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Abstract 

Successful execution of goal-directed behaviors often requires the deployment of 

cognitive control, which is thought to require cognitive effort. Recent theories have proposed 

that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related 

benefits of control against its effort-related costs. However, given that the sensations of cognitive 

effort and reward valuation are available only to introspection, this hypothesis is difficult to 

investigate empirically. We have proposed that two electrophysiological indices of ACC function, 

frontal midline theta and the reward positivity (RewP), provide objective measures of these 

functions. To investigate this issue, we recorded the electroencephalogram (EEG) from 

participants engaged in an extended, cognitively-demanding task. Participants performed a time 

estimation task for 2 hours in which they received reward and error feedback according to their 

task performance. We observed that the amplitude of the RewP, a feedback-locked component of 

the event related brain potential associated with reward processing, decreased with time-on-task. 

Conversely, frontal midline theta power, which consists of 4-8 Hz EEG oscillations associated 

with cognitive effort, increased with time-on-task. We also examined how these phenomena 

changed over time by conducting within-participant multi-level modeling analyses. Our results 

suggest that extended execution of a cognitively-demanding task is characterized by an early 

phase in which high control levels combine with strong reward valuation to foster rapid 

improvements in task performance, and a later phase in which high control levels counteract 

waning reward valuation to maintain stable task performance.  

 

Keywords: sustained effort, reward valuation, cognitive control, anterior cingulate cortex, 

electrophysiology  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/


Goal-directed behavior often requires cognitive control in order to facilitate the execution 

of non-automatic behaviors (Norman and Shallice, 1986). It is believed that the application of 

control feels effortful (e.g., Botvinick and Braver, 2015; Shenhav et al., 2017) and that cognitive 

effort is inherently aversive, such that people tend to avoid cognitively demanding tasks (Kool et 

al., 2010; Inzlicht et al., 2015; McGuire and Botvinick, 2010; Westbrook and Braver, 2015). This 

process is thought to recruit a mechanism that weighs the benefits of applying control against the 

effort-related costs in doing so (Botvinick and Braver, 2015; Shenhav et al., 2017; Westbrook 

and Braver, 2015). For example, although prolonged cognitive effort normally results in mental 

fatigue, which disrupts task performance, these performance decrements can be counteracted if 

subjects are offered motivational incentives (Boksem et al., 2006; Hockey, 2011; Hopstaken et 

al., 2015; Lorist et al., 2005; Boksem and Tops, 2008, for review). Yet despite an upsurge of 

interest in this topic in recent years, the neurocognitive mechanisms that sustain cognitive effort 

are not well-understood.  

 

Anterior cingulate cortex function in reward processing and effortful control 
 

Recently, several theories and computational models have proposed that anterior 

cingulate cortex (ACC) may provide such a mechanism (e.g., Botvinick and Braver, 2015, 

Holroyd and McClure, 2015; Holroyd and Umemoto, 2016; Holroyd and Yeung, 2012; Shenhav 

et al., 2013, 2017; Vassena et al., 2017; Verguts et al., 2015). The function of ACC is famously 

controversial (Ebitz and Hayden, 2016). Nevertheless, accumulating evidence suggests that the 

caudal subdivision of ACC, which is formally known as “anterior midcingulate cortex” (Vogt, 

2009; see also Shackman et al., 2011), may serve as a computational hub that integrates 

cognitive processes related to motivation and control. For example, Holroyd and Yeung (2012) 
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proposed that ACC is responsible for motivating and selecting extended action sequences based 

on learned task values. According to this view, instead of concerning itself with the minutia of 

moment-to-moment behaviors (such as typing each letter in a manuscript), ACC regulates 

behavior at a higher level of abstraction (such as whether or not to write the manuscript at all), 

and determines how well the task should be performed at a global level (cf. Botvinick et al., 

2009; Botvinick, 2012). Holroyd and McClure (2015) later implemented these ideas in a 

computational model of rodent behavior. Although these theories differ in their specifics, they 

hold in common the idea that ACC regulates the control levels it invests in a task according to 

the rewards received for doing so.  

A challenge in studying these neurocognitive processes, however, is that the sensations of 

reward valuation and effort expenditure are available only to introspection, rendering them 

difficult to assess empirically. Task performance is an imperfect proxy for these processes 

because participants can perform a task well either because it is easy or because they apply 

enough effort to make it appear to be easy. Therefore, objective measures of reward valuation 

and cognitive effort, were they available, would provide insight into how the control system self-

regulates (Botvinick and Braver, 2015). Here we propose that electrophysiological correlates of 

cognitive effort and of reward valuation can fulfill this purpose, and investigate this proposal by 

recording the electroencephalogram (EEG) from subjects as they perform an extended, mentally-

fatiguing task.  

 

Electrophysiological correlates of reward valuation and cognitive effort 
 

We addressed this question by utilizing two electrophysiological correlates of ACC 

activity: the reward positivity (RewP) and frontal midline theta (FMT) oscillations (Holroyd and 

Umemoto, 2016). More commonly known as the feedback error-related negativity, the RewP is 
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an event-related potential (ERP) component that is differentially modulated by feedback stimuli 

with negative vs. positive valence (Miltner et al., 1997); the component has recently been 

renamed the RewP because it appears to be relatively more sensitive to reward outcomes than to 

error outcomes (Holroyd and Umemoto, 2016). Holroyd and Coles (2002) proposed that the 

RewP is produced by fast, phasic midbrain dopamine reward prediction error signals modulating 

ACC activity. Consistent with the theory, numerous studies have confirmed that the RewP 

indexes a reward prediction error signal (Sambrook and Goslin, 2015; Walsh and Anderson, 

2012; but see Janssen et al., 2016). Given the inverse problem, the neural source of the RewP is 

less clear, but the balance of evidence suggests that it is produced in anterior midcingulate cortex 

(e.g., Miltner et al., 1997; Becker et al., 2014; but see Proudfit, 2015). Of particular relevance to 

this study, RewP amplitude correlates positively with individual differences in reward sensitivity 

(Bress and Hajcak, 2013, Umemoto and Holroyd, 2017; see also Cooper et al., 2014; Liu et al., 

2014; Parvaz et al., 2016), and negatively with individual differences in depression levels (e.g., 

Umemoto and Holroyd, 2017; Proudfit, 2015), which suggests that the RewP may index 

subjective levels of reward valuation (see Holroyd and Umemoto, 2016 for review). 

FMT consists of 4 to 8 Hz EEG oscillations distributed over frontal-central regions of the 

human scalp. Source localization studies of FMT point to ACC as the neural generator (e.g., 

Asada et al., 1999; Cavanagh and Frank, 2014; Ishii et al., 1999; Luu and Tucker, 2001), and 

FMT power appears to reflect an effortful control process (e.g., Cavanagh and Frank, 2014; 

Holroyd and Umemoto, 2016). Notably, cognitive tasks elicit two kinds of related FMT signals: 

phasic and ongoing. Brief, phasic changes in FMT power are observed immediately following 

error commission, during periods of response conflict (e.g., Cavanagh and Frank, 2014; Luu and 

Tucker, 2001), and with subjective conflict and surprise in an economic decision-making task 
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(Lin et al., 2017, August); one study reported that phasic FMT power decreased with time-on-

task (Washer et al., 2014). By contrast, ongoing FMT power is observed over extended periods 

of task execution (e.g., Asada et al., 1999; Ishii et al., 1999), as well as during the off-task, 

resting state (Scheeringa et al., 2008). It is associated with sustained mental effort, as observed, 

for example, when participants perform arithmetic calculations (Hsieh and Ranganath, 2014; 

Mitchell et al., 2008). Furthermore, FMT power rises with time on task (e.g., Barwick et al., 

2012; Paus et al., 1997; Wascher et al., 2014), suggesting that ACC contributes to sustaining 

effortful behavior in the face of growing mental fatigue. 

