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 2 

Healthy ageing is associated with decreased risk taking in motor
1
 and economic

2-4
 decision-making. 27 

However, it is unknown whether a single underlying mechanism explains these changes. Age-related 28 

changes in economic risk taking are explained by reduced Pavlovian biases that promote action toward 29 

reward
2, 5, 6

. Although Pavlovian biases also promote inaction in the face of punishment, the role such 30 

Pavlovian biases play in motor decision-making, which additionally depends on estimating the probability of 31 

successfully executing an action
7-10

, is unknown. To address this, we developed a novel app-based motor 32 

decision-making task to measure sensitivity to reward and punishment when subjects (n=26,532) made a 33 

‘go/no-go’ motor gamble based on the perceived ability to execute a complex action. Using a newly 34 

established approach-avoidance computational model
2, 6

, we show motor decision-making is also subject to 35 

Pavlovian influences, and that healthy ageing is mainly associated with a reduction in Pavlovian bias toward 36 

reward. In a subset of participants playing an independent economic decision-making task (n=17,220), we 37 

demonstrate similar decision-making tendencies across motor and economic domains. Computational models 38 

that incorporate Pavlovian biases thus provide unifying accounts for motor and economic decision-making. 39 

 40 

Optimal decision-making requires choices that maximise reward and minimise punishment
11

. To achieve 41 

this, humans rely on two key mechanisms; a flexible, instrumental, value-dependent process, and a hard-42 

wired, Pavlovian, value-independent process
11-13

. Economic decision-making is often described using 43 

parametric decision models based on prospect theory that operationalise instrumental (value-dependent) 44 

concepts such as risk and loss aversion
14-17

. However, it has recently been shown that Pavlovian biases, 45 

which promote action towards reward and inaction in the face of punishment irrespective of option value
5, 11, 46 

18
, help to explain aberrant choice behaviour. For instance, the best explanation for the diminished economic 47 

risk-taking observed in older adults is a reduction in dopamine-dependent Pavlovian attraction to potential 48 

reward
2, 5

, suggesting that Pavlovian processes play a key role in explaining age-related changes in economic 49 

decision-making.   50 

 51 

In contrast to economic decision-making, motor decision-making requires weighting potential rewards and 52 

punishments against the probability of successfully executing an action
7, 19-21

. Motor decision-making has 53 

primarily been explained in the context of instrumental-based processes
1, 7-10, 22

. Within this framework, older 54 

adults display reduced risk-seeking behaviour
1
. However, given recent findings in economic decision-55 

making
2
, we asked whether Pavlovian biases might provide a more parsimonious explanation of age-related 56 

changes in motor decision-making. Although there is strong evidence that Pavlovian biases shape motor 57 

performance
23-26

, and that healthy ageing leads to a reduction in Pavlovian biases on motor performance
27, 28

, 58 

it is currently unknown whether Pavlovian biases influence motor decision-making. Sampling a large 59 

population through an app-based motor-decision game, we provide a novel demonstration that Pavlovian 60 

biases have a substantial impact on motor decisions, and are able to explain age-related changes in risk 61 

taking during motor decision-making. 62 

 63 
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 3 

We developed a novel app-based motor decision-making task that examined participant sensitivity to reward 64 

(gaining points) and punishment (losing points) when making a ‘go/no-go’ decision based on their perceived 65 

ability to successfully execute a motor action (Figure 1a, b). Using an app-based platform (‘How do you deal 66 

with pressure?’ The Great Brain Experiment: www.thegreatbrainexperiment.com)
18, 29, 30

, we obtained data 67 

from a large cohort (n=26,532; 15,911 males) in which six age groups were considered: 18-24yrs: n=5889; 68 

