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Abstract  

The effectiveness of most cancer targeted therapies is short lived since tumors evolve and 

develop resistance. Combinations of drugs offer the potential to overcome resistance, 

however the number of possible combinations is vast necessitating data-driven approaches 

to find optimal treatments tailored to a patient’s tumor. AstraZeneca carried out 11,576 

experiments on 910 drug combinations across 85 cancer cell lines, recapitulating in vivo 

response profiles.  These data, the largest openly available screen, were hosted by DREAM 

alongside deep molecular characterization from the Sanger Institute for a Challenge to 

computationally predict synergistic drug pairs and associated biomarkers. 160 teams 

participated to provide the most comprehensive methodological development and 

subsequent benchmarking to date.  Winning methods incorporated prior knowledge of 

putative drug target interactions.  For >60% of drug combinations synergy was reproducibly 

predicted with an accuracy matching biological replicate experiments, however 20% of drug 

combinations were poorly predicted by all methods.   Genomic rationale for synergy 

predictions were identified, including antagonism unique to combined PIK3CB/D inhibition 

with the ADAM17 inhibitor where synergy is seen with other PI3K pathway inhibitors. All 

data, methods and code are freely available as a resource to the community.   
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Introduction  

Personalized treatment with drugs targeted to a tumor’s genetics have resulted in 

remarkable responses, however patients often relapse.  Multiple opportunities for drug 

resistance exist 1, beginning with the genetic, non-genetic and clonal heterogeneity inherent 

of advanced cancers, coupled with complex feedback and regulatory mechanisms, and 

dynamic interactions between tumor cells and their micro-environment.  Any single therapy 

may be limited in its effectiveness, but drug combinations have the potential to overcome 

drug resistance and lead to more durable responses in patients. The molecular makeup of 

cancer cells and the mechanisms driving resistance will influence the optimal combination of 

mechanisms to target1–3. 

 

High throughput preclinical approaches are crucial to determine and evaluate effective 

combination strategies. While empirical approaches are important for assessing the 

synergistic properties across drugs, the possible number of combinations grows 

exponentially with the number of drugs under consideration.  This is further complicated by 

the complex disease and cellular contexts, rendering it impractical to cover all possibilities 

with undirected experimental screens 4. Computational approaches for predicting drug 

synergy are critical to guide experimental approaches for discovery of rational combination 

therapy 5. 

 

A number of approaches have been developed to model drug combination synergy using 

chemical, biological, and molecular data from cancer cell lines 6,7 but with limited 

translatability to the clinic.  A key bottleneck in the development of such models has been a 

lack of public data sets of sufficient size and variety to train computational approaches 4,8,9, 

particularly considering the diversity of biological mechanisms that may influence drug 

response.  A further limit to the translatability of many published approaches is their reliance 

on data unavailable in a typical patient scenario, such as on-treatment tumor molecular 

profiles, and the use of opaque models which lack biomarker rationale for subsequent 

testing and diagnostic development.   

 

To accelerate the understanding of drug combination synergy, DREAM Challenges 

partnered with AstraZeneca and the Sanger Institute to launch the AstraZeneca-Sanger 

Drug Combination Prediction DREAM Challenge.  DREAM Challenges 

(dreamchallenges.org) are collaborative competitions that pose important biomedical 

questions to the scientific community, and evaluate participants’ predictions in a statistically 

rigorous and unbiased way, while also emphasizing model reproducibility and 
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methodological transparency 10.  This Challenge was designed to explore fundamental traits 

that underlie effective combination treatments and synergistic drug behavior.  Specifically, it 

was structured to address the following translational questions using data available prior to 

drug treatment (mirroring a clinically relevant scenario to direct therapeutic choice): [i] how to 

predict whether a known (previously tested) drug combination will be effective for a specific 

patient, [ii] how to predict which new (untested) drug combinations are likely to yield 

synergistic behaviors in a patient population, and [iii] how to identify novel biomarkers that 

may help reveal underlying mechanisms related to drug synergy.  We shared with the 

scientific community 11,576 experimentally tested drug combinations on 85 cancer cell lines, 

by far the largest open release of such data to date.  Molecular data was provided for the 

untreated (baseline) cell lines, alongside chemical information for the respective drugs. 

Participants used the described data to train and test models, and were encouraged to 

extend computational techniques to leverage a priori knowledge of cellular signaling 

networks.  

 

In this manuscript, we report on the results of this Challenge where we have identified novel 

and performant methods using a rigorous evaluation framework on unpublished data. 

Additionally, we describe the details of these approaches, as well as general trends arising 

from the meta-analysis of all submissions. Data, methods and scoring functions are freely 

available to benchmark future algorithms in the field. Finally we identify the mechanistic 

commonalities evident across predictive features used to reveal genomic determinants of 

synergistic responses, particularly between receptor tyrosine kinase and PI3K/AKT pathway 

inhibitors. 
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Results 

1. The largest public high-throughput drug combination screen covering 
diverse disease and target space 

We collated a combinatorial drug sensitivity screen comprising 11,576 experiments each 

measured in a 6-by-6 dose matrix across 85 cancer cell lines (Supplementary Fig. 1, 
Supplementary Table 1). This dataset included cell viability response measurements to 118 

chemically diverse compounds, and estimated synergy scores for 910 pairwise drug 

combinations with high reproducibility (Supplementary Fig. 2; see Methods). Information on 

the compounds included putative drug targets and, where available, their chemical 

properties. We also integrated deep molecular characterization of these same cell lines, 

including somatic mutations, copy-number alterations, DNA methylation, and gene 

expression profiles (Fig. 1a-c) measured before drug treatment 11.  

