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Abstract: 

Pre-mRNA splicing is an important mechanism by which genetic variation influences complex            

traits. We developed a Multiplexed Functional Assay of Splicing using Sort-seq (MFASS) that             

allows us to quantify exon inclusion in large libraries of human exons and surrounding intronic               

contexts. We used MFASS to explore >10,000 designed mutations intended to alter regulatory             

elements that govern splicing. Many classes of mutations led to large-effect splicing disruptions             

including mutations far from canonical splice sites, and these effects were not easily predicted.              

We assayed 29,531 extant variants in the Exome Aggregation Consortium, and found that             

>1000 variants (3.6%) within or adjacent to 2393 assayed human exons led to almost complete               

loss of exon recognition. While most variants at the canonical splice site disrupt splicing, they               

represent <20% of splice-disrupting variants overall because genetic variation elsewhere          

dominates. Our results indicate that loss of exon recognition caused by rare genetic variation              

may play a larger role in trait diversity than previously appreciated, and that MFASS may               

provide ​ ​a ​ ​scalable ​ ​way​ ​to ​ ​functionally​ ​test​ ​such ​ ​variants. 
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Main​ ​Text: 

Any individual’s genome contains ~4-5 million deviations from the reference human genome,            

almost all of which are very rare ​1​. How this collection of differences give rise to trait diversity and                  

disease susceptibility is a central question in human genetics. Recent genetic studies implicate             

pre-mRNA splicing as a major and underappreciated means through which variation imparts            

functional consequences​2–5​. However, genetic variation is depleted at the major splicing           

recognition sites​2​,​6​. If genetic variation is having major impacts on splicing, how does it impart its                

effects​ ​if​ ​not​ ​through ​ ​the ​ ​major​ ​sites​ ​known ​ ​to ​ ​affect​ ​splicing?  

 

In humans, genetic and biochemical studies show that exons are first recognized in a process               

called exon definition, and then introns between them are removed ​7–11​. The major exon             

recognition elements, including the splice donor, acceptor, branchpoint and polypyrimidine tract,           

taken together are too degenerate alone to discriminate true exons from those not utilized ​in               

vivo​12–14​. Numerous computational, ​in vitro​, and genetic studies have shown that other            

cis​-regulatory elements are required to distinguish false exons from included ones​12,13,15​. These            

sequences are short motifs that are broadly classified as exonic splicing enhancers (ESEs) and              

suppressors (ESSs) as well as their intronic counterparts​16​,​17 (ISEs & ISSs). Machine learning             

methods use these and other genomic features trained against genome-wide RNA sequencing            

datasets to build predictive models of splicing regulation ​7–9​. However, the predictive power of             

these models may come almost entirely from sequence conservation rather than the            

mechanistic understanding of splicing ​18,19​. These models predict that human genetic variation,           

and especially rare variation, often disrupt sequence features required for proper exon            

recognition,​ ​but​ ​it​ ​is​ ​difficult​ ​to ​ ​verify​ ​the ​ ​accuracy​ ​of​ ​these ​ ​predictions​ ​at​ ​large ​ ​scales​7​.  
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Several groups have developed massively parallel reporter assays of splicing ​8,14,20,21​. Most of            

these assays look at a small set of exons and mutate them to understand which elements are                 

important for splicing. Importantly, these methods have allowed us to better quantify how             

individual ESEs and ESSs combine to contribute to exon recognition in a small number of exon                

contexts, and can be used to build more general predictive models for exon splicing. ​Recently, a                

survey of disease variants within a much broader set of human exons found that ~10% of these                 

variants had exon recognition defects​20​. Despite the recent progress, there are still several             

limitations inherent to these large-scale approaches. First, these reporters often assay exons in             

the contexts of short background intronic sequences, which have been shown to impact exon              

skipping and intron retention ​22​. Second, most previous studies use transient transfections that            

do not reflect physiological chromatin contexts​23 and are usually highly overexpressed, which            

can lead to saturation of the splicing machinery​24,25​. Finally, most of these assays cannot screen               

both ​ ​intronic​ ​and ​ ​exonic​ ​changes​ ​simultaneously.  

 

Here we develop a novel multiplexed assay that overcomes many of these shortcomings called              

MFASS (Multiplexed Functional Assay of Splicing by Sort-seq) that builds upon several previous             

approaches (Fig. 1A). MFASS allows testing of tens of thousands of chemically-synthesized            

exons and surrounding introns in the context of a reporter with long constant introns, stably               

integrated at single copy at a precise genomic locus with high efficiency (Supp. Fig. 1). Briefly,                

we split a GFP coding sequence with a constant intron backbone, with a downstream mCherry               

fluorescent marker to act as a control. Thus, the ratio of green to red fluorescence is a direct                  

measure of exon inclusion. This is reminiscent of past approaches​13,14 but optimized for large              

libraries​26​, readout by next-generation sequencing, and optimized to study exon definition ​13           

(Supp. Fig. 2). The library of exons and surrounding native intronic sequences is cloned into this                
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constant intron backbone. We then integrated the plasmid library into an engineered serine             

integrase-based landing pad at the AAVS1 locus in HEK293T cells, ensuring only one integrant              

per cell, similar to recently published high-efficiency integration methods​26,27 (Supp. Fig. 1, 3).             

We sorted the integrated cell library into bins based on the GFP:mCherry ratio, followed by               

DNA-Seq of the integrated library (similar to past Sort-seq approaches​28–31​) to build a             

quantitative ​ ​measure ​ ​of​ ​exon ​ ​inclusion ​ ​level ​ ​of​ ​any​ ​designed ​ ​sequence. 

