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ABSTRACT

The 3D organization of chromosome is crucial for regulating gene expression and cell function. Many experimental and poly-
mer modeling efforts are dedicated to deciphering the mechanistic principles behind chromosome folding. Chromosomes are
long and densely packed - topologically constrained - polymers. The main challenge is therefore to develop adequate models
and simulation methods to investigate properly the multi spatio-temporal scales of such macromolecules. Here, we discussed
a generic strategy to develop efficient coarse-grained models for self-avoiding polymers on a lattice. Accounting accurately for
the polymer entanglement length and the volumic density, we show that our simulation scheme not only captures the steady-
state structural and dynamical properties of the system but also tracks the same dynamics at different coarse-graining. This
strategy allows a strong power-law gain in numerical efficiency and offers a systematic way to define reliable coarse-grained
null models for chromosomes and to go beyond the current limitations by studying long chromosomes during an extended
time period with good statistics. We use our formalism to investigate in details the time evolution of the 3D organization of
chromosome 3R (20 Mbp) in drosophila during one cell cycle (20 hours). We show that a combination of our coarse-graining
strategy with a one-parameter block copolymer model integrating epigenomic-driven interactions quantitatively reproduce
experimental data at the chromosome-scale and predict that chromatin motion is very dynamic during the cell cycle.

1 Introduction
Though all cells of a multicellular organism contain the same genetic information, they vary widely in shapes, in physiologies,
and in functions. These differences mainly reflect variations in gene expression between different tissues or cell types. Re-
cent experiments have highlighted the important role of the physical organization of chromosomes inside the cell nucleus in
regulating gene expression1–3: gene activities being modulated, not only by the local folding of the chromatin fiber but also
by its higher order organization with 3D nuclear compartments favorable to gene activation or repression. During interphase,
the longest phase of the cell cycle where genes are expressed and DNA is replicated, chromosomes are found to be organized
hierarchically. Confocal and electron microscopy experiments have revealed that each chromosome occupies it own territory4.
Also, the genes sharing the same transcriptional state tend to colocalize5–7: inactive genomic regions (the heterochromatin)
being more peripheral while active regions (the euchromatin) being more central. At the sub-chromosomal level, advanced
molecular biology tools, like chromosome conformation capture (Hi-C) techniques, have shown that chromosomes are parti-
tioned into consecutive 3D interaction compartments, the so-called topologically-associated domains (TADs),8–10. Loci inside
these domains experience enriched contact probabilities with other loci of the same domain while showing partial insulation
from loci of nearest neighbor domains. These domains can be easily visualized as consecutive “squares” along the diagonal of
a 2D contact frequency matrix (see Fig.6 for an illustration). TADs formation has been associated with the local biochemical
composition of chromatin, the so-called epigenome, which encodes for gene activity7, 11–14: genes inside the same TAD tends
to have the same epigenomic state, and long-range contacts may be observed between TADs of the same state.

However, how genome precisely organized in space is still not fully understood and addressing this question represents
one of the most exciting challenges of modern biology15. Lots of experimental and modeling efforts are currently dedicated
to understanding the mechanisms implied in chromosome folding. In particular, polymer models have been instrumental in
simulating and testing different molecular and physical mechanisms and in driving new experiments5, 16–39. An important
challenge for such models is to simulate with a good precision the behavior of long polymer chains (the typical size of a
chromosome ranging from about a million base-pairs in yeast to hundreds of Mbp in human) during an extended time period
(of the order of hours for a typical cell cycle). Therefore the standard strategy used in these approaches is to start from a
coarse-grained “null” model for chromatin with few basic interactions40. Then eventually decorate it with more physical or
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chemical interactions driven by biological information such as the gene activity or the local epigenomic state.
Chromosomes being very long polymers densely packed into the cell nucleus, topological constraints generated by poly-

mer entanglement may play an important role in controlling the dynamics and fluctuations of such polymers16, 41. However,
when building their null models, very few approaches account adequately for such considerations. As neglecting topological
constraints may lead to different structural and dynamical properties of the polymer, how can one interpret the outcomes
correctly of such models concerning realistic mechanisms, if the considered null model is already biased?

Here, we develop a generic coarse-graining strategy for self-avoiding polymers that allows, simultaneously, to drastically
reduce the computation time while maintaining the polymer in the same topological regime and thus preserving the correct
structural and dynamical properties. In the first part, we explain the strategy and demonstrate its efficiency, leading to a
systematic approach to developing a coarse-grained null model for chromosomes. In the second part, we apply it to investigate
the role of epigenomic-driven interactions in the folding and dynamics of drosophila chromosomes. Finally, we discuss our
results and their implications in the general context of chromosome modeling and chromatin biology.

2 Results
2.1 Chromosome and entanglement length
Chromosomes are long polymers confined inside a small volume, the cell nucleus42. As a result, the generic characteristics of
these densely packed long polymers are very different from free isolated chains and exhibit distinct universal properties41, 43.
For a simple semi-flexible self-avoiding polymer, composed of N beads of size b (in nm), each bead representing ν bp, such
properties are mainly determined by (i) its rigidity, characterized by its Kuhn length lk (in nm), and (ii) by its volumic density
ρ (in bp/nm3). Moreover, in a non-dilute environment, topological constraints are also expected to influence the large-scale
organization and long-time dynamics. Their importance depends on the ratio between the polymer contour length L ≡ Nb and
Le (in nm), the so-called entanglement length. Le measures the typical subchain size above which topological confinement
due to excluded volume influences configurational fluctuations, and depends on lk and ρ . It may be associated with the tube
diameter in the reptation model or to the crossover time between a Rouse-like motion and a reptation-like motion44, and may
be estimated using the phenomenological relation45

Le = lk

(
c

ρkl3
k

)2

, (1)

with c ≈ 19 is a numerical factor and ρk = (ρ/ν)(b/lk) the volumic density in Kuhn segment. In the following, we define
Nk = ν lk/b (in bp) as the Kuhn segment size representing the number of bp in one Kuhn segment. L/Le ≪ 1 means very
weak topological effects and the polymer behaves as a standard Rouse chain. If L/Le ≫ 1, the chain motion is restricted
due to strong topological interactions and exploration of the available space is very slow. In this case, equilibration time of
the chain scales as N346, implying that polymer dynamics remains out-of-equilibrium and the initial topological properties
(presence/absence of knots) or large-scale organization features are maintained over a long time period.