 
The 85 cell lines are predominantly derived from tumors of the breast (N=34), lung (N=22), 

bladder (N=14), and the gastrointestinal tract (N=12) (Fig. 1d). Synergism for drug 

combination experiments were measured using the Loewe model, defined as increasing cell 

death beyond the expected additive effect of the individual compounds (see Methods). Drug 

synergy levels varied across disease types (Fig. 1d); in particular lung cell lines had over 

two-fold higher mean synergy than breast cell lines (p-value<7e-27). Of the 118 compounds 

tested, 59 were targeted therapies against components of oncogenic signaling pathways 

(see Methods), 15 of which target receptor tyrosine kinases (RTKs), 22 target PI3K/AKT 

signaling, and 9 target MAPK signaling (Fig. 1e). Across the pairwise drug combination 

experiments, 88% (N=797) of the unique pairs had drug targets within the same pathway 

and demonstrated markedly overall higher synergy levels (17.3 vs 7.3, p-value<2e-18) than 

the remaining 12% (N=113) whose drug targets were defined to be in different pathways. As 

part of the Challenge design, we ensured that drug targeted pathways and cancer types 

were proportionally distributed across sub-challenges and training/test data sets.  

 

In order to assess the translatability of our in vitro combination screen, we collated response 

data for 62 treatments across ~1,000 Patient-Derived Tumor Xenograft (PDX) models 

published by Gao et al. 8, which includes 24 drug combination pairs. Eight of these 

overlapped with our screen and were tested across 249 PDX models (Supplementary 
Table 1).  We observed the highest correlation between in vitro and in vivo datasets 

(Pearson r = 0.34) for the fraction of samples with an observed synergistic response (see 
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Methods), Figure 1h, suggesting confidence in the translatability of in vitro synergy response 

to in vivo PDX studies. 

2. Comprehensive benchmarking of diverse computational prediction methods 
reveal accuracy of predictions reached the level of replicate experiments  

The Challenge was divided into two primary sub-challenges. In sub-challenge 1 (SC1) 

participants were asked to predict synergy scores for drug combinations for which training 

data on those same combinations were available. In sub-challenge 2 (SC2), participants 

were asked to predict synergy status on drug combinations for which no training data was 

provided, thereby requiring participants to infer synergy using transferable data/knowledge 

patterns identified from previously seen independent compound pairs. SC1 was further sub-

divided into two parts: SC1A allowed the use of all available data for model prediction, while 

SC1B limited data use to just mutation and copy number variation (mimicking current clinical 

assay feasibility). A total of 969 participants of diverse geography and expertise registered 

for the Challenge (Supplementary Fig. 3a,b).  160 teams submitted across any portion of 

the Challenge and 78 teams submitted for final assessment. Specifically, SC1A received 

final submissions from 76 teams, 62 for SC1B and 39 for SC2. As scoring metric we used 

the average weighted Pearson correlation between predicted and known synergy values for 

SC1, and both the -log10(p) from a 3-way ANOVA and balanced accuracy (BAC) for SC2 

(see Methods).  

 

Across all teams, mean performance scores were R=0.24±0.01 and R=0.23±0.01 (weighted 

Pearson correlation ± standard error) for SC1A and SC1B respectively, and -log10(P)=12.6 

(3-way ANOVA) for SC2. Despite the omitting several data types, teams performed only 

slightly worse for SC1B, Δprimary metric = 0.01 (P=0.90), compared to SC1A (Fig. 2a; 

Supplementary Fig. 3c,d). While teams employed many different methodological 

approaches to modeling drug synergy - including regression, decision trees, random forests, 

Gaussian processes, SVM, neural networks, text mining, mechanistic network-based and 

others (Supplementary Fig. 4a) - algorithm class showed little relationship to performance 

(Supplementary Fig. 4b). We observed that participants submitting to all sub-challenges 

rather than just one tended to do better (Supplementary Fig. 3e). The top winning team in 

all three sub-challenge was Yuanfang Guan (Y Guan) with primary metrics of 0.48, 0.45 and 

74.89 in SC1A, SC1B, and SC2, respectively. Based on the primary metric in SC2, Y Guan 

performed considerably better (>5 Bayes Factor, based on bootstrapped metrics’ 

comparisons, see Methods) than other teams (Fig. 2b). All performance statistics and team 

rankings are available at the Challenge website (synapse.org/DrugCombinationChallenge). 
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To benchmark the performance of teams in the final rounds of SC1A/B and SC2, we 

established lower and upper bounds of performance. We defined the lower bound as the null 

model, i.e. random permutation of the synergy data across each cell line (see Methods). The 

upper bound was estimated as the level of correlation of synergy seen between 

experimental replicates. We observed that 83%, 85%, and 94% of submitted models 

performed better than random (5% FDR, see Methods) for SC1A, SC1B, and SC2, 

respectively. Team performances varied widely, but remarkably the top 15 models (20%) 

submitted to SC1A all reached a performance level comparable to the noise level observed 

in the experimental replicates (Fig. 2a), as did the top 13 models (21%) in SC1B. 

Proportionally fewer teams performed at the level of replicate experiments in SC2 based on 

the balanced accuracy (BAC), with North Atlantic Dream (NAD) coming closest to this bound 

(BAC=0.688; Fig. 2c).  

 

Given the limited performance of SC2, we assessed whether an ensemble method - based 

on an aggregation of all submitted models - could yield a better overall model, a 

phenomenon called “wisdom of the crowd” 10,12. We used a Spectral Meta-Learner (SML)13 

approach, and observed a marginal improvement in performance (BAC=0.693) over the best 

performing individual team (BAC=0.688) and an ensemble of any number of randomly 

chosen models (Fig. 2d). In SC2, SML ensembles including poorly performing models can 

achieve > 0.63 BAC.  

 

3. Drug combination prediction is enhanced by leveraging biological 
relationships 

Top performing teams (DMIS, NAD, and Y Guan) filtered cell line molecular features to leave 

only those in genes related to a priori cancer drivers (see Methods). These teams also 

consolidated pharmacological and/or functional pathway information associated with the 

molecular drug target, enabling one drug’s model to learn from data generated for another 

drug with the same target (Y Guan16 and NAD14,15 16).  

 

To analyze each feature type’s importance, particularly whether incorporating molecular 

features and chemical/biological knowledge can increase prediction accuracy, we re-

engineered the DMIS and NAD models to use only cell line and drug labels as input features 

in SC1B (Fig. 3, see Methods). Using these models as baseline predictors, we were then 

able to iteratively substitute or add specific molecular features or external data sources (e.g. 
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pathway/network information) to assess their importance in improving prediction (Fig. 3a,b). 

