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Abstract: 

Pre-mRNA splicing is an important mechanism by which genetic variation influences complex            

traits. We developed a Multiplexed Functional Assay of Splicing using Sort-seq (MFASS) that             

allows us to quantify exon inclusion in large libraries of human exons and surrounding intronic               

contexts. We used MFASS to explore >10,000 designed mutations intended to alter regulatory             

elements that govern splicing. Many classes of mutations led to large-effect splicing disruptions             

including mutations far from canonical splice sites, and these effects were not easily predicted.              

We assayed 29,531 extant variants in the Exome Aggregation Consortium, and found that             

>1000 variants (3.6%) within or adjacent to 2393 assayed human exons led to almost complete               

loss of exon recognition. While most variants at the canonical splice site disrupt splicing, they               

represent <20% of splice-disrupting variants overall because genetic variation elsewhere          

dominates. Our results indicate that loss of exon recognition caused by rare genetic variation              

may play a larger role in trait diversity than previously appreciated, and that MFASS may               

provide  a  scalable  way to  functionally test such  variants. 
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Main Text: 

Any individual’s genome contains ~4-5 million deviations from the reference human genome,            

almost all of which are very rare 1. How this collection of differences give rise to trait diversity and                  

disease susceptibility is a central question in human genetics. Recent genetic studies implicate             

pre-mRNA splicing as a major and underappreciated means through which variation imparts            

functional consequences2–5. However, genetic variation is depleted at the major splicing           

recognition sites2,6. If genetic variation is having major impacts on splicing, how does it impart its                

effects if not through  the  major sites known  to  affect splicing?  

 

In humans, genetic and biochemical studies show that exons are first recognized in a process               

called exon definition, and then introns between them are removed 7–11. The major exon             

recognition elements, including the splice donor, acceptor, branchpoint and polypyrimidine tract,           

taken together are too degenerate alone to discriminate true exons from those not utilized in               

vivo12–14. Numerous computational, in vitro, and genetic studies have shown that other            

cis-regulatory elements are required to distinguish false exons from included ones12,13,15. These            

sequences are short motifs that are broadly classified as exonic splicing enhancers (ESEs) and              

suppressors (ESSs) as well as their intronic counterparts16,17 (ISEs & ISSs). Machine learning             

methods use these and other genomic features trained against genome-wide RNA sequencing            

datasets to build predictive models of splicing regulation 7–9. However, the predictive power of             

these models may come almost entirely from sequence conservation rather than the            

mechanistic understanding of splicing 18,19. These models predict that human genetic variation,           

and especially rare variation, often disrupt sequence features required for proper exon            

recognition, but it is difficult to  verify the  accuracy of these  predictions at large  scales7.  
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Several groups have developed massively parallel reporter assays of splicing 8,14,20,21. Most of            

these assays look at a small set of exons and mutate them to understand which elements are                 

important for splicing. Importantly, these methods have allowed us to better quantify how             

individual ESEs and ESSs combine to contribute to exon recognition in a small number of exon                

contexts, and can be used to build more general predictive models for exon splicing. Recently, a                

survey of disease variants within a much broader set of human exons found that ~10% of these                 

variants had exon recognition defects20. Despite the recent progress, there are still several             

limitations inherent to these large-scale approaches. First, these reporters often assay exons in             

the contexts of short background intronic sequences, which have been shown to impact exon              

skipping and intron retention 22. Second, most previous studies use transient transfections that            

do not reflect physiological chromatin contexts23 and are usually highly overexpressed, which            

can lead to saturation of the splicing machinery24,25. Finally, most of these assays cannot screen               

both  intronic and  exonic changes simultaneously.  

