
1 

Deciphering programs of transcriptional regulation by 

combined deconvolution of multiple omics layers. 

 
Daniel Hübschmann1,2,3†, Nils Kurzawa1,2,4†, Sebastian Steinhauser1,5†, Philipp Rentzsch1,6†, 

Stephen Krämer1, Carolin Andresen1, Jeongbin Park1, Roland Eils1,2, Matthias Schlesner1,7*† 

and Carl Herrmann1,2*† 

 

1. Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im 

Neuenheimer Feld 280, 69120 Heidelberg, Germany.   

2. Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and 

Molecular Biotechnology (IPMB) and BioQuant, Im Neuenheimer Feld 267, 69120 

Heidelberg, Germany.   

3. Department of Pediatric Immunology, Hematology and Oncology, University Hospital 

Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.   

4. Present address: Genome Biology Unit, European Molecular Biology Laboratory 

(EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany. 

5. Present address: The Francis Crick Institute and Imperial College London, 1 Midland 

Rd, Kings Cross, NW1 1AT London, UK.   

6. Present address: Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 

Berlin, Germany. 

7. Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center 

(DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.  

      †  These authors contributed equally to this work 

      * Correspondence should be addressed to  

carl.herrmann@uni-heidelberg.de and m.schlesner@dkfz.de  

 

Abstract 

Metazoans are crucially dependent on multiple layers of gene regulatory mechanisms which 

allow them to control gene expression across developmental stages, tissues and cell types. 

Multiple recent research consortia have aimed to generate comprehensive datasets to profile 

the activity of these cell type- and condition-specific regulatory landscapes across many 

different cell lines and primary cells. However, extraction of genes or regulatory elements 

specific to certain entities from these datasets remains challenging. We here propose a 

novel method based on non-negative matrix factorization for disentangling and associating 
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huge multi-assay datasets including chromatin accessibility and gene expression data. 

Taking advantage of implementations of NMF algorithms in the GPU CUDA environment full 

datasets composed of tens of thousands of genes as well as hundreds of samples can be 

processed without the need for prior feature selection to reduce the input size. Applying this 

framework to multiple layers of genomic data derived from human blood cells we unravel 

mechanisms of regulation of cell type-specific expression in T-cells and monocytes.  

 

Keywords: regulatory architecture; non-negative matrix factorization; cell type-specific 

regulation; ATAC-seq; RNA-seq; hematopoiesis 

 

Background 

Multicellular organisms heavily rely on the specialized function of various tissues, each of 

which is composed of a multitude of distinct cell types. To achieve this great intra-organismal 

complexity from cells that all carry the same DNA sequence, multiple layers of gene 

expression regulation cooperate to tune transcript and ultimately protein levels and promote 

distinct cellular phenotypes [1]. Regulatory elements which are clusters of transcription factor 

binding sites can regulate expression of nearby and remote genes [2]. Thereby, especially 

distal acting regulatory elements such as enhancers are crucial to establish and maintain cell 

type-specific gene expression [3]. 

In recent years, several large consortia attempted to understand cellular gene expression 

regulation by generating huge datasets comprising multiple assays and cell types [4–7]. 

However, it is fay beyond trivial to discover features (e.g. genes or genomic loci such as 

enhancers) in these datasets that specifically correspond to one unique entity which can be 

different tissues, developmental stages or different treatment conditions or features that 

contribute to distinct processes or developmental stages [8]. 

Principal component analysis (PCA) is commonly used to explore high-dimensional datasets 

and can be exploited to extract features that separate certain subgroups. However, due to 

PCA‘s freedom of mixing negative and positive feature contributions, it does not necessarily 

resolve fine differences between entities in big datasets in a sufficient manner. In contrast to 

PCA, non-negative matrix factorization (NMF) which aims at finding two non-negative 

matrices that factorize an input matrix, forces all features to be represented in an additive 

manner. Hence NMF leads to a "parts-based representation", and thus to a better 

interpretability of the derived signatures [9]. NMF has been used in different settings for 

analysis of Next Generation Sequencing (NGS) data [10–21]. In this article, we introduce a 

novel framework implemented in R called Bratwurst, which allows efficient matrix 

decomposition of any genomic data type represented as a numeric matrix. We take 
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advantage of implementations of NMF algorithms in the GPU CUDA environment. Given the 

performance of these GPU implementations, full datasets composed of tens of thousands of 

genes or hundreds of thousands of genomic regions, as well as hundreds of samples can be 

processed, without the need for prior feature selection to reduce the input size.  

Besides the NMF algorithm itself, we present a novel strategy to combine omics datasets by 

comparing and matching signatures originating from distinct data types. Using different pre-

labeled cell types of the human hematopoietic system [22], we show how this method can be 

used to achieve a dimensionality reduction, to produce a powerful visualization of the data 

and to extract cell type-specific features. 

 

Results and Discussion 

A novel workflow for GPU-based decomposition of genomic datasets 

We implemented the R package Bratwurst, which provides a multi step workflow for applying 

GPU-based NMF to genome-wide signals across multiple omics layers (available at 

https://github.com/wurst-theke/bratwurst). In addition, Bratwurst includes functionalities to 

determine the optimal factorization ranks and to extract signature-specific features. The 

workflow is schematically illustrated in Figure 1: 

- Step 1: Preprocessing.  Before running an NMF analysis, data pre-processing is 

highly recommended. Emphasis should be placed on two aspects: (i) reduction of 

sparsity of the input matrix (e.g. by removing rows and columns which have only zero 

entries or entries smaller than a user-defined cutoff) and (ii) centering and rescaling 

of the data (e.g. with the help of the function estimateSizeFactorsForMatrix() 

from the R package DESeq2 [23]). As numerous techniques for scaling, centering 

and filtering of data are available, the workflow offers a wide flexibility to the user at 

this step. 