 

We first designed, built and assayed a library to explore how Splicing Regulatory Elements              

(SRE) individually govern exon recognition across a randomly-chosen library of 205 natural            

human exons and surrounding intronic sequences (Figure 2A). We used fluorescence-activated           

cell sorting (FACS) to sort our pooled sequence library of splicing reporters into three bins               

(GFP​neg​, GFP​int and GFP​+​). We expanded these sorted bins over several passages and             

observed that the sorted populations remained stable (Fig. 1B). We also performed bulk             

RT-PCR for each bin and found that the observed RNA splicing efficiencies corresponded             

almost directly with observed fluorescence of the bins (Fig. 1C, Supp. Fig. 4). In addition, we                

constructed individual reporters corresponding to individual library sequences, and evaluated          

both fluorescence and RNA splicing under transient expression and site-specific genome           

integration (Supp. Fig. 5). While level of exon inclusion as measured by RT-PCR is consistent               

between transient and stable expression, reporter fluorescence in stably integrated constructs is            

more consistent with RT-PCR results because the transient transfections included signals at            

very​ ​high ​ ​gene ​ ​dosage ​ ​(Supp.​ ​Fig.​ ​4,​ ​5).  

 

For our SRE library studies, we first tested a variety of short constant intron contexts, but found                 

that these resulted ~10-fold lower expression indicative of intron retention (Supp. Fig. 6), which              
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is usually a rarer event in higher eukaryotes that contain longer introns​32​. We chose two longer                

intronic backbones (~300-600 bp) shown previously to not suffer from such intronic retention (​C.              

griseus ​DHFR and human SMN1 intron backbones), and found that the longer intron lengths              

improved both expression and assay reproducibility​33,34​. Exon inclusion metrics obtained from           

both of these intron contexts were highly reproducible between biological replicates (Fig. 1E) (​r              

= 0.94, ​p < 10 ​-16​, DHFR intron backbone, and ​r = 0.89, ​p < 10 ​-16​, SMN1 intron backbone). Exon                   

inclusion level for the entire library also correlates highly across DHFR and SMN1 constant              

intron contexts (Fig. 1E) (​r = 0.85, ​p < 10 ​-16​), indicating our reporter assay is robust across                 

broader intron contexts. Notably, most library sequences are represented predominantly in one            

exclusive bin showing either complete exon inclusion or skipping (Fig. 1D), consistent with             

bimodality in splicing behavior in our flow cytometry readout (Fig. 1B) and in single cells​35–37​. For                

all subsequent analyses, we only include constructs with ​Δ​inclusion index that agree within 0.30              

for​ ​both ​ ​biological ​ ​replicates​ ​and ​ ​across​ ​intron ​ ​backbones. 

 

We designed the SRE library using a software tool that we developed, Splicemod, that can               

iteratively mutate specific classes of regulatory elements that govern splicing without           

unintentionally creating new ones (Fig. 2A; Supp. Table 2). As expected, reducing the strength              

of the splice acceptor (SA) and splice donor (SD) adversely affects exon inclusion (Fig. 2B). We                

observe a significant correlation between decreased MaxEnt​38 score (relative to wild-type) and            

Δ​inclusion index for both SA (​r = ​0.33, ​p < 10 ​-16​) and SD (​r = 0.36, ​p < 10 ​-16​) (Fig. 2B). The                      

change in score for both SA and SD combined explains 14% of the variation in ​Δ​inclusion index                 

(multiple linear regression, ​p < 10 ​-16​). Variants designed to mutate SA and/or SD but retain               

comparable strength (i.e. same MaxEnt score) show that while the majority (79.2%, 236/298)             

shows little change relative to wild-type (-0.20 ​≤ ​Δ​inclusion index ​≤ 0.20), 16% (48/298) of               
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variants exhibit large effects with ​Δ​inclusion index ​≤ -0.50 (Splice-Disrupting Variants, SDVs).            

Taken together, while MaxEnt scores do correlate with function, there seems to be a context               

dependence ​ ​that​ ​is​ ​not​ ​accounted ​ ​for​ ​in ​ ​the ​ ​score ​ ​alone. 

 

Perturbations to ESEs result in a significant decrease in exon inclusion compared to random              

exonic changes (Mann-Whitney ​U ​test, ​p ​< 10 ​-16​), while weakening or destroying ESSs results in               

a small but significant increase in exon inclusion (Mann-Whitney ​U ​test, ​p ​= 1.33 x 10 ​-4​).                

Interestingly, disrupting only the strongest ESE results in a significant decrease in ​Δ​inclusion             

index (Mann-Whitney ​U ​test, ​p = 2.42 x 10 ​-7​). We calculated an average exon hexamer score for                 

each sequence using the HAL model, which is learned from synthetic mini-genes focused on              

alternative 5’ and 3’ splicing ​8 (Fig. 2C). We quantified the change in average exon hexamer               

score as the difference relative to the wild-type (​Δ​average exon hexamer score) and found a               

correlation with ​Δ​inclusion index (​r ​= 0.26, ​p < 10 ​-16​) and a significant difference between               

mutants that increase or decrease the average score (two-tailed Student’s ​t test, ​p ​< 10 ​-16​).               