Surprisingly high primary metrics were found for the baseline model (Fig. 3a, 0.32) 

highlighting that drug and cell line labels alone hold predictive information. Drug target was 

the only feature to improve performance when swapped with drug or cell line labels (Fig. 3a, 

P=0.012), and removing both drug label and target resulted in the highest performance drop 

(Fig. 3b, -0.17).  This result highlights the predictive value of the transferrable biological 

information encoded within drug target that is not available from unique drug labels. 

Mutational and copy number variation (CNV) data can similarly offer a barcode of cell 

identity to encode cell line label. However, where mutation data improved performance when 

replacing cell line label, replacement with CNV decreased performance significantly (Fig. 3a, 

P=8.8 x 10-6). Importantly, in all cases additional feature data increased performance when 

added to the baseline model, confirming that addition of biologically meaningful information 

truly adds to the model performance (Fig. 3a, P=0.009, 0.009, 0.002, 0.008, 0.021 adding 

drug target, 3 different pathways based and mutation features respectively). Ensembles of 

different feature sets improved prediction most when collectively increasing coverage of 

biological (pathway) complexity, leading to substantial increases in model performance (Fig. 
3a, P=1.2 x 10-6). 

4. A subset of combinations are poorly predicted by all teams, in-part 
explained by network connectivity of drug targets. 

While a global performance metric applied to all cell-lines and drug combinations provides a 

broad assessment of model prediction accuracy, we hypothesize that some models may be 

optimized for certain sub-classes of combinations and/or tumor types. We assessed the 

Pearson correlation between predicted and observed synergy scores for each combination 

in SC1A/B, and clustered teams by correlation of performance across combinations. Of the 

118 combinations that had observed synergy scores >20 in more than one cell line, we 

identified 22 combinations predicted poorly by every participant (Fig. 4a, see Methods), and 

over 50 combinations were defined as well predicted across all teams.  

 

Surprisingly, neither the training data size per combination nor experimental quality showed 

notable difference between these universally poor and well predicted combinations 

(Supplementary Fig. 5). Higher performance (Fig. 4b, average Pearson correlation 0.37 vs 

0.25; P=0.008) was observed for combinations inhibiting the PI3K/AKT pathway together 

with MAPK pathway or apoptosis pathway with either metabolism, cell cycle or receptor 

tyrosine kinases. Assessment of the interactions between drug targets and neighbouring 

proteins from OmniPath, a comprehensive compendium of literature-based pathway 
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resources 17, revealed no differences in the somatic alteration frequency for targets or their 

first neighbors between the poorly and well predicted combinations (Supplementary Fig. 
6a,b).  We did observe a significant enrichment of well predicted combinations where both 

drugs’ respective targets were downstream of a common neighbouring protein (Fig. 4c, 

P=0.01), and conversely, we observed an enrichment of poorly predicted combinations 

where targets were both upstream (Fig. 4c, P=0.03). There was no significant difference 

(Chi-sqr P=0.44) in OmniPath protein network distance between targets of well and poorly 

predicted combinations (Fig. 4d). 

 

5. Biomarkers of drug combination synergies 

A typical shortfall of many machine learning algorithms is the lack of feature interpretability 

and experimentally testable logic-based rules. We took two approaches to identify 

biomarkers that may be predictive of drug synergies: a direct survey of participants through 

which predictive features were nominated for each drug pair (Supplementary Table 2); and 

retrospective work focusing on results from two of the best performing teams, NAD and 

DMIS, to deconvolute features most impactful to model predictions (Supplementary Fig. 7, 
Supplementary Table 3).  

 

The survey-submitted biomarker results varied in detail and depth (Supplementary Table 
2), but common genetic markers were apparent across good predictions in SC1B, including 

EGFR, ERBB2, PIK3CA, PTEN, TP53 or RB1. Synergy or lack of synergy was commonly 

assigned to compound pairs targeting directly down- or up-stream of a mutated, amplified, 

overexpressed or deleted tumor drivers, including several well-established drug resistance 

markers. This enrichment suggests a hypothesis that monotherapy resistance biomarkers 

may increase the likelihood of synergy from combination with a second compound that can 

overcome that resistance. To systematically test this, we focused on a short list of tumour 

driver biomarkers (see Methods) and bootstrapped the significance with which they 

associated to resistance for each monotherapy. We applied a sliding threshold to this 

significance (see Methods) assessing the change in proportion of combinations with synergy 

if at least one compound succeeds the respective significance of association between a 

biomarker and monotherapy resistance (Figure 5a). We observed a significantly increased 

likelihood of drug synergy when subsetting for monotherapy resistance markers (Pearson 

correlation = -0.90, P=4.09 x 10-38). Furthermore, and emphasizing the in vivo translatability 

of these data, we observed the same trend in patient derived xenograft (PDX) models (Fig. 
5b, Pearson correlation = -0.95, P=2.2 x 10-49). This observation supports the notion that 
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drug resistance may be overcome by smart drug combinations targeting the putative 

resistance mechanism.  

 

We also explored models of best performing teams and their chosen features, focusing on 

biomarker associations aligned to combinations for which the respective team had achieved 

a robust prediction accuracy (Pearson correlation > 0.5), with particular interest in the 

genetic biomarkers revealed through SC1B.  Multiple validation criteria for quality, 

independency and reproducibility (see Methods) 4,8,9 were then applied to prioritize 13 

feature-to-combination associations (Fig. 5d, Supplementary Table 3) for in-depth 

characterization of associated rationale, 7 associated with synergy and 6 with non-synergy. 