 

Here we develop a novel multiplexed assay that overcomes many of these shortcomings called              

MFASS (Multiplexed Functional Assay of Splicing by Sort-seq) that builds upon several previous             

approaches (Fig. 1A). MFASS allows testing of tens of thousands of chemically-synthesized            

exons and surrounding introns in the context of a reporter with long constant introns, stably               

integrated at single copy at a precise genomic locus with high efficiency (Supp. Fig. 1). Briefly,                

we split a GFP coding sequence with a constant intron backbone, with a downstream mCherry               

fluorescent marker to act as a control. Thus, the ratio of green to red fluorescence is a direct                  

measure of exon inclusion. This is reminiscent of past approaches13,14 but optimized for large              

libraries26, readout by next-generation sequencing, and optimized to study exon definition 13           

(Supp. Fig. 2). The library of exons and surrounding native intronic sequences is cloned into this                
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constant intron backbone. We then integrated the plasmid library into an engineered serine             

integrase-based landing pad at the AAVS1 locus in HEK293T cells, ensuring only one integrant              

per cell, similar to recently published high-efficiency integration methods26,27 (Supp. Fig. 1, 3).             

We sorted the integrated cell library into bins based on the GFP:mCherry ratio, followed by               

DNA-Seq of the integrated library (similar to past Sort-seq approaches28–31) to build a             

quantitative  measure  of exon  inclusion  level  of any designed  sequence. 

 

We first designed, built and assayed a library to explore how Splicing Regulatory Elements              

(SRE) individually govern exon recognition across a randomly-chosen library of 205 natural            

human exons and surrounding intronic sequences (Figure 2A). We used fluorescence-activated           

cell sorting (FACS) to sort our pooled sequence library of splicing reporters into three bins               

(GFPneg, GFPint and GFP+). We expanded these sorted bins over several passages and             

observed that the sorted populations remained stable (Fig. 1B). We also performed bulk             

RT-PCR for each bin and found that the observed RNA splicing efficiencies corresponded             

almost directly with observed fluorescence of the bins (Fig. 1C, Supp. Fig. 4). In addition, we                

constructed individual reporters corresponding to individual library sequences, and evaluated          

both fluorescence and RNA splicing under transient expression and site-specific genome           

integration (Supp. Fig. 5). While level of exon inclusion as measured by RT-PCR is consistent               

between transient and stable expression, reporter fluorescence in stably integrated constructs is            

more consistent with RT-PCR results because the transient transfections included signals at            

very high  gene  dosage  (Supp. Fig. 4, 5).  

 

For our SRE library studies, we first tested a variety of short constant intron contexts, but found                 

that these resulted ~10-fold lower expression indicative of intron retention (Supp. Fig. 6), which              
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is usually a rarer event in higher eukaryotes that contain longer introns32. We chose two longer                

intronic backbones (~300-600 bp) shown previously to not suffer from such intronic retention (C.              

griseus DHFR and human SMN1 intron backbones), and found that the longer intron lengths              

improved both expression and assay reproducibility33,34. Exon inclusion metrics obtained from           

both of these intron contexts were highly reproducible between biological replicates (Fig. 1E) (r              

= 0.94, p < 10 -16, DHFR intron backbone, and r = 0.89, p < 10 -16, SMN1 intron backbone). Exon                   

inclusion level for the entire library also correlates highly across DHFR and SMN1 constant              

intron contexts (Fig. 1E) (r = 0.85, p < 10 -16), indicating our reporter assay is robust across                 

broader intron contexts. Notably, most library sequences are represented predominantly in one            

exclusive bin showing either complete exon inclusion or skipping (Fig. 1D), consistent with             

bimodality in splicing behavior in our flow cytometry readout (Fig. 1B) and in single cells35–37. For                

all subsequent analyses, we only include constructs with Δinclusion index that agree within 0.30              

for both  biological  replicates and  across intron  backbones. 

