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Abstract:

Pre-mRNA splicing is an important mechanism by which genetic variation influences complex
traits. We developed a Multiplexed Functional Assay of Splicing using Sort-seq (MFASS) that
allows us to quantify exon inclusion in large libraries of human exons and surrounding intronic
contexts. We used MFASS to explore >10,000 designed mutations intended to alter regulatory
elements that govern splicing. Many classes of mutations led to large-effect splicing disruptions
including mutations far from canonical splice sites, and these effects were not easily predicted.
We assayed 29,531 extant variants in the Exome Aggregation Consortium, and found that
>1000 variants (3.6%) within or adjacent to 2393 assayed human exons led to almost complete
loss of exon recognition. While most variants at the canonical splice site disrupt splicing, they
represent <20% of splice-disrupting variants overall because genetic variation elsewhere
dominates. Our results indicate that loss of exon recognition caused by rare genetic variation
may play a larger role in trait diversity than previously appreciated, and that MFASS may

provide a scalable way to functionally test such variants.
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Main Text:

Any individual’s genome contains ~4-5 million deviations from the reference human genome,
almost all of which are very rare’. How this collection of differences give rise to trait diversity and
disease susceptibility is a central question in human genetics. Recent genetic studies implicate
pre-mRNA splicing as a major and underappreciated means through which variation imparts
functional consequences®®. However, genetic variation is depleted at the major splicing
recognition sites®®. If genetic variation is having major impacts on splicing, how does it impart its

effects if not through the major sites known to affect splicing?

In humans, genetic and biochemical studies show that exons are first recognized in a process
called exon definition, and then introns between them are removed’™". The major exon
recognition elements, including the splice donor, acceptor, branchpoint and polypyrimidine tract,
taken together are too degenerate alone to discriminate true exons from those not utilized in
vivo'> . Numerous computational, in vitro, and genetic studies have shown that other
cis-regulatory elements are required to distinguish false exons from included ones'*'". These
sequences are short motifs that are broadly classified as exonic splicing enhancers (ESEs) and
suppressors (ESSs) as well as their intronic counterparts'®' (ISEs & I1SSs). Machine learning
methods use these and other genomic features trained against genome-wide RNA sequencing
datasets to build predictive models of splicing regulation’®. However, the predictive power of
these models may come almost entirely from sequence conservation rather than the
mechanistic understanding of splicing’'. These models predict that human genetic variation,

and especially rare variation, often disrupt sequence features required for proper exon

recognition, but it is difficult to verify the accuracy of these predictions at large scales’.
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Several groups have developed massively parallel reporter assays of splicing®'#?°2". Most of
these assays look at a small set of exons and mutate them to understand which elements are
important for splicing. Importantly, these methods have allowed us to better quantify how
individual ESEs and ESSs combine to contribute to exon recognition in a small number of exon
contexts, and can be used to build more general predictive models for exon splicing. Recently, a
survey of disease variants within a much broader set of human exons found that ~10% of these
variants had exon recognition defects?®. Despite the recent progress, there are still several
limitations inherent to these large-scale approaches. First, these reporters often assay exons in
the contexts of short background intronic sequences, which have been shown to impact exon
skipping and intron retention?. Second, most previous studies use transient transfections that
do not reflect physiological chromatin contexts®® and are usually highly overexpressed, which
can lead to saturation of the splicing machinery?*?. Finally, most of these assays cannot screen

both intronic and exonic changes simultaneously.