Compared to random intronic changes, we found that weakening or destroying intronic motifs             

does not have an overall significant effect on exon inclusion (Mann-Whitney ​U ​test), although              

9.4% (63/672) of these mutants are SDVs. Additionally, we designed mutations that disrupt 53              

RNA-binding protein (RBP) motifs and found small changes in ​Δ​inclusion index relative to             

random mutations (Mann-Whitney ​U ​test, ​p ​= 2.08 x 10 ​-4 (intronic), ​p ​= 3.80 x 10 ​-2 (exonic)), with                  

14.1% (48/341) being SDVs. We synthesized 109 dbSNP mutations but do not observe             

significant changes in ​Δ​inclusion index (as compared to random changes) for either exonic or              

intronic​ ​single ​ ​nucleotide ​ ​polymorphisms​ ​(SNPs)​39​​ ​(Mann-Whitney​ ​​U​ ​​test).  
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Given the appreciable proportions of SDVs across many classes of elements, we sought to              

examine the extent to which rare human variants act as SDVs. We first examined a larger library                 

of 4660 natural human exons and found that 2902 exons (62.2%) have an inclusion index of ≥                 

0.80 in our assay (Fig. 3A). Based on these human sequences, we designed and synthesized               

all possible exonic and intronic single nucleotide variants (SNVs) from the Exome Aggregation             

Consortium​2 (ExAC, v0.3.1) (Fig. 3B), which represents a rich resource of genetic diversity from              

60,706 individuals. We were able to quantify the effects of 29,531 SNVs across 2393 reference               

sequences, which is more than half (54.7%, 29,531/54,021) of those found in the ExAC for               

these exons (Fig. 3B). We evaluated all SNVs in the DHFR intron backbone, because the               

backbone provided more replicable data in the SRE datasets. We also only report data for               

variants with calculated ​Δ​inclusion index within 0.20 between biological replicates to be more             

conservative with potential SDVs (​r ​= 0.80, ​p ​< 10 ​-16​) (Fig. 1E; Supp. Fig. 11). We also included                  

four control sets: (1) random nucleotides, (2) a previously tested set of skipped exons in the                

SRE library, (3) systematic mutations of both the splice donor and acceptor of wild-type              

sequences, (4) and two reporter constructs that split at distinct positions of GFP to assess how                

reading frame affects exon inclusion. 100% of random sequences (​n = 27), 98.6% of skipped               

exons (​n ​= 95), and 97.3% of broken SD/SA sequences (​n ​= 1391) demonstrate exon skipping                

(inclusion index ​< 0.50) (Supp. Fig. 10). Moreover, ​Δ​inclusion indices across two separate             

reporter constructs located in different parts of GFP and in different frames demonstrate robust              

correlation ​ ​(​r​ ​​=​ ​0.95,​ ​​p ​ ​​<​ ​10 ​-16​,​ ​Supp.​ ​Fig.​ ​11).  

 

Overall, we found that 3.6% (1050/29,531) of ExAC SNVs leads to large-effect splicing             

disruptions in exon recognition, and are spread broadly across human exon backgrounds (Fig.             

3B). The annotations in ExAC use the Variant Effect Predictor classification ​40​, and we find that               
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67.8% of splice site SNVs (2 bp of intron adjacent to exon) are SDVs (Fig. 3D). Note that in our                    

assays, alternative 5’ and 3’ splice site usage will be called as false negatives and thus we may                  

be missing other potential SDVs. Variants in the broader splice region category, which includes              

variants located 2 bp into the exon and 8 bp into the intron (excluding splice sites), only disrupt                  

splicing 8.5% of the time. Synonymous, non-synonymous, and further intronic SNVs disrupt            

splicing more rarely at 3.0%, 3.1%, and 1.5% respectively. The increased sensitivity at splice              

site locations mirror added evolutionary constraints at these sites (Fig. 3C). However, SNVs at              

splice sites are rare in our library and also for all ExAC variants as a whole (Fig. 3C, Supp. Fig.                    

12), and the larger number of SNVs in other regions makes up for their reduced sensitivity (Fig.                 

3D). Notably, SNVs at splice sites only constitute 17% of the SDVs revealed by our assay,                

whereas intron variants, which are the least sensitive to genetic variation, contribute 19% of the               

SDVs (Fig. 3D). Overall, we observe almost equal contributions from intronic (53%) and exonic              

(47%)​ ​SDVs. 

 

Evolutionary conservation does correlate with whether an SNV will be an SDV, and this is most                

clearly seen within introns, which are enriched for highly conserved SDVs (Fig. 4A) (two-sided              

Fisher’s exact test, ​p ​< 10 ​-16​). However, this conservation has limited predictive power, as there               

are more lowly conserved intronic SDVs than highly conserved ones especially for upstream             

intronic regions, while there are few poorly conserved exonic sites (Fig. 4B). Looking at gene               

level population genetic constraints, for exons within those genes that are predicted to be              

intolerant to loss-of-function (pLI ≥ 0.9), we observe significantly fewer SDVs (Fig. 4C)             

(two-sided Fisher’s exact test, ​p = 2.67 x 10 ​-12​). Finally, while a vast majority of SDVs are rare,                  

the proportion of SNVs that are SDVs is significantly different across ExAC allele frequency bins               
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(​p = 1.12 x 10 ​-3​, chi-squared test) ranging from extremely rare variants (singletons) to more               

common ​ ​variants​ ​with ​ ​allele ​ ​frequency​ ​of​ ​​≥​ ​​0.1%​ ​(Fig.​ ​4D).  