 

Amongst the prioritized feature-to-combination associations were several genetic variants 

associated with synergistic responses to the combination of receptor tyrosine kinase (RTK) 

inhibitors with inhibitors of the downstream PI3K/AKT pathway.  Amplifications or activating 

mutations in EGFR or ERBB2 consistently predicted synergy from RTK + PI3K/AKT pathway 

inhibition across multiple independent drugs and data sets (Fig. 5c,e).  Less direct 

relationships were also observed including combined AKT inhibition with EGFR inhibition in 

the ERBB2 mutant setting or FGFR inhibition in the EGFR mutant setting. In addition to 

earlier observations, EGFR and ERBB2 mutations were predictive of respective 

monotherapy responses (Supplementary Fig. 8), indicating that off-target effects are 

unlikely despite kinase domain homology. Combinations inhibiting multiple points within the 

PI3K/AKT pathway also showed synergy in the presence of upstream activation from 

mutations in PIK3CA or deleterious events in PTEN (Fig. 5c). Inhibition of the 

metalloproteinase ADAM17, known to influence RTK activity 18, also showed synergistic 

responses in a common subset of cell lines when combined with inhibitors of PI3K, AKT or 

MTOR, with a notable exception of antagonism unique to PIK3CB/D selective inhibition in 

PIK3CA mutant cell lines (Fig. 5e,f). Amplification and activating mutations in Androgen 

Receptor (AR) were also found to be associated with antagonistic effects for combinations 

targeting AKT and several MAPKs or RTKs, particularly MAP2K and IGF1R inhibitors (Fig. 
5c).  

 

6. Translatability - synergy and biomarker predictions from top performing 
teams generalize to independent data. 

We assessed the performance of top performing DREAM models on a smaller published 

screening experiment from O’Neill et al 4. O’Neill et al applied a different measure of cell 
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death compared to the DREAM drug screens (Cell Titer-Glo vs Sytox Green). A similar 

correlation was observed among technical replicates in the O’Neill et al data set (rho=0.63) 

compared to the AZ-DREAM data (rho=0.56), however there was lower dispersion of 

synergy scores (Supplementary Fig. 2c,d) and fewer instances of extreme synergy scores 

in O’Neill et al.  

 

Focusing on cell lines and drug combination tests (Supplementary Table 1) non-

overlapping between DREAM and O’Neill et al data, we observed that SC1A models from 

NAD and DMIS outperformed a random model for all new combinations in the O’Neill et al 

screen (Fig. 6, mean R = 0.07, P < 0.01). Interestingly, no substantial performance increase 

was observed when independent model predictions were made on mutational profile from 

the 10 cell lines in common between the two datasets, nor the 30 similar combinations with 

similar chemical properties. As in the main Challenge, combining these two models led to an 

improved prediction performance (Fig. 6).  

 

In addition to the re-discovery of established and clinical drug combination biomarker 

relationships described above, we sought to systematically assess the reproducibility of 

biomarker predictions.  NAD and DMIS explored a total of 509 genomic traits associated to 

drug combination synergies after respective pre-filtering (Supplementary Table 3) for 

SC1B. Features were ranked by their influence on model predictions for each of the well-

predicted drug combinations (Supplementary Fig. 7, see Methods). We explored the top 5 

ranked features for each well-predicted combination and consolidated drug-target centrically, 

giving a non-redundant list of 839 feature-to-combination associations. Filtering to results 

returned by multiple teams or with network/functional similarity between biomarker and drug 

target (see Methods) left 47 associations (Supplementary Table 4, 21 with FDR <35%). 7 

of these associations could be mapped to independent cell lines in the O’Neil et al4 data set, 

with an overall Pearson correlation between DREAM and O’Neil effect sizes of 0.32 (Fig. 6b) 

illustrating the reproducibility of synergy markers.  

 

Discussion 

We have provided the largest unbiased in vitro drug combinatorial screen to date available to 

the scientific community.  By demonstrating that trends represented in these data are 

reproduced in vivo, and that known in vivo clinically efficacious combination pairs can be 

identified, we offer confidence in the translatability of these data and their relevance for the 
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prediction and characterisation of drug combination rationale. Our primary objective was to 

enable the development of a vast array of computational approaches to predict novel drug 

combinations, identify biomarkers for patient selection, and to comprehensively benchmark 

these approaches. 

 

The results of the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge 

shed important light on the best strategies and limitations to predict drug synergy. By 

evaluating predictions from a large number of teams, we were able to uncover important 

strategies for predicting drug synergy from molecular and chemical traits. As with most 

DREAM Challenges, we observed that the machine learning method itself has little impact 

on overall performance, and that selective incorporation of biological knowledge can improve 

prediction accuracy. Aggressive pre-filtering that considers drug targets and gene relevance 

to cancer was successfully used by best performers to limit model complexity and to improve 

model generalizability. Despite the complexity of the problem, many teams achieved robust 

model performances, reaching the upper-bound of performance levels based on variability in 

experimental replicates. This was further confirmed when top performing models were 

applied to an independent data set, demonstrating robustness to assay variability, and 

context heterogeneity.  

 

For pre-clinical data analyses, biological hypothesis discovery and mechanistic 

understanding is a more directly actionable goal than predictive accuracy. Models derived in 

pre-clinical data may prove the concept of predictability, hence our emphasis in SC1B to 

show prediction with data readily retrievable from a patient. However these models are 

unlikely to translate without further training in patient data since cell line panels do not 

comprehensively represent patient tumor characteristics. That said, predictive features and 

biological rationale revealed by these models can be directly tested and used to drive further 

research. We put special emphasis on incentivizing and retrieving this information, but found 

this challenging within a competition format that focuses on performance according to an 

objective scoring metric. In addition, accumulative small effects can explain good 

performance but are difficult to capture in post-hoc analysis with univariate test statistics.  

Given that this and prior DREAM Challenges indicate the machine learning method is less 

critical to performance than selection of biological features, we strongly advocate for the use 

of learners and mechanistic models with increased interpretability. 

 

A comprehensive assessment of the predictive value of monotherapy was not completed in 

the Challenge format, in part due to initial miss-annotation of data, however retrospective 

analyses suggested it offered no significant improvement to well performing models 
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(Supplementary Fig. 9).  Despite minimal predictivity from monotherapy itself as a feature, 

resistance biomarkers predictive of monotherapy response do show predictivity of 

combination benefit. More synergy is also found where both drugs target downstream of a 

commonly interacting protein.  Collectively these observations advocate for a more 

biologically rationalized approach, for example assembling a biomarker rationale by walking 

up- and downstream of the drug target to identify activated pathway components influencing 

monotherapy activity. Alternatively, more generic signatures of dynamic (e.g. transcriptional) 

output may first be used to identify a mechanistic rationale 19,20,21,22 to which causative 

genetic or epigenetic events can then be inferred and aligned as predictive features 23,24. A 

surprising result of our Challenge, however, suggested only modest improvement to 

prediction from inclusion of all data in SC1A compared to only genetics in SC1B.  