2.1.1 A reference model for chromosome
To provide the physically realistic scenario of chromosome structure and dynamics, we need to precise the values of lk and
b.We define the fine scale null model of chromosomes with Kuhn length lk ≡ l0

k , number of beads N ≡ N0 and bead size b ≡ b0
as our reference model. Precise measurements of the Kuhn length of in vivo chromatin are still lacking and controversy still
exists about its value, going from few nanometers47, the so-called 10 nm-fiber, to hundreds of nanometers, the so-called 30 nm-
fiber48. We decide to use, as a reference model, the nucleosomal scale (1 monomer correspond to ν0 = 200 bp, b0 ≈ 10 nm)
with a recent estimation of Kuhn size N0

k = ν0l0
k/b0 ≈ 1 kbp (l0

k/b0 = 5 monomers) based on cyclization probabilities of
chromatin26.

In order to determine the value of the entanglement length Le, the other important quantity to fix is the chromatin volumic
density ρ defined as the ratio between the genome size and the volume of the nucleus. Depending on the species, the cell
types or the developmental stages, it may strongly vary. Typical orders of magnitude are ρ ≈ 0.005 bp/nm3 for haploid
yeast, ρ ≈ 0.009 bp/nm3 for drosophila late embryos or ρ ≈ 0.015 bp/nm3 in typical mammalian nuclei (see Materials and
Methods). Systems with higher volumic density become more entangled and exhibit shorter entanglement length (Eq. 1).
This leads to decreasing values for Ne ≡ ν0Le/b0 ≈ 920 kbp (yeast), 285 kbp (drosophila) or 102 kbp (mammals). In yeast,
ν0N0 ≈ 750 kbp, implying that chromosomes are weakly entangled (L/Le = 0.8 ≲ 1). In higher eukaryotes, as drosophila or
mammals, chromosomes are longer (tens or hundreds of Mbp) and in the regime of strong topological constraints (L/Le ≫ 1).
For example, for a chromosome of length ν0N0 = 20 Mbp, the corresponding value is L/Le = 70 in drosophila. For a given

species, the exact value of this ratio may vary depending on the cell types due to variation in the volume of the nucleus but
usually the entanglement regime is preserved (weakly constrained for yeast, strongly for higher eukaryotes). Note that the
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30 nm fiber model for chromatin (l0
k = 300 nm, b0 = 30 nm, ν0l0

k/b0 = 30 kbp) would lead to similar orders of magnitude for
L/Le.

2.1.2 Generic behavior of chromosome
To illustrate the generic behavior of the reference model in the different entanglement regimes, we perform kinetic Monte-
Carlo (KMC) simulations of the chain dynamics using a lattice model with periodic boundary conditions and starting from
knotted-free initial configurations (see Materials and Methods). We focus on the “yeast” (N0 = 3750 monomers, ν0N0 = 750
kbp, lattice density Φ0 ≡ ρb3

0/(
√

2ν) = 0.023) and on the “drosophila” (N0 = 105 monomers, ν0N0 = 20 Mbp, Φ0 = 0.043)
cases.

During the simulations, we measured four standard physical quantities: time evolution of the average mean squared
displacements (MSD) of individual monomers g1(t), MSD of the center of mass of the chain g3(t), average mean squared
distance ⟨R2(s)⟩ between two monomers separated by a contour length s (in bp) along the chain and contact probability
Pc(s) (Fig.1). Comparison of g1(t) with 0.01 t0.5, the experimentally measured typical value of g1 in µm2 for yeast and
drosophila47, 49, gave the equivalency of each MCS with real time in sec. From the time mapping we were able to represent
our results in real physical unit: time in sec, distance in µm. For the drosophila case, a 108-MCS long trajectory would
correspond to about 30 min of real time. To check the precision of the MSD scaling laws, we calculated g1, g3 by varying
the measuring simulation time window (∆t) of the trajectory. We observed that both g1, g3 reached steady-state rapidly and
almost perfectly overlap for different trace-lengths ∆t, see Fig.S2.

The yeast chromosome behaves dynamically as a standard Rouse chain47. At intermediate times, g1 ∼ t0.5 (Fig.1a),
the typical scaling law in the Rouse diffusion regime50. At later time, when t is greater than the Rouse time, the typical
time by which the polymer has already traveled a distance equivalent to its size, g1 coincides with the center of mass MSD
(g3 ∼ t), characteristic of a simple diffusion process50. In the drosophila case, topological constraints are strong and the
anomalous diffusion exponents of g1 at intermediate time scale behaves as t0.4 (Fig.1a,d). Note that, we do not observe
the scaling exponent, at least in the scanned time scales, expected from reptation dynamics (t0.25) of entangled polymers46.
This is a characteristic of knot-free polymers, like crumpled or ring polymers51 and is reminiscent of the initial unknotted
configurations. Starting from random configurations that contain complex knots (Fig.S1g), we recover the standard reptation
regime (Fig.S4a,d).

At small time scales (t <ms), g1 scales as t0.75 which corresponds to the typical diffusion regime of a semi-flexible chain
up to the Kuhn length scale52.

Regarding the structural properties ⟨R2(s)⟩ (Fig.1b) and Pc(s) (Fig.1c), we recover the main scaling laws observed ex-
perimentally for chromosomes of yeast, fly and other eukaryotes5, 6, 43, 53–55. The yeast case is fully consistent with a worm-
like-chain at equilibrium with ⟨R2(s)⟩ ∼ s1 and Pc ∼ s−1.550. On the other hand, for the fly chromosome, the scaling laws
(⟨R2(s)⟩ ∼ s2/3 and Pc ∼ s−1.1) are consistent with crumpled polymer physics16, 43, 56–58. The large scale behavior (s > 1
Mbp) is a remaining signature of the initial scaling laws (Fig.S7): the system has yet to reach steady-state and is still strongly
out-of-equilibrium.

2.2 Coarse-graining long polymers at fixed entanglement length
Using the fine scale reference model, we recover the expected structural and dynamical behaviors in the different entangle-
ment regimes, fully consistent with previous theoretical works on knot-free and crumpled polymers16, 43, 51, 56, 57, 59 and with
experiments5, 6, 47, 49, 53–55, 60. At this nucleosomal scale, the model has very good spatial (10 nm) and temporal (15 µsec,
30 min ≈ 108 MCS) resolutions. However, the underlying cost of this is a prohibitive computational time. For example,
for long chromosomes such as in the drosophila case, simulating one 30 min long trajectory requires 83 hrs CPU time on a
3.20 GHz CPU. To access more biologically-relevant time-scales (dozens of hours) with good statistics, we aim to develop a
coarse-graining strategy of the reference model that allows to speed up the simulation of long trajectories while preserving the
main physical characteristics of the original -fine scale - model.

