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Abstract 26 

Background: Host-associated microbes, collectively known as the microbiota, 27 

play an important role in the biology of multicellular organisms. In mosquito 28 

vectors of human pathogens, the gut bacterial microbiota influences vectorial 29 

capacity and has become the subject of intense study. In laboratory studies of 30 

vector biology, genetic effects are often inferred from differences between 31 

geographically and genetically diverse colonies of mosquitoes that are reared in 32 

the same insectary. It is unclear, however, to what extent genetic effects can be 33 

confounded by uncontrolled differences in the microbiota composition among 34 

mosquito colonies. To address this question, we used 16S metagenomics to 35 

compare the midgut bacterial microbiome of six recent laboratory colonies of 36 

Aedes aegypti representing the geographical range and genetic diversity of the 37 

species. 38 

Results: We found that the diversity, abundance, and community structure of the 39 

midgut bacterial microbiome was remarkably similar among the six different 40 

colonies of Ae. aegypti, regardless of their geographic origin. We also confirmed 41 

the relatively low complexity of bacterial communities inhabiting the mosquito 42 

midgut. 43 

Conclusions: Our finding that geographically diverse colonies of Ae. aegypti 44 

reared in the same insectary harbor a similar gut bacterial microbiome supports 45 

the conclusion that the gut microbiota of adult mosquitoes is environmentally 46 

determined regardless of the host genotype. Thus, uncontrolled differences in 47 

microbiota composition are unlikely to represent a significant confounding factor 48 

in genetic studies of vector biology. 49 

Keywords: Mosquito; Microbiota; Vectorial capacity; Metagenomics. 50 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/200659doi: bioRxiv preprint 

https://doi.org/10.1101/200659


 3 

Background 51 

The mosquito, Aedes aegypti, is the main vector of several medically 52 

important arboviruses such as Zika, dengue, chikungunya, and yellow fever 53 

viruses worldwide. Dengue viruses alone are responsible for 390 million human 54 

infections each year [1]. In the absence of vaccines or specific therapeutics for 55 

most arboviruses, controlling mosquito vector populations is the primary disease 56 

prevention strategy [2]. With the rise of insecticide resistance, the development of 57 

novel entomological interventions is underway [3, 4]. Critical to the development 58 

of these new vector control methods is an improved understanding of the biology 59 

of mosquito vectors such as Ae. aegypti [5]. 60 

Over the last several decades, research efforts have focused on trying to 61 

elucidate the genetic [6-8] and environmental [9-12] factors that contribute to 62 

variation in the ability of Ae. aegypti to transmit human pathogens. Only in recent 63 

years, however, has the importance of the microbiota (i.e., host-associated 64 

microbes) emerged in vector biology. The gut bacterial microbiota, in particular, 65 

influences multiple aspects of the mosquito’s biology including vector competence 66 

[13, 14] and has become a topic of extensive research. Manipulation of the 67 

bacterial species present in the mosquito midgut has been shown to both increase 68 

or decrease the amounts of dengue virus, chikungunya virus, or Plasmodium 69 

falciparum [15-19]. The composition of the microbiome (i.e., the collective 70 

genomes of the microbiota) found in the midgut of mosquitoes is highly variable 71 

and dependent on the environment [20-23] and life stage [24-26].  72 

To identify mosquito genetic components of vectorial capacity, researchers 73 

often use genetically diverse colonies of mosquitoes reared in the same 74 

environment. Observed differences in the vectorial capacity of genetically diverse 75 
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laboratory colonies is generally attributed to host genetics, and not to potential 76 

differences in the gut microbiota, but it remains poorly understood what role 77 

mosquito genetics plays in shaping the gut microbiome and whether subtle 78 

differences in the microbiome could confound genetic studies. It was recently 79 

shown that the gut microbiota can be disrupted by genetic modification of 80 

mosquitoes [27]. In more natural insect systems such as the relationship between 81 

aphids, intracellular bacteria, and parasitic wasps, bacterial symbionts and not the 82 

aphid genotype drive the specificity of the interactions between the aphid and the 83 

parasitic wasp [28-30]. In other insects, it has been demonstrated that the gut 84 

microbiota contributes to host genotype by parasite genotype interactions [31], 85 

suggesting that differences in the microbiota should be considered as an 86 

additional factor when elucidating the host genetic contribution to a specific trait. 87 