 

Present study 
 

We have previously proposed that FMT reflects the control signal applied by ACC over 

task performance, and that RewP amplitude reflects the reward signal propagated to the ACC for 

the purpose of regulating the control level (Holroyd and Umemoto, 2016). In this way, ACC is 

well-positioned to motivate task performance (Holroyd and McClure, 2015; Holroyd and Yeung, 

2012). Although previous studies have utilized these signals to study reward valuation and 

cognitive effort independently, to our knowledge none have examined how these processes 

together sustain behavior on a mentally fatiguing task.  

Here we utilized RewP amplitude and FMT power to examine whether these signals 

reflect neural processes related to subjective reward valuation and effort expenditure, 

respectively, in subjects performing an extended, cognitively-demanding task. For this purpose, 

we recorded the EEG from participants while they performed a standard time estimation task for 

2 hours (Miltner et al., 1997). In line with previous observations, we expected that FMT power 

would gradually increase with time-on-task (Barwick et al., 2012; Paus et al., 1997; Wascher et 

al., 2014). Further, we predicted that RewP amplitude would decrease as performance 
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deteriorated due to growing mental fatigue. We also expected that these signals would provide 

independent sources of information on the role of ACC in sustaining task performance, although 

we did not have any specific predictions about how they would interact. Lastly, we explored 

whether ACC function expressed as a dimension of personality related to reward sensitivity and 

persistence, as we have recently proposed (Holroyd and Umemoto, 2016; see also Umemoto and 

Holroyd, 2016, 2017). For this purpose, participants answered several personality questionnaires 

related to motivation, reward sensitivity, and levels of depression, which we explored in relation 

to their behavior and to these electrophysiological signatures of ACC function.        

 

Materials and methods 

Participants  

Sixty five undergraduate students were recruited from the University of Victoria. The 

sample size was determined based on past studies examining individual differences related to the 

RewP (e.g., Bress and Hajcak, 2013; Nelson et al., 2016). A sensitivity analysis using the 

G*power software program (Erdfelder et al., 1996) indicated sufficient statistical power to detect 

small effects for the main within-subject analyses1. Participants were recruited from the 

Department of Psychology subject pool to fulfill a course requirement or earn bonus credits. All 

subjects (16 males, 10 left-handed, age range=17-23 years, mean age = 19.3 +/- 1.5 years) had 

normal or corrected-to-normal vision. Each also received a monetary bonus in addition to the 

credits, the amount of which depended on their task performance (see below). All of the subjects 

provided informed consent as approved by the local research ethics committee. The experiment 

                                                 
1 The results of these analyses are provided in the supplementary materials. Note that this sample size only provides 

adequate power to detect medium-to-large effects related to individual differences in personality.   
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was conducted in accordance with the ethical standards prescribed in the 1964 Declaration of 

Helsinki. 

 

Task Design  

We conducted a time estimation task that required participants to estimate 1 second on 

every trial (Miltner et al., 1997). Each trial started with a presentation of a visual cue in the form 

of a white central cross (1º by 1º square visual angle) on the computer screen. Participants were 

instructed to press a left button on a computer mouse using their right hand when they believed 

that 1 second had elapsed following the cue onset. After 600 ms following the response, they 

were presented with a feedback stimulus indicating whether their response was on-time or not 

on-time. The response was considered on-time if it occurred within a narrow window of time 

centered around 1 second, the size of which was adjusted from trial to trial according to a 

staircase procedure, as follows. At the start of the experiment the size of the window was 

initialized at 200 ms, such that responses occurring between 900 and 1100 ms were considered 

correct. The size of the time window (i.e., time-window size) was then adjusted depending on the 

participant’s performance: error responses caused the time window to increase by 10 ms (making 

the task easier), and correct responses caused the time-window to decrease by 10 ms (making the 

task harder). This manipulation ensured that participants received reward feedback on 

approximately 50% of the trials (Miltner et al, 1997). The feedback stimuli were represented by 

abstract symbols presented at fixation (3.3º by 3.3º square visual angle). For half of the 

participants, a white circle indicated that they earned 1 cent for that trial, and a white diamond 

indicated that they did not earn any reward for that trial. This mapping was reversed for the other 
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half of the participants. After a variable inter-trial interval of 1400 ms, 1500 ms, or 1600 ms, 

determined at random, the next trial began with a presentation of the visual cue.  

Further, we offered an additional motivational incentive to enhance individual differences 

in task performance by providing all of the participants an opportunity to participate in a lottery 

to win a CAN $100 Amazon.com gift card. Every participant earned at least 1 “ticket” regardless 

of their performance, which ensured that all subjects had at least a small chance of receiving the 

prize. In addition, the participants were told (truthfully) that the better performers would earn 

extra tickets. For this, when all of the participants’ data were collected, we calculated each 

participant’s mean time-window size across all trials and compared them against the grand mean 

time-window size averaged across all participants. Participants received an extra ticket for every 

5 ms decrement with respect to the grand mean time-window size. For example, an individual 

average time-window size that was 15 ms less than the grand mean time-window size would earn 

that participant 4 tickets total (3 additional tickets plus the baseline 1 ticket). Upon completing 

the experiment, all of the tickets were entered into a metaphorical lottery box, from which we 

randomly selected 2 winning participants. The two winners were then contacted and received the 

award via email afterword.  

 

Task Procedure 

Participants were seated comfortably in front of a computer monitor (1024 by 1280 

pixels) at a distance of about 60 cm in a dimly lit room. The task was programmed in Matlab 

(MathWorks, Natick, MA, USA) using the Psychophysics Toolbox extension (Brainard, 1997; 

Pelli, 1997). Before the experiment was described to them, all of the participants read a form that 

explained the opportunity to win a CAN $100 Amazon gift card. Participants were told that if 
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they decided to consent to participate in this opportunity, at least one ticket would be entered in 

their name into the “lottery”, and that additional tickets would be entered if their overall 

performance was better than the average performance across all of the participants. Consent was 

indicated by participants providing a contact email address on the form; only two participants did 

not provide consent.  

 Participants were then provided with both written and verbal instructions about the time 

estimation task. They practiced the task for 20 trials before starting the task proper, which 

consisted of 16 blocks of 95 trials each. Participants were not informed about the exact number 

of trials or blocks to complete, but instead were told that they would perform the task for about 2 

hours. Self-paced between-block rest periods were provided, and after about 1 hour participants 

relaxed during a longer rest period while the experimenter checked the electrode impedances. 

Participants were told that the reward they accumulated across trials would be paid out to them at 

the end of the experiment, and that they should estimate 1 second on each trial as accurately as 

possible in order to maximize their reward earnings. Upon completing the experiment they 

answered several personality questionnaires (see below). These were followed by a post-

experiment paper-and-pen questionnaire that asked about the participant’s overall experience of 

the experiment, the strategies they employed (if any), and their level of task engagement on a 

scale of 1 to 5, with 1 indicating not at all engaged and 5 indicating very engaged.             