 

A notable absence from the Challenge was the use of mathematical, boolean or logic based 

mechanistic pathway modelling approaches 25–29, likely due to the intensity of model 

creation. The dynamic nature of mechanistic models may offer an advantage by enabling 

consideration of the heterogeneity that exists across even apparently ‘clonal’ cell line 

populations 21. The increasing availability of published pre-derived mechanistic models for 

many cancer relevant pathways may soon make such an approach more viable. Given the 

strong benefit seen from inclusion of prior-knowledge, and as text based artificial intelligence 

technology matures, NLP and cognitive computational approaches to harness knowledge 

from world literature may also become of significant benefit. 

 

Despite the limitations of the format, we were able to extract important insights to biomarkers 

for drug combinations. Given the dominance of RTK and PI3K/AKT pathway targeting 

agents in the Challenge data, it was not surprising that these revealed some of our strongest 

combination-feature relationships. In multiple cases this aligned to a two-hit hypothesis 

targeting the activating driver with a downstream pathway component. These included 

synergies between EGFR and AKT inhibitors in the presence of activating EGFR mutations 
30, or AKT1/2 with pan-PI3K inhibitors in the presence of pathway activating or suppressing  

mutations in PIK3CA or PTEN, respectively.  In some cases the biomarker rationale for AKT 

inhibitor synergy with RTK or MAPK inhibition was less direct and indicative of crosstalk and 

feedback signaling previously reported 31.  Interestingly antagonism was observed in cell 

lines harboring activating mutations of AR 32–35. Feedback signaling resulting from AKT 

inhibition has been seen to drive AR activity which in turn can lead to the activation of the 

MAPK cascade 35,36, attenuating respectively targeting drug activity. 
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Synergy observed between ADAM17 and PI3K/AKT pathway inhibitors may work through 

independent inhibition of multiple cancer hallmarks, or via a more direct mechanism whereby 

inhibition of ADAM17 driven proteolysis and shedding of RTKs18 stabilizes and increases 

signaling through PI3K/AKT 37,38. Notably ADAM17 predominantly influences RTK’s other 

than EGFR/ERBB218, and no benefit is seen in cells with mutations in these genes. 

Interestingly ADAM17 inhibition showed a unique antagonism with PIK3CB/D selective 

inhibitors within the PIK3CA mutant setting. Reduced synergy may result from a lessened 

dependency on PI3K paralogues in the presence of constitutively activated PIK3CA, or 

reduced benefit from ADAM17 loss in the extreme luminal/epithelial physiology of PIK3CA 

mutants. The apparent antagonism, however, suggests feedback following PIK3CB/D 

inhibition enhances mutant PIK3CA expression/activity. Indeed PIK3CB inhibition has been 

shown to result in elevated expression and activity of PIK3CA 39, and may also relieve the 

inhibitory effects of substrate competition or dimerization between PIK3CA and PIK3CB/D. 

 

Looking forward, additional attention can be given to the one-fifth of of combinations poorly 

predicted by all teams in the Challenge.  The rationale differentiating these combinations is 

non obvious, but data suggests some relationship to the complexity of network connectivity 

between drug targets and proximal biomarkers.  Future Challenges should further address 

the question of how to optimize translation of preclinical results into the clinic 40.  Where this 

Challenge addressed prediction of synergy for known drug combinations, an ability to predict 

truly novel beneficial drug combinations should also be explored. Most drug combinations 

effective in the clinic to date are effective due to the distinct effect of independent drugs on 

different subpopulations 41. Hence, identifying molecularly synergistic drugs, and how these 

affect inter- and intra-patient heterogeneity remains an essential area of future research. 

Furthermore the space of therapeutic combinations should be extended to include >2 drugs, 

covering targets in independent cell types such as subclonal tumor cell populations or cells 

of the tumor microenvironment and immune system3.  These approaches can be 

complemented by adaptive and sequential strategies reactive to monitoring of the patient 

tumor and physiology. Success in these areas will be dependent on the availability and 

access to large-scale data needed for model development and validation. Public-private 

partnerships - as exemplified by this Challenge and the generosity of AstraZeneca to share 

their private data with the research community - will be critical to future efforts. We believe 

that the pharmaceutical and biotech industry will greatly benefit from these pre-competitive 

collaborations that accelerate basic research insights, and their translation into the clinic.  
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Material and methods 

Drug combinations screening 

All cell lines were authenticated at AstraZeneca cell banking using DNA fingerprinting short-

tandem repeat assays and each bank is confirmed to be free from mycoplasma. Cells 

ordered from the global cell bank are cultured for up to 20 passages. Cell suspensions are 

counted using a haemocytometer and cells are re-suspended in full growth medium 

containing Pen/Strep to a final density for different cell line densities and for different seeding 

densities into 384 well cell culture plate. A volume of cells as determined by cell count and 

dependent on cell type was added to each well of a Greiner 384-well plate using a Multidrop 

Combi liquid handler and then incubated at 37C and 5% CO2 overnight in a rotating 

incubator. After seeding, plates were shaken to distribute the cells more evenly at the bottom 

of the wells and left to stand on the bench for 1hr to allow even settling of cells. 

 

All plates were dosed with compounds solubilized in DMSO or PBS, or DMSO alone to 

provide comparable treatment and max control wells. Plates were dosed with compounds or 

DMSO only on an automated ECHO 555 acoustic reformatting system using the 

preconfigured DMSO and Aqueous calibration with DMSO normalized at final concentration 

of 0.14%v/v . After 5 days of incubation 5ul of 2uM Sytox Green working solution was added 

to each well of the 384-well plates (0.133uM final concentration) and the plates incubated for 

1hr at room temperature. After incubation plates were read by the Acumen laser scanner to 

detect the number of Sytox Green stained cells. The total fluorescent intensity across the 

well was then read and the number of dead cells calculated by dividing this total 

fluorescence by the fluorescence of a single cell. The plates were re-read on the Acumen to 

give a total cell count. A live cell count was then determined by subtracting the dead cell 

count from the total cell count.  