In Ae. aegypti, previous observations of bacterial taxa specific to certain 88 

mosquito lines reared in the same insectary [32, 33] raise the question whether 89 

differences in gut microbiota could confound interpretation of phenotypic 90 

differences among mosquito colonies. To address this question, we used a 91 

targeted metagenomics approach to compare the gut microbiome between six 92 

recent colonies of Ae. aegypti representing the geographical range and genetic 93 

diversity of the species. We performed a comprehensive metagenomics analysis 94 

including comparison of bacterial diversity within and between samples as well 95 

as identifying bacterial genera that are differentially abundant between colonies. 96 

Our results provide empirical evidence that adult Ae. aegypti mosquitoes reared 97 

in the same insectary harbor a similar gut bacterial microbiome, regardless of 98 

their geographic origin.  99 

 100 
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Results 101 

To test if laboratory colonies of natural populations of Ae. aegypti differ in 102 

the diversity and composition of their gut microbiome, the V5-V6 variable region 103 

of the 16S ribosomal RNA gene was sequenced in 16-18 individual adult female 104 

midguts from each of six recent colonies of Ae. aegypti. The six colonies chosen 105 

represent the geographical range and genetic diversity of the species (Figure 1) 106 

and have spent from three to ten generations in the laboratory (Table 1). The 107 

experimental design included three replicate adult cages per colony and the 108 

individual libraries were randomized across two separate sequencing runs. 109 

Individual midguts were aseptically dissected from nulliparous, 4- to 6-day-old 110 

females that had been allowed to mate and feed on sugar following emergence. 111 

Out of the 96 individual gut microbiomes sequenced, 2,679 operational taxonomic 112 

units (OTUs) representing 587 different bacterial genera were identified. 113 

Rarefaction curves showed that a sufficient number of sequencing reads was 114 

achieved to comprehensively characterize the bacterial communities in the 115 

midgut (Supplemental Figure 1). 116 

To determine if the gut microbiome of each Ae. aegypti colony varies in the 117 

diversity of bacterial species present, the within-colony diversity was evaluated 118 

by determining the genus richness and the Shannon diversity index. No 119 

differences in the levels of richness (Figure 2A) or in Shannon diversity index 120 

(Figure 2B) were observed between the colonies (ANOVA: F = 1.125, p value = 121 

0.353 and F = 0.522, p value = 0.759, respectively). In addition, the taxonomical 122 

abundance of bacteria was highly similar between the colonies, indicating the 123 

dominant bacterial genera in the midgut are not dependent on the colony (Figure 124 

3). 125 
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To identify dissimilarities in the bacterial community structure between 126 

the gut microbiome of laboratory colonies of Ae. aegypti, principal coordinates 127 

analysis (PCoA) was performed based on a Bray-Curtis dissimilarity matrix. The 128 

PCoA showed that the bacterial community structures of all six colonies were 129 

highly similar to each other (p value = 0.752) (Figure 4A). In addition, no 130 

differences in the bacterial community structure were observed between the 131 

replicate cages of each colony, however the bacterial community structure 132 

differed between sequencing runs (Supplemental Figure 2). The reason for the run 133 

effect is unclear but it could reflect preferential clustering of specific sequences on 134 

the flow cell. Although the community structure of gut microbiome of the colonies 135 

was similar overall, we tested whether some specific bacterial taxa were 136 

differentially abundant. Out of the 587 bacterial genera identified, only zero to six 137 

genera were differentially abundant in pairwise comparisons of the six colonies 138 

(Supplemental Table 1; Figure 4B) resulting in 98-100% similarity in the 139 

abundance of genera present between colonies.  140 

 141 

Discussion 142 

We performed a 16S metagenomics analysis to compare the midgut 143 

microbiome of six recent colonies of Ae. aegypti reared in the same insectary 144 

environment. The six colonies were chosen to represent the natural global 145 

distribution of the species. Although these colonies represent different genetic 146 

backgrounds and different generation times in the laboratory, the gut microbiome 147 

was highly similar among all six colonies. We did not observe any differences in 148 

the diversity of the bacterial communities or in the bacterial community structure 149 
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within the gut. The taxonomical abundance was also similar between the colonies 150 

with 98-100% identity in the abundance of bacterial genera present between 151 

colonies. The data also confirmed the relatively low complexity of bacterial 152 

communities typically found in the gut of insects [34, 35]. 153 

 Other studies that have compared the midgut microbiome of various 154 

laboratory colonies of Ae. aegypti observed differences in the taxonomical 155 

identification of specific bacterial species [32, 33]. Although these studies 156 

reported differences in the abundance of specific taxa between colonies of Ae. 157 

aegypti, no difference in the bacterial community structure was in fact observed. 158 