 

Questionnaires 

Participants completed a total of six personality questionnaires related to motivation, 

reward sensitivity, and depression symptoms, administered through LimeSurvey 

(https://www.limesurvey.org/) on the same computer where the task was performed. The 
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personality questionnaires administered included 1) the Persistence Scale (Cloninger et al., 1993; 

Gusnard et al., 2003), which assesses the tendency to overcome daily challenges on a scale of 1 

(definitely false) to 5 (definitely true). 2) The 8-item Reward Responsiveness (RR) Scale (Van 

den Berg et al., 2010), which is a self-report measure of reward-related behavior on a scale of 1 

(strong disagreement) to 4 (strong agreement). (3) The 18-item Temporal Experience of Pleasure 

Scale (TEPS), which assess two components of hedonic capacity, namely consummatory 

pleasure (TEPS-C: i.e., “liking” or in-the-moment experience of pleasure) and anticipatory 

pleasure (TEPS-A: i.e., “wanting”), on a scale of 1 (“very false for me”) to 6 (“very true for me”) 

(Gard et al., 2006). 4) The 18-item Apathy Evaluation Scale (AES; Marin et al., 1991), which 

measures lack of motivation regarding the behavioral, cognitive, and emotional aspects of goal-

directed behavior on a scale of 1 (very characteristic) to 4 (not at all characteristic). 5) The 22-

item Ruminative Responses Scale (RRS: Treynor et al., 2003), which measures the propensity to 

ruminate in response to depressed mood on a scale of 1 (almost never) to 4 (almost always). 6) 

The 21-item short-form of the Depression Anxiety Stress Scale (DASS-21) (Lovibond and 

Lovibond, 1995), which measures severity of depression, anxiety, and stress on a scale from 0 

(“did not apply to me at all”) to 3 (“applied to me very much, or most of the time”). However, 

the rumination scale and the anxiety and stress subscales of the DASS-21 were not included in 

the analyses as they tended to strongly correlate with other variables (for example, with the 

depression scores), and because they were not the primary focus of the study. Summed total 

scores were used for each of the questionnaires such that high scores indicated, respectively, high 

persistence, high reward responsiveness, high hedonic capacity (or reduced anhedonia), high 

levels of apathy, and high levels of depression. 
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EEG Data Acquisition and Pre-processing 

The EEG was recorded using a montage of 30 electrode sites in accordance to the 

extended international 10–20 system (Jasper, 1958). Signals were acquired using Ag/AgCl ring 

electrodes mounted in a nylon electrode cap with an abrasive, conductive gel (EASYCAP 

GmbH, Herrsching-Breitbrunn, Germany). Signals were amplified by low-noise electrode 

differential amplifiers with a frequency response high cut-off at 50 Hz (90 dB–octave roll off) 

and digitized at a rate of 250 samples per second. Digitized signals were recorded to disk using 

Brain Vision Recorder software (Brain Products GmbH, Munich, Germany). Interelectrode 

impedances were maintained below 20 kΩ. Two electrodes were also placed on the left and right 

mastoids. The EEG was recorded using the average reference. The electroocculogram (EOG) 

was recorded for the purpose of artifact correction; horizontal EOG was recorded from the 

external canthi of both eyes, and vertical EOG was recorded from the suborbit of the right eye 

and electrode channel Fp2.  

 

Data Analysis 

Behavior 

To recap, participants’ estimation of 1 second was considered on-time if it occurred 

within a narrow window of time centered around 1 second, the size of which was initialized at 

200 ms, such that responses occurring between 900 and 1100 ms were considered correct at the 

start of the experiment. The time-window size was adjusted from trial to trial according to a 

staircase procedure that ensured 50% probabilities of receiving positive and negative feedback 

(see Task Design). The mean time-window size averaged across trials for each block was 
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calculated for each participant. Therefore, smaller and larger average time-window sizes indicate, 

respectively, better and worse performance. 

  

Electrophysiology  

Post-processing and data visualization were performed using Brain Vision Analyzer 

software (Brain Products GmbH). The digitized signals were filtered using a fourth-order digital 

Butterworth filter with a passband of 0.10–30 Hz. The data were segmented for an 800 ms epoch 

extending from 200 ms prior to 600 ms following presentation of reward and no-reward 

feedback. Ocular artifacts were corrected using an eye movement correction algorithm (Gratton 

et al., 1983). The EEG data were re-referenced to averaged mastoids electrodes. Data were 

baseline corrected by subtracting from each sample for each channel the mean voltage associated 

with that electrode during the 200 ms interval preceding feedback onset. Trials with muscular 

and other artifacts were excluded according to a 150 μV Max-Min voltage difference, a ±150 μV 

level threshold, a ±35 μV step threshold, and a 0.1 μV lowest-allowed activity level as rejection 

criteria. ERPs were then created for each electrode and participant by averaging the single-trial 

EEG according to the reward and no-reward feedback type.  

The RewP was measured at channel FCz, where it reached maximum amplitude, utilizing 

a difference wave approach that isolated the RewP from overlapping ERP components such as 

the P300 (Holroyd and Krigolson, 2007; Sambrook and Goslin, 2015); a difference wave was 

created for each participant by subtracting the ERP to no-reward feedback stimuli from the ERP 

to reward feedback stimuli. RewP amplitude was then determined by averaging the mean 

amplitude in the difference wave from 200 to 300 ms following feedback onset (determined 

based on a visual inspection of the grand-average of the difference wave across all participants, 
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which ensured that the grand-average RewP in this time range was characterized by a positive 

peak with a frontal-central voltage distribution). For the purpose of comparison, P300 amplitude 

was measured at channel Pz, where it typically reaches maximum amplitude across the scalp 

(Donchin and Coles, 1988). Individual subject ERPs were averaged across feedback conditions, 

and P300 amplitude was defined by finding the maximum positive deflection from 280 to 420 

ms following feedback onset (as determined based on a visual inspection of the grand-average 

ERP across all trials and all participants)2. In order to assess FMT power, the continuous EEG 

data were segmented into consecutive 4 seconds epochs with 200 ms overlap between segments 

(starting from the beginning of the experiment and continuing to the end) averaged across 

feedback types3. Artifact rejection and ocular correction were conducted on these EEG epochs as 

for the ERP data, and then submitted to a power spectral analysis using a Fast Fourier Transform 

(FFT) (Hanning Window, 10% length). FMT was assessed for each trial by averaging power 

between 4 and 8 Hz at each channel. 

We employed a multi-level modeling analysis using the MIXED function in SPSS (IBM 

SPSS 24) in order to examine within-person changes in behavioral (i.e., time-window size) and 

electrophysiological measures (i.e., RewP, FMT) across the 16 blocks. To assess how these 

measures fluctuated across time, we calculated person-centered scores such that mean 

performance averaged across all blocks of trials of a given participant was subtracted from the 

mean performance averaged across trials for each block (e.g., adjusted time-window size for 

block 1 = average time-window size for block 1 – the average time-window size across all 16 

                                                 
2 Note that the scalp distribution for P300 was not maximal centrally but rather over lateral scalp areas (e.g., electrodes 

P3 and P4). However, given that the P300 was not the focus of our analysis, P300 amplitude was measured at 
channel Pz in keeping with previous studies, and because P300 amplitude was maximal there when comparing only 
the midline channels.  

