the flux on a few me-
tabolites of interest (Machado and Herrgård, 2014) or gene essentiality 
(Opdam et al., 2017).  

The metaboGSE method presented here considers a whole series of 
sub-networks built by successively removing genes from an initial com-
prehensive network, rather than a single, possibly optimal sub-network to 
avoid the choice of a particular cut-off for gene expression. The optimal 
ranking of the genes to remove is determined as the most significant one 
when compared to random rankings, using the gene expression data. The 
viability of any sub-network is ensured by the introduction of artificial 
reactions and the minimization of the flux on them. This rescue procedure 
also allows for the formulation of a fitness function that measures how 
close an unviable sub-network is from a viable one. We then study how a 
gene set, i.e. a collection of genes contributing to a common biological 
function, is depleted in the series of sub-networks. Depletion curves are 
integrated with respect to fitness and tested for statistical significance 
given variations among experimental conditions and replicates.  

To validate the method, we first used public experimental data and a 
metabolic model for Yarrowia lipolytica, a yeast which is widely exploited 
in industrial microbiology for lipid production (Ledesma-Amaro and 
Nicaud, 2016). The metabolic model iMK735 of Y. lipolytica (Kavšček et 
al., 2015) was used, as it can simulate growth and production of lipids 
when oxygen consumption is limiting. Gene expression data were taken 

from the study of Maguire et al. (2014) on the role of the sterol-regulatory 
element binding protein Sre1 and the transcription factor Upc2 in sterol 
metabolism in hypoxic and normoxic conditions. A mouse dataset was 
also investigated, comprising RNA-seq data from macrophages in adipose 
tissue (Hill et al., 2018) and the metabolic model iMM1415 (Sigurdsson 
et al., 2010). 

2 Materials and Methods 

2.1  Datasets 
The Y. lipolytica data analyzed is included in the metaboGSE R package 
from CRAN along with a vignette of the analysis pipeline. The mouse 
dataset is described in Supplementary Note S1. 

2.1.1 RNA-seq data 

For Y. lipolytica, 22 RNA-seq samples of normoxic and hypoxic growth 
with sre1Δ, upc2Δ, sre1Δ /upc2Δ mutants and the wild type strain were 
obtained from Maguire et al. (2014) (NCBI: PRJNA205557). These data 
are summarized in Table 1 and processed with standard preliminary RNA-
seq data analysis (see Supplementary Note S3). 

Table 1. Designation of RNA-seq data obtained from Maguire et al. 

#replicate Code Genotype Oxygen 

4 WN wild type normoxia 21% 

3 SN sre1Δ 

3 UN upc2Δ 

2 DN sre1Δ /upc2Δ 

5 WH wild type hypoxia 1% 

2 SH sre1Δ 

3 UH upc2Δ 

 

2.1.2 Genome-scale metabolic networks 

The Y. lipolytica iMK735 model (http://www.ebi.ac.uk/biomodels, Ka-
všček et al., 2015) with a production of 40% lipid content in the biomass 
was studied. The genome, proteome, GO annotations, and model were in-
tegrated within the framework of MetaNetX (Moretti et al., 2016). The 
external reactions of the model were adapted to approximately simulate 
growth in Yeast extract Peptone Dextrose (YPD)  medium in hypoxic (an-
aerobic) or normoxic (aerobic) environments (Maguire et al., 2014) by 
modifying the oxygen supply. For normoxia, oxygen consumption was 
unrestricted as in the original model and took a value of 244 mmol×gDW-

1×h-1 as given by the Minimum Total Flux algorithm where the sum of ab-
solute values of fluxes was minimized. We then arbitrarily limited the 
available oxygen to 50 mmol×gDW-1×h-1 to simulate hypoxic conditions. 
Preliminary investigation showed that the model behavior did not signifi-
cantly depend on the exact value of this setting. The model was cleaned 
by removing dead-end metabolites, which were only either produced or 
consumed. Blocked reactions as given by flux variability analysis (FVA) 
(Mahadevan and Schilling, 2003) were also removed, as explained below. 
The final investigated model contained 818 reactions, 469 genes, and 605 
metabolites after cleaning, and was referred to as the comprehensive 
model in our analysis. 