Furthermore, the colonies tested in previous studies have been maintained in the 159 

laboratory for five to 80 years before their microbiome was examined. It is 160 

possible that large differences in the number of generations spent in the 161 

laboratory between these studies and ours, resulted in our different observations. 162 

Possibly, preferential associations between mosquito genotypes and specific 163 

laboratory bacteria may evolve over a long colonization history. This hypothesis 164 

remains to be tested. 165 

Researchers often use genetically diverse colonies of mosquitoes reared in 166 

the same environment to identify mosquito genetic components of vectorial 167 

capacity. In such studies, differences in microbiota could confound interpretation 168 

of phenotypic differences among mosquito colonies. The present study does not 169 

support this hypothesis in the case of Ae. aegypti. While this may be the case in 170 

some insect systems [28-31], our study provides evidence that the midgut 171 

microbiome of colonized Ae. aegypti is highly similar and most likely will not 172 

confound genetic studies of vector biology. 173 
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Although we did not genotype the Ae. aegypti colonies used in this study, it 174 

is well accepted that Ae. aegypti from sub-Saharan Africa belong to a different 175 

phylogenetic cluster than pan-tropical Ae. aegypti from elsewhere in the world 176 

[36-40]. At a more local scale, populations of Ae. aegypti sampled from distinct 177 

locations are usually genetically distinct [41-43]. Accordingly, we assume that the 178 

colonies that we tested in fact represent various genotypes of Ae. aegypti. We 179 

conclude that mosquito genotype does not influence the microbiome of 180 

laboratory-bred Ae. aegypti, further demonstrating the importance that the 181 

environment plays in shaping the gut microbiome of Ae. aegypti. However, this 182 

may not be the case in a more natural system. One can imagine that within a given 183 

environment, the mosquito genotype may influence the composition of the midgut 184 

microbiome and this should be explored further. 185 

 A limitation of our study was that we only dissected midguts at one time 186 

point. Recent results from Short et al. [33] suggest that differences between 187 

colonies may exist at different times following adult emergence. It is possible that 188 

differences in the gut microbiome between our colonies would have been 189 

observed if we had sampled the midguts sooner or later after adult emergence. 190 

Since our primary goal was to determine how the gut microbiome of our colonies 191 

impacted studies of vector competence, we chose a time point after adult 192 

emergence that related to the time when an infectious blood meal is usually 193 

offered in vector competence assays. 194 

 One potentially important implication of our results is that the same 195 

mosquito strain reared in different laboratories might display different 196 

phenotypes due to a different gut microbiome. We found that the gut microbiome 197 

of mosquito colonies was entirely determined by the insectary environment 198 
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regardless of the mosquito genotype. It follows that the same mosquito strain 199 

exposed to a different environment could host a different gut microbiota. This 200 

could undermine the relevance of reference strains that are shared by different 201 

laboratories. It will be interesting in future studies to compare the gut bacterial 202 

microbiome of the same mosquito strain reared in different insectaries. 203 

 204 

Conclusions 205 

 Our finding that geographically diverse colonies of Ae. aegypti reared in the 206 

same insectary harbor a similar gut bacterial microbiome supports the conclusion 207 

that the gut microbiota of adult mosquitoes is environmentally determined, 208 

regardless of the host genotype. Thus, uncontrolled differences in microbiota 209 

composition are unlikely to represent a significant confounding factor in genetic 210 

studies of vector biology. 211 

 212 

Methods 213 

Mosquito colonies and sample preparation 214 

Six Ae. aegypti colonies were chosen to represent the worldwide distribution of 215 

the species (Figure 1; Table 1). Eggs from each of these colonies were 216 

simultaneously hatched in dechlorinated tap water under reduced air pressure for 217 

one hour and 200 first-instar larvae from each colony were sorted into 24 x 34 x 218 

9 cm plastic trays. The larvae were fed on a standard diet of Tetramin fish food 219 

(Tetra) every other day until pupation. Immediately following emergence, adults 220 