2.2.1 Coarse-graining strategy
We consider an arbitrary fine-scale model (FSM) of a semi-flexible self-avoiding walk defined by N0, l0

k , b0. We note N, lk and
b, the corresponding values of a coarse-grained model (CGM) of the FSM. Each CGM monomer encompasses n = N0/N > 1
FSM monomers. A possible CG strategy consists in neglecting the bending rigidity (lk = b) in the CGM if n is greater than
the Kuhn size N0

k ≡ nl0
k/b0, in the FSM, and in imposing the size of CGM monomer to equal the mean end-to-end distance

of the corresponding number of FSM monomers, ie b =
√

nb0l0
k . Using Eq.1 and conservation of total volume, it is easy to

show that the ratio (L/Le) is also conserved, and therefore the effect of topological constraints. However, such approach is
limited by the volume fraction Φ occupied by the CG chain (for a lattice model Φ ≡ N/Ns with Ns the number of lattice sites).
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Table 1. Simulation parameters at different coarse-graining for a semi-flexible, self-avoiding polymer with L/Le = 70 and
ρ = 0.009 bp/nm3 (drosophila case). Lattice volumic fraction Φ, Kuhn size Nk ≡ ν lk/b (in kbp), bond length of the polymer
b (in nm) and Kuhn length lk (in nm) at different coarse-grainings (CG) of ν = 0.2, 2, 5, and 10 kbp. Each fifth subcolumn
represents the time in msec equivalent to one Monte-Carlo steps (MCS). Similar tables for the yeast and mammalian cases
are given in the supplementary text.

200 bp 2 kbp 5 kbp 10 kbp
Φ0 N0

k b0 l0
k MCS Φ Nk b lk MCS Φ Nk b lk MCS Φ Nk b lk MCS

0.043 1.0 10.6 55.4 0.015 0.027 29 20.5 305 0.002 0.09 44 41.9 374 0.4 0.37 44 83.8 372 8.71
0.039 23 23.1 273 0.010 0.17 29 51.3 304 1.2 0.68 29 102.5 304 17.3
0.049 20 24.9 252 0.040 0.24 23 57.6 271 1.7 0.97 23 115.3 274 22.1
0.076 15 28.8 218 0.083 0.29 20 61.5 252 2.5
0.113 11 32.9 190 0.181 0.45 15 70.9 220 5.4

Indeed, for lattice or off-lattice (assuming spherical shape for monomer in the FSM and CGM) models

Φ
Φ0

= n1/2
(

l0
k

b0

)3/2

> 1. (2)

Hence, if Φ0 is already high in the FSM and/or the coarse-graining is strong (n ≫ 1), Φ might become close or higher to 1 and
therefore very hard to simulate. For example in the case of drosophila chromosomes (Φ0 ∼ 4.3%), if n = 5 (corresponding
to 1 kbp resolution, the Kuhn segment size of the FSM), Φ = 25Φ0 > 1. Therefore, already at the Kuhn size scale, such CG

strategy may fail to generate simulable models. Forcing the CG to high n anyway would imply to choose b <
√

nb0l0
k in order

to maintain Φ < 1, violating the conservation of the ratio L/Le. This may affect the dynamical regime of the chain, and hence
its physical properties (see Section 2.3). To avoid this, we develop a novel coarse-graining strategy that allows to go for high
coarse-graining while keeping the volumic fraction in a simulable range and the ratio (L/Le) fixed.

We authorized the CGM, even if n > (l0
k/b0), to have a bending rigidity characterized by lk. And we imposed that the

ratio L/Le and the volume of the simulation box are conserved. In the lattice framework, using Eq. 1, these constraints can be
reformulated as (see Materials and Methods)

lk
b
=

[(
b0

L0
e

)(
nc2

2Φ2

)]1/3

and b =

(√
2nΦ

ρFS

)1/3

, (3)

with ρFS ≡ N0/V = ρ/ν0 the volumic density in FS monomers (with V the volume of the box). Φ now plays the role of
a control parameter: the characteristics of the CGM depends not only on the FS properties but also on Φ (see Table 1 for
examples) since a given Φ determines b and lk, and the corresponding value for the lattice bending energy κ is inferred from
lk/b (see Materials and Methods). As in most coarse-graining approaches, the size of each CG monomer (b) does not reflect
the actual contour length of the corresponding fine-scale subchain, but rather would represent the typical diameter of the
volume occupied by the fine-scale monomers. However, we observe that the length deformation of the CG polymer with
respect to the reference model remains weak (Fig.S16a).

It has to be noted that the corresponding CG bending rigidity is not a “true” rigidity that reflects the rigidity of the FSM. It
is an artificial rigidity, allowing to control Φ. Therefore, the CGM cannot pretend to quantitatively describe the FSM properties
at scales smaller than few lk.

2.2.2 Conservation of generic properties and time mapping
In this part, we test if the above coarse-graining strategy conserves the structural and dynamical properties of the reference
fine-scale model. In this article, we primarily focus on the drosophila case. However, in the Supplementary Information, we
show that the method also performs very well for the yeast and mammalian cases (Fig.S8, S9) and that the success of the
strategy does not depend on the type of used initial conditions (Fig.S3,S5).

In Fig.1 bottom panel, we compared results between the FSM and a CGM at 10 kbp resolution for Φ = 0.97. Like for
the reference model (see Sec.2.1.2), we time-mapped the simulation time for the CGM using g1(t) in order to have a direct
time correspondence between the FSM and CGM (see Table 1). For this CG, 1 MCS represents a time step 104 fold larger
than the FSM, meaning that the 108 MCS-long trajectories can span more than 100 hours (instead of 30 min for the FSM). We
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Figure 1. In the top panels, we compare different physical properties for yeast (red) and drosophila (blue) chromosomes at a
nucleosomal resolution of 200 bp (reference model). In the bottom panel, we compare the reference model (Φ0 = 0.043)
with one possible coarse-grained model (CG = 10 kbp, Φ = 0.97) for the drosophila case. (a,d) Individual MSD g1(t) (top
curves), and center of mass MSD g3(t) (bottom curves) as a function of time t. (b,e) The average physical squared distance
⟨R2(s)⟩ between any two monomers as a function of their linear distance s along the chain (given in bp). (c,f) Average
contact probability Pc(s) as a function of s. A contact between any two monomers is defined if the 3D distance is less than a
threshold dc (with dc = 55 nm in (c) and dc = 163 nm in (f)). In (e,f), averages were computed over the same real time
window (100 sec−30 min). The error bars in (a, b, c) were computed as the standard deviation of the mean. Error bars in (a)
are of the similar size of the symbols. For the yeast case, we fix L/Le = 0.8, ρ = 0.005bp/nm3, and for drosophila,
L/Le = 70, ρ = 0.009bp/nm3 (see section 2.1.1).

remark that MSD curves overlap nicely and that the scaling laws are conserved (Fig.1d). From the configurations collected
during the “real” time window (0− 30 min) common to both models, we calculated the averaged properties of ⟨R2⟩(s) and
Pc(s) (Fig.1e,f). For s < 1 Mbp, we observe a perfect match between CG predictions and the FSM behavior. For s > 1Mb, the
system does not reach steady-state and keeps a partial memory of the initial scaling laws that are different for both systems
(Fig.S6, S7), leading to small deviations between the predictions, especially for Pc which is more sensitive to local structures.