 
We ​ ​compared ​ ​multiple ​ ​prediction ​ ​algorithms​ ​to ​ ​our​ ​human ​ ​variant​ ​dataset,​ ​some ​ ​designed 

specifically​ ​for​ ​splicing ​ ​(SPANR​7​​ ​and ​ ​HAL ​8​)​ ​and ​ ​others​ ​to ​ ​predict​ ​the ​ ​impact​ ​of​ ​non-coding 

genetic​ ​variation ​ ​(CADD​41​,​ ​DANN​42​,​ ​FATHMM-MKL ​43​,​ ​fitCons​44​,​ ​and ​ ​LINSIGHT​45​)​ ​(Fig.​ ​4E, 

Supp.​ ​Fig.​ ​13).​ ​Overall,​ ​we ​ ​find ​ ​that​ ​the ​ ​two ​ ​algorithms​ ​specifically​ ​designed ​ ​for​ ​and ​ ​trained ​ ​on 

splicing ​ ​data ​ ​perform​ ​the ​ ​best,​ ​mostly​ ​due ​ ​to ​ ​their​ ​ability​ ​to ​ ​distinguish ​ ​exonic​ ​SDVs​ ​(HAL ​ ​only 

predicts​ ​exonic​ ​SNVs).​ ​Most​ ​of​ ​the ​ ​models​ ​that​ ​use ​ ​conservation ​ ​and ​ ​other​ ​functional ​ ​attributes 

perform​ ​equally​ ​well ​ ​on ​ ​intronic​ ​SNVs.​ ​In ​ ​particular,​ ​SPANR​ ​works​ ​best​ ​overall ​ ​largely​ ​due ​ ​to ​ ​its 

increased ​ ​ability​ ​to ​ ​differentiate ​ ​exonic​ ​SDVs​ ​(Fig.​ ​4E,​ ​right;​ ​Supp.​ ​Fig.​ ​13).​ ​At​ ​equivalent​ ​effect 

size ​ ​(>50%),​ ​SPANR​ ​achieves​ ​44.5%​ ​precision,​ ​though ​ ​only​ ​11.8%​ ​of​ ​the ​ ​SDVs​ ​are ​ ​called. 

However,​ ​SPANR​ ​is​ ​trained ​ ​on ​ ​bulk​ ​RNA-Seq ​ ​data,​ ​and ​ ​thus​ ​effect​ ​sizes​ ​can ​ ​be ​ ​skewed.​ ​As​ ​we 

lower​ ​the ​ ​threshold ​ ​for​ ​calling ​ ​an ​ ​SDV​ ​(i.e.,​ ​the ​ ​predicted ​ ​effect​ ​size ​ ​of​ ​an ​ ​SNV),​ ​SPANR​ ​can 

achieve ​ ​14.9%​ ​precision ​ ​at​ ​50%​ ​recall ​ ​level ​ ​(of​ ​the ​ ​SDVs​ ​called).​ ​For​ ​the ​ ​other​ ​prediction 

algorithms,​ ​precision ​ ​is​ ​below​ ​10%​ ​at​ ​most​ ​appreciable ​ ​recall ​ ​levels. 

 
 
As​ ​with ​ ​other​ ​functional ​ ​approaches,​ ​our​ ​assay​ ​has​ ​several ​ ​limitations​ ​which ​ ​must​ ​be 

considered ​46​.​ ​​First ​,​ ​we ​ ​only​ ​perform​ ​this​ ​assay​ ​in ​ ​a ​ ​single ​ ​cell ​ ​type ​ ​(HEK293T),​ ​and ​ ​thus​ ​there 

might​ ​be ​ ​trans-factors​ ​that​ ​mitigate ​ ​or​ ​exacerbate ​ ​splicing ​47​.​ ​Using ​ ​MFASS​ ​in ​ ​other​ ​cell ​ ​types 

will ​ ​be ​ ​important​ ​to ​ ​understand ​ ​the ​ ​scope ​ ​of​ ​these ​ ​effects.​ ​​Second​,​ ​the ​ ​tested ​ ​regions​ ​are 

surrounded ​ ​by​ ​non-native ​ ​intron ​ ​sequence ​ ​that​ ​might​ ​affect​ ​the ​ ​propensity​ ​of​ ​variants​ ​that​ ​affect 

splicing ​48​.​ ​​Third ​,​ ​because ​ ​MFASS​ ​depends​ ​upon ​ ​FACS,​ ​our​ ​limit​ ​of​ ​detection ​ ​can ​ ​only​ ​reliably 

observe ​ ​large ​ ​effect​ ​sizes.​ ​For​ ​calling ​ ​SDVs​ ​this​ ​is​ ​tolerable,​ ​and ​ ​it​ ​seems​ ​likely​ ​that​ ​only 
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large-effect​ ​changes​ ​will ​ ​translate ​ ​across​ ​cell ​ ​types.​ ​However,​ ​small-effect​ ​changes​ ​might​ ​be 

important​ ​both ​ ​functionally​ ​and ​ ​for​ ​constraining ​ ​predictive ​ ​models.​ ​​Fourth​,​ ​MFASS​ ​as​ ​designed 

can ​ ​only​ ​observe ​ ​full ​ ​exon ​ ​skipping ​ ​events.​ ​Even ​ ​though ​ ​these ​ ​events​ ​dominate ​ ​a ​ ​majority​ ​of 

splicing ​ ​perturbations,​ ​other​ ​types​ ​of​ ​splicing ​ ​disruptions,​ ​including ​ ​alternative ​ ​3’ ​ ​and ​ ​5’ 

splice-site ​ ​usage,​ ​are ​ ​likely​ ​to ​ ​be ​ ​false ​ ​negatives​ ​from​ ​MFASS.​ ​Other​ ​multiplexed ​ ​splicing 

assays​ ​that​ ​use ​ ​barcoded ​ ​RNAs​ ​can ​ ​alleviate ​ ​such ​ ​issues,​ ​but​ ​are ​ ​currently​ ​limited ​ ​to ​ ​short 

intronic​ ​regions​8,21​.​ ​​Fifth ​,​ ​in ​ ​this​ ​study​ ​we ​ ​only​ ​examine ​ ​exons​ ​starting ​ ​and ​ ​ending ​ ​on ​ ​frame ​ ​0. 