(males and females) were randomly separated into three replicate cages per 221 

mosquito colony. They were maintained under standard insectary conditions 222 
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(28°C, 70% relative humidity and 12h light: 12h dark cycle) for 4-6 days and 223 

allowed to mate and feed on sugar. 224 

Midguts were dissected from adult females under sterile conditions in a 225 

biosafety cabinet. Each mosquito was surface sterilized in 70% ethanol for 3-5 226 

minutes and washed three times in sterile 1x phosphate-buffered saline (PBS). 227 

Midguts were dissected in a drop of sterile 1x PBS and DNA from individual 228 

midguts was extracted as previously reported [9]. Briefly, individual midguts were 229 

ground in 300 l of 20 mg/ml lysozyme dissolved in Qiagen ATL buffer in a sterile 230 

tube containing grinding beads. The samples were homogenized for two rounds 231 

of 30 seconds at 6,700 RPM (Precellys 24, Bertin Technologies) and DNA was 232 

extracted following the Qiagen DNeasy recommended pre-treatment protocol for 233 

Gram-positive bacterial samples. To control for contamination of bacteria 234 

introduced during the midgut dissections, DNA extractions, and PCR steps, 235 

negative controls were made by extracting DNA from blank 1x PBS that was used 236 

during the washing steps and by performing negative PCR reactions. 237 

16S sequencing 238 

Custom-made PCR primers were designed to amplify the hypervariable V5-V6 239 

region of the bacterial 16S ribosomal RNA gene from midguts as previously 240 

described [9]. Purified DNA from each midgut sample was amplified in triplicate 241 

by 40 cycles of PCR using Expand High-Fidelity polymerase (Sigma-Aldrich) 242 

following manufacturer instructions. To improve PCR sensitivity, 0.15 l 243 

T4gene32 and 0.5 l 20mg/ml bovine serum albumin (BSA) were added per 244 

reaction with 6 l of template DNA. The three PCR reactions were pooled and the 245 

PCR products purified using Agencourt AMPure XP magnetic beads (Beckman 246 

Coulter). The purified PCR products were quantified by Quant-iT PicoGreen 247 
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dsDNA fluorometric quantification (ThermoFisher Scientific) and pooled for 248 

sequencing in paired-end on the Illumina MiSeq platform using the 500-cycle v2 249 

chemistry (Illumina). On average, 16-18 individual midguts (6 individuals per 250 

adult replicate cage) were sequenced per Ae. aegypti colony. In order to achieve 251 

enough reads per sample, the sequencing was done in two separate runs. Libraries 252 

from each colony and each replicate were dispersed evenly between the two 253 

sequencing runs. Five libraries were removed from further analysis due to a low 254 

number of reads. Raw sequences were deposited to the European Nucleotide 255 

Archive under accession number PRJEB22905. 256 

Data analysis 257 

To account for possible contamination at various steps in the sample-processing 258 

pipeline, the sequencing reads were corrected with the reads from the negative 259 

controls. The sequencing reads from each sample were mapped to the reads found 260 

in the negative controls using Bowtie2 [44]. Reads that mapped to reads in the 261 

negative controls were removed from the analysis. Read filtering, OTU clustering 262 

and annotation were performed with the MASQUE pipeline 263 

(https://github.com/aghozlane/masque) as previously described [45]. A total of 264 

2,679 OTUs were obtained at 97% sequence identity threshold. Genus richness 265 

and Shannon diversity index were compared by analysis of variance (ANOVA). All 266 

other statistical analyses were performed with SHAMAN (shaman.c3bi.pasteur.fr) 267 

as previously described [9]. Briefly, the normalization of OTU counts was 268 

performed at the OTU level using the DESeq2 normalization method. After 269 

normalization, an additional six individuals were removed due to low size factors. 270 

In SHAMAN, a generalized linear model (GLM) was fitted and vectors of contrasts 271 

were defined to determine the significance in abundance variation between 272 
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sample types. The GLM included the main effect of the Ae. aegypti colony, the main 273 

effect of replicate cage, the main effect of sequencing run and the interaction 274 

between colony and replicate. The resulting p values were adjusted for multiple 275 

testing according to the Benjamini and Hochberg procedure [46]. Principal 276 

coordinates analysis (PCoA) was performed with the ade4 R package (v1.7.6) 277 

using a Bray-Curtis dissimilarity matrix. Permutational multivariate analysis of 278 

variance (PERMANOVA) was performed in the vegan R package (v2.4.3) as a 279 

distance-based method to test the statistical significance of the association 280 

between bacterial community structure and mosquito colony. 281 
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Figure Legends 438 