2.2  Metabolic sub-model construction 
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Sub-model construction by removing genes refers to the process of (i) re-
moving an initial set of genes (input) and their associated reactions, (ii) 
determining the blocked reactions (see Supplementary Note S2), (iii) re-
moving the blocked reactions with their associated genes, if any. A similar 
procedure named deleteModelGenes is available from the COBRA 
Toolbox (Heirendt et al., 2017). Below, we refer to a particular sub-model 
with the number of initially removed genes, but all presented analysis re-
sults have been obtained after gene removal propagation through the 
blocked reactions. 

2.2.1 Measure of metabolic model fitness 

Viability, for instance growth capacity, is crucial for the usability of a met-
abolic model. Removing a few reactions from a viable network is often 
sufficient to render it unviable. Here we propose a measure to assess how 
close an unviable model is to a viable one, which will be defined as the 
fitness of the model. 

2.2.1.1 Principle of growth rescue 
In this section, we introduce a procedure to restore the viability of an un-
viable metabolic network by the introduction of artificial reactions and 
minimizing the flux on them. It consists first in modifying the input net-
work around the growth reaction as illustrated in Figure 1. An artificial 
metabolite is created to replace each of those present in the growth reac-
tion except biomass itself. Each artificial metabolite x’ is linked to the 

original metabolite x through a directed help reaction denoted hx. In addi-
tion, x’ can be produced or consumed via a rescue external reaction 
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Fig. 2.  Rescue in metabolic sub-models obtained by removing different numbers of random genes (N = 50 draws) from Y. lipolytica model iMK735. 
(A) Fraction of metabolites that need to be rescued via corresponding rescue reactions. Blue darkness in the scatter plot represents the density of fractions of rescued reactions. Black curve 
indicates average fractions. Gray region represents 20%-80% quantiles of random fractions. 
(B) Fraction of draws where each individual metabolite is rescued. 
(C) Weights of rescue reactions obtained via our weighting schema. 
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Fig. 1. Schema of GSMN rescue process. ℳ, original GSMN with growth reaction X + 
Y ---> Z + Biomass.  ℳ′, expanded GSMN with the full set of rescue (rx) and help (hx) 
reactions for every metabolite x in the biomass reaction. ℳ′′, example of a minimal rescued 
GSMN in the particular case where only metabolite Y needs to be rescued. 
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denoted rx. Note that the purpose of any help reaction is to avoid artifi-
cially supplying x as a side effect of rescuing x’. No constraints are applied 
on the fluxes of the rescue and help reactions apart from their directions. 
The same network modifications could be applied to the non-growth as-
sociated maintenance reaction that does not allow for a zero flux. 

Let ℳ′ be the expanded version of a GSMN ℳ with the modified 
growth reaction and the full set of rescue and help reactions, 𝐒′ is the cor-
responding stoichiometric matrix (see basic notions on GSMN in Supple-
mentary Note S2). The flux distribution 𝒗′ is constrained by the bound 
vectors 𝐥𝐛′ and 𝐮𝐛′ that account for the directionality of newly added re-
actions and constraint the growth reaction at a fixed rate, arbitrarily chosen 
as 20% the original model growth objective, i.e. lb′*+,-.// =
ub′*+,-.// = 2

34 	𝑣*+,-.//∗ . 
Let 𝐜9:/;<: be a vector of coefficients that are equal to 0 for all but the 

rescue reactions that receive a coefficient of 1/𝐵@ where Bx is the stoichi-
ometric coefficient for the metabolite x in the original growth reaction. 
The rescue procedure can be stated as the following linear programming 
(LP) problem: 

find 𝒗A∗ = argmin𝒗A(	𝐜9:/;<:I ∙ 𝒗′) 
subject to 𝐒′ ∙ 𝒗′ = 𝟎 
  𝐥𝐛′ ≤ 𝒗′ ≤ 𝐮𝐛′. 