Since ​ ​skipping ​ ​an ​ ​exon ​ ​that​ ​preserves​ ​frame ​ ​might​ ​be ​ ​less​ ​deleterious​ ​than ​ ​for​ ​frame-shifting 

exons,​ ​our​ ​library​ ​selected ​ ​here ​ ​may​ ​suffer​ ​from​ ​selection ​ ​bias,​ ​even ​ ​though ​ ​we ​ ​find ​ ​no 

appreciable ​ ​differences​ ​in ​ ​conservation ​ ​profiles​ ​between ​ ​the ​ ​two ​ ​(Supp.​ ​Fig.​ ​14).​ ​We ​ ​also ​ ​found 

during ​ ​this​ ​study​ ​that​ ​several ​ ​of​ ​the ​ ​plasmids​ ​developed ​ ​for​ ​MFASS​ ​can ​ ​be ​ ​directly​ ​used ​ ​to 

screen ​ ​for​ ​frame-shifting ​ ​exons.​ ​Finally,​ ​oligonucleotide ​ ​libraries​ ​such ​ ​as​ ​those ​ ​used ​ ​here ​ ​are 

limited ​ ​to ​ ​~200nt​ ​in ​ ​length.​ ​This​ ​limits​ ​the ​ ​size ​ ​of​ ​exons​ ​we ​ ​can ​ ​explore,​ ​which ​ ​can ​ ​also ​ ​lead ​ ​to 

selection ​ ​bias​ ​in ​ ​that​ ​short​ ​exons​ ​of​ ​<100 ​ ​bp ​ ​may​ ​be ​ ​more ​ ​sequence ​ ​constrained.​ ​This​ ​also 

limits​ ​the ​ ​length ​ ​of​ ​the ​ ​surrounding ​ ​intronic​ ​sequences,​ ​which ​ ​could ​ ​serve ​ ​to ​ ​buffer​ ​or​ ​alter​ ​the 

effects​ ​of​ ​sequence ​ ​variation ​ ​(Supp.​ ​Fig.​ ​15).​ ​As​ ​oligonucleotide ​ ​and ​ ​gene ​ ​library​ ​synthesis 

improves,​ ​we ​ ​expect​ ​to ​ ​include ​ ​additional ​ ​genetic​ ​context​ ​in ​ ​the ​ ​assays​49,50​.  

 

Despite ​ ​the ​ ​limitations,​ ​we ​ ​see ​ ​clear​ ​indications​ ​that​ ​many​ ​more ​ ​rare ​ ​variants​ ​than ​ ​we ​ ​expected 

can ​ ​lead ​ ​to ​ ​large-effect​ ​splicing ​ ​disruptions.​ ​More ​ ​than ​ ​>1000 ​ ​SDVs​ ​discovered ​ ​in ​ ​this​ ​study​ ​are 

variants​ ​that​ ​directly​ ​eliminate ​ ​exon ​ ​recognition,​ ​and ​ ​we ​ ​reason ​ ​that​ ​such ​ ​large-effect​ ​SDVs 

seem​ ​to ​ ​be ​ ​the ​ ​most​ ​likely​ ​to ​ ​translate ​ ​to ​ ​other​ ​cell ​ ​types​ ​and/or​ ​play​ ​a ​ ​role ​ ​in ​ ​human ​ ​traits​ ​and 

diseases.​ ​In ​ ​addition,​ ​because ​ ​almost​ ​all ​ ​the ​ ​candidate ​ ​SDVs​ ​are ​ ​extremely​ ​rare,​ ​genome-wide 

splicing ​ ​quantitative ​ ​trait​ ​loci ​ ​(sQTL)​ ​studies​ ​may​ ​be ​ ​underestimating ​ ​much ​ ​of​ ​how​ ​mutations 
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affect​ ​traits​ ​through ​ ​splicing ​3,51​.​ ​More ​ ​broadly,​ ​using ​ ​multiplexed ​ ​empirical ​ ​models​ ​of​ ​important 

biological ​ ​processes,​ ​such ​ ​as​ ​ones​ ​derived ​ ​from​ ​MFASS,​ ​can ​ ​both ​ ​help ​ ​build ​ ​and ​ ​provide ​ ​an 

alternative ​ ​to ​ ​improved ​ ​computational ​ ​models.​ ​Finally,​ ​given ​ ​the ​ ​propensity​ ​of​ ​large-effect 

regulatory​ ​variants​ ​that​ ​disrupt​ ​splicing ​ ​discovered ​ ​here,​ ​MFASS​ ​provides​ ​a ​ ​scalable ​ ​platform​ ​to 

functionally​ ​screen ​ ​and ​ ​aid ​ ​precise ​ ​clinical ​ ​interpretation ​ ​and ​ ​prioritization ​ ​of​ ​rare ​ ​genetic 