- Step 2: NMF. NMF is a family of algorithms to factorize one large matrix V (of 

dimensions n x m) into two smaller matrices W (the signature matrix of dimensions n 

x k) and H (the exposure matrix of dimensions k x m) under the constraint of non-

negativity on all entries in both factor matrices W and H (Figure 1). k is called the 

factorization rank; a complexity reduction is achieved if k < n and k < m. In addition to 

a novel CUDA-based NMF implementation, the Bratwurst package allows to use 

different existing NMF implementations like the CUDA-based NMF_GPU [24] or a 

CPU implementation from the R package NMF [25]. The factorization rank k is a free 

parameter for any NMF method. The optimal factorization rank can be determined 

with the following strategy [26]: iterate over different factorization ranks, evaluate 

quality metrics for any one of them and choose the rank which complies best with the 
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quality metrics. Relationships between signatures extracted at different factorization 

ranks k may be visualized as Sankey diagrams or riverplots [27] (Figures S3 and S4). 

For details we refer to the methods section. 

- Step 3: Mapping signatures to labelled groups of samples. The exposures 

(encoded in the matrix H) represent the contributions of the signatures to the different 

samples. These are used to group the samples and attribute subgroups to 

signatures. Names for the signatures are assigned generically by the function 

getSignatureNames() based on available group labels provided by the user. The 

assignment of subgroup names and other properties (e.g. colour coding) to the 

extracted signatures can be transferred to the riverplot visualization (Figure S3 and 

S4), showing at which factorization rank which pattern arises. 

- Step 4: Feature selection. Once signatures are assigned to subgroups of samples, 

features with a high contribution to a specific signature can be extracted using the 

following non-parametric procedure:  

- (i) For every feature f, i.e. every row of the matrix W, perform a k-means 

clustering with k = 2. In general, there will be a subset of signatures with high 

contributions of f and a subset of signatures with low contributions of f. 

- (ii) For each feature, we obtain a binary vector across the signatures 

indicating to which of the signatures this feature has particularly high 

contributions. We can now find features which contribute highly to one single 

signature (single-signature features). Conversely, features which contribute 

substantially to more than one signature are called multi-signature features. 

The extracted single-signature or multi-signature features can be used for 

downstream analyses e.g. enrichment analyses (see Methods). 

 

For datasets with multiple data layers, multi-omics integration can now be performed by 

analyzing every layer individually (steps 1-4) and relating the resulting signatures by pairwise 

comparisons.  

 

In the next section, we will present an example of such a multi-omics integration based on 

matching expression and chromatin accessibility datasets obtained in human blood cells. 

 

 

Transcriptional and regulatory programs in hematopoiesis. 

We applied our integrative approach to a recently published dataset of sorted blood cell 

populations, for which both RNA-seq and ATAC-seq are available [22]. In this work, we used 

a subset of 12 cell populations across 45 samples for RNA-seq and 68 samples for ATAC-
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seq, covering different branches of the haematopoietic tree, and various stages of 

differentiation from stem cells to terminally differentiated cells. For 24 samples, both data 

types were available. 

Applying the NMF workflow on both datasets, the optimal factorization ranks kRNA-seq= 8 and 

kATAC-seq= 9 were found. Supplemental Figure S1 illustrates different metrics justifying the 

choice of these factorization ranks. The choice of the optimal factorization rank is highlighted 

by transparent grey rectangles. Remarkably these distinct datasets yielded very similar 

optimal factorization ranks, i.e. very similar numbers of signatures, suggesting that there is a 

common underlying structure relating the regulatory landscape of open chromatin regions to 

the transcriptional landscape.  For both decompositions, most signatures were highly 

specific to a particular cell population or group of cell populations (Figures 2a and 2c). 

Signatures extracted from RNA-seq were labeled R1 - R9 (note that there is no R2, therefore 

this corresponds to eight labels) and signatures extracted from ATAC-seq were labeled A1 - 

A9. For example, signature R5 of the RNA-seq data showed a high specificity for 

CD4+/CD8+ T-cells, while signatures R7 and R8 were specific to the NK cells and 

monocytes, respectively. Gene ontology enrichment analyses with the R package topGO 

[28] of the single-signature features extracted from the expression signatures revealed GO 

terms matching the biological function of the respective cell types: for the T-cell expression 

signature many terms related to T-cell differentiation, activation and co-stimulation, for the 

monocyte expression signature terms including complement receptor activity and opsonin 

receptor activity and for the NK cell expression signature terms like natural killer cell 

mediated immunity, cytotoxicity, chemotaxis, innate immune response or MHC class I 

receptor activity (Suppl. Tables 2 and 3). Signature R1 is particularly interesting, as it shows 

the highest specificity to the most early stages HSC and MPP, but still appears, though to a 

lesser degree, in the more differentiated progenitor stages as LMPP, GMP and CMP. We 

interpret this signature as a stemness signature, which fades away as differentiation 

progresses and which is absent in the most differentiated cell types. Gene ontology terms 

associated with this signature were e.g. mesenchymal cell differentiation involvement, cell 

fate specification or cGMP binding. Genes listed in the MSigDB [29,30] signature 

EPPERT_HSC_R [31], which are up-regulated in HSC enriched populations as compared to 

committed progenitors and mature cells, are significantly enriched among the genes highly 

expressed in this signature (p = 2.154 * 10-14 as tested with egsea.ora() from the R 

package EGSEA [32]). As such, exposures to the signatures reflect developmental 

trajectories and similarities between the cell populations.  

In both decompositions, we found one signature which captures only features (genes or 

regions) with low specificity, such as e.g. housekeeping genes. Concordantly, gene ontology 

enrichment analysis yielded housekeeping activities including mitochondrion organization, 
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organelle organization, intracellular transport, RNA processing or DNA repair (Suppl. Tables 

2 and 3).   

 

We compared the NMF decomposition to other dimension-reduction approaches, such as 

PCA. Applying PCA to the same input matrices that were used for NMF, we observed a 

separation of the cell types according to the first and second principal components (Fig 2b). 