Only rescue reactions for metabolite x with non-zero flux N𝑣OP
A∗N > 0 are 

required to restore the model viability. A viable model ℳ′′ with a minimal 
flux of rescue reactions could be formulated as shown in Figure 1. It must 
be noted that the above LP problem could admit more than one solution 
𝒗A∗ and different solutions might be expected if 𝐜9:/;<: was set differently. 
We investigated this problem through simulation with the iMK735 model 
and observed that most of the solutions are unique and do not depend on 
the precise values of 𝐜9:/;<:. 

Figure 2A presents the fraction of metabolites in the growth reaction 
that need to be rescued after randomly removing genes in the model. This 
simulation shows the crucial property that the more genes removed, the 
more the model is damaged. Figure 2B presents the fraction of random 
models where each individual metabolite needs to be rescued, clearly 
showing different behaviors among metabolites in the growth reaction. 
This suggests that the different metabolites should not be treated equally. 

2.2.1.2 Weighting scheme for model fitness 
A weighting scheme is introduced to account for the variable importance 
of metabolites in the growth reaction and possible dependencies among 
them. Model fitness is defined as the realized objective of the following 
LP problem: 

find 𝐹(ℳ′) = 	1 − 𝑣*+,-.//A U2.min𝒗W X	Ydiag(𝐰9:/;<: × 𝐜9:/;<:)]
I ∙ 𝒗A^ 

subject to 𝐒′ ∙ 𝒗′ = 𝟎 
 𝐥𝐛′ ≤ 𝒗′ ≤ 𝐮𝐛′,  

where 𝑣*+,-.//A = 2
34 	𝑣*+,-.//∗ , diag(A) is the diagonal of a square matrix 

A, 𝐰9:/;<: is a vector of weights that are equal to 0 for all but the rescue 
reactions and that are normalized to sum to 1. 𝐰9:/;<: is computed in the 
following procedure. For every gene in the model, a single gene knockout 
is simulated, and the rescue procedure is performed to determine which 
metabolites in the growth reaction are affected, using the previously pre-
sented LP problem. Hence, every rescue reaction rx can be associated with 
a binary vector which describes whether the reaction is needed to rescue 
each of the gene knockouts. These binary vectors are used to compute Eu-
clidean distances between rescue reactions, which are used in hierarchical 
clustering with average linkage, and the Gerstein method (Gerstein et al., 
1994) is then applied to the resulting tree as a means to assign a weight to 
each rescue reaction. Those rescue reactions with similar binary vectors 
share weights, while those with unique profile receive a larger weight. The 
weighting schema has two main effects: (i) it reduces the importance of 
metabolites that are hardly affected by slightly damaging the model, and 
(ii) assigns similar importance to metabolites that appear on the same path-
way, as shown in Figure 2C. For instance, H2O has the smallest weight, 
ergosterol and 5alpha-cholesta-8,24-dien-3beta-ol in the same pathway 
share the same weight. Other sampling schemes were investigated, for ex-
ample by removing several genes at once, but these did not yield very dif-
ferent metabolite weights. Hence the simpler experimental setting was 
used. The simulation of random gene removal in Figure 2A and 3 shows 
that the introduction of this weighting scheme produced the fitness scores 
that are less dispersed than the fraction of rescued reactions. 

2.2.2 Optimal ranking of genes for removal 

The proposed fitness function can be used to evaluate a series of condition-
specific sub-models constructed by removing genes in any order. The 
question then arises as to how to optimally rank genes for removal, such 
as minimizing network disruption i.e. preserving its fitness. In this section, 
we investigate different metrics to rank genes according to their expres-
sion in a given experiment. 