25-29yrs: n=4705; 30-39yrs: n=7333; 40-49yrs: n=4834; 50-59yrs: n=2452; and 60+yrs: n=1319 (Figure 1c; 69 

see Supplementary Methods/ Figure S1)
18, 29, 30

.  70 

 71 

 72 

Figure 1: Motor gamble task and overall performance. (a) Game interface: an example of a punishment trial for 73 
target-size 1 (1: largest target size; 7: smallest target size); Participants decided whether to skip the tapping task and 74 
stick with a small punishment (-10 points) or gamble on successfully executing the action. If successful then they avoid 75 
the punishment (lose 0 points); otherwise, they received a greater punishment (-100 points); (b) A reward trial for 76 
target-size 7; (c) The number of participants in each age group; (d) Final points achieved across age groups; (e) The 77 
overall success rate (%) for executing the tapping action across age groups; (f) The screen size (inches) of the devices 78 
used across age groups; (g) Success rate (%) for executing the tapping action given the age, the screen size, and target-79 
size (1: largest target size; 7: smallest target size). Bars/Dots and error bars represent medians and bootstrapped 80 
95%CIs. 81 
 82 

The game required participants to sequentially tap 5 targets distributed along a pre-defined path that could 83 

vary in both curvature and direction (Figure 1a, b; see Methods). If a participant accurately tapped all 5 84 

targets successfully within 1.2 seconds, then the action was considered a success. There were 7 different 85 

target sizes, with the task becoming progressively more difficult as target size decreased (Figure 1a, b; see 86 

Methods). At the beginning of each trial, participants saw the required action and were asked whether they 87 

wanted to take the motor gamble. There were two types of trials: reward and punishment. For reward trials, 88 

participants had to decide whether to skip the trial and stick with a small reward (10 points) or gamble on 89 
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 4 

successfully executing the tapping action (Figure 1b). If successful they received a greater reward (20, 60 or 90 

100 points) or 0 points if they failed. For punishment trials, participants had to decide whether to skip the 91 

trial and stick with a small punishment (-10 points), or gamble on successfully executing the tapping action 92 

(Figure 1a). If successful, they lost nothing (lose 0 points) but failure resulted in a greater punishment (-20, -93 

60 or -100 points). Participants began with 250 points and the overall goal was to accumulate as many points 94 

as possible. All trial-by-trial data (including tasks parameters, behavioural results, modelling results and 95 

accompanying code) are available on our open-access data depository (https://osf.io/fu9be/). 96 

 97 

We found that older adults won fewer total points than younger adults (Figure 1d; r=-0.047, p<0.001; all r 98 

values represent a partial correlation between the measurement of interest and age, whilst controlling for the 99 

effects of gender and education; p values were computed by permutation test; see Methods). The final points 100 

accumulated during this task were dependent on (1) the decisions made (to gamble or not) and (2) the motor 101 

performance (success rate of executing the tapping action). Therefore, prior to examining participant choice 102 

behaviour it was crucial to determine whether motor performance differed across age groups. 103 

 104 

Although success on the motor task was similar across age groups (Figure 1e, r=0.006, p=0.329), older 105 

adults used devices with larger screen sizes than younger age groups (Figure 1f, r=0.279, p<0.001). As target 106 

size was scaled to device screen size (see Methods), we assessed how the relationship between age, target 107 

size and screen size affected motor performance. We found that decreased success rate was linked to a 108 

combination of smaller target sizes, smaller screen sizes and older age (Figure 1g, stepwise regression 109 

winning model: success rate =1 - 0.003*age*target size + 0.002*age*screen size + 0.005*target size*screen 110 

size; all p<0.001; Adjusted R
2
=0.213). Therefore, we next assessed choice behaviour in the context of how 111 

these factors influenced motor performance on a trial-by-trial basis.    112 

 113 

Participants were asked to make decisions between a gamble option and a certain option. Each option can be 114 

characterised by its potential outcomes, weighted by the probability of each outcome (i.e. Expected Value
31

). 115 

For the gamble option, the expected value is given by: EVgamble=PsuccessVsuccess+(1-Psuccess)Vfailed, where Psuccess 116 

is the probability of successfully executing the tapping action; Vsuccess is the points received if successful; 117 