In order to interpret PCs, we colored the samples according to their exposures to different 

NMF signatures, the HSC/MPP, the T-cell and the monocyte signatures (Fig 2b). While the 

separation between myeloid and lymphoid populations appeared clearly along PC1, there 

was no fine-grained separation of the cell types; for example, the NK and T-cells remained 

closely clustered together, while they were characterized by distinct signatures in the NMF 

decomposition. Even when we included a number of PCs comparable to the number 

signatures, we still could not recover a one-to-one correspondence between PCs and cell 

populations. For example, there was no PC in RNA-seq or ATAC-seq which distinguished 

NK cells from the other populations (Supplemental Figure S1). Hence, NMF-derived 

signatures showed a higher discriminatory power between biological groups (cell types). In 

addition, signatures followed a hierarchy of prominence in the underlying data. To display 

this, we combined NMF with a Sankey diagram or riverplot visualization which displays this 

hierarchy between signatures extracted at different factorization ranks (Supplementary 

Figures S3 and S4 and Methods section). Signatures extracted at all iterated factorization 

ranks were compared by non-negative least squares and ordered in a tree-like 

representation which minimizes edge weights. Signatures extracted at the optimal 

factorization rank were defined as reference signatures. Signatures extracted at all other 

factorization ranks were compared to these reference signatures, inheriting their labels and 

colour codes. At the top of the riverplot for RNA-seq (at rank 2, corresponding to 2 

signatures), one myeloid (R3) and one T-cell signature (R5) were found. At rank 3, the next 

signature which was extracted was the monocyte signature (R8), followed by the B-cell 

signature (R6) at rank 4, the stemness signature (R1) at rank 5, the NK cell signature (R7) at 

rank 7 and the diffuse signature (R8) at rank 8.  

 

The ATAC-seq signatures clearly distinguished the various cell populations, achieving a fine-

grained description of the samples (Fig. 2c). Compared to the RNA-seq analysis, we found a 

very similar signature decomposition, with one additional signature. Interestingly, this 

additional signature showed a high exposure both in LMPP and in GMP, highlighting the 

relation between these two cell populations.  

Visualizing ChIP-seq data from ENCODE [4] and ROADMAP [5] showed that the regions 

defined by the single-signature features from our ATAC-seq signatures were characterized 
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by enrichment of H3K27ac and H3K4me1 and depletion of H3K27me3, H3K4me3 and 

H3K9me3 in the differentiated cell types (Fig. 3 for monocytes, Suppl. Fig. S5 for other cell 

types: first page for CD4-positive T-cells, second page for B-cells, third page for NK cells, 

fourth page for CD8-positive T-cells). The regions identified in these cell types thus showed 

epigenetic enhancer hallmarks [33]. 

 

Given the comparable number of signatures in both datasets, we anticipated that there is a 

profound relationship between these signatures. In order to understand the origin of this 

almost one-to-one matching, we extracted the features (genes and genomic regions) 

corresponding to the RNA-seq and ATAC-seq signatures. We plotted the signal of the 

single-signature features across all datasets (gene expression for the specific genes and 

ATAC-seq signal for the specific regions, Fig 4a,b). Apart from the additional LMPP/GMP 

ATAC-seq signature A2, we again saw a clear overall correspondence between the 

signatures. However, we also observed interesting differences. For example, the RNA-seq 

signature R3 showed a specific expression only in MEP, while the corresponding ATAC-seq 

signature A3 showed a high signal in MEPs and to a lesser extend in CMPs. This is 

interesting as CMPs are upstream of MEPs, and these regions could correspond to 

regulatory elements which are primed at the CMP stage and get activated at the MEP stage. 

To test this hypothesis with publicly available data, we plotted the ChIP-seq signals 

H3K27me3, H3K4me1, H3K4me3 and H3K9me3 in CMPs across the single-signature 

features of the different ATAC-seq signatures (Suppl. Fig. S6, first page). Among generally 

weak signals for the CMP signature A3, there was a slight peak in H3K4me1. In the absence 

of publicly available  human H3K27ac data for CMPs and MEPs, a complementary analysis 

was performed: we investigated bidirectional transcription with publicly available FANTOM5 

data [6,34,35] (Suppl. Fig. S6, second page). In contrast to the differentiated cell types 

(Suppl. Fig. S7, first page for monocytes, second page for CD4-psotive T-cells, third page for 

B-cells, fourth page for NK cells, fifth page for CD8-positive T-cells), the single-signature 

feature regions of the CMP signature A3 showed no clear pattern of bidirectional 

transcription. Taken together with solely H3K4me1 in ChIP-seq, this is well compatible with 

primed enhancers at the CMP stage.  

 

To support the qualitative matching between the signatures and to perform a multi-omics 

integration, correlations between the exposures to the RNA-seq and ATAC-seq signatures 

(i.e. HRNA-seq and HATAC-seq; Fig 4c) and comparisons of the signature matrices (i.e. WRNA-seq 

and WATAC-seq; Fig 4d and 4e, where Fig 4d was generated using all ATAC single-signature 

features and Fig 4e was generated using only the promoters) were used. The largest 

correlations of exposures and signatures themselves were observed between corresponding 
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pairs of RNA/ATAC signatures.  

To study the degeneracy, i.e. the distribution of redundancy among the features of the 

signatures identified for RNA-seq and ATAC-seq, we counted single-signature features and 

multi-signature features (resolving dual-signature features, triple-signature features etc. up to 

the respective maximum levels of degeneracy, i.e. eight for RNA-seq and nine for ATAC-

seq). These counts are shown as barplots in Figure 5b. We observed that in both omics 

layers, the relative majority of features showed the highest possible level of degeneracy, i.e. 

they were not specific (high bar in the right of Figure 5b). In order to highlight gross 

differences between different types of regulatory elements, we labelled ATAC-seq peaks as 

promoters if they were located within 500 bp of the start of an exon. All other ATAC-seq 

peaks were labelled as enhancers. Using this definition, we found that a very high fraction of 

promoters were open in all cell types, whereas the fraction of enhancers which were open in 

all cell types was lower. When focusing on the remainder of the distributions beyond the 

strong peak at the right end of the spectrum, further striking differences were observed: 

whereas genes in RNA-seq showed decreasing counts with increasing levels of degeneracy, 

ATAC-seq peaks followed a bell-shaped curve and reached their maximum count in the 

middle of the spectrum. This may highlight a general principle in the hematopoietic lineage: 

regulation of cell type specific gene expression occurs mainly via combination of regulatory 

elements which taken individually are neither exclusive nor specific to the cell types [8].  