 

We designed the SRE library using a software tool that we developed, Splicemod, that can               

iteratively mutate specific classes of regulatory elements that govern splicing without           

unintentionally creating new ones (Fig. 2A; Supp. Table 2). As expected, reducing the strength              

of the splice acceptor (SA) and splice donor (SD) adversely affects exon inclusion (Fig. 2B). We                

observe a significant correlation between decreased MaxEnt38 score (relative to wild-type) and            

Δinclusion index for both SA (r = 0.33, p < 10 -16) and SD (r = 0.36, p < 10 -16) (Fig. 2B). The                      

change in score for both SA and SD combined explains 14% of the variation in Δinclusion index                 

(multiple linear regression, p < 10 -16). Variants designed to mutate SA and/or SD but retain               

comparable strength (i.e. same MaxEnt score) show that while the majority (79.2%, 236/298)             

shows little change relative to wild-type (-0.20 ≤ Δinclusion index ≤ 0.20), 16% (48/298) of               
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variants exhibit large effects with Δinclusion index ≤ -0.50 (Splice-Disrupting Variants, SDVs).            

Taken together, while MaxEnt scores do correlate with function, there seems to be a context               

dependence  that is not accounted  for in  the  score  alone. 

 

Perturbations to ESEs result in a significant decrease in exon inclusion compared to random              

exonic changes (Mann-Whitney U test, p < 10 -16), while weakening or destroying ESSs results in               

a small but significant increase in exon inclusion (Mann-Whitney U test, p = 1.33 x 10 -4).                

Interestingly, disrupting only the strongest ESE results in a significant decrease in Δinclusion             

index (Mann-Whitney U test, p = 2.42 x 10 -7). We calculated an average exon hexamer score for                 

each sequence using the HAL model, which is learned from synthetic mini-genes focused on              

alternative 5’ and 3’ splicing 8 (Fig. 2C). We quantified the change in average exon hexamer               

score as the difference relative to the wild-type (Δaverage exon hexamer score) and found a               

correlation with Δinclusion index (r = 0.26, p < 10 -16) and a significant difference between               

mutants that increase or decrease the average score (two-tailed Student’s t test, p < 10 -16).               

Compared to random intronic changes, we found that weakening or destroying intronic motifs             

does not have an overall significant effect on exon inclusion (Mann-Whitney U test), although              

9.4% (63/672) of these mutants are SDVs. Additionally, we designed mutations that disrupt 53              

RNA-binding protein (RBP) motifs and found small changes in Δinclusion index relative to             

random mutations (Mann-Whitney U test, p = 2.08 x 10 -4 (intronic), p = 3.80 x 10 -2 (exonic)), with                  

14.1% (48/341) being SDVs. We synthesized 109 dbSNP mutations but do not observe             

significant changes in Δinclusion index (as compared to random changes) for either exonic or              

intronic single  nucleotide  polymorphisms (SNPs)39 (Mann-Whitney U test).  
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Given the appreciable proportions of SDVs across many classes of elements, we sought to              

examine the extent to which rare human variants act as SDVs. We first examined a larger library                 

of 4660 natural human exons and found that 2902 exons (62.2%) have an inclusion index of ≥                 

0.80 in our assay (Fig. 3A). Based on these human sequences, we designed and synthesized               

all possible exonic and intronic single nucleotide variants (SNVs) from the Exome Aggregation             

Consortium2 (ExAC, v0.3.1) (Fig. 3B), which represents a rich resource of genetic diversity from              

60,706 individuals. We were able to quantify the effects of 29,531 SNVs across 2393 reference               

sequences, which is more than half (54.7%, 29,531/54,021) of those found in the ExAC for               

these exons (Fig. 3B). We evaluated all SNVs in the DHFR intron backbone, because the               

backbone provided more replicable data in the SRE datasets. We also only report data for               

variants with calculated Δinclusion index within 0.20 between biological replicates to be more             

conservative with potential SDVs (r = 0.80, p < 10 -16) (Fig. 1E; Supp. Fig. 11). We also included                  

four control sets: (1) random nucleotides, (2) a previously tested set of skipped exons in the                

SRE library, (3) systematic mutations of both the splice donor and acceptor of wild-type              

sequences, (4) and two reporter constructs that split at distinct positions of GFP to assess how                

reading frame affects exon inclusion. 100% of random sequences (n = 27), 98.6% of skipped               

exons (n = 95), and 97.3% of broken SD/SA sequences (n = 1391) demonstrate exon skipping                

(inclusion index < 0.50) (Supp. Fig. 10). Moreover, Δinclusion indices across two separate             

reporter constructs located in different parts of GFP and in different frames demonstrate robust              

correlation  (r = 0.95, p  < 10 -16, Supp. Fig. 11).  