3 When we segmented the EEG data with a 50% overlap between segments for the frontal midline theta analyses, there 
was no significant difference in the overall power (p=0.415), and all the results remained the same.  
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blocks) (e.g., Saunders et al., 2015). By doing this, each participant’s score for a given 

measurement was calculated relative to their own average score, with positive and negative 

values indicating higher and lower values than average for that participant, respectively. We 

investigated the relation among within-person fluctuations in time-window size, RewP amplitude, 

and FMT power with time on task, with the time (block) variable coded both as a linear slope 

from 0 to 15 (reflecting the 16 blocks in total) and as a quadratic slope, as calculated as the 

square of the linear-time variable (i.e., 0² to 15²). In total we tested three models, each separately 

testing the time-window size, RewP amplitude, and FMT power as a function of the other two 

variables and both the linear and quadratic time variables. For example, a model testing the time-

course of RewP amplitude included time-window size, FMT power, linear-time, and quadratic-

time as its predictors. All of the analyses were conducted with a random intercept for each 

participant, unstructured covariance type, and maximum likelihood estimation. Both time (block) 

variables were treated as random slopes. Effect size, r, is reported for each model effect. 

For completeness, we also applied multi-level modeling analyses to examine between-

subjects relationships among time-window size, RewP amplitude, and FMT power. Each 

participant’s average time-window size, RewP amplitude, and FMT power values were 

calculated separately across all the trials. Each score was then grand mean-centered for each 

participant by subtracting the grand average (across all participants) from each measure (e.g., the 

grand mean-centered RewP amplitude for a participant = the mean RewP amplitude averaged 

across all trials for this participant – the grand mean RewP amplitude averaged across all 

participants). In total we tested three models that separately tested time-window size, RewP 

amplitude, and FMT power as a function of the other two variables, each using a random 

intercept for each participant, unstructured covariance type, and maximum likelihood estimation. 
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We also explored the effects of personality traits using multi-level modeling analyses, the 

results of which are reported in the supplementary materials.  

 

Results 

Three participants discontinued the task4. The data of three other participants were 

excluded from analysis due to self-reported neurological or psychiatric disorders. Further, during 

the first few blocks of trials one participant produced extreme time estimates (i.e., by responding 

about 7 seconds after cue onset); performance for this participant improved thereafter, but the 

probability of reward was strongly biased across blocks of trials due to the staircase procedure 

(mostly no reward in the first few blocks, followed by mostly reward in the following few 

blocks). The data of two participants were also excluded due to artifacts associated with 

excessive head movement. Further, we excluded data from three participants with average time-

window size or FMT power that was 3 standard deviations (SD) above the group means. In total 

these exclusions resulted in the data of 53 participants used for all of the analyses.     

 

                                                 
4 One participant indicated signs of claustrophobia, one participant left feeling unwell, and one participant discontinued 

after reporting that s/he had earned enough money. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1. Block by block performance and electrophysiological measures, averaged across 

subjects for (a) time-window size, (b) frontal midline theta power, (c) reward positivity amplitude, 

and (d) P300 amplitude. Error bars indicate within-subject 95% confidence intervals (Cousineau, 

2005). 

Behavior  

Time-window size: Figure 1a depicts the time-course of the mean time-window size 

averaged across participants. The multi-level modeling analysis predicting the time-window size 

with RewP, FMT power, linear-time, and quadratic-time revealed significant main effects of 

linear-time and quadratic-time (Table 1, lines 1 & 2). These results confirm the impression of 

Figure 1a that participants’ performance improved with time but worsened towards the end of the 

experiment. We also found significant interactions of linear- and quadratic-time with FMT 

power on time-window size (Table 1, lines 5 & 7). Figure 2 reveals the nature of these effects. 

The relation between FMT power and the time-window size differed across time, such that 
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greater FMT power (relative to participants’ own average FMT power) was associated with 

better (smaller) time-window size in the beginning of the experiment, as well as with relatively 

more stable performance with time on task (i.e., a relatively shallower change in performance 

over time). A significant main effect of FMT power (Table 1, line 3) signifies that the difference 

in time-window size by FMT power in the beginning was statistically significant.  

 

 

Figure 2. The within-subjects effect depicting the interaction of frontal midline theta 

(FMT) power with linear-time (block) and quadratic-time on time-window size (TWS). The 

solid and dotted lines denote TWS across blocks when participants produced FMT power 

that was above or below one standard deviation relative to their own average FMT, 

respectively (+/-1 SD FMT). Note that this figure is derived from the model predicting 

TWS based on time and FMT power (i.e., excluding reward positivity amplitude).  
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Table 1. Multi-level modeling results on time-window size (TWS), frontal midline 

theta (FMT) power, reward positivity (RewP) amplitude, and P300 amplitude with time-

on-task. Line indicates the row number in which each effect is reported (for the purpose of 

indexing in the text). Block-L =  block (time) coded as a linear slope from 0 to 15. Block-Q 

=  block (time) coded as a quadratic slope (as the power of linear slope) from 0² to 15². 

Significant results (p<0.05) are highlighted in bold. 

 

Electrophysiology 

Frontal Midline Theta: Figure 1b depicts the time-course of FMT power over time 

averaged across participants. As the inclusion of a quadratic time variable in the model did not 

reveal a significant effect, the multi-level modeling analysis here tested a model excluding this 

variable. The model predicting FMT power with time-window size, RewP amplitude, and linear-

time revealed a significant main effect of linear-time, such that FMT power increased over time 

(Table 1, line 9). There was also a significant interaction of linear-time and time-window size on 
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FMT power (Table 1, line 12; see Supplementary Figure 1). The pattern of interaction indicates 

that better task performance was associated with larger FMT power at the beginning (as shown 

by the significant main effect of time-window size; Table 1, line 10) and less of an increase in 

FMT power with time on task (Supplementary Figure 1).  

 

RewP: Figure 1c depicts the time-course of RewP amplitude averaged across participants, 

and Figure 3 depicts the RewP waveforms averaged across participants for every half-hour of 

task performance. The multi-level modeling analysis predicting RewP amplitude with time-

window size, FMT power, linear-time, and quadratic-time revealed statistically significant linear 

(Table 1, line 14) and quadratic effects (Table 1, line 15) of time on RewP amplitude. This result 

indicates a nonlinear reduction in RewP amplitude (more negative) with time (Figure 1c). There 

were also significant interactions of linear-time and time-window size (Table 1, line 18) and of 

quadratic-time and time-window size (Table 1, line 20) on RewP amplitude, such that smaller 

(better) time-window size (relative to each participant’s own average) was associated with a 

relatively smaller, linear decline in RewP amplitude (Figure 4).   
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Figure 3. The reward positivity (RewP) derived as a difference wave (reward 

feedback minus no-reward feedback) to event-related potentials averaged across 

participants and across blocks, separately for every consecutive four blocks. Blocks 1-4 = 

RewP difference wave for block 1 to 4 (i.e., 1st 30 min). Blocks 5-8 = RewP difference wave 

for block 5 to 8 (2nd 30 min). Blocks 9-12 = RewP difference wave for block 9 to 12 (3rd 30 

min). Blocks 13-16 = RewP difference wave for block 13 to 16 (4th 30 min). RewP amplitude 

was measured between 200-300 ms following feedback onset at time 0 (as highlighted in 

gray). Negative is plotted up by convention.  
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Figure 4. The within-subjects effect depicting the interaction of time-window size 

with linear-time (block) and quadratic-time on reward positivity (RewP) amplitude. The 

solid and dotted lines denote RewP amplitude across blocks when each participant’s time-

window size was one standard deviation above or below their own average time-window 

size, respectively (+/-1 SD time-window size). Note that this figure is derived from the 

model predicting RewP amplitude based on linear-time, quadratic-time, and time-window 

size (excluding FMT power).  