Vfailed is the points received on failure. The expected value of the certain option (EVcertain) is Vcertain and the 118 

probability of receiving this value is 1. We calculated Psuccess by estimating the probability of motor success 119 

based on a participant’s age, screen size of the device used and target-size level (Figure 1g; see Methods). By 120 

comparing choice behaviour given the difference between these two options (EVgamble-EVcertain), we were 121 

then able to examine the influence of ageing on motor decisions while controlling for differences in motor 122 

performance due to age, screen size and target size. However, this formulation relied on an assumption that 123 

participants had a good estimate of their probability of success. To test whether this was true, we recruited an 124 

additional 60 participants (10 in each age group) who were asked to estimate their probability of success 125 

(from 0% to 100% in steps of 10%; see Methods) after being shown the target size and trajectory. After this 126 

estimate, they were then asked to perform the tapping action (whilst ignoring the decision-making part of the 127 
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game). Similar to previous work
1, 7, 20

, we found participants were able to reliably estimate the probability of 128 

motor success (Figure 2a), and this estimate did not differ across age groups (Figure 2b; one-way ANOVA: 129 

F(5,54)=0.859, p=0.515).  130 

 131 

 132 

Figure 2: Participant ability to estimate motor performance success. (a) For each participant (n=60; 10 in each 133 
group), we calculated an average success rate for each available verbal estimate value (0% to 100% with 10% 134 
increment).  Each black dot represents the median success rate (y-axis) across participants who gave that certain verbal 135 
estimate value (x-axis), and error bars represent bootstrapped 95% CI across participants; (b) The estimation error for 136 
each age group. For each participant, estimation error was calculated as the median error (on each trial: estimate % - 137 
100% if successful, 0% if failed) across all trials. Black dots and error bars represent the medians and bootstrapped 138 
95%CIs. 139 
 140 

We found a significant decrease in the proportion of trials in which participants chose to gamble across the 141 

lifespan in reward trials (Figure 3a; r=-0.190; p<0.001), and to a lesser extent in punishment trials (Figure 142 

3b; r=-0.052; p<0.001). To understand these results, age-related changes in choice behaviour had to be 143 

examined given the difference between these two value options (EVgamble-EVcertain). Interestingly, in reward 144 

trials, there was a gradual and monotonic decrease in gamble rate across the lifespan which appeared 145 

independent of the EVgamble-EVcertain value (right side of Figure 3c). In contrast, for punishment trials, older 146 

adults displayed a higher gamble rate during high risk gambles (e.g., EVgamble-EVcertain=-90), but conversely a 147 

reduced gamble rate during low risk gambles (e.g., Figure 3c; EVgamble-EVcertain=0).  148 

 149 
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 150 

Figure 3: The proportion (%) of trials in which participants chose to gamble. (a) Gamble rate in the reward and (b) 151 
punishment domain; (c) Propensity to choose the gamble option as a function of EVgamble – EVcertain (data was grouped 152 
into bin sizes of 10). As indicated in the legend, each of the warm colours represents one age group in the reward (R) 153 
condition, and each of the cool colours represents one age group in the punishment (P) condition. The lines are fitted 154 
lines to y=a*exp(-b*x)+c; R

2
=0.979 ± 0.022; (d) Discrepancy between choice behaviour and optimal decisions in the 155 

reward domain. Specifically, using EVgamble-EVcertain we calculated whether the optimal decision on each trial was to 156 
gamble (1) or skip (0). We then subtracted this value from the observed behaviour of the participant (gamble=1, skip 157 
=0). If the average absolute difference between these values across trials was 0, then a participant was deemed as an 158 
optimal decision-maker; (e) Discrepancy between choice behaviour and optimal decisions in the punishment domain. 159 
Bars and error bars represent medians across the participants and bootstrap 95% CIs. 160 
 161 

Given these results, do older adults make less optimal motor decisions? An ideal (optimal) decision-maker 162 

chooses the option that has the higher expected value, and we therefore compared participant’s choice 163 

behaviour with the optimal behaviour. Specifically, using EVgamble-EVcertain we calculated whether the 164 

optimal decision on each trial was to gamble or decline (coded 1 and 0 respectively). We then subtracted this 165 

value from the observed behaviour of the participant (also coded gamble = 1, decline = 0). If the average 166 

absolute difference between these values across trials was 0, then a participant was deemed an optimal 167 

decision-maker. In reward trials, there was progressive deviation from optimality across the lifespan (Figure 168 