Here we develop a novel multiplexed assay that overcomes many of these shortcomings called
MFASS (Multiplexed Functional Assay of Splicing by Sort-seq) that builds upon several previous
approaches (Fig. 1A). MFASS allows testing of tens of thousands of chemically-synthesized
exons and surrounding introns in the context of a reporter with long constant introns, stably
integrated at single copy at a precise genomic locus with high efficiency (Supp. Fig. 1). Briefly,
we split a GFP coding sequence with a constant intron backbone, with a downstream mCherry
fluorescent marker to act as a control. Thus, the ratio of green to red fluorescence is a direct
measure of exon inclusion. This is reminiscent of past approaches™" but optimized for large
libraries®, readout by next-generation sequencing, and optimized to study exon definition™

(Supp. Fig. 2). The library of exons and surrounding native intronic sequences is cloned into this
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constant intron backbone. We then integrated the plasmid library into an engineered serine
integrase-based landing pad at the AAVS1 locus in HEK293T cells, ensuring only one integrant
per cell, similar to recently published high-efficiency integration methods®*#" (Supp. Fig. 1, 3).
We sorted the integrated cell library into bins based on the GFP:mCherry ratio, followed by
DNA-Seq of the integrated library (similar to past Sort-seq approaches®3') to build a

quantitative measure of exon inclusion level of any designed sequence.

We first designed, built and assayed a library to explore how Splicing Regulatory Elements
(SRE) individually govern exon recognition across a randomly-chosen library of 205 natural
human exons and surrounding intronic sequences (Figure 2A). We used fluorescence-activated
cell sorting (FACS) to sort our pooled sequence library of splicing reporters into three bins

(GFP GFP,, and GFP,). We expanded these sorted bins over several passages and

neg?
observed that the sorted populations remained stable (Fig. 1B). We also performed bulk
RT-PCR for each bin and found that the observed RNA splicing efficiencies corresponded
almost directly with observed fluorescence of the bins (Fig. 1C, Supp. Fig. 4). In addition, we
constructed individual reporters corresponding to individual library sequences, and evaluated
both fluorescence and RNA splicing under transient expression and site-specific genome
integration (Supp. Fig. 5). While level of exon inclusion as measured by RT-PCR is consistent
between transient and stable expression, reporter fluorescence in stably integrated constructs is

more consistent with RT-PCR results because the transient transfections included signals at

very high gene dosage (Supp. Fig. 4, 5).

For our SRE library studies, we first tested a variety of short constant intron contexts, but found

that these resulted ~10-fold lower expression indicative of intron retention (Supp. Fig. 6), which
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is usually a rarer event in higher eukaryotes that contain longer introns®. We chose two longer
intronic backbones (~300-600 bp) shown previously to not suffer from such intronic retention (C.
griseus DHFR and human SMN1 intron backbones), and found that the longer intron lengths
improved both expression and assay reproducibility®**. Exon inclusion metrics obtained from
both of these intron contexts were highly reproducible between biological replicates (Fig. 1E) (r
= 0.94, p < 10", DHFR intron backbone, and r = 0.89, p < 10'®, SMN1 intron backbone). Exon
inclusion level for the entire library also correlates highly across DHFR and SMN1 constant
intron contexts (Fig. 1E) (r = 0.85, p < 107°), indicating our reporter assay is robust across
broader intron contexts. Notably, most library sequences are represented predominantly in one
exclusive bin showing either complete exon inclusion or skipping (Fig. 1D), consistent with
bimodality in splicing behavior in our flow cytometry readout (Fig. 1B) and in single cells**~’. For
all subsequent analyses, we only include constructs with Ainclusion index that agree within 0.30

for both biological replicates and across intron backbones.

We designed the SRE library using a software tool that we developed, Splicemod, that can
iteratively mutate specific classes of regulatory elements that govern splicing without
unintentionally creating new ones (Fig. 2A; Supp. Table 2). As expected, reducing the strength
of the splice acceptor (SA) and splice donor (SD) adversely affects exon inclusion (Fig. 2B). We
observe a significant correlation between decreased MaxEnt*® score (relative to wild-type) and
Ainclusion index for both SA (r = 0.33, p < 107™) and SD (r = 0.36, p < 107) (Fig. 2B). The
change in score for both SA and SD combined explains 14% of the variation in Ainclusion index
(multiple linear regression, p < 107%). Variants designed to mutate SA and/or SD but retain
comparable strength (i.e. same MaxEnt score) show that while the majority (79.2%, 236/298)

shows little change relative to wild-type (-0.20 < Ainclusion index < 0.20), 16% (48/298) of
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variants exhibit large effects with Ainclusion index < -0.50 (Splice-Disrupting Variants, SDVs).