We tested the following transformations of the raw expression data to 
rank the genes: 

expr raw expression in log2-counts 
pkmExpr  expression in RPKM (see Sup-

plementary Note S3) 
relExpr1 = expr/<expr>  relative expression 
zExpr = (expr - <expr>)/sd(expr)  z-score  
revExpr = 1/(1+expr) reverse expression (control), 

where <expr> and sd(expr) denote the average and standard deviation 
across conditions, respectively. 

Let 𝜌 be a ranking of the genes. Sub-models are constructed by remov-
ing genes in the order given by 𝜌. The resulting fitness scores decrease 
when more genes are removed, and the decreasing trend depends on 𝜌. 
Figure 3 illustrates such reductions obtained by successively removing 
genes from the comprehensive model iMK735 for the UH condition 
(upc2Δ in hypoxic condition, UH2 sample). In this example expr is the 
most fitness-preserving ranking and revExpr is the worst one. 
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Fig. 3. Fitness decrease while removing genes from the iMK735 model with different 
rankings in the UH condition (UH2 sample). random: random draw, expr: voom-nor-
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We assess a ranking 𝜌 by performance index 𝑍a, which indicates the 
percentage of random draws yielding sub-model fitness higher than that 
of sub-models created by 𝜌-based removal of the same number of genes 
and which is weighted by the average random fitness.	𝑍a is computed as 
follows: 

𝑍a = 100 ×bc
〈𝐹YMf

Oghijk]〉
∑ 〈𝐹YMnOghijk]〉n

b
1
𝑁 𝕝

q	rs.t/

X𝐹YMf
Oghijk] ≥ 𝐹YMf

a]^v
f

 

 

where Mf
a denotes the rescued sub-model of the comprehensive network 

M obtained after removing the i genes using ranking 𝜌, and Mf
Oghijk the 

rescued sub-model by randomly removing i genes, 〈𝐹(… )〉 the average 
fitness on N draws. The lower the performance index, the better the rank-
ing. The optimal ranking is the one dominating the others by producing 
the lowest performance index for all investigated RNA-seq samples. For 
instance, the absolute expression ranking expr is determined as the best 
one for 19 of 22 the Y. lipolytica samples, whereas it is pkmExpr for the 
mouse dataset (see Table S1). Other rankings such as (expr2/<expr>)1/2 
and (expr3/<expr>)1/3 were also investigated, yet not comparable to the 
selected ones. In the rest of this article, the expr and pkmExpr rankings 
will be used in the Y. lipolytica and mouse study, respectively. 

2.3  metaboGSE: contrasting gene set enrichment in condi-
tion-specific sub-models 

We introduce here the metaboGSE method, which aims at identifying 
gene sets that are differentially enriched. The method consists of three 
steps depicted in Figure 4 and illustrated in Figure 5 for GO:0006635 – 
fatty acid beta-oxidation. The first step consists in constructing a series of 
sub-models for every sample and computing their fitness profile. 

In the second step, for a given gene set g, we compute the depletion 
fraction 𝑓(Mf

𝐞𝐱𝐩𝐫, 𝑔), i.e. fraction of g-associated genes remaining in each 
sub-model, where Mf

𝐞𝐱𝐩𝐫 denotes the rescued sub-model after the removal 
of i genes. The evolution of 𝑓(Mf

𝐞𝐱𝐩𝐫, 𝑔) is plotted as a function of 
(1 − 𝑖/𝑘) ∙ 𝐹YMf

𝐞𝐱𝐩𝐫], defining a depletion curve, where k denotes the to-
tal number of genes in M. The depletion curve for each condition is the 
average curve on all replicates. As shown in Figure 5A, the fraction f of 
genes associated with fatty acid beta-oxidation decreases rapidly in all 
conditions, but the depletion curve clearly separates hypoxic wild-type 
from the other conditions (Figure 5B). The down-regulation of several but 
not all GO:0006635 genes in the WH condition is illustrated in Figure 5C. 