3d; r=0.232; p<0.001). In contrast, for punishment trials, all age groups showed a similar level of sub-169 

optimality (Figure 3e; r=0; p=0.999). Therefore, the most pronounced effect of ageing on motor decision-170 

making was a value-independent decrease in gamble rate during reward trials which led to a significant 171 

decrease in optimality.     172 

 173 

While these data portray many similarities with decision-making under risk
14, 15

, there are also clear 174 

differences. For example, decision-making models based on prospect theory are not able to explain the 175 

gradual, monotonic and value independent decrease in gamble rate across the life span observed during the 176 
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 7 

reward trials
5 

(Figure S1). We predicted that such dichotomies represented the contribution of value-177 

independent Pavlovian approach-avoidance biases to motor decision-making behaviour. To test this 178 

prediction, we modelled the choice behaviour using an established decision-making model based on prospect 179 

theory, and a newly introduced model which included Pavlovian approach-avoidance parameters
2, 5

 (see 180 

Methods). The prospect theory model included three components: (1) loss aversion parameter (𝜆) (2) risk 181 

preference parameter () and (3) stochasticity of decision-making captured by an inverse temperature 182 

parameter (𝜇). The loss aversion coefficient (𝜆) represents the relative (multiplicative) weighting of losses 183 

relative to gains, which was set to 1 as there were no gambles with both positive and negative outcomes in 184 

our task. The risk preference parameter () represents the diminishing sensitivity to change in value with an 185 

increase in absolute value (value-dependent). The logit parameter 𝜇  is the sensitivity of the choice 186 

probability to an option value difference. In addition to these parameters, the Pavlovian approach-avoidance 187 

model included value-independent parameters exclusively for reward (+) and punishment (−
) trials. 188 

Positive or negative values of these parameters correspond, respectively, to an increased or decreased 189 

probability of gambling without regard to the value of gamble (see Methods; Eq 3). We found an approach-190 

avoidance decision model with 4 parameters (a single risk preference parameter: , the inverse temperature 191 

parameter: 𝜇, value-independent parameters exclusively for reward + and punishment −
 trials) fitted the 192 

motor gamble (choice) data better than any decision model based on prospect theory (Table S1, Figure S2 & 193 

S3; see Methods for model comparison).  194 

 195 

Using this preferred model, we observed age-related changes across the reward and punishment domains for 196 

both value-dependent and independent parameters. However, the most striking effect was a large decrease in 197 

Pavlovian attraction which facilitates action in pursuit of reward. Specifically, we found that healthy ageing 198 

did not affect the stochasticity parameter, µ (r=-0.001, p=0.871), but was associated with a decrease in the 199 

risk preference parameter, α (Figure 4a,d; r=-0.105, p<0.001). The winning model included a single  200 

parameter, which represented different value-dependent biases in reward and punishment (α<1 indicated risk 201 

aversion in reward domain and α<1 represented risk-seeking in punishment domain; α=1 represented risk-202 

neutral; see Supplementary Methods). Therefore, older adults displayed a similar increase in value-203 

dependent biases across the reward and punishment domain. The greater risk-seeking effect in the 204 

punishment domain was offset by the fact that ageing was also linked with greater Pavlovian avoidance 205 

(Figure 4b, d; −
; r=-0.076, p<0.001), an effect not previously observed in economic decision-making

2
. Such 206 

opponent effects between value-dependent and value-independent parameters help to explain the complex 207 

changes observed with ageing during punishment trials (Figure 3c). Nevertheless, the largest effect of ageing 208 

was a substantial decrease in Pavlovian attraction (Figure 4b, d; +
; r=-0.146, p<0.001). We found a similar 209 

decline for both sexes (Figure S4; male: n=15911, r=-0.140, p<0.001; female: n=10621, r=-0.143, p<0.001), 210 

and across all education levels (Figure S5; school: n=9171, r=-0.152, p<0.001; university: n=11281, r=-211 