In Fig.2, we performed similar comparisons between two different CGM at a fixed Kuhn size value NK ≡ ν lk/b (NK = 23
kbp): (CG = 5 kbp, Φ = 0.24) and (CG = 10 kbp, Φ = 0.97). As before, we recovered identical scaling laws for g1(t), the
10 kbp-resolution model allowing to scan longer times for the same number of MCS steps (Fig.2a). We computed ⟨R2⟩ and
Pc for a series of snapshots taken at several real time points, at 1 min, 30 min and 10 hrs (Fig.2b,c). Remarkably, starting
from similar behaviors for ⟨R2(s)⟩ for the two CG (compare the 1 min-curves), the predicted time-evolution of the two curves
remains identical, even after simulating more than 10h of real time. A similar comparison is also observed for Pc(s) and the
average second moment ⟨σ2(s)⟩ of the squared distance R2(s) defined as σ2(s) = ⟨R4(s)⟩−⟨R2(s)⟩2 (Fig.S10c,d).

To test that controlling the volumic fraction Φ, or equivalently the Kuhn fragment size NK , in our strategy does not impact
the coarse-graining, we perform simulations at the same CG (= 10 kbp), but for different values of NK (Fig.2 and Fig.S10a,b).
Identically, we observe almost perfect matching for the time-evolution of ⟨R2⟩, Pc and σ2(s) for all ranges of genomic distance.
To push our strategy to the limit, we also considered very high values for Φ (Fig.S11a,b,c). In our lattice polymer model, each
point can be occupied by two consecutive monomers (see Sec.4.2), so in principle, a maximum volumic fraction Φ = 2 is
achievable. For Φ ≲ 1, all the simulations show exactly same results as the reference model and follow the same curve. For
Φ ≳ 1 the results deviate from the reference model strongly, the dynamics are dramatically slowed down due to the incapacity
of the algorithm to move the monomers efficiently.

All this demonstrates that our coarse-graining strategy allows to describe the correct structural and dynamical properties
of the underlying model at all scales at steady-state but more importantly also out-of-equilibrium as long as the initial con-
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Figure 2. Comparison of physical properties and their time evolution for two different coarse-grainings (CG = 5, 10 kbp) at
a fixed Kuhn size of Nk = 23 kbp (top panels) or for two different Kuhn sizes (Nk = 29, 44 kbp) at a fixed coarse-graining of
CG=10 kbp (bottom panels) for the drosophila case (L/Le = 70, ρ = 0.009bp/nm3). (a,d) Average MSDs as a function of
time in sec, calculated from the trajectory of 107 Monte Carlo steps. Time evolution of ⟨R2(s)⟩ (b,e) and Pc(s) (c,f) for
different coarse-grainings (b,c) and Kuhn sizes (e,f).
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Figure 3. CPU time (given in hours) required to simulate 30 min of real dynamics for the drosophila case on a 3.20 GHz
processor, (a) as a function of coarse graining where Kuhn sizes are fixed at three different values and, (b) as a function of
Kuhn size at three different coarse grainings. The reference model is represented by Nk = 1 kbp and CG = 0.2 kbp.

figurations share the same statistical behaviors and the chosen volumic fraction is not too high. What is the gain in term of
numerical efficiency? Decreasing the number of beads by augmenting the CG would automatically linearly reduce the time
to compute 1 Monte-Carlo time-step in our simulations. In addition, as the CG and the controlled Φ (or equivalently NK) are
increasing, the mesh size of the lattice model (or the size of a monomer) augments, and thus 1 MCS will correspond to a larger
real time step (see Tab.1). Therefore, the simulation of a fixed time period will be consequently decreased. All in all, we
observed a fast polynomial decay of the numerical effort as a function of the CG scale (CPU time ∼ CG−5, Fig.3a), with, for
example, a gain of almost four orders of magnitude between the reference fine scale model and the CGM at 10 kbp resolution
with Nk = 23 kbp (or Φ = 0.97). Similarly we gain polynomially (CPU time ∼ N3

k ) in computational time for smaller Kuhn
size NK (see Fig.3b). However smaller Nk corresponds to higher Φ which may impose restrictions on the dynamics if Φ > 1.
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Figure 4. Comparison between the reference model of drosophila and various chains constructed in extreme simulation
conditions: soft κ = 0, isolated Φ << 1, and small pieces with chain length less than N. (a) g1(t), (b) ⟨R2(s)⟩ and (c) Pc(s).

2.3 How to build a good coarse-grained null model of chromosome?
Our coarse-graining strategy is generic and has no direct connection to any particular polymer. When applied to a specific
system, the question would be how to choose the optimal coarse-graining? As we observed above, regarding numerical
efficiency, one wants to go for the higher CG and higher Φ (≲ 1). These two values will determine the spatial and temporal
resolutions of the model. Therefore, a natural choice would be to maximize CG and Φ under the constraints of a minimal
desired resolution (e.g., determined by the experimental precision). For example, for chromosomes, we aim to be quantitative
typically at a 20 kbp scale (NK ∼ 20 kbp) with a spatial precision of about 100 nm. Under this loose constraints, CG = 10 kbp
and Φ = 0.97 is a very appropriate choice (see Tab.1).

Till now, throughout our study, we strategically choose the bending stiffness lk or the lattice volumic fraction Φ so that we
preserve the physical properties of the system by conserving the right entanglement regime. Now the question is what happens
if one uses more naive coarse-graining strategies that do not necessarily preserve the topological regime. As explained at the
beginning of Sec.4.3, a typical strategy is to “neglect” the artificial bending rigidity if the CG is higher than the Kuhn length
of the reference model. Another is to consider an isolated polymer and to neglect the “confinement” of the chain. These two
kinds of models may modify the L/Le ratio and therefore may change the physical properties of the system: chain motion may
be slightly accelerated (g1(t) ∼ t0.5, Fig.4a) and structural properties may be strongly perturbed (Fig.4b,c) (see also Fig.S11
bottom and Fig.S12). In particular, considering an isolated chain (Φ ≪ 1) dramatically modifies the behavior of Pc that scales
within this approximation as ∼ s−2, characteristics of isolated self-avoiding walks46. This leads to an underestimation of the
contact probability by orders of magnitude compared to the reference model.

In complement to coarse-graining strategies, still in the purpose of reducing the computation time, a standard approach is
to simulate only small pieces of the chromosomes instead of the full length. Since the dynamical regime of the chain depends
on the ratio L/Le, reducing the value of L may modify the dynamics of the chain and therefore may lead to wrong predictions.
For example, instead of 20 Mbp-long polymer, if we simulate a small fragment of 2 Mbp, we found strong discrepancies. At
small length scales, s < 100 kbp, it follows the reference model, but at larger length scale 100 kbp < s < 2 Mbp it deviates
from reference model and behaves like an isolated Rouse polymer (see Fig.4 and Fig.S13).