Taken together, while MaxEnt scores do correlate with function, there seems to be a context

dependence that is not accounted for in the score alone.

Perturbations to ESEs result in a significant decrease in exon inclusion compared to random
exonic changes (Mann-Whitney U test, p < 10'®), while weakening or destroying ESSs results in
a small but significant increase in exon inclusion (Mann-Whitney U test, p = 1.33 x 10™).
Interestingly, disrupting only the strongest ESE results in a significant decrease in Ainclusion
index (Mann-Whitney U test, p = 2.42 x 10”). We calculated an average exon hexamer score for
each sequence using the HAL model, which is learned from synthetic mini-genes focused on
alternative 5 and 3’ splicing® (Fig. 2C). We quantified the change in average exon hexamer
score as the difference relative to the wild-type (Aaverage exon hexamer score) and found a
correlation with Ainclusion index (r = 0.26, p < 107%) and a significant difference between
mutants that increase or decrease the average score (two-tailed Student’s t test, p < 107°).
Compared to random intronic changes, we found that weakening or destroying intronic motifs
does not have an overall significant effect on exon inclusion (Mann-Whitney U test), although
9.4% (63/672) of these mutants are SDVs. Additionally, we designed mutations that disrupt 53
RNA-binding protein (RBP) motifs and found small changes in Ainclusion index relative to
random mutations (Mann-Whitney U test, p = 2.08 x 10 (intronic), p = 3.80 x 107 (exonic)), with
14.1% (48/341) being SDVs. We synthesized 109 dbSNP mutations but do not observe
significant changes in Ainclusion index (as compared to random changes) for either exonic or

intronic single nucleotide polymorphisms (SNPs)* (Mann-Whitney U test).
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Given the appreciable proportions of SDVs across many classes of elements, we sought to
examine the extent to which rare human variants act as SDVs. We first examined a larger library
of 4660 natural human exons and found that 2902 exons (62.2%) have an inclusion index of =
0.80 in our assay (Fig. 3A). Based on these human sequences, we designed and synthesized
all possible exonic and intronic single nucleotide variants (SNVs) from the Exome Aggregation
Consortium? (EXAC, v0.3.1) (Fig. 3B), which represents a rich resource of genetic diversity from
60,706 individuals. We were able to quantify the effects of 29,531 SNVs across 2393 reference
sequences, which is more than half (54.7%, 29,531/54,021) of those found in the ExAC for
these exons (Fig. 3B). We evaluated all SNVs in the DHFR intron backbone, because the
backbone provided more replicable data in the SRE datasets. We also only report data for
variants with calculated Ainclusion index within 0.20 between biological replicates to be more
conservative with potential SDVs (r = 0.80, p < 107°) (Fig. 1E; Supp. Fig. 11). We also included
four control sets: (1) random nucleotides, (2) a previously tested set of skipped exons in the
SRE library, (3) systematic mutations of both the splice donor and acceptor of wild-type
sequences, (4) and two reporter constructs that split at distinct positions of GFP to assess how
reading frame affects exon inclusion. 100% of random sequences (n = 27), 98.6% of skipped
exons (n = 95), and 97.3% of broken SD/SA sequences (n = 1391) demonstrate exon skipping
(inclusion index < 0.50) (Supp. Fig. 10). Moreover, Ainclusion indices across two separate
reporter constructs located in different parts of GFP and in different frames demonstrate robust

correlation (r=0.95, p < 107%, Supp. Fig. 11).

Overall, we found that 3.6% (1050/29,531) of EXAC SNVs leads to large-effect splicing
disruptions in exon recognition, and are spread broadly across human exon backgrounds (Fig.