Quantifying combination synergy and antagonism 

Monotherapy dose-responses of each drug in a combination was modeled as a sigmoidal 

curve and fitted to a classical Hill equation. In order to identify synergy or antagonism, an 

additive effect was first derived based on single agent dose-response curves using the 

Loewe model (Fitzgerald 2006; Geary 2013). The Loewe model relies on the isobole 

equation which was solved numerically for all drug concentration values in order to calculate  

A(a,b) and then derive S(a,b)=E(a,b)-A(a,b). the synergy distribution S(a,b) was summarized 

d by integrating S(a,b) in logarithmic concentration space, what we called total synergy using 

Combenefit v1.31 42 
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In vitro - in vivo Translatability 

Response data for 62 treatments across ~1,000 PDX models were derived from Gao et al. 

[8]. Due to the anonymity of compound labels, primary targets from both datasets were 

utilised to identify overlap. 

 

In vivo response class definitions - As synergy scores were not available for the Gao et 

al. dataset, ‘Best Response’ (Complete Response – CR, Partial Response – PR, Stable 

Disease – SD, Progressive Disease - PD) for each combination-PDX pair were extracted 

and compared with monotherapy ‘Best Response’ of each compound in the combination on 

the same PDX model. This was represented numerically where CR=4, PR=3, SD=2 and 

PD=1. Synergy was assigned to a change of +2 or more, and Antagonism to a change of -2 

or less. A change of +1, 0 or -1 was assigned Additive, considering an element of 

experimental flexibility. Cases where best response has been observed as a range over time 

(PR->->PD), the earliest response was considered as we hypothesise this to reflect in vitro 

response in a more realistic sense for comparison. 

 

In vitro response class definitions - Response scores defined by the Loewe synergy 

model were considered in ordered to define in vitro response classes. Synergism was 

defined as Loewe scores >= 5, Antagonism <= -5, and rest are classed as Additive. 

Molecular characterisation 

The 85 cell lines were molecularly characterized, including: 

1. Mutations from whole exome sequencing with Illumina HiSeq 2000 Agilent 

SureSelect (EGAS00001000978) 

2. Copy number variants from Affymetrix SNP6.0 microarrays (EGAS00001000978) 

3. Gene expression from Affymetrix Human Genome U219 array plates (E-MTAB-3610) 

4. DNA methylation from Infinium HumanMethylation450 v1.2 BeadChip (GSE68379) 

 

Mutations - Mutations were called with CAVEMAN 43 and PINDEL 44 as reported in 11. 

Variants were provided without further filtering, including putative passenger mutations, 

germline variants and potential cell line artefacts, which are in total 75,281 mutations in 85 

cell lines.  

 

Copy number events - Copy number variants (CNVs) are called with the PICNIC 45 

algorithm using the human genome build 38 as the reference. CNVs might be wild type, 

deletion or amplification of certain segments in a chromosome. One or multiple genes can 
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fall within such segments. We reported copy number for the major and minor allele on gene 

and segment level. 

 

Gene expression - Gene expression was processed as described in 11 including Robust 

Multi-array Average (RMA) normalization with the R-package ‘affy’ (Gautier, Cope, Bolstad, 

& Irizarry, 2004). Gene expression for 83 cell lines across 17,419 genes (HGNC labels) was 

reported; no expression was available for MDA-MB-175-VII and NCI-H1437.  

 

DNA methylation - We reported for 82 cell lines the beta and M values 46 for 287,450 

probes; no methylation was available for the cell lines SW620, KMS-11 and MDA-MB-175-

VII. In an additional processing step, CpG sites were compressed to CpG ilse with the 

definition from UCSC genome browser 47, resulting in a total of 26,313 CpG ilse based on 

either M or beta values. 

Drug properties 

The identity of all compounds was anonymized, but for all agents the putative targets are 

revealed. The gene names of the protein targets are listed with ’*’ denoting any character if 

the target is a protein family. Furthermore, for 58 compounds the Molecular weight, H-bond 

acceptors, H-bond donors, calculated octanol-water partition coefficient, Lipinski’s rule of 5, 

and their SMILES (Simplified Molecular Input Line Entry Specification) are provided. Drugs 

were grouped into pathways and biological processes manually according to their protein 

targets (Supplementary Table 1). 

Challenge organization 

The Challenge consisted of 2 sub-challenges, each with multiple rounds: a leaderboard, 

validation, bonus and collaborative round. sub-challenge 1 had 4 leaderboard rounds that 

lasted 8, 6, 5, and 5 weeks, while sub-challenge 2 had 3 leaderboard rounds that lasted 12, 

7, and 5 weeks. Participants were given a leaderboard dataset to build a model and 

generate 3 prediction files per leaderboard round. Scores were returned to participants so 

that they can improve their model throughout these rounds for their one submission to the 

final round which was scored against a held-out dataset. The final round lasted for 2 weeks 

which was then followed by a 9 week bonus round and 10 week collaborative round.  

Challenge pharmacology data splits 

In sub-challenge 1, participants were asked to predict drug synergy of 167 combinations in 

the panel of 85 cell lines. The synergy data of each drug combination was partitioned into 3 
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sets: a training data set (3/6-50%), a leaderboard set (1/6-16.7%), and validation set (2/6-

33%) of treated cell lines. sub-challenge 2 leveraged data for remaining 740 drug 

combinations not overlapping with those used in sub-challenge 1, although data for some of 

the same compounds (in combination with different compounds), homologous compounds 

(i.e. same target, but different chemical structure), and cell lines were included. A 

leaderboard set (370 combinations) and a final validation set (370 combinations) were 

randomly split, which are mutually exclusive from each other as well as from sub-challenge 

1.  

 

Challenge Scoring Metrics 

Sub-challenge SC1, Primary Metric - The primary metric was an average weighted 

Pearson correlation (𝜌") of the predicted versus observed synergy scores across each 

individual drug combination, 𝑖. The weight for a given drug combination 𝑖 was 𝑛% − 1where 

𝑛% is the number of cell lines treated with the drug combination. This resulted in the following 

primary metric for SC1A&B, 

𝜌" =
)
*+, -*./	1*
)
*+, -*./

, 

where 𝑁 = 167were the tested drug combinations. 