All this emphasizes the need to conserve properly the ratio L/Le of the reference model if one aims to simulate the
right polymeric behavior accurately. Modifying this ratio by decreasing L or by making approximations that affect Le would
possibly lead to simulate a system with different physical properties than the actual system of interest.

2.4 Application to chromatin folding in drosophila
Having in hands a strategy to build an efficient coarse-grained “null” model for chromosome, we use it to study the folding
of fly chromosome 3R. In drosophila, the 3D structural units, the so-called TADs, are strongly associated with the 1D epige-
nomic domains11, 61, 62: a locus of a given epigenomic state is likely to share its local 3D compartment with loci of the same
epigenomic state. This observed correlation had recently motivated us to build a heteropolymer model accounting for the
epigenome folding into interacting TADs20, 32. Based on biochemical evidence that proteins associated with some epigenomic
states have the capacity to oligomerize63–65, hence possibly generating effective specific interactions between loci of the same
state, we developed a block copolymer model of fly chromatin where each block represents an 1D epigenomic domain. By
varying the strength of these specific interactions, we showed that such model well accounts for the TAD formation and for
inter-TAD long-range contacts. Previously, we limited our analysis to short pieces of chromatin (∼ 1 Mbp-long fragment)
at equilibrium. In section 2.3 of the present paper, we observed that simulating only small regions instead of the full system
might lead to strong approximations. Here, we wonder if our conclusions on the 3D chromosome folding in drosophila remain
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valid and can be generalized when considering a larger genomic region and using a more realistic “null” model for chromatin.
We consider the 20-Mbp region of chromosome 3R localized between 7 and 27 Mbp, that we model using an efficient

coarse-graining (10 kbp and Φ = 0.97 for L/Le = 70, ρ = 0.009bp/nm3, see Table 1). For this region, we collect the
epigenomic domains obtained by Filion et al66 for the embryonic cell line Kc167. In this dataset, five types of epigenomic
states exist: 2 euchromatic states associated with active genes that, for simplicity, we decided to merge into one “active”
state; and 3 heterochromatin states: constitutive heterochromatin associated with HP1-protein and H3K9me3 histone marks,
facultative heterochromatin associated with Polycomb (PcG) proteins and H3K27me3 histone marks, and the so-called “black”
chromatin, the prevalent form of heterochromatin. To each 10-kbp monomer of the model, we associate the corresponding
epigenomic state, and we assume that monomers of the same state may specifically interact with an energy Ei (in kBT unit) if
they are spatially in contact (ie nearest-neighbor on the lattice)(see Materials and Methods). For simplicity, we assume that
the strength of interaction is similar for every epigenomic state.

2.4.1 Effect of varying the strength of specific interactions
We first concentrate on the polymer dynamics by studying the average MSD along the simulations for various values of Ei
(Fig.5a). For all investigated interaction energies, the scaling properties of g1 are compatible with diffusion of a crumpled
polymer as seen in Sec.2.1.2 with g1 ∼ t0.35−0.4. As we increase the absolute value of interaction strength, there is a dramatic
slowing-down of the polymer dynamics. Interestingly, by plotting the mean MSD at 106 MCS as a function of Ei (Fig.5b), we
observe a transition between a “fast” (Ei >−0.25) and a “slow” (Ei <−0.25) regime. This suggests a glass-like67, 68 dynamic
transition that occurs for strong specific interactions, reducing significantly the monomer mobility in the simulations.

For each Ei, we performed the time mapping strategy (see above) to adjust the simulation time (MCS) to the real time.
Then, we computed the average contact maps between 0 and 20 hrs (dc = 163 nm), representing the average inside a population
of unsynchronized cells with a typical cell cycle of 20 hrs69. From our 107 MCS trajectories, this was possible only for Ei-
values in the fast regime (Ei ≥ −0.25). For example, for Ei = −0.3, the average map is only between 0 and 4h, and for
Ei = −0.4, between 0 and 300 sec. At very weak interaction strengths, the polymer is crumpled as described in Sec.2.1.2.
As Ei is increased, blocks (i.e. epigenomic domains), start to collapse forming TADs, long-range interactions between TAD
of same type appear (Fig.5c) and TADs of different types segregate, which is characteristics of microphase separation in
block copolymer70. From the contact maps, we estimate the sequence-average contact probability Pc(s) as a function of
the genomic distance s, as well as the average contact probability Pintra(s) (resp. Pinter(s)) between loci of the same (resp.
different) epigenomic state. As expected, stronger interactions favor (resp. unfavor) contacts at all scales between monomers
of the same (resp. different) type (Fig.5d, center and right). Interestingly, while we observe opposite behaviors for Pintra and
Pinter, for 0 ≥ Ei ≥−0.2, the global sequence-average probability Pc remains identical to the “null” model without interaction
(Fig.5d, left), the increase in intra-state contacts being compensated by the decrease in inter-state contacts. At some point
(Ei ≤−0.2), insulation becomes maximal and only intra-state contacts augments, leading to also an augmentation in Pc.

2.4.2 Comparison with experimental data
We next compare our results to Hi-C data obtained by Sexton et al for late drosophila embryos61. Experimental data exhibit
the characteristic presence of TADs along the diagonal of the Hi-C map and of preferential long-range contacts between
some TADs (Fig.6a and Fig.S14). The sequence-average probability Pc(s) shows different regimes (Fig.6b): for s < 100 kbp,
Pc(s) ∼ s−0.5, for 100 kbp < s < 1 Mbp, Pc(s) ∼ s−1, for 1 Mbp < s < 10 Mbp, Pc(s) ∼ s−0.5. Contacts between loci of the
same epigenomic state are about 1.5-fold more pronounced at almost all scales than between loci of different states (Fig.6b).

While we do not expect our model to be quantitative at small genomic scales (s < 100 kbp) due to the coarse-graining
we used in our simulations, the predicted shape of Pc(s) is very similar to the experimental one with Pc(s) ∼ s−1.1 for 100
kbp < s < 1 Mbp and Pc(s) ∼ s−0.5, for 1 Mbp < s < 10 Mbp. Among the different strength of specific interactions that
we investigated, Ei = −0.1 offers the best match with experimental data (Fig.S15) with also an enrichment of 1.5 fold of
intra-state vs inter-state contact probabilities. Comparison between the predicted and the experimental contact map shows
very good correlations (Pearson correlation=0.86) at the local - TAD - level but also at higher scales (Fig.6c,d and Fig.S14),
in terms of patterning but also in terms of relative contact frequencies. Given the simplicity of the model, it is remarkable that
such model is in quantitative agreement with experimental data from small to large scales, suggesting that epigenomic-driven
forces are main players of the chromosome folding in drosophila, generalizing our previous findings made on Mbp-genomic
regions20, 32.