 

Overall, we found that 3.6% (1050/29,531) of ExAC SNVs leads to large-effect splicing             

disruptions in exon recognition, and are spread broadly across human exon backgrounds (Fig.             

3B). The annotations in ExAC use the Variant Effect Predictor classification 40, and we find that               

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/199927doi: bioRxiv preprint 

https://paperpile.com/c/L11DBj/rAoK
https://paperpile.com/c/L11DBj/A4yK
https://doi.org/10.1101/199927


 

67.8% of splice site SNVs (2 bp of intron adjacent to exon) are SDVs (Fig. 3D). Note that in our                    

assays, alternative 5’ and 3’ splice site usage will be called as false negatives and thus we may                  

be missing other potential SDVs. Variants in the broader splice region category, which includes              

variants located 2 bp into the exon and 8 bp into the intron (excluding splice sites), only disrupt                  

splicing 8.5% of the time. Synonymous, non-synonymous, and further intronic SNVs disrupt            

splicing more rarely at 3.0%, 3.1%, and 1.5% respectively. The increased sensitivity at splice              

site locations mirror added evolutionary constraints at these sites (Fig. 3C). However, SNVs at              

splice sites are rare in our library and also for all ExAC variants as a whole (Fig. 3C, Supp. Fig.                    

12), and the larger number of SNVs in other regions makes up for their reduced sensitivity (Fig.                 

3D). Notably, SNVs at splice sites only constitute 17% of the SDVs revealed by our assay,                

whereas intron variants, which are the least sensitive to genetic variation, contribute 19% of the               

SDVs (Fig. 3D). Overall, we observe almost equal contributions from intronic (53%) and exonic              

(47%) SDVs. 

 

Evolutionary conservation does correlate with whether an SNV will be an SDV, and this is most                

clearly seen within introns, which are enriched for highly conserved SDVs (Fig. 4A) (two-sided              

Fisher’s exact test, p < 10 -16). However, this conservation has limited predictive power, as there               

are more lowly conserved intronic SDVs than highly conserved ones especially for upstream             

intronic regions, while there are few poorly conserved exonic sites (Fig. 4B). Looking at gene               

level population genetic constraints, for exons within those genes that are predicted to be              

intolerant to loss-of-function (pLI ≥ 0.9), we observe significantly fewer SDVs (Fig. 4C)             

(two-sided Fisher’s exact test, p = 2.67 x 10 -12). Finally, while a vast majority of SDVs are rare,                  

the proportion of SNVs that are SDVs is significantly different across ExAC allele frequency bins               
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(p = 1.12 x 10 -3, chi-squared test) ranging from extremely rare variants (singletons) to more               

common  variants with  allele  frequency of ≥ 0.1% (Fig. 4D).  

 
We  compared  multiple  prediction  algorithms to  our human  variant dataset, some  designed 

specifically for splicing  (SPANR7 and  HAL 8) and  others to  predict the  impact of non-coding 

genetic variation  (CADD41, DANN42, FATHMM-MKL 43, fitCons44, and  LINSIGHT45) (Fig. 4E, 

Supp. Fig. 13). Overall, we  find  that the  two  algorithms specifically designed  for and  trained  on 

splicing  data  perform the  best, mostly due  to  their ability to  distinguish  exonic SDVs (HAL  only 

predicts exonic SNVs). Most of the  models that use  conservation  and  other functional  attributes 

perform equally well  on  intronic SNVs. In  particular, SPANR works best overall  largely due  to  its 

increased  ability to  differentiate  exonic SDVs (Fig. 4E, right; Supp. Fig. 13). At equivalent effect 

size  (>50%), SPANR achieves 44.5% precision, though  only 11.8% of the  SDVs are  called. 