In the third step, we perform a permutation test for the significance of 
discrepancy of the given gene set g across conditions. The test statistic is 
defined as the maximum area between every pair of depletion curves 
among all conditions. The resampling is performed by permuting repli-
cates between conditions while keeping unchanged the number of repli-
cates in each condition. The resulting p-value indicates whether the deple-
tion evolution of g in one condition differs from at least one of the others. 
For GO:0006635, the discrepancy of WH versus the other conditions is 
justified with a p-value of 0.007 and a test statistic of 0.41 (Figure 5). 
These p-values are subsequently adjusted by Benjamini-Hochberg (BH) 
correction across all the studied gene sets (Benjamini and Hochberg, 
1995). A similar post-hoc permutation test is also implemented for pair-
wise comparisons between conditions to check for the pairwise differen-
tial signal. 

3 Results 

3.1  Condition-specific sub-model construction on Y. lipolyt-
ica data 

We applied the selected gene removal strategy to construct sub-models for 
the seven conditions in Maguire et al. (2014) (Table 1). The expr rankings 
are different between conditions despite a similar distribution of gene ex-
pression values (Figure 6A). The sub-model series constructed based on 
expr, and thus their fitness, evolve differently across conditions (Figure 
6B). Figure 6C-F shows a high degree of variation across conditions in the 
number of genes and reactions (post propagations through blocked reac-
tions), as well as in the fraction of genes and reactions that are essential. 
Besides, the erratic evolutions of essential genes and reactions is notewor-
thy and might be associated with the unexpectedly large spread in essen-
tiality predictions recently reported in Opdam et al. (2017). 

To compare the condition-specific sub-model construction from the ex-
isting methods with that from our approach, we investigated GIMME 
(Becker and Palsson, 2008) and iMAT (Zur et al., 2010). These two meth-
ods were benchmarked in Opdam et al. (2017) and could be used with 
information that is deduced only from GSMN and transcriptomics data. 
We built a sequence of sub-models with GIMME using 12 gene expres-
sion cut-offs (in log2 RPKM) from 0 to 11 for each of the 22 samples. For 
iMAT, these cut-offs were used as threshold_lb while threshold_ub was 
determined as threshold_lb + 2*standard_deviation(expression), as rec-
ommended in the Supplementary Data of Zur et al. (2010). The choice of 
such a limited number of cut-offs was due to highly time-consuming 
model construction process of the two methods in Matlab. Indeed, the par-
allelization implemented in metaboGSE using the sybil and parallel R 
packages allowed us to construct the complete list of all sub-models in 
almost one hour on a 64-processor Intel Xeon E5-4620 of 2.6 GHz. The 
MatLab implementations of iMAT and GIMMME were much slower in 
our hands. Intersections and unions of genes in each 22 sub-models were 
investigated to evaluate the difference between them. Figure S1 shows 1 
– Intersection/Union plotted as a function of k – Union, where k denotes 
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the number of genes in the comprehensive GSMN. Interestingly, the sub-
models produced with metaboGSE were quite similar to those produced 
by iMAT, a method that relies on a MILP algorithm. GIMME produced 
sub-models that were less distinct across conditions. 

3.2  Gene set enrichment on Y. lipolytica data 
To validate the biological findings produced by our approach, we investi-
gated 135 gene sets defined as GO135 (see Supplementary Note S4). 
Maguire et al. (2014) studied the role of Sre1 and Upc2 in regulating sterol 
metabolism in hypoxic and normoxic conditions in Y. lipolytica by per-
forming GO term enrichment analysis of differentially expressed genes 
using DAVID. Among the 116 biological-process GO terms they reported, 
only eight were found in GO135, but none had a reported BH-adjusted p-
value < 0.15. Here we compare our results with those of topGO weight01 
and GSEA on the iMK735 genes (see Supplementary Note S4). 