2.4.3 Dynamics of TAD formation and inter-TAD interactions
One strong conjecture of our previous study was that long-range TAD interactions are dynamical and that TADs may form
very rapidly just after the mitotic exit20. Now that we have a more complete and largest-scale model with a proper time
mapping, we aim to verify and to characterize these hypothesis. For Ei = −0.1, we compute the population-average contact
map of synchronized cells at different times along the simulations.
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Figure 5. Dynamical and structural properties predicted by the model. (a) Average mean-squared displacement (MSD)
along simulated trajectories as a function of simulation time in Monte Carlo step (MCS)-unit, for different values of the
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the same (center) or different (right) epigenomic state. Grey lines represents scaling laws.
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Time-evolution of the predicted Hi-C maps shows that TADs form very quickly in about half a minute (Fig.7a). Specific
long-range contacts between monomers of the same epigenomic state are more slowly formed, ranging from minutes for sub-
Mbp-scale contacts to hours at 10 Mbp-scale (Fig.7a). This is confirmed by analyzing the time-evolution of the average ratio
between Pintra and Pc for different scales (Fig.7b). For 10− 100 kbp range, ⟨Pintra/Pc⟩ reaches a plateau after about 5 min,
suggesting that local interactions reaches steady-state very early in the cell cycle. For the 100 kbp - 1 Mbp, convergence to
steady-state is slower (less than 1 hour), while for longer-range interactions it takes more time (about 5h). Insulation between
loci of different epigenomic states evolves at the same time-scales (Fig.7b).

To quantify the dynamics of long-range contacts between TADs, we tracked during one cell cycle (20h) with great precision
(snapshots every 100 MCS ≈ 3.5 sec). Six pairs of loci having identical or different epigenomic states (Table S3) and separated
by different genomic lengths s (s ∼ 400 kbp, s ∼ 3 Mbp and s ∼ 12 Mbp). Fig.7c shows a typical time-evolution of the
distance between one pair of loci in one simulated trajectory. From the trajectories, we extract three quantities: the time of
first encounter τ f irst defined as the first time after the mitotic exit when the pair becomes closer than d = 325 nm; the contact
time τc defined as the time the pair stays in “contact” (ie closer than d); and the search time τs defined as the time interval
between two “contacts”. For each pair, the probability distribution function of τ f irst is polynomial with two regimes with a
slower decay for τ f irst < 0.2h (Fig.7d left). The scaling laws depend only on the genomic distance s between the loci, distant
pairs needing more time to first contact. The polynomial dependence implies that very long τ f irst are significantly observed.
Interestingly, for s > 1 Mbp, there exists a significant proportion of cells (5% for s ∼ 3 Mbp and 14% for s ∼ 12 Mbp) where
the distance between the two regions never goes below d. The distributions of τc are also polynomial for long times (Fig.7d
center), the behavior depending only if pair members have the same or different epigenomic states. While, all the scaling laws
are very similar, long contacts for pairs of loci with the same state are more frequent. In average, a contact between same-state
loci lasts 12 seconds while the contact duration is divided by two for regions with different states. The distributions for τs are
polynomial with two regimes (Fig.7d right). While the “small” time regime depends if the epigenomic states are identical or
not, different-state loci being more likely to wait more between two contacts, the “long” time regime depends mainly on the
genomic scale, distant loci needing more times to contact. Indeed, for short τs, there is still a memory of the relative positions
of the two loci and pairs of the same state would be more likely to contact again rapidly, for long τs, memory is lost and the
time interval between two contacts relies only on the genomic distance as for τ f irst .

3 Discussion and Conclusion
In this article, in the first part, we introduced a new coarse-graining strategy for long and dense self-avoiding walks that con-
serves the entanglement length and the volumic density. Using kinetic Monte Carlo simulations on a lattice, we demonstrated
that such strategy leads to the accurate description of, not only the steady-state but also the time-evolution of the expected
structural and dynamical properties of the underlying fine-scale model. We showed that by introducing an effective rigidity to
the coarse-grained model and by controlling the volume fraction, we could achieve very high gain in numerical (CPU-time)
efficiency while maintaining a quantitative approximation and minimizing the loss in spatial and temporal resolution of the
model. Using our efficient polymer model one can simulate chromosome dynamics during the whole cell cycle on a desktop
computer within a day. While we illustrated our approach using chromosomes on a lattice model as toy examples, our strategy
is generic and can be applied to any self-avoiding polymers and to off-lattice systems. We emphasized that neglecting topologi-
cal constraints may lead to an erroneous description of the fine-scale model. Therefore the effect of supplementary interactions
added to the null model, to describe specific observations present in experimental data, may lead to misinterpretation.

In the second part, we used our strategy to build a coarse-grained null model for chromatin and decorated it with a copoly-
mer framework based solely on epigenomic data to investigate the folding and dynamics of a big fraction of chromosome
3R of drosophila. It is the first study trying to quantitatively describe the behavior and time evolution of such large genomic
regions (20 Mbp) during one cell cycle (20h of real time) with high precision (10 kbp resolution). Our heteropolymer model
has one unique parameter, the strength of short-range interaction Ei between genomic loci having the same epigenomic state.
Our findings are in qualitative agreement with our previous works based on shorter pieces of chromosomes20, 32, but signifi-
cantly improve our description of chromosome folding in drosophila. By varying Ei, we showed that the system continuously
switches from a dynamic homogeneous crumpled-like behavior to a crumpled heterogeneous micro-phased state. Interest-
ingly, we observed that during this transition, the chromosome fluctuations characterized by the mean squared displacement
conserve the same scaling behavior (g1(t)≈ γt0.4) with exponents compatible with a crumpled polymer. However, the prefac-
tor γ depends on Ei and is sharply reduced above a given strength of interaction, characteristics of a glass-like transition67, 68.
Another interesting observation was that the sequence-average contact probability Pc(s), a quantity directly comparable to ex-
perimental data, is independent of Ei (at least for weak, biologically relevant values) and is same as in the reference null model,
as already observed by Gursoy et al71. This motivates, afterward, the validity of homopolymer models, extensively used by
polymer physicists, to study the generic physical principles behind chromosome folding based on comparison with sequence-
average experimental data16, 41, 43, 58, even if such chromatin organization is strongly heterogeneous. This also suggests that,
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Figure 7. Dynamics of interactions. (a) Predicted contact maps (Ei =−0.1 kT ) for the region located between 15.5 and 20.5
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before adding specific interactions to the system, any quantitative approach should first aim to describe such sequence-average
behaviors in a null homogeneous model.