However, SPANR is trained  on  bulk RNA-Seq  data, and  thus effect sizes can  be  skewed. As we 

lower the  threshold  for calling  an  SDV (i.e., the  predicted  effect size  of an  SNV), SPANR can 

achieve  14.9% precision  at 50% recall  level  (of the  SDVs called). For the  other prediction 

algorithms, precision  is below 10% at most appreciable  recall  levels. 

 
 
As with  other functional  approaches, our assay has several  limitations which  must be 

considered 46. First , we  only perform this assay in  a  single  cell  type  (HEK293T), and  thus there 

might be  trans-factors that mitigate  or exacerbate  splicing 47. Using  MFASS in  other cell  types 

will  be  important to  understand  the  scope  of these  effects. Second, the  tested  regions are 

surrounded  by non-native  intron  sequence  that might affect the  propensity of variants that affect 

splicing 48. Third , because  MFASS depends upon  FACS, our limit of detection  can  only reliably 

observe  large  effect sizes. For calling  SDVs this is tolerable, and  it seems likely that only 
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large-effect changes will  translate  across cell  types. However, small-effect changes might be 

important both  functionally and  for constraining  predictive  models. Fourth, MFASS as designed 

can  only observe  full  exon  skipping  events. Even  though  these  events dominate  a  majority of 

splicing  perturbations, other types of splicing  disruptions, including  alternative  3’  and  5’ 

splice-site  usage, are  likely to  be  false  negatives from MFASS. Other multiplexed  splicing 

assays that use  barcoded  RNAs can  alleviate  such  issues, but are  currently limited  to  short 

intronic regions8,21. Fifth , in  this study we  only examine  exons starting  and  ending  on  frame  0. 

Since  skipping  an  exon  that preserves frame  might be  less deleterious than  for frame-shifting 

exons, our library selected  here  may suffer from selection  bias, even  though  we  find  no 

appreciable  differences in  conservation  profiles between  the  two  (Supp. Fig. 14). We  also  found 

during  this study that several  of the  plasmids developed  for MFASS can  be  directly used  to 

screen  for frame-shifting  exons. Finally, oligonucleotide  libraries such  as those  used  here  are 

limited  to  ~200nt in  length. This limits the  size  of exons we  can  explore, which  can  also  lead  to 

selection  bias in  that short exons of <100  bp  may be  more  sequence  constrained. This also 

limits the  length  of the  surrounding  intronic sequences, which  could  serve  to  buffer or alter the 

effects of sequence  variation  (Supp. Fig. 15). As oligonucleotide  and  gene  library synthesis 

improves, we  expect to  include  additional  genetic context in  the  assays49,50.  

 

Despite  the  limitations, we  see  clear indications that many more  rare  variants than  we  expected 

can  lead  to  large-effect splicing  disruptions. More  than  >1000  SDVs discovered  in  this study are 

variants that directly eliminate  exon  recognition, and  we  reason  that such  large-effect SDVs 

seem to  be  the  most likely to  translate  to  other cell  types and/or play a  role  in  human  traits and 

diseases. In  addition, because  almost all  the  candidate  SDVs are  extremely rare, genome-wide 

splicing  quantitative  trait loci  (sQTL) studies may be  underestimating  much  of how mutations 
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affect traits through  splicing 3,51. More  broadly, using  multiplexed  empirical  models of important 

biological  processes, such  as ones derived  from MFASS, can  both  help  build  and  provide  an 

alternative  to  improved  computational  models. Finally, given  the  propensity of large-effect 