 

It is well known that regulatory elements do not always target the closest gene, but might 

interact with genes located more distally. To get a more accurate view of the regulatory 

interactions, we took advantage of a recently published dataset of chromatin interactions 

obtained through promoter-capture Hi-C (PCHi-C) in 17 sorted primary blood cell 

populations, three of which matched cell types of this analysis [36]: B-cells, T-cells and 

monocytes, to which we restrict the analysis in the following. Starting from the single-

signature features for the three corresponding ATAC-seq signatures we mapped these 

elements using PCHi-C to their respective target genes and recorded which RNA-seq 

signatures these genes were specific to. As expected, a large portion of single-signature 

ATAC regions mapped to genes belonging to the corresponding RNA-seq signature (Fig 5a). 

Conversely, starting from the genes which are specific to the RNA-seq signatures involving 

T-, B-cells and monocytes, the majority of them interacted with ATAC-seq regions which 

were specific to the corresponding RNA-seq signature. Two examples of such interactions 

are shown in Fig. 6. 

CD28 had a clear T-cell-specific expression pattern (Fig. 6b). Among the three cell types of 

interest, this gene had the largest number of interactions to regulatory regions in T-cells, and 

only one common interaction across all cell types, mapping to a genomic region in the 
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promoter of the gene CTLA4. This region appeared to be widely open in T-cells (middle 

panel of Fig. 6c), with a very reduced ATAC-seq signal in B-cells and monocytes. Hence the 

promoters of CD28 and CTLA4 interacted  in several cell-types, but the regulatory region 

was open only in T-cells. The cell-type specificity was thus provided by the openness of 

chromatin only. This locus also exhibited another mechanism, in which the specificity was 

provided solely by chromatin conformation: another ATAC-seq peak (dashed rectangle in 

Fig. 6c), located in the intergenic region between CTLA4 and CD28, showed openness in T-

cells and monocytes. Yet only T-cells exhibited an interaction with this potential enhancer, 

whereas monocytes did not. 

The gene MAFB [37] was a single-signature feature for the monocyte RNA-seq signature.  

Exclusively in monocytes, this gene was subject to PCHi-C interactions with several loci, two 

of which (highlighted in grey in Fig 6f) belonged to the monocyte-specific ATAC-seq 

signature. 

 

However, beside these interactions showing a positive regulation, a significant proportion of 

ATAC-seq regions specific to a particular cell type mapped to genes that were specific for 

another cell type. Roughly 10% of the monocyte specific ATAC-seq regions mapped to 

genes that are B-cell-specific (Fig. 5b). Two examples of such hybrid interactions are shown 

in Fig. 7.  

The gene ARHGAP22, a Rho-GTPase activating protein, was specifically expressed in B-

cells and monocytes, but silent in T-cells. One specific locus in the promoter of the ERCC6 

gene (highlighted in grey, Fig 7c), which mapped to ARHGAP22 in PCHi-C, showed a 

striking T-cell specific ATAC-seq signal. This inverted expression/chromatin pattern suggests 

that this specific region is a silencer element in T-cells. Indeed, ENCODE ChIP-seq in 

GM12878 showed a peak for RUNX3 at this position, which has been described previously 

as a repressor of CD4 in T-cell lineage decisions [38]. Of note, ARHGAP22 is included in a 

predictive 17 gene score for AML risk estimation [39] and has been linked to regulation of 

tumor cell mobility [40].  

The gene BACH2 was expressed in both B-cells and T-cells (Fig. 7e), and displayed a 

complex array of interactions in these two cell types. Interestingly, many of these connected 

regions showed a pattern which was specific of either cell type; the highlighted region (Fig. 

7f) was strongly and specifically open in B-cells but closed in T-cells. Another region (close 

to the 5’ end of the BACH2 transcript, highlighted by a dashed rectangle in Fig. 7f) showed 

an opposite pattern of strong T-cell signal, and no signal in either B-cells or monocytes. This 

indicates that the transcriptional regulation occured here via very distinct regulatory 

programs. 
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Discussion 

We presented a new workflow implemented into an R package called Bratwurst (available at 

https://github.com/wurst-theke/bratwurst), which implements a novel NMF workflow for 

genomic datasets. Through wrapper functions for NMF solvers implemented in CUDA, it 

makes the highly parallel architecture of GPUs and efficient matrix operations available to 

decompositions of large matrices in R. One major advantage of NMF is that both matrices 

issued from the factorization, the signatures matrix W and the exposure matrix H, can be 

used for data analysis and interpretation. Notably, we use the exposure matrix H for a 

comparison with labels of the samples for recovery of predefined subgroups and thus 

extraction of subgroup-specific signatures. 

The extracted signatures correspond to subgroup-specific patterns. Here, we applied the 

functionality provided by the Bratwurst package to published RNA-seq and ATAC-seq data 

obtained from multiple hematopoietic cell types [22]. Signatures extracted from RNA-seq 

correspond to transcriptional programs and those extracted from ATAC-seq data correspond 

to regulatory programs. Relating signatures extracted from the two different omics layers 

corresponds to relating transcriptional to regulatory programs well beyond relating single 

genes to single regulatory elements. The functionality in Bratwurst is in no way limited to 

these two data types, and can be applied to all high-dimensional data. Additional 

information, like e.g. chromatin conformation data, may be used to enhance the relationship 

between the signatures extracted from the different omics layers. Thus, Bratwurst is also a 

powerful tool for multi-omics integration. 