  

P300: Figure 1d depicts the time-course of P300 amplitude over time averaged across 

participants. As the inclusion of a quadratic time variable in the model did not reveal a 

significant effect, the multi-level modeling analysis here tested a model excluding this variable. 

A multi-level modeling analysis predicting P300 with linear-time revealed a significant main 

effect of linear-time (Table 1, line 22), indicating that P300 amplitude decreased linearly with 

time on task.   
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Relationship between behavioral and electrophysiological measures 

The multi-level modeling analysis examining the between-subjects relationships among 

time-window size, RewP, and FMT power did not reveal any statistically significant 

relationships (p>.40). This indicates that the overall sizes of FMT power and RewP amplitude 

were not related to task performance nor to each other. Note that because the statistical power for 

the between-participants analyses is low, these results should be interpreted with caution (as is 

also the case for the analyses related to personality, below).  

 

Personality questionnaires 

A summary of each questionnaire score is provided in Table 2, and zero-order 

correlations among questionnaires are provided in Table 3.  

We conducted a simple correlation analysis among time-window size, RewP, FMT, 

personality scores, and the task engagement level assessed by the post-experiment paper-and-

pencil questionnaires (see Task Procedure)5. We observed that higher levels of task engagement 

were correlated with higher reward responsiveness scores (Pearson r=.310, p=.03), higher 

persistence scores (r=.316, p=.027), as well as better (smaller) TWS (r=-.381, p=.007).  

Exploratory analyses examining the impact of personality traits on time-window size, RewP 

amplitude, and FMT power did not reveal any significant effects of personality on these 

measures (see Supplementary Table 1). 

 

                                                 
5 Note that four of the participants' engagement levels were not obtained due to an error, hence the number of 

participants included in this analysis was 49. 
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Table 2. Summary of participant questionnaire scores. Temporal Experience of 

Pleasure-C= consummatory pleasure subscale of the temporal experience of pleasure scale. 

Temporal Experience of Pleasure-A= anticipatory pleasure subscale of the temporal 

experience of pleasure scale. Apathy is based on the apathy evaluation scale. Depression is 

based on the depression subscale of the depression, anxiety, and stress scale (DASS-21).  

 

 

Table 3. Zero-order correlations among questionnaire scores. 

 

  

Discussion 

Goal-directed behaviors often require the deployment of cognitive control for their 

successful execution. Yet, because cognitive control is perceived to be effortful, people tend to 

avoid applying it. Theories of control have therefore proposed the existence of a neurocognitive 
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mechanism that regulates control levels by weighing the benefits (or rewards) of control against 

its associated effort-related costs (Botvinick and Braver, 2015; Kurzban et al., 2013; Inzlicht et 

al., 2014; Shenhav et al., 2013, 2017; Westbrook and Braver, 2015). How this occurs is not fully 

understood, but ACC is believed to be partly responsible for it (e.g., Holroyd and Umemoto, 

2016; Shenhav et al., 2013, 2017; Vassena et al., 2017; Verguts et al., 2015). Here we 

investigated the role of ACC in valuating and regulating control levels in order to sustain 

performance on an extended task, as revealed by electrophysiological indices of ACC activity 

(Holroyd and Yeung, 2012; Holroyd and McClure, 2015; Holroyd and Umemoto, 2016).           

Participants performed a standard time estimation task for 2 hours while their EEG was 

recorded (Miltner et al., 1997). They received a small monetary reward for each “on-time” 

estimate, the difficulty of which was adjusted across trials so that all of the participants received 

the rewards on approximately 50% of the trials. Moreover, in order to increase their motivation 

the participants were told, truthfully, that better performance increased their chances for 

receiving one of two $100 Amazon gift cards, which in fact were later awarded to two of the 

participants via a lottery. We observed that time-window size decreased over time, following 

both a linear and a quadratic trend (Figure 1a); that is, performance initially improved with time-

on-task and later deteriorated towards the end of the experiment. A straightforward interpretation 

of these findings is that the initial improvement in task performance reflects an early learning 

process, and that the later decrement in performance reflects an impairment due to mental fatigue. 

Consistent with this interpretation, post-experiment self-reports revealed that better (smaller) 

time-window size correlated with overall task engagement, suggesting that task performance 

depended strongly on the control levels applied; thus, a withdrawal of control should result in 

impaired performance. Further, we also observed that the amplitudes of the RewP and P300 
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decreased with time on task (Figure 1c & 1d), whereas FMT power increased with time on task 

(Figure 1b), as observed previously (Barwick et al., 2012; Paus et al., 1997; Wascher et al., 2014). 

These findings suggest that reward valuation and attention levels decreased while control levels 

increased with time-on-task. Taken together, they appear to indicate that greater application of 

control in order to counteract deteriorating levels of attention and reward valuation is associated 

with accumulating mental fatigue, as suggested by a deterioration in performance at the end of 

the task  (see also Hopstaken, et al., 2015; c.f. Milyavskaya et al., 2017, in this issue).  

Notably, the between-person analyses did not reveal any significant associations among 

time-window size, RewP amplitude, and FMT power, even though both of the 

electrophysiological phenomena are believed to be produced by ACC (Holroyd and Umemoto, 

2016). Although low statistical power may have obscured these relationships, their absence may 

also suggest that these measures depend more strongly on within-participant differences than on 

between-participant differences. On this view, because reward valuation and effort expenditure 

provide semi-independent determinants of task performance, RewP amplitude and FMT power 

might not be expected to co-vary together across participants. Instead, within-subject measures 

might provide greater insight into these factors, as in fact we observed.  

To wit, the within-person analysis predicting time-window size revealed significant linear 

and quadratic effects of time-on-task, and this effect was modulated by FMT power (Figure 2): 

greater FMT power (relative to each participant’s own average power) was associated with better 

(smaller) time-window sizes initially, and with relatively shallower changes in performance 

across time afterward. These findings provide insight into the role of control in regulating task 

performance: Although increased FMT power is associated with deteriorating performance at the 

end of the task, as discussed above (see Figures 1a and 1b), the within-subjects analysis reveals 
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that greater FMT power is also associated with better performance at the start of the task (Figure 

2). Greater FMT power is further associated with less steep of a fall in performance toward the 

end of the task. Thus, FMT power appears to reflect a neural process that enhances performance, 

both during an early stage when subjects learn to perform the task better, and a later stage when 

performance suffers due to cognitive fatigue.  

 Within-person analyses predicting RewP amplitude also revealed significant interactions 

of time-window size with both linear- and quadratic-time trends. That is, smaller (better) time-

window size (relative to each participant’s own average time-window size) was associated with 

smaller declines in RewP amplitude over time, whereas larger (worse) time-window size was 

associated with a steeper decline in RewP amplitude with time on task (Figure 4). Similarly, 

within-person analyses predicting FMT revealed a significant interaction of linear-time and time-

window size: Better task performance was associated with larger FMT power at the beginning of 

the task and smaller increases in FMT power with time-on-task (Supplementary Figure 1). It 

appears that greater task engagement, as reflected in smaller time-window sizes, was associated 

with more gradual reductions in RewP amplitude and more gradual increases in FMT power. 