regulatory variants that disrupt splicing  discovered  here, MFASS provides a  scalable  platform to 

functionally screen  and  aid  precise  clinical  interpretation  and  prioritization  of rare  genetic 

variants52. 
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Figure  1. Multiplexed Functional Assay  of Splicing by  Sort-seq (MFASS). (A) We  clone 
synthetic exons (black) and  surrounding  intronic sequences (dark grey) into  our reporter plasmid 
containing  a  split-GFP reporter, followed  by site-specific integration  into  HEK293T cells using 
Bxb1  integrase. Cells are  sorted  into  bins based  on  GFP:mCherry fluorescence, followed  by 
amplicon  sequencing  from cells in  each  sorted  bin. The  normalized, weighted  average  of 
sequence  counts across bins reflects splicing  efficiencies. (B) We  used  FACS to  sort the 
genomically-integrated  SRE library into  three  separate  populations (left). After expansion, the 
sorted  populations remained  stable  (right). (C) The  observed  RNA splicing  efficiencies of the 
sorted  bins as measured  by RT-PCR correspond  directly with  observed  fluorescence  of the 
bins. (D) We  plotted  the  percentage  of reads for each  construct in  the  SRE library (n = 10,683) 
and  show that most fall  predominantly into  one  bin, exhibiting  either complete  exon  skipping  or 
inclusion. (E) Exon  inclusion  indices show strong  correlation  between  two  independent 
biological  replicates for C. griseus DHFR intron  backbone  (r = 0.94, p  < 10 -16) and  human  SMN1 
intron  backbone  (r = 0.89, p  < 10 -16) (left and  middle). (Points in  blue  indicate  inclusion  indices 
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for sequences that do  not agree  within  0.30.) Results are  robust across different intron 
backbones (r = 0.85, p  < 10 -16) (right). The  data  shown  in  B, C, and  D are  for the  SMN1 
backbone  (for DHFR backbone  see  Supp. Fig. 7). 
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Figure  2. Analysis  of SRE mutations  across  a  broad range  of human exon backgrounds. 
(A) We  randomly chose  205  human  exon  backbones and  used  Splicemod  to  design  variants 
intended  to  alter SREs. Splicemod  is a  software  tool  we  developed  to  iteratively design 
mutations that are  intended  to  alter SREs while  accounting  for other changes. We  quantified 
10,683  mutants (SMN1  intron  backbone) and  8942  mutants (DHFR intron  backbone) across 
these  exons. (B) We  quantify Δinclusion  index for a  mutant sequence  as difference  relative  to 
wild-type  (WT), and  labeled  the  inclusion  index of the  corresponding  WT sequence  by color. 
Points colored  blue  indicate  skipped  WT exons, therefore  mutations can  only increase  the 
inclusion  index (+ Δinclusion  index). Conversely, points colored  red  indicate  fully included  WT 
exons, and  mutations can  only decrease  the  inclusion  index (- Δinclusion  index). Data  shown 
here  is for the  SMN1  dataset (see  Supp. Fig. 8  for DHFR dataset; we  only plot those  points here 
that agree  across both  datasets). Median  Δinclusion  index for each  class is indicated  by overlaid 
boxplots. We  find  that weakening  splice  acceptor and  donor sequences adversely affects exon 
inclusion  based  on  MaxEnt prediction. (C) We  find  a  significant difference  in  Δinclusion  index 
between  sequences that increase  (up) or decrease  (down) average  exon  hexamer score 
(Mann-Whitney U test, p  < 10 -16). Decreasing  hexamer strength  leads to  more  exon  skipping. 
Scores are  based  on  the  HAL  model 8, and  an  alternative  exon  hexamer score  metric is 
evaluated  in  Supp. Fig. 9 14. (D) Quantitative  measures of exon  inclusion  for mutations across 
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multiple  classes of splicing  regulatory elements. Splice-disrupting  variants (SDVs) defined  as 