Comparing our model predictions for chromosome 3R to the corresponding Hi-C data, we observed an excellent agree-
ment at all scales, strongly suggesting that epigenomics is a primary driver of chromosome folding in drosophila. The strength
of interaction compatible with the data is weak (∼ 0.1 kT ) and locate the in vivo situation in the transition zone between the
homogeneous crumpled and the micro-phased states. TADs are only partially collapsed and interact dynamically with other
TADs of the same main epigenomic state. This suggests a substantial stochasticity in chromosome organization, consistent
with recent single-cell Hi-C or super-resolution experiments72–77. We also detected several discrepancies between the pre-
dicted and experimental contact maps. For example, the model predicts spurious contacts or misses some between some
TADs. This could be due to a wrong annotation of the local epigenomic state or the existence of specific interactions driven by
other biological processes not accounted in the model. For example, refining the model to account more precisely for the local
epigenetic content (for example the relative levels of histone modifications or chromatin-binding proteins) or differences in
interaction strengths between different states would certainly lead to a better correspondence. We also observed that TADs are
more sharply defined in the experiments, particularly in the corners of large TADs. This might be the results of the presence
of cis-interacting mechanisms, like supercoiling23, 78 or the recently proposed loop extrusion model in mammals26, 27, that
enhance the contact frequency along the genome.

To exploit the capacity of the model to simulate long trajectories (20 hrs), we analyzed the time evolution of chromo-
some organization. TADs formed very quickly (within minutes), entirely consistent with Hi-C data made on synchronized
mammalian cells showing that, in early G1, TADs are already observable in the data76, 79. Formation of long-range contacts
require more time and eventually appear hours after the mitotic exit, also consistent with the time evolution of Hi-C data
during cell cycle in human76, 79 and yeast80. To go deeper into this characterization and get insights into the dynamics of
contact formation, we tracked pairs of loci. At the investigated resolution (10 kbp), contacts are transient and their typical
lifetime is ∼ 10 seconds, indicating a very dynamic situation, consistent with many experiments performed on living cells81.
Probability distribution functions of the first encounter time, the contact time, or the search time are polynomial, suggesting a
possible connection with fractional brownian motion physics, as for bacterial chromosomes82. Interestingly, we predicted that
a significant proportion (5−15%) of long-range contacts (> 1 Mbp) are not established within one cell cycle. This suggests
that the genomic distance between regulatory elements should not exceed 1 Mbp to ensure that physical contact between the
elements, prerequisite to an activation or repression event, would happen at least once in the cell cycle in order to maintain a
stable regulation or gene expression. With the recent progress in genome editing83, it would be interesting to experimentally
test such predictions by simultaneously tracking the distance between a promoter and its enhancer and the current gene ac-
tivity84, for various genomic distances between the two elements. All this suggests that the 3D chromosome organization in
higher eucaryotes is out-of-equilibrium and the chromatin is very dynamic. This emphasizes the necessity to properly account
for the time evolution of such organization in quantitative models of chromosomes, especially for higher eucaryotes where
chromosomes are strongly topologically constrained.

As a proof of concept, we demonstrated the utility of our coarse-graining approach to study chromatin organization in
drosophila. However, the numerical efficiency of the method opens new perspectives to investigate the physical and mechanis-
tic principles behind chromosome folding more deeply with many aspects remain to be understood. For example, extrapolating
to the whole human genome, it would require ∼ 120h of CPU time with our strategy at 10kbp resolution to simulate one cell
cycle while it remains illusive to do it with the fine-scale model (> 100 years of CPU time). The possibility to easily simulate
the dynamics of chromosomes or full genomes during long biologically relevant time period would allow to quantitatively
investigate in the future the role of other types of interactions, like those associated with the nuclear membrane, another
important player in organizing chromosomes inside the nucleus25, 85 and the crosstalk with epigenomic-driven interaction as
presented here. This situation seems particularly attractive to describe the reorganization of chromatin during senescence
where constitutive heterochromatin detaches from the membrane to form large foci at the interior of the nucleus86.

4 Materials and Methods

4.1 Estimation of the chromatin volumic density
The chromatin volumic density ρ is defined as the ratio between the genome size G and the average volume V of the nucleus.
For haploid yeast, G = 12.2Mbp and V ≈ 2.6µm369, 87, leading to ρ ≈ 0.005 bp/nm3. For drosophila (diploid) late embryos,
nuclei have a typical diameter of 4µm88 and contains about 300Mbp of genomic DNA, thus ρ ≈ 0.009 bp/nm3. In mammals,
the size of the nucleus depends strongly on the cell type typically ranging from 5 to 15µm in diameter69. For example, for
a human nucleus (G ≈ 6Gbp) of diameter 9µm, ρ ≈ 0.015 bp/nm3. For larger nuclei (12µm in diameter), as measured by
Muller et al89, ρ may be weaker (≈ 0.007 bp/nm3).
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Figure 8. Schematic of a lattice polymer configuration on a 2D projection of a 3D fcc lattice. Solid line with beads
represents the polymer chain, and the dotted lines represent the underlying lattice. Each lattice site is allowed to contain a
maximum of two beads if and only if they are consecutive to each other along the chain. Semicircular arcs indicate doubly
occupied lattice sites. Some of the allowed and forbidden moves are shown in green and red respectively.

4.2 Simulation of structural and dynamical properties of the null model
The polymer is modeled as a semi-flexible self-avoiding walk, consisting of N beads, on a face centered cubic (fcc) lattice
of size S× S× S (each unit cell contains 4 lattice sites) following the model developed by Hugouvieux et al90 (Fig.8) (more
details can be found in32, 90, 91). As in the elastic lattice model introduced recently by Schram and Barkema92, we authorize
at maximum two monomers to occupy the same lattice site if and only if they are consecutive along the chain90, 92 (Fig.8).
Otherwise, due to excluded volume, two non-consecutive monomers cannot be located at the same site. When two successive
monomers occupy a lattice site, an extra bond length is accumulated in that node as a ‘stored length’92–94 (Fig. S16b). The
concept of stored length was first introduced by Rubinstein in his pioneering article on the implementation of repton model
on a lattice93. Such double occupancy of consecutive monomers accounts for the effect of contour length fluctuations94.

Rigidity is accounted using a standard formulation95:

H =
κ
2

N−1

∑
i=1

(1− cosθi), (4)

where κ is the bending rigidity and is directly related to lk/b (see below), and θi is the angle between the bond vectors i and
i+1. Confinement and effect of other chains are approximated using periodic boundary conditions, the corresponding lattice
volume fraction being Φ = N/(4S3). Note that such periodic conditions do not confine the chain to the finite volume of the
simulation box. Using correct unfolded coordinates, chains can extend over any large distances.