0.142, p<0.001; advanced: n=6080, r=-0.136, p<0.001). Importantly, we did not observe this age-related 212 

effect for the temperature parameter (µ), indicating the changes observed in the risk and Pavlovian 213 

parameters were not simply a result of large participant numbers (Figure 4d).  214 
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 215 

Finally, through this app-based platform a subset of participants (n=17,220) also performed an economic 216 

decision-making gambling task in which a similar approach-avoidance model was used to explain choice 217 

behaviour
2
. Through correlation and median-split analysis we found a significant positive relationship for all 218 

main model parameters between the tasks (Figure 4e, f), consistent with participants manifesting similar 219 

decision-making tendencies across motor and economic domains. This relationship was relatively consistent 220 

across the lifespan whereby a positive correlation existed between these parameters within each age group 221 

(Figure S6, S7). Once again, we did not observe this correlation for the temperature parameter (µ).  222 

 223 

 224 

Figure 4: The change in approach-avoidance model parameters across the life span, and the relationship 225 
between approach-avoidance model parameters across a motor and economic gambling task. (a) α across age 226 
groups; (b) 

−
and 

+
  across age groups; (c) µ across age groups; (d) Age-related decline across the reward and 227 

punishment domain. The largest effect size was observed for the Pavlovian approach parameter (
+

). This age-related 228 
effect was not observed for the temperature parameter, µ; (e) Positive correlation across independent motor and 229 
economic decision tasks for the main approach-avoidance model parameters. Note, the single α parameter of the motor 230 
decision-making model was correlated with both the α

-
 and α

+
 parameters of the decision-making model. This positive 231 

correlation was not observed for the temperature parameter, µ; (f) Motor decision-making approach-avoidance 232 
parameter values median split by economic parameter values. Filled bars denote participants with below-median values 233 
in the economic gambling task; Hollow bars for above-median. The participants with above-median risk parameters and 234 
Pavlovian parameters in the economic decision task had higher risk parameters and Pavlovian parameters in the motor 235 
gambling task. This median split effect was not observed for the temperature parameter, µ; Bars/error bars reflect 236 
medians/bootstrapped 95%CIs.  237 
 238 
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Making decisions under uncertainty is crucial in everyday life, whether it is managing retirement funds, 239 

choosing a career, or deciding between pulling out or not on to a busy road whilst driving. The latter example 240 

describes motor decision-making, a unique kind of decision which requires weighting potential rewards and 241 

punishments against the probability of successfully executing an action
7, 19-21

, and often with immediate 242 

outcomes. Although healthy ageing has been associated with decreased risk taking across both motor
1
 and 243 

economic
2-4

 decision-making, it is heretofore unknown whether a single underlying mechanism might 244 

explain these changes. We addressed this question using a novel motor gambling task that exploited an app-245 

based platform which enabled us to collect a large cohort of data. Unlike previous work on motor decision-246 

making
7, 19-21

, we considered choice behaviour in relation to both value-dependent instrumental and value-247 

independent Pavlovian processes
5, 11, 18

. We found age-related changes across the punishment and reward 248 

domain for both value-dependent and independent parameters. However, the most striking effect of ageing 249 

was a decrease in Pavlovian attraction which facilitates action in pursuit of reward. Through this app-based 250 

platform, we compared a subset of participant’s choice behaviour during motor and economic decision-251 

making
2
 and found similar decision-making tendencies across motor and economic domains.  252 