Δinclusion  index ≤ -0.50, and  percentage  of SDVs indicated  below each  class (only those 
natural  exons that are  >50% inclusion  without mutation  are  used  for this calculation). ESE, 
exonic splicing  enhancer. ESS, exonic splicing  suppressor. RBP, RNA-binding  protein. SA, 
splice  acceptor. SD, splice  donor.  
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Figure  3. Testing 29,531  SNVs  in ExAC finds  SDVs  broadly  spread across  human exons 
and surrounding intron regions. (A) We  tested  4660  human  exons for inclusion, and 
generated  all  SNVs found  in  the  Exome  Aggregation  Consortium2 (ExAC) for the  2902  exons 
with  inclusion  index ≥ 0.8. (B) The  number of SNVs per variant (top  panel) and  the  Δinclusion 
index (bottom panel) of the  29,531  ExAC SNVs plotted  against wild-type  exon  ID (n = 2393). 
Top  and  bottom plots are  ordered  in  decreasing  number of variants from 44  to  1  per exon 
background, with  an  average  of 13.9  human  variants. Dashed  line  indicates threshold 
(Δinclusion  index = -0.50) below which  we  call  splice-disrupting  variants (SDVs). (C) We  plot 
Δinclusion  index versus relative  location  of SNVs (top  panel). The  whiskers indicate  1.5-fold 
interquartile  ranges. Δinclusion  index, phastCons scores and  SNV density averaged  per scaled 
position  for our SNV library (bottom panel). Each  bin  corresponds to  1-2  nucleotide  per position. 
(D) Proportion  of SDVs by functional  class (left) and  overall  contribution  (%) to  SDVs by 
absolute  number (middle), based  on  the  Variant Effect Predictor40. Despite  the  higher sensitivity 
at the  splice  site, the  number of SNVs in  other regions dominates such  that SDVs at splice  sites 
only comprise  17% of total  SDVs. Right panel  shows contribution  of functional  classes to  SDVs 
(n = 1050) segregated  by exon  and  intron  regions, which  contribute  roughly equally to  SDVs. 
Splice  region  variants in  exons (4%) and  introns (17%) are  separated  by a  dashed  line.  
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Figure  4. Characteristics  of SDVs. (A) The  proportion  of SDVs with  low or high  phastCons 
conservation  (<0.5  and  ≥0.5). The  overall  percentage  of SDVs is shown  as a  dashed  line 
(3.6%). Introns, but not exons, are  enriched  for highly conserved  SDVs (two-sided  Fisher’s 
exact test, p  < 10 -16). (B) We  plot the  number of SDVs with  low or high  phastCons conservation, 
as opposed  to  percentage. (C) We  observe  significantly fewer SDVs for exons within  those 
genes that are  predicted  to  be  intolerant to  loss-of-function  (pLI ≥ 0.9) (two-sided  Fisher’s exact 
test, p  = 2.67  x 10 -12). The  overall  percentage  of SDVs is 3.6% (dashed  line). (D) The  change  in 
exon  inclusion  index (Δinclusion  index) plotted  against the  allele  frequency spectrum. For each 
allele  frequency bin, number of tested  variants and  % SDV in  that bin  is indicated  at the  bottom, 
and  violin  plot shows distribution  of variants across Δinclusion  index with  median  Δinclusion 
index (dot) indicated  for each  bin. The  percentage  of SDVs as a  function  of observed  allele 
frequency shows a  negative  trend  and  is significantly different across allele  frequencies 
(chi-squared  test, p = 1.12  x 10 -3). (E) Precision-recall  curves (left) and  receiver operating 
characteristic (ROC) curves (right) for algorithms that can  predict splicing  or non-coding  genetic 
variants. For ROC curves (right), colors for each  algorithm match  those  in  the  left panel, with  the 
addition  of the  HAL  predictor that evaluates exonic changes only. Dashed  line  (left) indicates 
overall  percentage  of SDVs determined  by MFASS. 
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