Beyond matrix factorization by NMF and multi-omics comparison, the Bratwurst package 

provides a new feature selection strategy. It extracts features (i.e. genes in the case of RNA-

seq and regions in the case of ATAC-seq) which are specific for single signatures (single-

signature features) or for groups of signatures (multi-signature features). This strategy is 

non-parametric and does not depend on user choices for cutoffs or assumptions of any kind. 

Extracted features may be used for different purposes in a downstream analysis, including 

but not limited to focused analyses of single genes and their regulome or enrichment 

analyses. 

The design of the feature selection strategy allows to tune specificity to a user-defined level: 

single-signature features being most specific, and specificity gradually decreasing with 

increasingly broad combinations of signatures. The specificity of the whole method scales 

with increasing factorization rank. Therefore, transparent and reproducible strategies to 

determine the optimal factorization rank, as implemented in the workflow presented here, are 

mandatory. 
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Inclusion of the Sankey diagram or riverplot visualization into the downstream analysis after 

NMF provides additional information which would otherwise not be available: signatures at 

different factorization ranks are compared and ordered by their degree of similarity, providing 

a tree structure showing how additional signatures emerge at increasing factorization ranks. 

In the application to different cells of hematopoiesis, the above strategy yields new insights 

into the interplay between open chromatin, chromatin conformation and gene expression. 

Considering that subtle differences in transcript abundance might be required to establish a 

certain cellular phenotype, observations as the regulatory landscape of BACH2 (Figure 

7d,e,f) indicate that cells make use of such highly complex compositions of regulatory 

elements to fine tune target gene expression. Different examples highlighted that cell type-

specific gene expression can be regulated via cell type-specific chromatin interactions, cell 

type-specific chromatin openness or combinations thereof. Different cell types use different 

enhancers to trigger expression of the same gene. Similar transcriptional states are 

achieved by distinct regulatory programs (Figure 7). The majority of the enhancers which 

constitute these regulatory programs are not specific to single cell types but are conserved 

across several cell types instead (Figure 5b). The programs, however, which are 

combinations of these less specific regulatory elements, are very specific for the different cell 

types [41]. Additionally, a few cell type-specific regulators are present. The type of analysis 

presented in this work enables an in depth dissection of this plethora of interacting 

mechanisms.  

The capacities of a package like Bratwurst may become increasingly valuable with the 

increasing amounts of produced and available data from different omics technologies. 

Single-cell technologies are revolutionizing the understanding of complex and 

heterogeneous biological systems, notably in upcoming consortia efforts such as the human 

cell atlas [42]. Bratwurst may be a suitable tool to extract and relate regulatory and/or 

transcriptional programs in single-cell data analogously to the bulk data analyzed in this 

manuscript. As NMF algorithms have recently been successfully applied to single-cell RNA-

seq data in order to obtain clusters or subgroups [43,44], our feature extraction methodology 

could be applied to such factorizations and map features to subgroups. In addition the ability 

of our method to integrate across multiple omics layers could also benefit the analysis of 

upcoming datasets with multi-omics measurements in single cells [45–47]. 

 

Conclusion 

The Bratwurst software provides functionalities to identify patterns in different types of omics 

data with NMF, relate the identified patterns to subgroups, select features highly specific to 

the different patterns and integrate the patterns extracted from the different omics layers. 
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Portation of NMF to GPUs takes advantage of massive parallelization and enables 

deconvolution of large matrices with NMF. We applied this software to RNA-seq and ATAC-

seq data from hematopoietic cells and found distinct cell type-specific and intimately linked 

regulatory and transcriptional programs. Our software can be applied to any omics data type 

and is a powerful tool for multi-omics integration. 

 

 

Methods 

As outlined in the workflow section of the results part of this manuscript, Bratwurst 

(https://github.com/wurst-theke/bratwurst) provides a multi-step workflow. We herewith 

provide complementary and detailed descriptions of the different steps and describe choices 

made for the analysis of RNA-seq data and ATAC-seq data of hematopoietic cells from the 

Corces et al. dataset. Furthermore, Bratwurst introduces a new S4 class, nmfExperiment, 

which inherits from SummarizedExperiment [48]. 

- Step 1: Preprocessing.   

- (a) Preprocessing of the RNA-seq data: after download from 

ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE74nnn/GSE74246/suppl/GSE74246

%5FRNAseq%5FAll%5FCounts.txt.gz, HSC, MPP, LMPP, CMP, GMP, MEP, 

CLP, CD4-positive T-cell, CD8-positive T-cell, NK cell, B-cell, and monocyte 

samples were chosen for analysis. In addition, the sample X5852.GMP was 

removed, as it had much smaller library size than other GMP samples and 

was considered as an outlier in this respect. Rows with only zero entries were 

removed, and a rescaling with the function 

estimateSizeFactorsForMatrix() from the R package DESeq2 [23] 

was performed. The data were log2(x + 1)-transformed and finally stored in 

the object rna.nmf.exp of class nmfExperiment (available at 

https://doi.org/10.5281/zenodo.800049). 

- (b) Preprocessing of the ATAC-seq data: after download from 

ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE74nnn/GSE74912/suppl/GSE74912

%5FATACseq%5FAll%5FCounts.txt.gz, samples of the same cell types as for 

RNA-seq were chosen for analysis and preprocessing was performed 

analogously. Rows with rowSums < 2000 were removed, and sample 

X6792.7A was removed due to low coverage. In analogy with preprocessing 

of RNA-seq data, a rescaling with the function 

estimateSizeFactorsForMatrix() from the R package DESeq2 [23] 

and a subsequent log2(x + 1) transformation were performed. Data from the 
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ATAC-seq analysis is stored in the object atac.nmf.exp of class 

nmfExperiment (available at https://doi.org/10.5281/zenodo.800049). 