variants​52​. 
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Figure ​ ​1.​ ​Multiplexed​ ​Functional​ ​Assay ​ ​of​ ​Splicing​ ​by ​ ​Sort-seq​ ​(MFASS).​ ​(A)​​ ​We ​ ​clone 
synthetic​ ​exons​ ​(black)​ ​and ​ ​surrounding ​ ​intronic​ ​sequences​ ​(dark​ ​grey)​ ​into ​ ​our​ ​reporter​ ​plasmid 
containing ​ ​a ​ ​split-GFP​ ​reporter,​ ​followed ​ ​by​ ​site-specific​ ​integration ​ ​into ​ ​HEK293T​ ​cells​ ​using 
Bxb1 ​ ​integrase.​ ​Cells​ ​are ​ ​sorted ​ ​into ​ ​bins​ ​based ​ ​on ​ ​GFP:mCherry​ ​fluorescence,​ ​followed ​ ​by 
amplicon ​ ​sequencing ​ ​from​ ​cells​ ​in ​ ​each ​ ​sorted ​ ​bin.​ ​The ​ ​normalized,​ ​weighted ​ ​average ​ ​of 
sequence ​ ​counts​ ​across​ ​bins​ ​reflects​ ​splicing ​ ​efficiencies.​ ​​(B)​​ ​We ​ ​used ​ ​FACS​ ​to ​ ​sort​ ​the 
genomically-integrated ​ ​SRE​ ​library​ ​into ​ ​three ​ ​separate ​ ​populations​ ​(left).​ ​After​ ​expansion,​ ​the 
sorted ​ ​populations​ ​remained ​ ​stable ​ ​(right).​ ​​(C)​ ​​The ​ ​observed ​ ​RNA​ ​splicing ​ ​efficiencies​ ​of​ ​the 
sorted ​ ​bins​ ​as​ ​measured ​ ​by​ ​RT-PCR​ ​correspond ​ ​directly​ ​with ​ ​observed ​ ​fluorescence ​ ​of​ ​the 
bins.​ ​​(D)​ ​​We ​ ​plotted ​ ​the ​ ​percentage ​ ​of​ ​reads​ ​for​ ​each ​ ​construct​ ​in ​ ​the ​ ​SRE​ ​library​ ​(​n​ ​​=​ ​10,683) 
and ​ ​show​ ​that​ ​most​ ​fall ​ ​predominantly​ ​into ​ ​one ​ ​bin,​ ​exhibiting ​ ​either​ ​complete ​ ​exon ​ ​skipping ​ ​or 
inclusion.​ ​​(E)​​ ​Exon ​ ​inclusion ​ ​indices​ ​show​ ​strong ​ ​correlation ​ ​between ​ ​two ​ ​independent 
biological ​ ​replicates​ ​for​ ​​C.​ ​griseus​​ ​DHFR​ ​intron ​ ​backbone ​ ​(​r​ ​​=​ ​0.94,​ ​​p ​ ​​<​ ​10 ​-16​)​ ​and ​ ​human ​ ​SMN1 
intron ​ ​backbone ​ ​(​r​​ ​=​ ​0.89,​ ​​p ​ ​​<​ ​10 ​-16​)​ ​(left​ ​and ​ ​middle).​ ​(Points​ ​in ​ ​blue ​ ​indicate ​ ​inclusion ​ ​indices 
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for​ ​sequences​ ​that​ ​do ​ ​not​ ​agree ​ ​within ​ ​0.30.)​ ​Results​ ​are ​ ​robust​ ​across​ ​different​ ​intron 
backbones​ ​(​r​​ ​=​ ​0.85,​ ​​p ​​ ​<​ ​10 ​-16​)​ ​(right).​ ​The ​ ​data ​ ​shown ​ ​in ​ ​B,​ ​C,​ ​and ​ ​D​ ​are ​ ​for​ ​the ​ ​SMN1 
backbone ​ ​(for​ ​DHFR​ ​backbone ​ ​see ​ ​Supp.​ ​Fig.​ ​7). 
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Figure ​ ​2.​ ​Analysis ​ ​of​ ​SRE​ ​mutations ​ ​across ​ ​a ​ ​broad​ ​range ​ ​of​ ​human​ ​exon​ ​backgrounds. 
(A)​​ ​We ​ ​randomly​ ​chose ​ ​205 ​ ​human ​ ​exon ​ ​backbones​ ​and ​ ​used ​ ​Splicemod ​ ​to ​ ​design ​ ​variants 
intended ​ ​to ​ ​alter​ ​SREs.​ ​Splicemod ​ ​is​ ​a ​ ​software ​ ​tool ​ ​we ​ ​developed ​ ​to ​ ​iteratively​ ​design 
mutations​ ​that​ ​are ​ ​intended ​ ​to ​ ​alter​ ​SREs​ ​while ​ ​accounting ​ ​for​ ​other​ ​changes.​ ​We ​ ​quantified 
10,683 ​ ​mutants​ ​(SMN1 ​ ​intron ​ ​backbone)​ ​and ​ ​8942 ​ ​mutants​ ​(DHFR​ ​intron ​ ​backbone)​ ​across 
these ​ ​exons.​ ​​(B)​​ ​We ​ ​quantify​ ​​Δ​inclusion ​ ​index​ ​for​ ​a ​ ​mutant​ ​sequence ​ ​as​ ​difference ​ ​relative ​ ​to 
wild-type ​ ​(WT),​ ​and ​ ​labeled ​ ​the ​ ​inclusion ​ ​index​ ​of​ ​the ​ ​corresponding ​ ​WT​ ​sequence ​ ​by​ ​color. 
Points​ ​colored ​ ​blue ​ ​indicate ​ ​skipped ​ ​WT​ ​exons,​ ​therefore ​ ​mutations​ ​can ​ ​only​ ​increase ​ ​the 