Condition contrast is predominantly hypoxia-normoxia. The depletion 
curves of the top 50 GO terms found to be significantly enriched with 
metaboGSE (ordered by permutation test statistic with FDR < 0.05) (see 
Figure S2) suggest that the degree of oxygen limitation is the most likely 
explanation for the enrichment of 36 GO terms, which is expected for this 
dataset – where hypoxia is the only environmental variable. Interestingly, 

for 24 of them, normoxic double-mutant condition is likely grouped with 
hypoxic conditions while contrasting with other normoxic conditions. 

metaboGSE reveals GO terms of higher specificity. A GO term is con-
sidered of higher specificity compared to another one when it is an off-
spring of the latter (Ashburner et al., 2000). The top 50 GO terms found 
to be significantly enriched by metaboGSE (ordered by permutation test 
statistic with FDR < 0.05), topGO, and GSEA (ordered by FDR) unite into 
99 GO terms and are summarized in Figure S3 and Table S2. These 99 
terms also included the eight found in Maguire et al. All terms from 
metaboGSE are of higher or equal specificity, i.e. offspring or identical, 
to those found by topGO and/or GSEA. Thirty-five among the 50 GO 
terms from metaboGSE are related to those found by the other methods 
yet include 9 terms of higher specificity: GO:0034637 (cellular carbohy-
drate biosynthetic process), GO:0015937 (coenzyme A biosynthetic pro-
cess), GO:0071265 (L-methionine biosynthetic process), GO:0046474 
(glycerophospholipid biosynthetic process), GO:0097164 (ammonium ion 
biosynthetic process), GO:0006656 (phosphatidyl choline biosynthetic 
process), GO:0001676 (long-chain fatty acid metabolic process), 
GO:0043649 (dicarboxylic acid catabolic process), and GO:0009098 (leu-
cine biosynthetic process). Six of them are found in the three largest con-
nected DAGs of enriched GO terms depicted in Figure 7. 

Difference in sterol biosynthesis is confirmed. Ergosterol biosynthetic 
process (GO:0006696) is enriched by all methods. Along with GSEA and 
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topGO, we also discover GO:0045337 (farnesyl diphosphate biosynthetic 
process) (Figure 7), which is part of the ergosterol synthesis pathway. This 
reflects the experimental design investigated in Maguire et al. (2014), i.e. 
the regulation of sterol metabolism. In Figure S4AB, the sudden drop from 
100% to 0% of 19 ergosterol-associated genes indicates that either all 
these genes or none of them exist in each sub-model. This sudden drop is 
caused by the propagation through the blocked reactions in the linear path-
way of ergosterol biosynthesis (Parks and Casey, 1995). Interestingly, a 
detailed manual investigation of this case revealed that the sudden drops 
in the different conditions are actually caused by the altered ranks of either 
YALI0D17050g, YALI0E18634g or YALI0F26323g, which do not be-
long to GO:0006696 gene set. Figure S4C presents the expression profiles 
of all those genes. 

metaboGSE identifies contrasts other than hypoxia-normoxia. All GO 
terms relating to fatty acid metabolism (GO:0001676 long-chain fatty acid 
metabolic process, GO:0009062 fatty acid catabolic process, GO:0006635 
fatty acid beta-oxidation, GO:0006631 fatty acid metabolic process) show 
an earlier drop in their depletion curve in the hypoxic wildtype comparing 
to the remaining conditions that stay similar (Figure S2). This might sug-
gest that the presence of both Sre1 and Upc2 in low-oxygen growth con-
dition reduces the expression of YALI0E03058g, which causes the earlier 
drop in WH (Figure 5). 