That is, good task performance was associated with more stable indicators of reward valuation 

and cognitive control throughout the task.  

Finally, we found from post-experiment self-reports that higher levels of task engagement 

correlated significantly with higher reward responsiveness and persistence scores, indicating that 

participants who scored high on these personality traits were more engaged during the entire 

experiment. An exploration of whether persistence and reward sensitivity were associated with 

task performance, RewP amplitude, and FMT power failed to reveal any significant relations 

among them (see Supplementary Table 1). Although a number of studies have reported 
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individual differences in personality associated with RewP amplitude (e.g., Bress and Hajcak, 

2013, Cooper et al., 2014; Liu et al., 2014; Parvaz et al., 2016; Umemoto and Holroyd, 2017) 

and phasic FMT power (e.g., Cavanagh and Shackman, 2014), we did not replicate any of these 

findings. Nevertheless, such effects may have been obscured by the low statistical power in the 

present study for conducting analyses related to individual differences. Adequate sample sizes 

will be needed in future studies to elucidate the role of personality in extended task performance 

(e.g., Fraley and Vazire, 2014; see also Umemoto and Holroyd, 2016) and its expression in 

individual differences in electrophysiological correlates of ACC function (Holroyd and 

Umemoto, 2016).  

A challenging question is whether increasing FMT power with time-on-task reflects 

growing mental fatigue per se, or the application of effortful control needed to overcome that 

fatigue, as these processes are necessarily correlated. In fact, several neuroimaging studies have 

implicated ACC in cognitive fatigue (e.g., Cook et al., 2007; Dobryakova et al., 2013; Wylie et 

al., 2017). However, we argue against the simple association between FMT and fatigue itself. 

Specifically, mental fatigue is generally associated with impaired task performance (as reflected 

by increased error rates and greater reaction times), but performance here improved over the first 

90 min of the study while FMT power continued to rise. Furthermore, during the initial stage of 

the task greater FMT was associated with better task performance. Our observation that changes 

in FMT power closely followed time-on-task performance, as well as relatively more stable 

(shallower changes in) task performance, appears inconsistent with the account that FMT simply 

reflects mental fatigue itself. 

Past studies have shown that a brief, phasic burst of FMT power is commonly elicited by 

response conflict and error commission (e.g., Cavanagh and Frank, 2014). The amplitude of the 
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error related negativity (ERN), a performance-related ERP component associated with both the 

RewP (Holroyd and Coles, 2002) and FMT power (Cavanagh and Frank, 2014), has been 

observed to decline with time on task (Lorist et al 2005; Boksem et al 2006; Inzlicht and Gutsell, 

2007). By contrast, ongoing FMT power, as we measured in this study, is associated with 

prolonged mental challenges and high working memory load (Hsieh and Ranganath, 2014; 

Mitchell et al., 2008). Understanding how phasic and ongoing FMT signals relate to each other is 

an important question for future studies. For example, past studies have shown that the adverse 

effects of mental fatigue on task performance and ERN amplitude, which is associated with 

phasic FMT (Cavanagh and Frank, 2014), can be counteracted with motivational incentives (e.g., 

Boksem et al., 2006; Hopstaken et al., 2015; Sarter et al., 2006). Whether fatigue-related changes 

in tonic FMT power can also be reversed with task incentives is an interesting avenue for future 

research.    

In summary, although task performance improved until the last quarter of the experiment, 

when it started to reverse, decreasing RewP and P300 amplitudes indicated that the participants 

gradually disengaged from the task and devalued the outcomes of their performance. By contrast, 

FMT power increased monotonically with time on task, suggesting greater recruitment of 

cognitive control even as the task became harder and less rewarding. Although task performance 

and the electrophysiological measures did not correlate with each other across participants, a 

within-person increase in FMT power was associated with 1) better task performance at the start 

of the experiment, suggesting that high control levels facilitated learning; 2) more stable 

performance overall. Conversely, better task performance was associated with higher self-reports 

of task engagement and relatively more stable RewP amplitudes and FMT power over time. 

Together, we interpret these results as reflecting the role of ACC in sustaining behavior over an 
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extended period, especially for tasks that demand high levels of cognitive control with low 

immediate reward value.   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements: This work was supported by a grant from the Japan Society for the 

Promotion of Science (A.U.) and Natural Sciences and Engineering Research Council of Canada 

Discovery Grant 312409-05 (C.B.H.). 

 

 

References 

Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., Tonoike, M., 1999. Frontal midline theta 
rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in 
humans. Neurosci. Lett. 274, 29–32. doi:10.1016/S0304-3940(99)00679-5 

Barwick, F., Arnett, P., Slobounov, S., 2012. EEG correlates of fatigue during administration of 
a neuropsychological test battery. Clin. Neurophysiol. 123, 278–284. 
doi:10.1016/j.clinph.2011.06.027 

Becker, M.P.I., Nitsch, A.M., Miltner, W.H.R., Straube, T., 2014. A single-trial estimation of the 
feedback-related negativity and its relation to BOLD responses in a time-estimation task. J. 
Neurosci. 34, 3005–12. doi:10.1523/JNEUROSCI.3684-13.2014 

Boksem, M.A.S., Meijman, T.F., Lorist, M.M., 2006. Mental fatigue, motivation and action 
monitoring. Biol. Psychol. 72, 123–132. doi:10.1016/j.biopsycho.2005.08.007 

Boksem, M.A.S., Tops, M., 2008. Mental fatigue: Costs and benefits. Brain Res. Rev. 59, 125–
139. doi:10.1016/j.brainresrev.2008.07.001 

Botvinick, M., Braver, T., 2015. Motivation and Cognitive Control: From Behavior to Neural 
Mechanism. Annu. Rev. Psychol. 66, 83–113. doi:10.1146/annurev-psych-010814-015044 

Botvinick, M.M., 2012. Hierarchical reinforcement learning and decision making. Curr. Opin. 
Neurobiol. 22, 956–962. doi:10.1016/j.conb.2012.05.008 

Botvinick, M.M., Niv, Y., Barto, A.C., 2009. Hierarchically organized behavior and its neural 
foundations: A reinforcement learning perspective. Cognition 113, 262–280. 
doi:10.1016/j.cognition.2008.08.011 

Brainard, D.H., 1997. The Psychophysics Toolbox. Spat. Vis. 10, 433–436. 
doi:10.1163/156856897X00357 

Bress, J.N., Hajcak, G., 2013. Self-report and behavioral measures of reward sensitivity predict 
the feedback negativity. Psychophysiology 50, 610–616. doi:10.1111/psyp.12053 

Cavanagh, J.F., Frank, M.J., 2014. Frontal theta as a mechanism for cognitive control. Trends 
Cogn. Sci. 18, 414–421. doi:10.1016/j.tics.2014.04.012 

Cavanagh, J.F., Shackman, A.J., 2014. Frontal midline theta reflects anxiety and cognitive 
control: Meta-analytic evidence. J. Physiol. Paris 109, 3–15. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/


doi:10.1016/j.jphysparis.2014.04.003 

Cloninger, C.R., Svrakic, D.M., Przybeck, T.R., 1993. A psychobiological model of 
temperament and character. Arch. Gen. Psychiatry 50, 975–990. 