3B). The annotations in EXAC use the Variant Effect Predictor classification*’, and we find that
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67.8% of splice site SNVs (2 bp of intron adjacent to exon) are SDVs (Fig. 3D). Note that in our
assays, alternative 5’ and 3’ splice site usage will be called as false negatives and thus we may
be missing other potential SDVs. Variants in the broader splice region category, which includes
variants located 2 bp into the exon and 8 bp into the intron (excluding splice sites), only disrupt
splicing 8.5% of the time. Synonymous, non-synonymous, and further intronic SNVs disrupt
splicing more rarely at 3.0%, 3.1%, and 1.5% respectively. The increased sensitivity at splice
site locations mirror added evolutionary constraints at these sites (Fig. 3C). However, SNVs at
splice sites are rare in our library and also for all EXAC variants as a whole (Fig. 3C, Supp. Fig.
12), and the larger number of SNVs in other regions makes up for their reduced sensitivity (Fig.
3D). Notably, SNVs at splice sites only constitute 17% of the SDVs revealed by our assay,
whereas intron variants, which are the least sensitive to genetic variation, contribute 19% of the
SDVs (Fig. 3D). Overall, we observe almost equal contributions from intronic (53%) and exonic

(47%) SDVs.

Evolutionary conservation does correlate with whether an SNV will be an SDV, and this is most
clearly seen within introns, which are enriched for highly conserved SDVs (Fig. 4A) (two-sided
Fisher's exact test, p < 107'®). However, this conservation has limited predictive power, as there
are more lowly conserved intronic SDVs than highly conserved ones especially for upstream
intronic regions, while there are few poorly conserved exonic sites (Fig. 4B). Looking at gene
level population genetic constraints, for exons within those genes that are predicted to be
intolerant to loss-of-function (pLI = 0.9), we observe significantly fewer SDVs (Fig. 4C)
(two-sided Fisher’s exact test, p = 2.67 x 107'?). Finally, while a vast majority of SDVs are rare,

the proportion of SNVs that are SDVs is significantly different across EXAC allele frequency bins
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(p = 1.12 x 10, chi-squared test) ranging from extremely rare variants (singletons) to more

common variants with allele frequency of = 0.1% (Fig. 4D).

We compared multiple prediction algorithms to our human variant dataset, some designed
specifically for splicing (SPANR’ and HAL?®) and others to predict the impact of non-coding
genetic variation (CADD*', DANN*?, FATHMM-MKL*, fitCons*, and LINSIGHT*) (Fig. 4E,
Supp. Fig. 13). Overall, we find that the two algorithms specifically designed for and trained on
splicing data perform the best, mostly due to their ability to distinguish exonic SDVs (HAL only
predicts exonic SNVs). Most of the models that use conservation and other functional attributes
perform equally well on intronic SNVs. In particular, SPANR works best overall largely due to its
increased ability to differentiate exonic SDVs (Fig. 4E, right; Supp. Fig. 13). At equivalent effect
size (>50%), SPANR achieves 44.5% precision, though only 11.8% of the SDVs are called.
However, SPANR is trained on bulk RNA-Seq data, and thus effect sizes can be skewed. As we
lower the threshold for calling an SDV (i.e., the predicted effect size of an SNV), SPANR can
achieve 14.9% precision at 50% recall level (of the SDVs called). For the other prediction

algorithms, precision is below 10% at most appreciable recall levels.

As with other functional approaches, our assay has several limitations which must be
considered*. First, we only perform this assay in a single cell type (HEK293T), and thus there
might be trans-factors that mitigate or exacerbate splicing*’. Using MFASS in other cell types
will be important to understand the scope of these effects. Second, the tested regions are
surrounded by non-native intron sequence that might affect the propensity of variants that affect
splicing®®. Third, because MFASS depends upon FACS, our limit of detection can only reliably