 
Sub-challenge SC1, Tie-Breaking Metric - The tie-breaking metric was identical to the 

primary metric except that it was applied to the subset of drug combinations that have at 

least one cell line with synergy score 𝑆6% ≥ 20in the held-out test set (𝑆6%= synergy score at 

cell line c and drug combination i). Neither the subset of drug combinations nor its size (𝑁 =

118) was revealed to participants prior to final evaluation.  

 

Sub-challenge SC2, Primary Metric - The primary metric was a sequential three-way 

ANOVA, which tested the separation of held-out synergy scores by predicted synergy (= 1) 

and predicted non-synergy (= 0). In the sequential three-way ANOVA (type 1), we controlled 

for systematic drug and cell line effects, and evaluated variance explained by a given team’s 

synergy predictions. We define the primary metric as  

𝑆𝐴	 = 	−𝑠𝑔𝑛	×𝑙𝑜𝑔/A(𝑝), 

where 𝑠𝑔𝑛 is the sign of the effect size (positive or negative separation by prediction), and𝑝 

is the p-value (F-statistic) computed from the ANOVA distinguishing predicted synergy (= 1) 

from predicted non-synergy (= 0) across all experimentally measured synergy scores.  
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Sub-challenge SC2, Tie-Breaking Metric - As the tie-breaking metric, we used balanced 

accuracy (BAC) using discretized synergy scores 𝑆6% ≥ 20	  

 

Applying the Tie-Breaking Metric - In each sub-challenge, we estimated a Bayes Factor 

(BF) using a paired bootstrapped approach to determine whether a team’s score was 

statistically indistinguishable from another. In the event that a team’s scores were 

determined to be statistically equivalent, we then applied the tie-breaking metric. To estimate 

the BF, we sample with replacement from the M observations of the given sub-challenge and 

computing the primary metric (pm) for each team 1000 times. For a given team, T, 𝐾F was 

computed by 

𝐾F =
/AAA
%G/ 	𝑝𝑚F,% 	< 	 𝑝𝑚KLMN,%
/AAA
%G/ 	𝑝𝑚F,% 	≥ 	 𝑝𝑚KLMN,%

 

Where 𝑝𝑚KLMN,% is the bootstrapped primary metric at iteration i for the team with the highest 

primary metric (non-bootstrapped). 

 

Assessing performance of individual combinations 

Combinations defined as poorly predicted had an average predicted vs observed Pearson 

correlation across teams in the range seen with a random predictor (Supplementary Fig. 8, 

-0.25 and 0.25). In contrast, well predicted combinations had an average Pearson correlation 

across teams of above 0.5.  
 

Independent validation on O'Neil et al Merck screen 

In order to assess the utility of features and the predictability of the learning algorithms in 

new contexts, we provided the participants an independent large-scale oncology 

combination screen published recently 4. The O'Neil et al dataset consists of 22,737 

experimental endpoints covering 583 doublet combinations across 39 diverse cancer cell 

lines. 38 experimental compounds and approved drugs were included in this combination 

screen using a 4-by-4 dosing regimen. Raw cell viability measures for each combination 

experiment were processed through Combenefit 42 and dose response surfaces were tested 

against the Loewe synergy model (same as in the Challenge). While there are 6 approved 

drugs, 49 targets, and 10 cell lines in common between the Challenge and O'Neil et al 

datasets, the total number of exact experiments (Compound A – Compound B – Cell line) 

overlapping is below 100, giving the participants a highly independent validation set for their 

prediction algorithms. This information was provided to best performing teams in the 

Challenge, along with a dictionary of curated chemical structures and putative targets for 

each. Prediction models were trained on the released Challenge dataset and made synergy 
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score predictions on the O'Neil et al dataset. Metrics for SC1 and SC2 were used to assess 

prediction performance.  

 

Individual Prediction Models 

Full description and implementation of models used by teams in the final submission to 

DREAM can be downloaded from:  

www.Synapse.org/AstraZeneca_Sanger_Drug_Combination_Challenge_Leaderboards. Top 

performing prediction models in SC1 and SC2 made use of genetic features relating to the 

gene targets of the drugs. Feature selection from the models enabled nomination of putative 

biomarkers for drug combination synergy (see Supplementary Material). 

Ensemble Models 

Sub-challenge 2 participant models were aggregated using two types of ensemble models 

Spectral Meta-Learner (SML) and Random Aggregation. SML choses predictions from n 

methods to aggregate based on an estimation of balanced accuracy for each method without 

using actual labels 13,48. Random Aggregation is the traditional way that people aggregate 

models by giving equal weight to each method. We randomly pick n methods (do this 10 

times) and for n methods we compute the average balanced accuracy and the error. 

Monotherapy Biomarkers and Synergy enrichment 

Monotherapy markers are the mutational status of genes, either mutated or copy number 

altered, from the pan-cancer binary event matrix (BEM) 11, which separate the monotherapy 

response into sensitive versus non-response. The likelihood of separation was estimated 

with a Wilcox Rank Sum test. From most significant monotherapy marker to lowest in 0.1 

steps of -log10(p-value), we accumulative evaluated the percentage of synergistic 

combinations with at least one monotherapy marker. This analysis was bootstrapped 10 

times with 80% of the pharmacology data. 

Synergy Biomarkers 

A short list of putative synergy biomarkers were derived from the 5 highest ranked features 

of well predicted drug combinations (Pearson > 0.5) from the two best performers NAD and 

DMIS. Features were ranked based on their feature weight or importance for given well 

predicting model. This gene-to-combination short list, was filtered for associations predicted 

by both teams, or genes biological related to the drug target defined as either the gene being 

the target itself, a short distance to it in OmniPath signaling network (2 molecules up- or 

downstream) or GO term similarity 49 larger than 0.7. This resulted in a list of 47 gene-to-
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combination associations that we further studied. A gene within this list is considered mutant 

if it was deleted, amplified (more than 7 copies) or mutated in any sense, resulting in an 

extended BEM 11. We calculated the p-value for each suggested association with an ANOVA 

correcting for tissue of origin and multiple hypothesis testing via Benjamini Hochberg. The 

effect sizes is the mean difference in synergy score between mutant and wild type cell lines. 