3.3  Application of metaboGSE to mouse data 
metaboGSE was also applied to the mouse dataset from Hill et al. (2018) 
using the iMM1415 model (Sigurdsson et al., 2010) (see Supplementary 
Note S1). The pkmExpr ranking was figured as the best ranking among 
those simulated (see Table S1). Only four genes of iMM1415 were found 
to be differentially expressed between PBS and Ly6C (fold-change ≥ 2, 
FDR < 0.05), resulting in no significantly enriched GO terms with topGO 
weight01 and GSEA. We then applied these two methods to all 

differentially expressed genes in the genome, but not only to those in 
iMM1415, to increase the number of differentially expressed genes. We 
scrutinized a list of 24 GO terms related to inflammatory response, cho-
lesterol and lipid biosynthesis as reported in Hill et al. (2018) and associ-
ated to at least one iMM1415 gene. The results shown in Figure S5 reveal 
that metaboGSE can detect GO terms that are located lower in the Gene 
Ontology, like GO:0050728 (negative regulation of inflammatory re-
sponse), GO:0002675 (positive regulation of acute inflammatory re-
sponse), and GO:1903725 (regulation of phospholipid metabolic process), 
despite working on a much smaller collection of genes than the other two 
methods. This confirms the ability of metaboGSE to capture GO terms of 
higher specificity as observed above with Y. lipolytica. 

4 Discussion 
We present here a method for gene set enrichment analysis that utilizes a 
GSMN as an additional source of information and that focuses on genes 
expressed at low level. Our central working hypothesis is that the correla-
tion between gene expression levels and fluxes on related reactions is very 
poor in general, but the low expressed genes are plausibly associated with 
zeroed fluxes. This method is complementary to established methods such 
as topGO and GSEA that focus on differential expression of sufficiently 
expressed genes. The introduction of a GSMN restricts the list of investi-
gated genes to those present in the model (i.e. related to metabolism), and 
thus the list of gene sets that can be discovered. The formulation of the 
external reactions of the GSMN and how well they represent the experi-
mental system are likely to affect metaboGSE outcome, although this has 
not been investigated in detail here. Tissue-specific models are not a pre-
requisite to utilize metaboGSE. The GSMN and the set of RNA-seq data 
both need to be of high quality and adequate for experimental designs. Our 
method is capable of producing more informative GO terms (i.e. that are 
located lower in the Gene Ontology) than those returned by GSEA and 
topGO for example. This might be because metaboGSE can increase the 
size of investigated gene sets by considering structural constraints brought 
by the propagation through blocked reactions, as for example the linearity 
of the ergosterol biosynthesis pathway in the case reported here. The genes 
affecting the discrepancy between conditions, which are not necessarily 
differentially expressed, can be further investigated for each enriched gene 
set. metaboGSE produces biologically meaningful results to the extent one 
can interpret them. 

Our method does not aim at producing a condition-specific sub-model, 
but rather integrates on a series of them, thus avoiding the choice of a 
particular number of genes to remove. A GSMN is a drastic simplification 
of our understanding and knowledge of biochemistry that neglects most 
kinetic aspects in its representation of metabolism. On the modeling level, 
defining a sub-model by removing genes is equivalent to a gene knockout 
obtained from a molecular construct. It is likely that the metabolism dom-
inating a given physiological state owes more to kinetic regulation than 
can be accounted for by only the metabolism structure. Moreover, it is 
very hard to ascertain that a gene is not expressed at all and even in this 
case, the absence of mRNA does not exclude that the protein is still present 
at a low concentration, as a remnant of a previous growth phase. Likewise, 
the presence of the protein does not ensure it is active. The construction of 
a series of sub-models followed by their rescue is essentially a way to cir-
cumvent the hard constraint caused by model viability and exploit sub-
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model properties that would be out of range. Our method to construct met-
abolic sub-networks could also be performed with other omics data, such 
as proteomics and metabolomics, and applied to other research problems. 

The fitness function is the key component of our method. The proposed 
measure of fitness shows its capacity to capture the health status of a sub-
model and thus suggests some control on our sub-model construction. De-
spite the biologically meaningful results obtained with the datasets stud-
ied, several lines of improvement can be envisaged in future work, includ-
ing: the formulation of the growth reaction could be improved by consid-
ering more metabolites; the proposed weighting scheme is likely subopti-
mal; and other dynamic properties of the model could be considered sep-
arately from the score derived from the LP-based minimization. 
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