 253 

Our large cohort and use of a newly established approach-avoidance computational model
2, 6

 enabled us to 254 

detect subtle age-related changes in choice behaviour and surprising interactions between value-independent 255 

and value-dependent processes. For instance, the risk aversion parameter (α: instrumental value-dependent 256 

process) was on average less than 1 across all age groups, indicating risk aversion in reward, and risk seeking 257 

in punishment. This choice behaviour was best explained using a single parameter, signifying a similar 258 

degree of risk aversion in reward and risk-seeking in punishment. Importantly, this value progressively 259 

decreased with age suggesting that older adults showed similar increased risk-aversion for reward and risk-260 

seeking for punishment. This is in line with previous economic decision-making work which revealed older 261 

adults weigh certainty (achieving the small reward or avoiding the small punishment) more heavily than 262 

younger adults
32

. Interestingly, the greater risk-seeking in the punishment domain was offset by the fact that 263 

ageing also led to greater Pavlovian avoidance, an effect not observed in economic decision-making
2
. It is 264 

the interaction between value-dependent and independent parameters that help explain not only the complex 265 

changes observed with ageing during punishment trials but also the lack of difference across age groups for 266 

punishment-based optimality. Crucially, previous work in motor decision-making using only instrumental-267 

based processes would not have detected such complex behavioural interactions
1, 7, 21

. The underlying 268 

mechanism behind age-dependent increases in Pavlovian avoidance is unknown. It has been suggested that 269 

the neurobiology behind Pavlovian avoidance may involve opponency between the dopaminergic and 270 

serotonergic systems
33

. Despite there being evidence of age-related decline in serotonin receptor 271 

availability
34

, it remains an open question as to the link between serotonin and Pavlovian avoidance during 272 

either motor or economic decision-making.      273 

 274 

The strongest effect of ageing was a decrease in Pavlovian attraction to reward. As all age groups displayed 275 

risk aversion during reward trials, this decrease in Pavlovian attraction led to greater sub-optimality in older 276 
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 10 

adults. These results are strikingly similar to the ones observed in economic decision-making
2
, suggesting 277 

Pavlovian attraction plays a pivotal role in explaining age-related changes to reward across both motor and 278 

economic decision-making. During economic decision-making, it has recently been shown that boosting 279 

dopamine with L-DOPA increases the influence of Pavlovian attraction on choice behaviour
5
. In addition, 280 

healthy ageing is associated with a gradual decline in dopamine availability
35, 36

 and neural responses to 281 

reward
37

. Therefore, it is possible that the decrease in Pavlovian attraction during motor decision-making in 282 

older adults is a result of an age-dependent decrease in dopamine availability.  283 

 284 

More broadly, the current work shows the importance of both instrumental value-dependent and Pavlovian 285 

value-independent processes on motor decision-making. However, task design may play an important role in 286 

determining the size of Pavlovian influences. Here we used a ‘go/no-go’ decision-making task as previous 287 

literature has shown the ‘go/no-go’ component induces strong Pavlovian biases
11, 25, 38

. It remains to be seen 288 

whether computational models including Pavlovian biases provide a better description of choice behaviour 289 

during other motor decision-making tasks which do not involve a ‘go/no-go’ component
1, 7-10, 22

.   290 

 291 

Finally, participants showed similar decision-making tendencies for both instrumental (value-dependent) and 292 

Pavlovian (value-independent) parameters across motor and economic domains. This extends previous work 293 

that revealed a similar relationship with parameters derived from parametric decision models based on 294 

prospect theory
7, 10

, and reinforces the view that the mechanisms which control cognitive (economic) and 295 

motor decision-making are integrated
39

. However, the correlation between the tasks was small, around r=0.1, 296 

suggesting that while participants showed similar behavioural trends across the two tasks, their performance 297 

in motor and economic domains was also distinct. Interestingly, the approach-avoidance model not only 298 

fitted choice data substantially better for the motor decision-making task, relative to the economic task, but 299 

the effect size relating to age was also nearly double in size for all parameters
2
. This indicates that while 300 

there are clear similarities between cognitive and motor decision-making, computational models including 301 

Pavlovian biases appear to be particularly important for explaining motor decision-making.  302 

 303 

In conclusion, Pavlovian biases play an important role in not only explaining motor decision-making 304 

behaviour but also the changes which occur through normal ageing. This provides a greater understanding of 305 

the processes which shape motor decision-making across the lifespan, and may afford essential information 306 

for developing population wide translational interventions such as promoting activity in older adults.     307 

 308 

Methods 309 

Participants 310 

We tested 26,532 participants (15,911 males, aged 18-70+) who completed the task between November 20, 311 