 

For external validation of those putative biomarkers of synergy, we focused on drug 

combinations in O’Neil et al. 2016 4, ALMANAC 9 and additional experimental data from 

AstraZeneca (Supplementary Table 3). We validated biomarkers in two different contexts, 

(i) for cell lines overlapping with DREAM, considered as biological replicates, and (ii) cells 

non-overlapping for predictions on novel cell lines.  

 

Literature evidence for the shortlisted combination-biomarker associations was identified 

through PubMed search. The aim was to identify published evidence of (i) the combination-

biomarker association, (ii) the combination but not the specific biomarker, and (iii) either one 

of the targets and the biomarker association. The publications were further categorized into 

in vitro, in vivo, and preclinical studies. Publications that discuss the specific combination-

biomarker association have been highlighted in red (Supplementary Table 4). In summary, 

synergy biomarker were derived from best performer models, and highlighted based external 

validation as well as literature support.  
 

Accession codes. 
Full description of generation methods provided to all participants in this Challenge can be 

downloaded from https://www.synapse.org/DrugCombinationChallenge, while full data is 

available from https://openinnovation.astrazeneca.com/data-library.html. 
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Figures 

 
Figure 1: Drug combinations and cell lines profiled. (a) Molecular characterization of the cell lines 

included genetics, epigenetics and transcriptomics. (b) Participants were encouraged to mine external 

data and pathway resources. (c) Participants were provided the putative targets and chemical 

structures for ~⅓ of cell lines to predict synergistic combinations. (d) The cell line panel contained 85 

cell lines from 6 different cancer types. (e) The drug portfolio comprised approximately half oncogenic 

signaling targeting agents, and half cytotoxic compounds of which 14 were untargeted 

chemotherapies (f) Compounds split by the putative targeted pathway. (g) Sparse data was split into 

training set, leaderboard and independent test set for sub-challenge 1 and 2 and color coded 

accordingly, see legend in panel G. (h) Comparison of responses for overlapping combinations 

between in vitro (DREAM) and in vivo (Gao et al.) datasets shows translatability of synergistic 

combination-sample pairs (Pearson r = 0.34 for synergistic, r = -0.32 for antagonistic.)  
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Figure 2: Performance of teams in the DREAM challenge. (a) Participant performance in SC1A 

and SC1B – the distribution of performance of random predictions was used to estimate a lower limit, 

and the distribution of synergy correlations between biological replicates were used to estimate the 

upper limit. (b) Participant performance ranked in sub-challenge 2 based on the primary metric, 3-way 

ANOVA. Distribution of bootstrap prediction performances for each team are shown by each boxplot 

with the dot showing their actual performance. (c) Participant performance plotted with upper and 

lower limits for SC2 based on the tie-break metric. Performance of random predictions were used to 

estimate the lower limit, and the performance of biological replicates were used to estimate the upper 

limit. (d) Ensemble models compared to the performance of individual models ranked from best to 

poorest performing in sub-challenge 2. SML is an ensemble of the best performing models based on 

estimation of their balanced accuracy. Random Aggregation is an ensemble combining a random 

combination of models. Standard error of mean represented by error bars are estimated from 10 

random splits of the data. 
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Figure 3: Feature impact. Drug target annotation is key in top performing algorithms, as is the meta 

information about variants including their functional impact and tumor driver gene status. (a) Cross 

validation based distributions of NAD primary metric of SC1B when replacing or adding drug/cell line 

label with respective features (baseline model has just drug and cell line label). *P<0.05, **P<0.01, 

and ***P<0.001 compared to baseline model (b) Heatmap of decrease in performance (average 

weighted Pearson correlation) of SC1B for DMIS support vector regression method when two 

feature types are removed at once (rows and columns).  
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Figure 4: Features of poorly and well predicted combinations. (a) Heatmap of Pearson 

correlation between observed and predicted synergy scores for 118 combinations across 73 teams 

participating in SC1A/B. Algorithms used by each team is marked in the matrix below. (b) 

Combinations of pathways targeted. Size of node is proportional to number of drugs targeting specific 

pathway and width of edges is proportional to the number of drug combinations. (c) Types of 

interactions between the nearest neighbouring gene and the two drug targets of poorly and well 

predicted combinations. Boxplots show the difference in the proportion of interactions of each type for 

poorly and well predicted combinations (t-test). (d) Proportion of poorly and well predicted 

combinations for different network distances (minimum number of interactions in the OmniPath 

shortest path) between the two targets of a drug combination. 
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Figure 5: Post-hoc analysis of putative synergy biomarkers.  (a) Cell lines and (b) PDX models 

[8] show increased frequency of synergistic drug combinations if they contain biomarkers with 

stronger association to monotherapy resistance.  (c) Validation of biomarker predictions in new cell 

lines and independently screened drug combinations by O’Neil at al. 2016. (d) Synergy markers 

suggested by DMIS and NAD, when focusing on top weighted features from predictive models filtered 

for biological relatedness to drug targets, ‘***’=5%, ‘**’=20% and ‘*’=35% FDR. (e) Comparison of 

ADAM17 combined with PIK3CB/D against ADAM17 in combination with pan-PI3K3C inhibitor. (f) 

Network cartoon of PI3K signaling and role of ADAM17. 
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Figure 6: Translatability of top performing DREAM models to an independent screen by O'Neil 

et al4. Performance of 1A models for predicting synergy scores in the O'Neil et al dataset by the best 

performing teams are plotted along with distributions of predictions from the random model and 

replicate experiments. Performance of predictions are shown for (a) all experiments in the O’Neil et al 

data set, and three subsets of the data set; (b) experiments that tested same cell lines as DREAM, (c) 

tested similar drugs as in DREAM (one drug in the combination with the same target), and (d) tested 

similar combinations as in DREAM (same targets for both drugs in the combination). 
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