- Step 2: NMF. As illustrated in the center of Figure 1, the task of NMF algorithms is to 

factorize one large matrix V (of dimensions n x m) into two smaller matrices W (the 

signature matrix of dimensions n x k) and H (the exposure matrix of dimensions k x 

m) under the constraint of non-negativity on all entries in both factor matrices W and 

H (Figure 1): 

 

     � · � � �       (Formula 1)  

In this work we stick to the following nomenclature: we call the rows of the input 

matrix V and of the signature matrix W features. Usually, the columns of V (and thus 

the columns of H) correspond to samples. The exposure matrix H represents 

contributions of the k identified signatures to the n different input samples and may 

be used for a soft clustering, whereas the signature matrix W captures the 

contributions of the m different features to the k signatures. In order to achieve a 

reduction in complexity and dimensionality, the factorization rank k, which is a free 

parameter, has to be chosen s.t. k < n and k < m. 

The task of NMF algorithms may be reformulated as an optimization problem in 

which the residuals are to be minimized: ������	
�� ��  �� under the above-

mentioned constraint of non-negativity. In order to solve this optimization task, all 

NMF algorithms share an internal two-substep procedure: (i) initialization and (ii) 

iteration over update equations. The different algorithms in the NMF family have 

different implementations of these internal substeps. In principle, any of these 

algorithms may be called from Bratwurst. If no GPU is available, Bratwurst by default 

uses an NMF implementation which is executed on the CPU (R package NMF [25]). 

If a GPU is available, an NMF implementation taking advantage of this highly parallel 

architecture for efficient matrix operations can be used by Bratwurst, e.g. NMF_GPU 

[24] (function runNmfGpu()). In the following, we present the details of a new 

implementation of an NMF-solver using the python modules PyCUDA 

(https://pypi.python.org/pypi/pycuda) and cudamat (https://github.com/cudamat) as 

interface to the NVIDIA CUDA 8 toolkit. This solver is called by a wrapper function 

from the R package Bratwurst (function runNmfGpuPyCuda()): 

- (i) The initialization is performed by filling initial instances of the matrices W 

and H with random numbers. 

- (ii) Iteration until convergence over update equations as used in [9]. 

One run of iterations over update equations after choosing one set of initial 
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conditions yields one solution (if leading to convergence). In order to sample the 

available parameter space, however, it is necessary to choose different initial 

conditions and iterate update equations until convergence starting from these. 

Among all tested initial conditions, the one with the lowest residual is chosen. 

Therefore, the steps (i) and (ii) described above are wrapped into an iteration over 

initial conditions. This gives NMF a stochastic character. 

As the factorization rank k is a free parameter for any NMF method, Bratwurst 

determines the optimal factorization rank by iterating over different factorization 

ranks, evaluating quality metrics for any one of them and selecting the rank which 

complies best with the quality metrics [26]. In this work, we chose to: 

- minimize the Frobenius norm of the residuals (function 

computeFrobErrorStats()) 

- maximize the cophenetic correlation coefficient [10] (function 

computeCopheneticCoeff()) and 

- minimize the Amari-type distance [14] (function 

computeAmariDistances()). 

The function proposeOptK() gives a suggestion for the optimal factorization rank. 

Therefore, in an analysis with Bratwurst, we follow a threefold nested iterative 

procedure: 

- (1) iteration over factorization ranks 

- (2) iteration over initial conditions 

- (3) iteration over update equations 

The class nmfExperiment provides slots to store the factorized matrices W and H 

from every single factorization. It is important to keep this data in order to be able to 

compute the quality metrics described above. The matrices are stored in a named list 

of lists (the upper level is named by factorization rank, the lower level by the iterating 

index over initial conditions), for which the accessor functions HMatrix(), 

HMatrixList(), WMatrix() and WMatrixList() are provided. 

For the analyses of both the RNA-seq (a) and ATAC-seq (b) data from Corces et al. 

[22], update equations were iterated 2 · 104 times unless convergence was reached 

earlier (checked every 10 iterations). 200 iterations over initial conditions were 

performed. Iterations over factorization ranks covered the range 2 - 14. 

Signatures extracted at different factorization ranks can be visualized in a Sankey 

diagram or riverplot [27]. In this two-dimensional tree representation (function 

generateRiverplot()), the nodes correspond to the extracted signatures and the 

edge weights are determined by computing non-negative least squares 
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decompositions of the signatures at factorization rank r with the signatures at the next 

lower factorization rank r - 1. The y-coordinate encodes factorization rank (increasing 

from top to bottom), whereas the x-coordinate denotes the signatures extracted at 

one fixed factorization rank. The nodes, corresponding to the signatures, are ordered 

according to similarity across factorization ranks, leading to thick edges being short 

and thin edges being long.  

A matrix factorization of type � ·� �  � is invariant under scalar transformations with 

a constant factor c: �� �  �
�

· � and �� � � · �. This ambiguity can be resolved by 

imposing the requirement that W is column-normalized. In order to keep the data 

stored in an object of class nmfExperiment consistent, it is important to perform the 

column normalization of W and corresponding rescaling of H on all matrices stored in 

the object (originating from the different iterations) simultaneously. This is done by 

the function normalizeW(). The normalized versions of (a) the RNA-seq data and 

(b) the ATAC-seq data are stored in the objects norm.rna.nmf.exp and 

norm.atac.nmf.exp, respectively (also available for download at 

https://doi.org/10.5281/zenodo.800049) 

- Step 3: Mapping signatures to labelled groups of samples. This step is described 

in detail in the workflow section of the results part of this manuscript. After having 

mapped signatures to subgroups of samples, the riverplot generated in the previous 

step can be updated. To this end, the signatures extracted for the optimal 

factorization rank are defined to be reference signatures. A colour coding of these 

reference signatures may be inherited from sample annotations. All signatures in the 

riverplot, i.e. signatures extracted at all iterated factorization ranks, are then labelled 

and coloured according to the most similar reference signature, where similarity is 

computed by cosine similarity (function attributeComparisonSignatures()).  

- Step 4: Feature selection. This step is described in detail in the workflow section of 

the results part of this manuscript. The extracted lists of single-signature features and 

multi-signature features are stored in specific slots of norm.rna.nmf.exp and 

norm.atac.nmf.exp, respectively (available for download at 

https://doi.org/10.5281/zenodo.800049). Enrichment analyses can be applied to the 

feature lists extracted as described above. 