2013 and August 15, 2015. Data were only included if users fully completed the game and it was their first 312 

attempt. We also recruited an additional 60 participants (29 males, aged 18-70+) who were asked to estimate 313 
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their success rate (motor performance). All participants gave informed consent and the Research Ethics 314 

Committee of University College London approved the study.  315 

 316 

Materials and apparatus 317 

Using an app-based platform (The Great Brain Experiment: www.thegreatbrainexperiment.com) we 318 

developed a motor decision-making task (‘How do I deal with pressure?’) which is freely available for Apple 319 

iOS and Google Android systems. The game runs in a 640x960 (3:4 ratio) pixel area, which is then scaled to 320 

fit the screen whist maintaining this ratio. The game required participants to ‘throw’ a ball at a coconut in an 321 

attempt to knock it off its perch. This was achieved by tapping 5 sequential targets along a pre-defined path. 322 

The path was characterised by an angle parameter that represented a section of a sine curve, in degrees. The 323 

curves were drawn from the bottom (the starting point) to top of the game window (Figure 1a, b). For 324 

example, if the angle parameter was 360, then one complete cycle of the sine curve was used to draw the 325 

curve. During the task, the angle was randomly chosen between 0 and 360. The 5 targets were evenly spaced 326 

along the curves. If the participant tapped all 5 targets sequentially (from bottom to top) within 1.2 seconds, 327 

then the action was considered a success and the coconut was hit. If the participant failed to tap all 5 targets 328 

accurately or within the allotted time then the action was considered a failure and the ball sailed past the 329 

coconut. In addition, the action was deemed a failure if participants did not start the tapping action within 7 330 

seconds after they chosen to do the tapping. There were 7 different target sizes across trials with the tapping 331 

action becoming more difficult as the target size was reduced. However, as mentioned above, the game 332 

interface was scaled to screen size. Therefore, motor performance (success rate) was examined relative to the 333 

interaction between target size and screen size (Figure 1g). All trial-by-trial data (including tasks parameters, 334 

behavioural results, modelling results and accompanying code) are available on our open-access data 335 

depository (https://osf.io/fu9be/). 336 

 337 

Motor gambling task 338 

At the beginning of each trial, participants were shown the action required (i.e. the position and size of the 5 339 

targets) and were asked to make a motor gamble. There were two types of trials: reward trials and 340 

punishment trials (Figure 1a, b). For reward trials, participants had to decide whether to skip the trial and 341 

stick with a small reward (10 points) or gamble on successfully executing the ‘throw’. If successful they 342 

received a greater reward (20, 60 or 100 points) but 0 points if they failed. For punishment trials, participants 343 

had to decide whether to skip the trial and stick with a small punishment (-10 points) or gamble on 344 

successfully executing the ‘throw’. If successful they lost nothing (0 points) but failure resulted in a greater 345 

punishment (-20, -60 or -100 points). Hence, there were 6 value combinations. Each combination was 346 

repeated for each of the 7 different target sizes (6 values x 7 target sizes = 42 trials). Although there were 7 347 

blocks of the game this did not directly relate to the 7 target sizes. In order to maintain a level of 348 

unpredictability, the first 3 blocks included random presentation of the 3 largest (easiest) target sizes, the 349 

next 3 blocks included target sizes 4-6 and the final block included the smallest (most difficult) target size. 350 

Participants began with 250 points and the overall goal was to accumulate as many points as possible. 351 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 6, 2017. ; https://doi.org/10.1101/199331doi: bioRxiv preprint 

https://doi.org/10.1101/199331
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 352 

For the control study (Figure 2) which examined participant’s ability to estimate their probability of success, 353 

individuals were asked to estimate their probability of motor success (0% to 100% in steps of 10%) after 354 

being shown the target size and trajectory. After this estimate, they were then asked to perform the tapping 355 

action, whilst ignoring the decision-making part of the game. 356 

 357 

Data analysis  358 

Matlab (Mathworks, USA) was used for all data analysis. We reported partial correlation coefficients (r) for 359 

the relationships between task measures and age, whilst controlling for the effects of gender and education. 360 