Figure 1: World map showing the origin of the Ae. aegypti colonies used in the 439 

study overlaid with the approximate global distribution of Ae. aegypti adapted 440 

from Kraemer et al. [47, 48]. The colonies were initiated on different years and 441 

represent different generation times in the laboratory (Table 1). 442 

 443 

Figure 2: Genetic diversity of the gut bacterial communities is similar between 444 

diverse colonies of Ae. aegypti. The genus richness (a) and Shannon diversity index 445 

(b) were calculated for each colony representing 16-18 individual midguts from 3 446 

replicate cages dissected 4-6 days after adult emergence. Genus richness is the 447 

number of bacterial genera identified in each colony. The Shannon diversity index 448 

accounts for the relative abundance of each bacterial genus. Error bars represent 449 

95% confidence intervals. No difference in richness (ANOVA: F = 1.125, p value = 450 

0.353) or in Shannon index (ANOVA: F = 0.522, p value = 0.759) was detected 451 

between colonies.  452 

 453 

Figure 3: The dominant bacterial genera found in the midgut are similar among 454 

diverse colonies of Ae. aegypti. The abundance of the 12 most abundant genera is 455 

shown for each colony representing 16-18 individual midguts from 3 replicate 456 

cages dissected 4-6 days after adult emergence. Bacterial genera were assigned to 457 

OTUs clustered with a 97% cutoff using the SILVA database (https://www.arb-458 

silva.de). 459 

 460 

Figure 4: The midgut bacterial community structure is similar between diverse 461 

colonies of Ae. aegypti. Bacterial community structures between colonies are 462 
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compared by (a) principal coordinates analysis (PCoA) and (b) pairwise 463 

differential abundance analysis. PCoA is based on a Bray-Curtis dissimilarity 464 

matrix and indicates a lack of overall differences (PERMANOVA: p value = 0.752). 465 

Results of differential abundance analysis are shown for each pair of colonies as 466 

the proportion of all bacterial genera identified (n=587) that were non-467 

significantly differentially abundant after correction for multiple testing. 468 

 469 

Supplemental Table 1: Identification of bacterial genera that are differentially 470 

abundant in pairwise comparisons of colonies. The lack of a comparison between 471 

two colonies indicates that no bacterial genera were significantly different 472 

between them.  473 

 474 

Supplemental Figure 1: Rarefaction curves for the individual samples used in the 475 

analysis at the genera level. The curves show the number of detected bacterial 476 

genera as a function of the number of reads analyzed per sequencing library. Each 477 

curve represents a single midgut sample. 478 

 479 

Supplemental Figure 2: The midgut bacterial communities are highly structured 480 

by sequencing run. The cluster dendrogram of individual midgut samples based 481 

on a Bray-Curtis dissimilarity matrix shows that sequencing run, and not the 482 

identity of the mosquito colony, determines bacterial community relatedness. 483 

Midgut samples are represented by numbers color coded by sequencing run. Dark 484 

blue samples were sequenced in the first run, whereas light blue samples were 485 

sequenced in the second run.  486 

 487 
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Table 488 

 489 

Table 1. Aedes aegypti colonies included in this study. The country and region of 490 

origin, year of collection, and number of generations spent in the laboratory prior 491 

to the study are shown. 492 

Country Region Year Generation 

Australia Cairns 2013 10 

Cambodia Phnom Penh 2015 7 

French Guiana Cayenne 2015 4 

Gabon Bakoumba 2014 10 

Guadeloupe Saint François 2015 5 

Uganda Zika 2016 3 

 493 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/200659doi: bioRxiv preprint 

https://doi.org/10.1101/200659


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/200659doi: bioRxiv preprint 

Figure 1

https://doi.org/10.1101/200659


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/200659doi: bioRxiv preprint 

Figure 2

https://doi.org/10.1101/200659


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/200659doi: bioRxiv preprint 

Figure 3

https://doi.org/10.1101/200659


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/200659doi: bioRxiv preprint 

Figure 4

https://doi.org/10.1101/200659