Cook, D.B., O’Connor, P.J., Lange, G., Steffener, J., 2007. Functional neuroimaging correlates 
of mental fatigue induced by cognition among chronic fatigue syndrome patients and 
controls. Neuroimage 36, 108–122. doi:10.1016/j.neuroimage.2007.02.033 

Cooper, A.J., Duke, E., Pickering, A.D., Smillie, L.D., 2014. Individual differences in reward 
prediction error: contrasting relations between feedback-related negativity and trait 
measures of reward sensitivity, impulsivity and extraversion. Front. Hum. Neurosci. 8, 248. 
doi:10.3389/fnhum.2014.00248 

Dobryakova, E., DeLuca, J., Genova, H.M., Wylie, G.R., 2013. Neural Correlates of Cognitive 
Fatigue: Cortico-Striatal Circuitry and Effort–Reward Imbalance. J. Int. Neuropsychol. Soc. 
19, 849–853. doi:10.1017/S1355617713000684 

Donchin, E., Coles, M.G.H., 1988. Is the P300 component a manifestation of context updating? 
Behav. Brain Sci. 11, 357–374. doi:10.1017/S0140525X00058015 

Ebitz, R.B., Hayden, B.Y., 2016. Dorsal anterior cingulate: a Rorschach test for cognitive 
neuroscience. Nat. Neurosci. 19, 1278–1279. doi:10.1038/nn.4387 

Erdfelder, E., Faul, F., Buchner, A., 1996. GPOWER: A general power analysis program. Behav. 
Res. Methods, Instruments, Comput. 28, 1–11. doi:10.3758/BF03203630 

Fraley, R.C., Vazire, S., 2014. The N-pact factor: Evaluating the quality of empirical journals 
with respect to sample size and statistical power. PLoS One 9. 
doi:10.1371/journal.pone.0109019 

Gard, D.E., Gard, M.G., Kring, A.M., John, O.P., 2006. Anticipatory and consummatory 
components of the experience of pleasure: A scale development study. J. Res. Pers. 40, 
1086–1102. doi:10.1016/j.jrp.2005.11.001 

Gratton, G., Coles, M.G.H., Donchin, E., 1983. A new method for off-line removal of ocular 
artifact. Electroencephalogr. Clin. Neurophysiol. 55, 468–484. doi:10.1016/0013-
4694(83)90135-9 

Gusnard, D. a, Ollinger, J.M., Shulman, G.L., Cloninger, C.R., Price, J.L., Van Essen, D.C., 
Raichle, M.E., 2003. Persistence and brain circuitry. Proc. Natl. Acad. Sci. U. S. A. 100, 
3479–3484. doi:10.1073/pnas.0538050100 

Hockey, G.R.J., 2011. A motivational control theory of cognitive fatigue. Cogn. fatigue 
Multidiscip. Perspect. Curr. Res. Futur. Appl. 167–187. doi:10.1037/12343-008 

Holroyd, C.B., Coles, M.G.H., 2002. The Neural Basis of Human Error Processing: 
Reinforcement Learning, Dopamine, and the Error-Related Negativity. Psychol. Rev. 109, 
679–709. doi:10.1037//0033-295X.109.4.679 

Holroyd, C.B., Krigolson, O.E., 2007. Reward prediction error signals associated with a 
modified time estimation task. Psychophysiology 44, 913–917. doi:10.1111/j.1469-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/


8986.2007.00561.x 

Holroyd, C.B., McClure, S.M., 2015. Hierarchical Control Over Effortful Behavior by Rodent 
Medial Frontal Cortex�: A Computational Model. Psychol. Rev. 122, 54–83. 

Holroyd, C.B., Umemoto, A., 2016. The research domain criteria framework: The case for 
anterior cingulate cortex. Neurosci. Biobehav. Rev. 71, 418–443. 
doi:10.1016/j.neubiorev.2016.09.021 

Holroyd, C.B., Yeung, N., 2012. Motivation of extended behaviors by anterior cingulate cortex. 
Trends Cogn. Sci. 16, 122–128. doi:10.1016/j.tics.2011.12.008 

Hopstaken, J.F., van der Linden, D., Bakker, A.B., Kompier, M.A.J., 2015. A multifaceted 
investigation of the link between mental fatigue and task disengagement. Psychophysiology 
52, 305–315. doi:10.1111/psyp.12339 

Hsieh, L.T., Ranganath, C., 2014. Frontal midline theta oscillations during working memory 
maintenance and episodic encoding and retrieval. Neuroimage 85, 721–729. 
doi:10.1016/j.neuroimage.2013.08.003 

Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., Hirabuki, N., Asada, 
H., Kihara, T., Robinson, S.E., Takeda, M., 1999. Medial prefrontal cortex generates frontal 
midline theta rhythm. Neuroreport 10, 675–679. doi:10.1097/00001756-199903170-00003 

Inzlicht, M., Bartholow, B.D., Hirsh, J.B., 2015. Emotional foundations of cognitive control. 
Trends Cogn. Sci. 19, 126–132. doi:10.1016/j.tics.2015.01.004 

Inzlicht, M., Gutsell, J.N., 2007. Running on empty: Neural signals for self-control failure. 
Psychol. Sci. 18, 933–937. doi:10.1111/j.1467-9280.2007.02004.x 

Inzlicht, M., Schmeichel, B.J., Macrae, C.N., 2014. Why self-control seems (but may not be) 
limited. Trends Cogn. Sci. 18, 127–133. doi:10.1016/j.tics.2013.12.009 

Janssen, D.J.C., Poljac, E., Bekkering, H., 2016. Binary sensitivity of theta activity for gain and 
loss when monitoring parametric prediction errors. Soc. Cogn. Affect. Neurosci. 11, 1280–
1289. doi:10.1093/scan/nsw033 

Jasper, H.H., 1958. The ten twenty electrode system of the international federation. 
Electroencephalogr. Clin. Neurophysiol. 10, 371–375. 

Kool, W., McGuire, J.T., Rosen, Z.B., Botvinick, M.M., 2010. Decision making and the 
avoidance of cognitive demand. J. Exp. Psychol. Gen. 139, 665–682. doi:10.1037/a0020198 

Kurzban, R., Duckworth, A., Kable, J.W., Myers, J., 2013. An opportunity cost model of 
subjective effort and task performance. Behav. Brain Sci. 36, 661–679. 
doi:10.1017/S0140525X12003196 

Lin, H., Saunders, B., Hutcherson, C.A., Inzlicht, M (2017, August). Midfrontal theta and pupil 
dilation track subjective conflict in value-based decisions. Poster session presented at the 
13th International Conference for Cognitice Neuroscience, Amsterdam, Netherlands. 