observe large effect sizes. For calling SDVs this is tolerable, and it seems likely that only
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large-effect changes will translate across cell types. However, small-effect changes might be
important both functionally and for constraining predictive models. Fourth, MFASS as designed
can only observe full exon skipping events. Even though these events dominate a majority of
splicing perturbations, other types of splicing disruptions, including alternative 3’ and 5’
splice-site usage, are likely to be false negatives from MFASS. Other multiplexed splicing
assays that use barcoded RNAs can alleviate such issues, but are currently limited to short
intronic regions®?'. Fifth, in this study we only examine exons starting and ending on frame 0.
Since skipping an exon that preserves frame might be less deleterious than for frame-shifting
exons, our library selected here may suffer from selection bias, even though we find no
appreciable differences in conservation profiles between the two (Supp. Fig. 14). We also found
during this study that several of the plasmids developed for MFASS can be directly used to
screen for frame-shifting exons. Finally, oligonucleotide libraries such as those used here are
limited to ~200nt in length. This limits the size of exons we can explore, which can also lead to
selection bias in that short exons of <100 bp may be more sequence constrained. This also
limits the length of the surrounding intronic sequences, which could serve to buffer or alter the
effects of sequence variation (Supp. Fig. 15). As oligonucleotide and gene library synthesis

improves, we expect to include additional genetic context in the assays*®°.

Despite the limitations, we see clear indications that many more rare variants than we expected
can lead to large-effect splicing disruptions. More than >1000 SDVs discovered in this study are
variants that directly eliminate exon recognition, and we reason that such large-effect SDVs
seem to be the most likely to translate to other cell types and/or play a role in human traits and
diseases. In addition, because almost all the candidate SDVs are extremely rare, genome-wide

splicing quantitative trait loci (sQTL) studies may be underestimating much of how mutations
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affect traits through splicing®®'. More broadly, using multiplexed empirical models of important
biological processes, such as ones derived from MFASS, can both help build and provide an
alternative to improved computational models. Finally, given the propensity of large-effect
regulatory variants that disrupt splicing discovered here, MFASS provides a scalable platform to
functionally screen and aid precise clinical interpretation and prioritization of rare genetic