inclusion ​ ​index​ ​(+​ ​​Δ​inclusion ​ ​index).​ ​Conversely,​ ​points​ ​colored ​ ​red ​ ​indicate ​ ​fully​ ​included ​ ​WT 
exons,​ ​and ​ ​mutations​ ​can ​ ​only​ ​decrease ​ ​the ​ ​inclusion ​ ​index​ ​(-​ ​​Δ​inclusion ​ ​index).​ ​Data ​ ​shown 
here ​ ​is​ ​for​ ​the ​ ​SMN1 ​ ​dataset​ ​(see ​ ​Supp.​ ​Fig.​ ​8 ​ ​for​ ​DHFR​ ​dataset;​ ​we ​ ​only​ ​plot​ ​those ​ ​points​ ​here 
that​ ​agree ​ ​across​ ​both ​ ​datasets).​ ​Median ​ ​​Δ​inclusion ​ ​index​ ​for​ ​each ​ ​class​ ​is​ ​indicated ​ ​by​ ​overlaid 
boxplots.​ ​We ​ ​find ​ ​that​ ​weakening ​ ​splice ​ ​acceptor​ ​and ​ ​donor​ ​sequences​ ​adversely​ ​affects​ ​exon 
inclusion ​ ​based ​ ​on ​ ​MaxEnt​ ​prediction.​ ​​(C)​ ​​We ​ ​find ​ ​a ​ ​significant​ ​difference ​ ​in ​ ​​Δ​inclusion ​ ​index 
between ​ ​sequences​ ​that​ ​increase ​ ​(up)​ ​or​ ​decrease ​ ​(down)​ ​average ​ ​exon ​ ​hexamer​ ​score 
(Mann-Whitney​ ​​U​ ​​test,​ ​​p ​ ​​<​ ​10 ​-16​).​ ​Decreasing ​ ​hexamer​ ​strength ​ ​leads​ ​to ​ ​more ​ ​exon ​ ​skipping. 
Scores​ ​are ​ ​based ​ ​on ​ ​the ​ ​HAL ​ ​model ​8​,​ ​and ​ ​an ​ ​alternative ​ ​exon ​ ​hexamer​ ​score ​ ​metric​ ​is 
evaluated ​ ​in ​ ​Supp.​ ​Fig.​ ​9 ​14​.​ ​​(D)​​ ​Quantitative ​ ​measures​ ​of​ ​exon ​ ​inclusion ​ ​for​ ​mutations​ ​across 
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multiple ​ ​classes​ ​of​ ​splicing ​ ​regulatory​ ​elements.​ ​Splice-disrupting ​ ​variants​ ​(SDVs)​ ​defined ​ ​as 
Δ​inclusion ​ ​index​ ​​≤​​ ​-0.50,​ ​and ​ ​percentage ​ ​of​ ​SDVs​ ​indicated ​ ​below​ ​each ​ ​class​ ​(only​ ​those 
natural ​ ​exons​ ​that​ ​are ​ ​>50%​ ​inclusion ​ ​without​ ​mutation ​ ​are ​ ​used ​ ​for​ ​this​ ​calculation).​ ​ESE, 
exonic​ ​splicing ​ ​enhancer.​ ​ESS,​ ​exonic​ ​splicing ​ ​suppressor.​ ​RBP,​ ​RNA-binding ​ ​protein.​ ​SA, 
splice ​ ​acceptor.​ ​SD,​ ​splice ​ ​donor.  
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Figure ​ ​3.​ ​Testing​ ​29,531 ​ ​SNVs ​ ​in​ ​ExAC​ ​finds ​ ​SDVs ​ ​broadly ​ ​spread​ ​across ​ ​human​ ​exons 
and​ ​surrounding​ ​intron​ ​regions.​​ ​​(A)​​ ​We ​ ​tested ​ ​4660 ​ ​human ​ ​exons​ ​for​ ​inclusion,​ ​and 
generated ​ ​all ​ ​SNVs​ ​found ​ ​in ​ ​the ​ ​Exome ​ ​Aggregation ​ ​Consortium​2​​ ​(ExAC)​ ​for​ ​the ​ ​2902 ​ ​exons 
with ​ ​inclusion ​ ​index​ ​≥​ ​0.8.​ ​​(B)​​ ​The ​ ​number​ ​of​ ​SNVs​ ​per​ ​variant​ ​(top ​ ​panel)​ ​and ​ ​the ​ ​​Δ​inclusion 
index​ ​(bottom​ ​panel)​ ​of​ ​the ​ ​29,531 ​ ​ExAC​ ​SNVs​ ​plotted ​ ​against​ ​wild-type ​ ​exon ​ ​ID​ ​(​n​​ ​=​ ​2393). 
Top ​ ​and ​ ​bottom​ ​plots​ ​are ​ ​ordered ​ ​in ​ ​decreasing ​ ​number​ ​of​ ​variants​ ​from​ ​44 ​ ​to ​ ​1 ​ ​per​ ​exon 
background,​ ​with ​ ​an ​ ​average ​ ​of​ ​13.9 ​ ​human ​ ​variants.​ ​Dashed ​ ​line ​ ​indicates​ ​threshold 
(​Δ​inclusion ​ ​index​ ​​=​​ ​-0.50)​ ​below​ ​which ​ ​we ​ ​call ​ ​splice-disrupting ​ ​variants​ ​(SDVs).​ ​​(C)​​ ​We ​ ​plot 
Δ​inclusion ​ ​index​ ​versus​ ​relative ​ ​location ​ ​of​ ​SNVs​ ​(top ​ ​panel).​ ​The ​ ​whiskers​ ​indicate ​ ​1.5-fold 
interquartile ​ ​ranges.​ ​​Δ​inclusion ​ ​index,​ ​phastCons​ ​scores​ ​and ​ ​SNV​ ​density​ ​averaged ​ ​per​ ​scaled 