 

The analysis (Steps 1-4) was run individually for RNA-seq and ATAC-seq data. In order to 

relate these two layers of data, pairwise comparisons between the exposures (rows of the 

matrices HRNA-seq and HATAC-seq) and the signatures (columns of the matrices WRNA-seq and 

WATAC-seq) were performed. Exposures of the two different omics layers were compared by 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/199547doi: bioRxiv preprint 

https://doi.org/10.1101/199547


16 

pairwise correlations of the rows of the exposure matrices: 

   ���
� � �	
�����	
��,��·�, ����
��,��·�   (Formula 2) 

where ����	
��,��·� is the ith row of the matrix ����	
�� and ����
��,��·� is the jth row of the 

matrix ����
�� . 

The signatures, i.e. the columns of the matrices W of the two omics layers, are vectors of 

different lengths. In order to compare these by pairwise correlation, one omics layer has to 

be transformed by a suitable metric M. Such a metric can be obtained by first computing 

pairwise genomic distances between the features of the two different omics layers (genes for 

RNA-seq and regions for ATAC-seq): 

   ��� � �����
���	����	
��,� , �������
��,�  (Formula 3) 

Next, a suitable function of the distances is applied element-wise to this matrix. According to 

Ouyang et al. [49], this function can be chosen as 

   ���� � �


�

��      (Formula 4) 

where d0 is a characteristic distance evaluated to be 5000 bp in [49]. We can then compute 

the comparison of the matrices W as: 

  ���
� � �	
�����	
��,�·�� , ∑ ����������
��,�·���   (Formula 5) 

where ����	
��,�·�� is the ith column of ����	
�� and ����
��,�·��  is the jth column of 

����
��. Values in the resulting matrix M can be colour coded in a heatmap. 

 

For three cell types of this analysis (B-cells, T-cells and monocytes), chromatin interaction 

data obtained through promoter-capture Hi-C [36] was available. After download from 

http://www.cell.com/cms/attachment/2086554122/2074217047/mmc4.zip, data preproces-

sing and filtering was performed with the CHiCAGO method [50]. 
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Figure Legends 

 

Figure 1: Schematic illustration of our framework for performing non-negative matrix 

factorization and downstream analysis. The factorization is performed for a number of 

different consecutive k and different initial conditions. After an optimal factorization rank is 

determined the matrix H is used for clustering and visualization of samples and thus 

interpretation of the signatures. The retrieved matrix W is used for feature extraction of the 

different signatures. 

 

Figure 2: Cell type-resolution dimensionality reduction of RNA- and ATAC-seq 

datasets by NMF. (a) Heatmap of the matrix HRNA-seq obtained from NMF of an RNA-seq 

count table from hematopoietic cells. (b) Scatterplot of the first two principal components of 

the same RNA-seq dataset. Different RNA-seq signatures were mapped onto the PCA 

visualization to highlight exposure dynamics. (c) Heatmap of the matrix HATAC-seq obtained 

from NMF of an ATAC-seq consensus peak count table from hematopoietic cells. (d) 

Scatterplot of the first two principal components of same ATAC-seq dataset. Different ATAC-

seq signatures were mapped onto the PCA visualization to highlight exposure dynamics. 

 

Figure 3: Roadmap ChIP-seq data for monocytes in the single-signature ATAC-seq 

regions. ChIP-seq signal, as fold-change over control, was plotted for five different histone 

PTMs, including H3K27ac, H3K27me3, H3K4me3, H3K4me1 and H3K9me3. Upper panels: 

Profile plots showing the ChIP-seq signal in monocytes averaged over single-signature 

features, i.e. specific regions, for each ATAC-seq signature. Lower panels: Heatmaps 

illustrating the spatial distribution of the ChIP-seq signal +/- 5kb around the peak summit, 

where each row corresponds to a region and each panel to an ATAC-seq signature. 

 

Figure 4: Feature extraction and association after NMF. (a) Boxplots across cell types of 

signature-specific genes extracted from the matrix WRNA-seq. (b) Boxplots across cell types of 

signature-specific open chromatin regions extracted from the matrix WATAC-seq. (c) Heatmap 

illustrating pairwise correlations of the rows of the matrices H from RNA-seq and ATAC-seq 

factorizations. (d) Heatmap illustrating pairwise comparisons of the identified signatures, i.e. 

the columns of the matrices W from RNA-seq and ATAC-seq factorizations. As the columns 

of the matrices W of the two omics layers are vectors of different lengths, one omics layer 

has to be transformed. Such a transformation was obtained using pairwise genomic 

distances between the features of the two different omics layers (genes for RNA-seq and 

regions for ATAC-seq). (e) Heatmap illustrating pairwise comparisons of the identified 
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signatures similar to (d), but using only the promoters, i.e. a subset of the ATAC-seq 

features. 

 

Figure 5: Association of signature-specific ATAC-seq regions with gene expression 

signature-memberships. (a) Chord diagram of proportions of interactions mapping from 

signature-specific ATAC-seq regions to genes and their respective signature membership for 

T-cells, B-cells and monocytes. (b) Barplot showing fractions of features (genes for RNA-

seq, blue, and regions for ATAC-seq, dark orange for promoters and light orange for 

enhancers) specific for combinations of signatures. The x-axis displays the level of 

degeneracy, i.e. 1 corresponds to single-signature features, 2 to dual-signature features, 3 to 

triple-signature features etc. up to the respective maximum levels of degeneracy, i.e. eight 

for RNA-seq and nine for ATAC-seq. 