variants®?.
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Figure 1. Multiplexed Functional Assay of Splicing by Sort-seq (MFASS). (A) We clone
synthetic exons (black) and surrounding intronic sequences (dark grey) into our reporter plasmid
containing a split-GFP reporter, followed by site-specific integration into HEK293T cells using
Bxb1 integrase. Cells are sorted into bins based on GFP:mCherry fluorescence, followed by
amplicon sequencing from cells in each sorted bin. The normalized, weighted average of
sequence counts across bins reflects splicing efficiencies. (B) We used FACS to sort the
genomically-integrated SRE library into three separate populations (left). After expansion, the
sorted populations remained stable (right). (C) The observed RNA splicing efficiencies of the
sorted bins as measured by RT-PCR correspond directly with observed fluorescence of the
bins. (D) We plotted the percentage of reads for each construct in the SRE library (n = 10,683)
and show that most fall predominantly into one bin, exhibiting either complete exon skipping or
inclusion. (E) Exon inclusion indices show strong correlation between two independent
biological replicates for C. griseus DHFR intron backbone (r= 0.94, p < 107'®) and human SMN1
intron backbone (r=0.89, p < 107°) (left and middle). (Points in blue indicate inclusion indices
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for sequences that do not agree within 0.30.) Results are robust across different intron
backbones (r = 0.85, p < 107°) (right). The data shown in B, C, and D are for the SMN1
backbone (for DHFR backbone see Supp. Fig. 7).
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Figure 2. Analysis of SRE mutations across a broad range of human exon backgrounds.
(A) We randomly chose 205 human exon backbones and used Splicemod to design variants
intended to alter SREs. Splicemod is a software tool we developed to iteratively design
mutations that are intended to alter SREs while accounting for other changes. We quantified
10,683 mutants (SMN1 intron backbone) and 8942 mutants (DHFR intron backbone) across
these exons. (B) We quantify Ainclusion index for a mutant sequence as difference relative to
wild-type (WT), and labeled the inclusion index of the corresponding WT sequence by color.
Points colored blue indicate skipped WT exons, therefore mutations can only increase the
inclusion index (+ Ainclusion index). Conversely, points colored red indicate fully included WT
exons, and mutations can only decrease the inclusion index (- Ainclusion index). Data shown
here is for the SMN1 dataset (see Supp. Fig. 8 for DHFR dataset; we only plot those points here
that agree across both datasets). Median Ainclusion index for each class is indicated by overlaid
boxplots. We find that weakening splice acceptor and donor sequences adversely affects exon
inclusion based on MaxEnt prediction. (C) We find a significant difference in Ainclusion index
between sequences that increase (up) or decrease (down) average exon hexamer score
(Mann-Whitney U test, p < 107'°). Decreasing hexamer strength leads to more exon skipping.
Scores are based on the HAL model?, and an alternative exon hexamer score metric is
evaluated in Supp. Fig. 9. (D) Quantitative measures of exon inclusion for mutations across
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multiple classes of splicing regulatory elements. Splice-disrupting variants (SDVs) defined as
Ainclusion index < -0.50, and percentage of SDVs indicated below each class (only those
natural exons that are >50% inclusion without mutation are used for this calculation). ESE,
exonic splicing enhancer. ESS, exonic splicing suppressor. RBP, RNA-binding protein. SA,
splice acceptor. SD, splice donor.
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Figure 3. Testing 29,531 SNVs in ExAC finds SDVs broadly spread across human exons
and surrounding intron regions. (A) We tested 4660 human exons for inclusion, and
generated all SNVs found in the Exome Aggregation Consortium? (ExAC) for the 2902 exons
with inclusion index = 0.8. (B) The number of SNVs per variant (top panel) and the Ainclusion
index (bottom panel) of the 29,531 EXAC SNVs plotted against wild-type exon ID (n = 2393).
Top and bottom plots are ordered in decreasing number of variants from 44 to 1 per exon
background, with an average of 13.9 human variants. Dashed line indicates threshold
(Ainclusion index = -0.50) below which we call splice-disrupting variants (SDVs). (C) We plot
Ainclusion index versus relative location of SNVs (top panel). The whiskers indicate 1.5-fold
interquartile ranges. Ainclusion index, phastCons scores and SNV density averaged per scaled
position for our SNV library (bottom panel). Each bin corresponds to 1-2 nucleotide per position.
(D) Proportion of SDVs by functional class (left) and overall contribution (%) to SDVs by
absolute number (middle), based on the Variant Effect Predictor*®°. Despite the higher sensitivity
at the splice site, the number of SNVs in other regions dominates such that SDVs at splice sites
only comprise 17% of total SDVs. Right panel shows contribution of functional classes to SDVs
(n =1050) segregated by exon and intron regions, which contribute roughly equally to SDVs.
Splice region variants in exons (4%) and introns (17%) are separated by a dashed line.
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Figure 4. Characteristics of SDVs. (A) The proportion of SDVs with low or high phastCons
conservation (<0.5 and =0.5). The overall percentage of SDVs is shown as a dashed line
(3.6%). Introns, but not exons, are enriched for highly conserved SDVs (two-sided Fisher’s
exact test, p < 107°). (B) We plot the number of SDVs with low or high phastCons conservation,
as opposed to percentage. (C) We observe significantly fewer SDVs for exons within those
genes that are predicted to be intolerant to loss-of-function (pLI = 0.9) (two-sided Fisher’s exact
test, p = 2.67 x 10™"%). The overall percentage of SDVs is 3.6% (dashed line). (D) The change in
exon inclusion index (Ainclusion index) plotted against the allele frequency spectrum. For each
allele frequency bin, number of tested variants and % SDV in that bin is indicated at the bottom,
and violin plot shows distribution of variants across Ainclusion index with median Ainclusion
index (dot) indicated for each bin. The percentage of SDVs as a function of observed allele
frequency shows a negative trend and is significantly different across allele frequencies
(chi-squared test, p = 1.12 x 10°). (E) Precision-recall curves (left) and receiver operating
characteristic (ROC) curves (right) for algorithms that can predict splicing or non-coding genetic
variants. For ROC curves (right), colors for each algorithm match those in the left panel, with the
addition of the HAL predictor that evaluates exonic changes only. Dashed line (left) indicates
overall percentage of SDVs determined by MFASS.
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