position ​ ​for​ ​our​ ​SNV​ ​library​ ​(bottom​ ​panel).​ ​Each ​ ​bin ​ ​corresponds​ ​to ​ ​1-2 ​ ​nucleotide ​ ​per​ ​position. 
(D)​​ ​Proportion ​ ​of​ ​SDVs​ ​by​ ​functional ​ ​class​ ​(left)​ ​and ​ ​overall ​ ​contribution ​ ​(%)​ ​to ​ ​SDVs​ ​by 
absolute ​ ​number​ ​(middle),​ ​based ​ ​on ​ ​the ​ ​Variant​ ​Effect​ ​Predictor​40​.​ ​Despite ​ ​the ​ ​higher​ ​sensitivity 
at​ ​the ​ ​splice ​ ​site,​ ​the ​ ​number​ ​of​ ​SNVs​ ​in ​ ​other​ ​regions​ ​dominates​ ​such ​ ​that​ ​SDVs​ ​at​ ​splice ​ ​sites 
only​ ​comprise ​ ​17%​ ​of​ ​total ​ ​SDVs.​ ​Right​ ​panel ​ ​shows​ ​contribution ​ ​of​ ​functional ​ ​classes​ ​to ​ ​SDVs 
(​n​ ​=​ ​​1050)​ ​segregated ​ ​by​ ​exon ​ ​and ​ ​intron ​ ​regions,​ ​which ​ ​contribute ​ ​roughly​ ​equally​ ​to ​ ​SDVs. 
Splice ​ ​region ​ ​variants​ ​in ​ ​exons​ ​(4%)​ ​and ​ ​introns​ ​(17%)​ ​are ​ ​separated ​ ​by​ ​a ​ ​dashed ​ ​line.  
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Figure ​ ​4.​ ​Characteristics ​ ​of​ ​SDVs.​ ​(A)​ ​​The ​​ ​​proportion ​ ​of​ ​SDVs​ ​with ​ ​low​ ​or​ ​high ​ ​phastCons 
conservation ​ ​(<0.5 ​ ​and ​ ​≥0.5).​ ​The ​ ​overall ​ ​percentage ​ ​of​ ​SDVs​ ​is​ ​shown ​ ​as​ ​a ​ ​dashed ​ ​line 
(3.6%).​ ​Introns,​ ​but​ ​not​ ​exons,​ ​are ​ ​enriched ​ ​for​ ​highly​ ​conserved ​ ​SDVs​ ​(two-sided ​ ​Fisher’s 
exact​ ​test,​ ​​p ​ ​​<​ ​10 ​-16​).​ ​​(B)​​ ​We ​ ​plot​ ​the ​ ​number​ ​of​ ​SDVs​ ​with ​ ​low​ ​or​ ​high ​ ​phastCons​ ​conservation, 
as​ ​opposed ​ ​to ​ ​percentage.​ ​​(C)​​ ​We ​ ​observe ​ ​significantly​ ​fewer​ ​SDVs​ ​for​ ​exons​ ​within ​ ​those 
genes​ ​that​ ​are ​ ​predicted ​ ​to ​ ​be ​ ​intolerant​ ​to ​ ​loss-of-function ​ ​(pLI​ ​≥​ ​0.9)​ ​(two-sided ​ ​Fisher’s​ ​exact 
test,​ ​​p ​​ ​=​ ​2.67 ​ ​x​ ​10 ​-12​)​.​ ​The ​ ​​overall ​ ​percentage ​ ​of​ ​SDVs​ ​is​ ​3.6%​ ​(dashed ​ ​line).​ ​​(D)​​ ​The ​ ​change ​ ​in 
exon ​ ​inclusion ​ ​index​ ​(​Δ​inclusion ​ ​index)​ ​plotted ​ ​against​ ​the ​ ​allele ​ ​frequency​ ​spectrum.​ ​For​ ​each 
allele ​ ​frequency​ ​bin,​ ​number​ ​of​ ​tested ​ ​variants​ ​and ​ ​%​ ​SDV​ ​in ​ ​that​ ​bin ​ ​is​ ​indicated ​ ​at​ ​the ​ ​bottom, 
and ​ ​violin ​ ​plot​ ​shows​ ​distribution ​ ​of​ ​variants​ ​across​ ​​Δ​inclusion ​ ​index​ ​with ​ ​median ​ ​​Δ​inclusion 
index​ ​(dot)​ ​indicated ​ ​for​ ​each ​ ​bin.​ ​The ​ ​percentage ​ ​of​ ​SDVs​ ​as​ ​a ​ ​function ​ ​of​ ​observed ​ ​allele 
frequency​ ​shows​ ​a ​ ​negative ​ ​trend ​ ​and ​ ​is​ ​significantly​ ​different​ ​across​ ​allele ​ ​frequencies 
(chi-squared ​ ​test,​ ​​p​​ ​=​ ​1.12 ​ ​x​ ​10 ​-3​).​ ​​(E)​​ ​Precision-recall ​ ​curves​ ​(left)​ ​and ​ ​receiver​ ​operating 
characteristic​ ​(ROC)​ ​curves​ ​(right)​ ​for​ ​algorithms​ ​that​ ​can ​ ​predict​ ​splicing ​ ​or​ ​non-coding ​ ​genetic 
variants.​ ​For​ ​ROC​ ​curves​ ​(right),​ ​colors​ ​for​ ​each ​ ​algorithm​ ​match ​ ​those ​ ​in ​ ​the ​ ​left​ ​panel,​ ​with ​ ​the 
addition ​ ​of​ ​the ​ ​HAL ​ ​predictor​ ​that​ ​evaluates​ ​exonic​ ​changes​ ​only.​ ​Dashed ​ ​line ​ ​(left)​ ​indicates 
overall ​ ​percentage ​ ​of​ ​SDVs​ ​determined ​ ​by​ ​MFASS. 
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