 

Figure 6: Extraction of cell type-specific open chromatin regions that interact with 

uniquely expressed genes. (a) Chord diagram indicating the association of T-cell-specific 

open chromatin regions with genes uniquely expressed in T-cells. (b) Boxplots of log2 

transformed library size normalized expression values of CD28 across B-cells, CD4-positive 

T-cells, CD8-positive T-cells and monocytes. (c) Visualization of the genomic region around 

CD28 and differential, interacting open chromatin regions. (d) Chord diagram indicating the 

association of monocyte specific open chromatin regions with genes uniquely expressed in 

monocytes. (e) Boxplots of log2 transformed library size normalized expression values of 

MAFB across B-cells, CD4-positive T-cells, CD8-positive T-cells and monocytes. (c) 

Visualization of the genomic region around MAFB and differentially interacting open 

chromatin regions. 

 

Figure 7: Extraction of cell type-specific open chromatin regions that interact with 

genes expressed in multiple (other) cell types. (a,d) Chord diagrams indicating which 

associations of cell type-specific open chromatin regions with which genes are examined. 

(b,e) Boxplots of log2 transformed library size normalized expression values across B-cells, 

CD4-positive T-cells, CD8-postive T-cells and monocytes of the genes of interest. (c,f) 

Visualization of the genomic region around the genes of interest and differentially interacting 

open chromatin regions. 

 

Supplementary Figure S1: Heat maps of first nine principal components of RNA- and 

ATAC-seq datasets. (a) RNA-seq (b) ATAC-seq, row labels correspond to variance 

explained by respective principal components. 
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Supplementary Figure S2: Quality metrics of RNA- and ATAC-seq dataset NMF with 

different factorization ranks. Frobenius errors, cophenetic coefficients and mean Amari 

distance for (a) RNA-seq and (b) ATAC-seq factorizations. The chosen optimal factorization 

ranks are highlighted by grey rectangles. 

 

Supplementary Figure S3: Riverplot for RNA-seq NMF. Tree-like representation of the 

signatures extracted from RNA-seq of hematopoietic cells at different factorization ranks. 

Nodes represent the signatures, the edge strength encodes cosine similarity between 

signatures linked by the edges. The factorization rank increases from top to bottom. After 

choosing the optimal factorization rank kRNA-seq = 8 (highlighted by a rectangle), the 

signatures extracted at this rank are called reference signatures and colours are assigned to 

them. Then, every signature extracted at every other iterated factorization rank is compared 

to the reference signatures and coloured by the attributes of the most similar reference 

signature. Labels of the reference signatures with the suffix “-like” are assigned to the 

signatures. 

 

Supplementary Figure S4: Riverplot for ATAC-seq NMF. Representation analogous to 

Supplementary Figure S3 of the signatures extracted from ATAC-seq of hematopoietic cells 

at different factorization ranks. Reference signatures are assigned at the optimal 

factorization rank kATAC-seq = 9 (highlighted by a rectangle). 

 

Supplementary Figure S5: Roadmap ChIP-seq data for differentiated cell types in the 

single-signature ATAC-seq regions. First page: CD4-positive T-cells, second page: B-

cells, third page: NK cells, fourth page: CD8-positive T-cells. ChIP-seq signal, as fold-

change over control, was plotted for five different histone PTMs, including H3K27ac, 

H3K27me3, H3K4me3, H3K4me1 and H3K9me3, analogous to main Figure 4. Upper 

panels: Profile plots showing the ChIP-seq signal in the respective cell types averaged over 

single-signature features, i.e. specific regions, for each ATAC-seq signature. Lower panels: 

Heatmaps illustrating the spatial distribution of the ChIP-seq signal +/- 5kb around the peak 

summit, where each row corresponds to a region and each panel to an ATAC-seq signature. 

 

Supplementary Figure S6: Combined epigenetic data for CMPs in the single-signature 

ATAC-seq regions. First page: ChIP-seq signal, as fold-change over control, was plotted for 

five different histone PTMs, including H3K27me3, H3K4me3, H3K4me1 and H3K9me3. 

Upper panels: Profile plots showing the ChIP-seq signal in CMPs averaged over single-

signature features, i.e. specific regions, for each ATAC-seq signature. Lower panels: 

Heatmaps illustrating the spatial distribution of the ChIP-seq signal +/- 5kb around the peak 
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summit, where each row corresponds to a region and each panel to an ATAC-seq signature. 

Second page: Metaprofiles of CAGE-seq data from FANTOM5 in CMPs. Transcript per 

million (TPM) normalized tags were summed up over single-signature regions in the different 

ATAC-seq signatures A1 - A9. Tags on the minus strand were multiplied by -1 for 

visualization purposes. Tags on the minus strand are displayed in blue, whereas tags on the 

plus strand are displayed in red.  

 

Supplementary Figure S7: Metaprofiles of CAGE-seq data from FANTOM5 in 

differentiated cell types. Transcript per million (TPM) normalized tags were summed up 

over single-signature regions in the different ATAC-seq signatures A1 - A9. Tags on the 

minus strand were multiplied by -1 for visualization purposes. Tags on the minus strand are 

displayed in blue, whereas tags on the plus strand are displayed in red. First page: 

monocytes, second page: CD4-positive T-cells, third page: B-cells, fourth page: NK cells, 

fifth page: CD8-positive T-cells. 

 

 

Supplementary Table T1: Information about the samples used. Numbers of samples for 

RNA-seq, ATAC-seq and their overlap. 

 

Supplementary Table T2: Results of the topGO enrichment for biological processes 

(gene ontology class BP) of the single-signature features from RNA-seq. 

 

Supplementary Table T3: Results of the topGO enrichment for molecular functions 

(gene ontology class MF) of the single-signature features from RNA-seq. 

 

Supplementary Table T4: Single signature features of the RNA-seq signatures (gene 

lists). 

 

Supplementary Files B1 - B9: Single signature features of the ATAC-seq signatures 

(BED files). File B1: ATAC-seq signature A1-HSC-MPP; file B2: signature A2-GMP-LMPP; 

file B3: signature A3-CMP-MEP; file B4: signature A4-CLP; file B5: signature A5-CD4-CD8; 

file B6: signature A6-Bcell; file B7: signature A7-NK; file B8: signature A8-Mono; file B9: 

signature A9-diffuse. 
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