Liu, W. hua, Wang, L. zhi, Shang, H. rui, Shen, Y., Li, Z., Cheung, E.F.C., Chan, R.C.K., 2014. 
The influence of anhedonia on feedback negativity in major depressive disorder. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neuropsychologia 53, 213–220. doi:10.1016/j.neuropsychologia.2013.11.023 

Lorist, M.M., Boksem, M.A.S., Ridderinkhof, K.R., 2005. Impaired cognitive control and 
reduced cingulate activity during mental fatigue. Cogn. Brain Res. 24, 199–205. 
doi:10.1016/j.cogbrainres.2005.01.018 

Lovibond, P.F., Lovibond, S.H., 1995. The structure of negative emotional states: Comparison of 
the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety 
Inventories. Behav. Res. Ther. 33, 335–343. doi:10.1016/0005-7967(94)00075-U 

Luu, P., Tucker, D.M., 2001. Regulating action: Alternating activation of midline frontal and 
motor cortical networks. Clin. Neurophysiol. 112, 1295–1306. doi:10.1016/S1388-
2457(01)00559-4 

Marin, R.S., Biedrzycki, R.C., Firinciogullari, S., 1991. Reliability and validity of the apathy 
evaluation scale. Psychiatry Res. 38, 143–162. doi:10.1016/0165-1781(91)90040-V 

McGuire, J.T., Botvinick, M.M., 2010. Prefrontal cortex, cognitive control, and the registration 
of decision costs. Proc. Natl. Acad. Sci. 107, 7922–7926. doi:10.1073/pnas.0910662107 

Milyavskaya, M., Inzlicht, M., Johnson, T., Larson, M (submitted in this issue). Reward 
sensitivity following boredom and cognitive effort: A high-powered neurophysiological 
investigation.  

Miltner, W.H.R., Braun, C.H., Coles, M.G.H., 1997. Event-related brain potentials following 
incorrect feedback in a time-estimation task: evidence for a “generic” neural system for 
error detection. 

Mitchell, D.J., McNaughton, N., Flanagan, D., Kirk, I.J., 2008. Frontal-midline theta from the 
perspective of hippocampal “theta.” Prog. Neurobiol. 86, 156–185. 
doi:10.1016/j.pneurobio.2008.09.005 

Nelson, B.D., Kessel, E.M., Jackson, F., Hajcak, G., 2016. The impact of an unpredictable 
context and intolerance of uncertainty on the electrocortical response to monetary gains and 
losses. Cogn. Affect. Behav. Neurosci. 16, 153–163. doi:10.3758/s13415-015-0382-3 

Norman, D.A., Shallice, T., 1986. Attention to Action. Conscious. Self-Regulation 4, 1–18. 
doi:10.1007/978-1-4757-0629-1_1 

Parvaz, M.A., Gabbay, V., Malaker, P., Goldstein, R.Z., 2016. Objective and specific tracking of 
anhedonia via event-related potentials in individuals with cocaine use disorders. Drug 
Alcohol Depend. 164, 158–165. doi:10.1016/j.drugalcdep.2016.05.004 

Paus, T., Zatorre, R.J., Hofle, N., Caramanos, Z., Gotman, J., Petrides, M., Evans, A.C., 1997. 
Time-Related Changes in Neural Systems Underlying Attention and Arousal During the 
Performance of an Auditory Vigilance Task. J. Cogn. Neurosci. 9, 392–408. 
doi:10.1162/jocn.1997.9.3.392 

Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: transforming numbers 
into movies. Spat. Vis. doi:10.1163/156856897X00366 

Proudfit, G.H., 2015. The reward positivity: From basic research on reward to a biomarker for 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/


depression. Psychophysiology 52, 449–459. doi:10.1111/psyp.12370 

Sambrook, T.D., Goslin, J., 2015. A neural reward prediction error revealed by a meta-analysis 
of ERPs using great grand averages. Psychol. Bull. 141, 213–235. doi:10.1037/bul0000006 

Sarter, M., Gehring, W.J., Kozak, R., 2006. More attention must be paid: The neurobiology of 
attentional effort. Brain Res. Rev. 51, 145–160. doi:10.1016/j.brainresrev.2005.11.002 

Saunders, B., Milyavskaya, M., Inzlicht, M., 2015. What does cognitive control feel like? 
Effective and ineffective cognitive control is associated with divergent phenomenology. 
Psychophysiology 52, 1205–1217. doi:10.1111/psyp.12454 

Scheeringa, R., Bastiaansen, M.C.M., Petersson, K.M., Oostenveld, R., Norris, D.G., Hagoort, 
P., 2008. Frontal theta EEG activity correlates negatively with the default mode network in 
resting state. Int. J. Psychophysiol. 67, 242–251. doi:10.1016/j.ijpsycho.2007.05.017 

Shenhav, A., Botvinick, M.M., Cohen, J.D., 2013. The expected value of control: An integrative 
theory of anterior cingulate cortex function. Neuron 79, 217–240. 
doi:10.1016/j.neuron.2013.07.007 

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T.L., Cohen, J.D., Botvinick, M.M., 
2017. Toward a Rational and Mechanistic Account of Mental Effort. Annu. Rev. Neurosci. 
40, 99–124. doi:10.1146/annurev-neuro-072116-031526 

Treynor, W., Gonzalez, R., Nolen-Hoeksema, S., 2003. Rumination reconsidered: A 
psychometric analysis. Cognit. Ther. Res. 27, 247–259. 

Umemoto, A., Holroyd, C.B., 2016. Exploring individual differences in task switching: 
Persistence and other personality traits related to anterior cingulate cortex function. Prog. 
Brain Res. 229, 189–212. 

Umemoto, A., Holroyd, C.B., 2017. Neural mechanisms of reward processing associated with 
depression-related personality traits. Clin. Neurophysiol. 128, 1184–1196. 
doi:10.1016/j.clinph.2017.03.049 

Van den Berg, I., Franken, I.H.A., Muris, P., 2010. A new scale for measuring reward 
responsiveness. Front. Psychol. 1, 1–7. doi:10.3389/fpsyg.2010.00239 

Vassena, E., Holroyd, C.B., Alexander, W.H., 2017. Computational models of anterior cingulate 
cortex: At the crossroads between prediction and effort. Front. Neurosci. 11, 1–9. 
doi:10.3389/fnins.2017.00316 

Verguts, T., Vassena, E., Silvetti, M., 2015. Adaptive effort investment in cognitive and physical 
tasks: a neurocomputational model. Front. Behav. Neurosci. 9. 
doi:10.3389/fnbeh.2015.00057 

Vogt, B.A., 2009. Cingulate Neurobiology and Disease. Oxford University Press, Oxford, UK. 

Walsh, M.M., Anderson, J.R., 2012. Learning from experience: Event-related potential correlates 
of reward processing, neural adaptation, and behavioral choice. Neurosci. Biobehav. Rev. 
36, 1870–1884. doi:10.1016/j.neubiorev.2012.05.008 

Wascher, E., Rasch, B., Sanger, J., Hoffmann, S., Schneider, D., Rinkenauer, G., Heuer, H., 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gutberlet, I., 2014. Frontal theta activity reflects distinct aspects of mental fatigue. Biol. 
Psychol. 96, 57–65. doi:10.1016/j.biopsycho.2013.11.010 

Westbrook, A., Braver, T.S., 2015. Cognitive effort: A neuroeconomic approach. Cogn. Affect. 
Behav. Neurosci. 15, 395–415. doi:10.3758/s13415-015-0334-y 

Wylie, G.R., Genova, H.M., DeLuca, J., Dobryakova, E., 2017. The relationship between 
outcome prediction and cognitive fatigue: A convergence of paradigms. Cogn. Affect. 
Behav. Neurosci. doi:10.3758/s13415-017-0515-y 

 

 
 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199687doi: bioRxiv preprint 

https://doi.org/10.1101/199687
http://creativecommons.org/licenses/by-nc-nd/4.0/