The dynamics of the chain follows a kinetic Monte-Carlo (KMC) scheme with simple local moves90: one Monte Carlo
step (MCS) consists of N trial moves where a monomer is randomly chosen and randomly displaced to a nearest-neighbor site
on the lattice (Fig.8). Trial moves are accepted according to a Metropolis criterion applied to H and if the chain connectivity
is maintained. Compared to standard Monte Carlo methods used to study systems at thermal equilibrium96, KMC has the
advantage to track the equilibrium or out-of-equilibrium dynamical evolution of a system. The transition rates in the KMC are
assumed to be Poissonian which is likely to be an approximation of the exact dynamics at the relevant time scales. However, the
connection between the real-time and KMC steps can be established precisely within the framework of Poissonian processes97.
In our model, due to the approximated transition rates, accuracy is not guaranteed for time-scales below few MCS (temporal
resolution) and for length-scales below few b (spatial resolution).

This KMC scheme coupled to the notion of stored length (see above) allows efficient simulations of reptation motion
in dense - topologically constrained - systems, while still accounting for the main characteristics of polymer dynamics
like polymer connectivity, excluded volume, and non-crossability of polymer strands92, 93. Due to the simplicity and ef-
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ficiency of such frameworks, they have been widely used in the literature to investigate various properties of polymeric
systems32, 90–92, 94, 98–100.

In the entangled regime (L/Le ≫ 1), dynamics could be very slow and the system may keep the “memory” of its initial
configuration and topology for a long time. Chromosomes are thought to be mostly knotted-free structures16, 43, 101. Therefore,
we initiate our simulations by knotted-free configurations generated using the “hedgehog” algorithm59, 102, 103: starting from
a central unknotted scaffold, configurations are iteratively grown by randomly inserting monomers at nearest-neighbor sites
common to two already placed consecutive monomers (Fig.S1a). We verified that, starting from other type of unknotted
configurations such as Rosette(Fig.S1e) and Cylindrical(Fig.S1f). We recovered the same scaling laws for the null model
(Fig.S3).

Starting from a given initial configuration, we then normally simulate 107 − 108 MCS and store the configurations after
each 103 MCS. In some special cases where we are specifically interested in small time scales, we collect configurations more
frequently. From these snapshots taken from 102 simulated trajectories, we then estimate several structural and dynamical
quantities of interest. We focus on the time-evolution of the mean squared displacements (MSD) of individual monomers
(g1(t)) and of the center of mass of the chain (g3(t)), as well as the average squared distance ⟨R2(s)⟩ and contact probability
Pc(s) between monomers separated by a linear distance s along the chain. For the latter, a contact is defined if the physical
distance between a pair of genomic loci is less than a particular distance dc. Note that all such properties are estimated using
the ‘unfolded’ polymer conformations.

4.3 Relation between Kuhn length lK and lattice parameters
In this section we derived the relation between Kuhn length lK and different lattice parameters, expressed in Eq.3. We
consider an arbitrary fine-scale model (FSM) of a semi-flexible self-avoiding walk defined by N0, l0

k , b0. We note N, lk and
b, the corresponding values of a coarse-grained model (CGM) of the FSM. Each CGM monomer encompasses n = N0/N > 1
FSM monomers.

Using Eq.1, conservation of L/Le and conservation of the volumic density in FSM monomer ρFS leads to

L
Le

=
Nb
lK

(
ρFSb l2

k
cn

)2

(5)

≡ L0

L0
e
=

N0b0

L0
e

, (6)(
lK
b

)3

=

(
n3c2

ρ2
FSb6

)(
b0

L0
e

)
, (7)

ρFS = (N0/V )(= ρ/ν0 in the context of chromosome) with V the volume of the box. Conservation of the volume implies that

ρFS =
N n

√
2

Nsb3 =

√
2Φ n
b3 , (8)

with Ns the number of lattice sites and Φ = N/Ns the lattice volumic fraction. Incorporating Eq.8 into Eq.7 leads to

lk
b
=

[(
b0

L0
e

)(
nc2

2Φ2

)]1/3

. (9)

Practically, knowing ρFS, b0 and L0
e (from Eq. 1 of the main text) for the reference model, for a given coarse-graining (defined

by n), Eq.9 gives us a relation between lk/b (which is related to the bending energy of the model, see below) and the lattice
volumic fraction Φ. Eq.8 is used to compute the corresponding value for b.

4.4 Relation between Kuhn size Nk and bending rigidity κ for lattice polymer
For a lattice phantom chain with N beads, the mean squared end-to-end distance ⟨R2

e⟩ is given by104

⟨R2
e⟩=

12
13

b2

[
(N −1)

(
1+ x
1− x

)
−

2x
(
1− xN−1

)
(1− x)2

]
, (10)

where

x =
12
13

⟨cosθ⟩ (11)

=
12
13

(
1+2exp[−κ/2]−2exp[−3κ/2]− exp[−2κ]

1+4exp[−κ/2]+2exp[−k]+4exp[−3κ/2]+ exp[−2κ]

)
, (12)
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where θ is the angle between two monomers and κ is the bending rigidity correspond to the bending energy E (θ) =
κ (1− cosθ). Now we have lK/b = (1+ x)/(1− x), which relates NK to κ .

4.5 Simulation of the block copolymer model for drosophila
In the block copolymer model, the energy of a given configuration is given by

H =
κ
2

N−1

∑
m=1

(1− cosθm)+∑
l,m

Ue(l),e(m)δl,m. (13)

The first contribution accounts for the null model. The second contribution accounts for epigenomic-driven interactions with
δl,m = 1 if monomers l and m occupy nearest-neighbor (NN) sites on the lattice (δl,m = 0 otherwise), e(l) the epigenomic state
of monomer l and Ue,e′ the strength of interaction between a pair of spatially neighbor beads of epigenomic states e and e′.
For simplicity, we will assume that interactions occur only between monomers of the same chromatin state (Ue,e′ = 0 if e ̸= e′)
and that the strength of interaction (that we note Ei) is the same whatever the chromatin state (Ue,e ≡ Ei for all e). Dynamics
of the chain follows the same KMC scheme as the null model using a Metropolis criterion applied to H. For various values of
Ei, we simulate 400 trajectories during 107 MCS starting from a random unknotted “hedgehog” configuration (as in Fig.S1a,c)
at a standard in vivo bp-density (ρ = 0.009bp/nm3) (see the Movie for example). Note that such initial configurations might
not reflect exactly the post-mitotic organization of fly chromosome and may impact the very large-scale - out-of-equilibrium -
behavior predicted by the model.

Supporting information
S1 Text: A single pdf file containing 16 supporting figures and 3 supplementary tables.

S1 Video: Time evolution of random unknotted ‘hedgehog’ configuration with specific interactions.
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