All p values were computed based on permutation tests using 100,000 random shuffles of age labels to 361 

determine null distributions
2
. Bootstrapped 95% confidence intervals were computed based on 100,000 362 

resamples with replacement in each age group
2
.  363 

 364 

Parametric models  365 

On each trial participants faced a gamble that contained a certain option (CO) involving a payoff of certain 366 

points (+10 in reward trials and -10 in punishment trials), and a gambling option (GO) in which the outcome 367 

depended on a probability of successfully executing the tapping action. The probability was estimated given 368 

a participant’s age, screen size of the device used and target-size level (Figure 1g). Specifically, the 369 

probability of success for a participant within a certain age group, using a certain screen size and facing a 370 

certain target size on each trial was estimated using the average success rate across all the participants with 371 

the same age, same screen size, and facing the same target size. Given the small amount of trials we had for 372 

each participant at each target size to estimate their probability of success, we believed this group average 373 

approach was the most valid estimate of success probability. However, we also conducted the analysis when 374 

success probability was estimated based on each individual’s own data (i.e. the probability of success for a 375 

participant facing a certain target size was estimated using their own success rate over the same target size). 376 

Importantly, our findings still hold (Figure S8). We modelled participant motor gamble choices using an 377 

established decision-making model based on prospect theory
15

 and a newly introduced model which included 378 

an extra Pavlovian approach-avoidance
2, 5, 6

 component. In the following, we first describe the prospect 379 

theory models, followed by the approach-avoidance models.  380 

 381 

Parametric decision-making model based on prospect theory: There are three key components in 382 

prospect theory models. The first component is the value function. According to prospect theory, the 383 

subjective desirability of outcomes is modelled as transformations of objective task quantities. The 384 

subjective desirability of the outcomes, O (the points in this case) was modelled by a value function (2-part 385 

power function) of the form: 386 

 387 

                                                 𝑢(𝑂) = {
𝑂+

                   𝑖𝑓 𝑂 ≥ 0

−𝜆 ∙ (−𝑂)
−

   𝑖𝑓 𝑂 < 0
                                        Equation 1 388 
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where, the risk preference parameter () represents the diminishing sensitivity to changes in values as the 389 

absolute value increases (if  < 1). The loss aversion coefficient (𝜆) represents the weighting of losses 390 

relative to gains, which was set to 1 as we did not have gambles with both positive and negative outcomes. 391 

The second component of a prospect theory model is the probability weighting function. Most prospect 392 

theory models assume that probabilities are weighted non-linearly. However, we found that the probability 393 

weighting parameter () did not significantly improve the model fit (Table S1, we used a 1-parameter 394 

probability weighting function
40

: 𝑤(𝑝) = 𝑒𝑥𝑝 (−(− 𝑙𝑛(𝑝)𝛾)) ). Hence, probabilities and utilities were 395 

combined linearly in the form: 𝑈(𝑝, 𝑂) = 𝑝 ∗ 𝑣(𝑂). The third component of a prospect theory model is the 396 

choice function. The probability of choosing to gamble is given by the logit or soft-max function: 397 

 398 

                            𝐹(𝑝, 𝑂1, 𝑂2, 𝑂𝑐) = (1 + 𝑒𝑥𝑝 [−𝜇(𝑈(𝑝, 𝑂1, 𝑂2) − 𝑈(𝑂𝑐))])−1                 Equation 2 399 

 400 

where  𝑂1 and 𝑂2 are the outcomes in the gamble option [p𝑂1; (1-p) 𝑂2], and 𝑂𝑐 is the outcome of the 401 

certain option. The logit parameter 𝜇 is the sensitivity of the choice probability to the utility difference. In 402 

summary, our prospect theory models included the following free parameters: risk preference parameter () 403 

and stochasticity of decision-making according to the inverse temperature parameter (𝜇).  404 

 405 

Parametric approach-avoidance decision model: Approach-avoidance models were based on the 406 

prospect theory models, but with an additional component that allows for value-independent influences to 407 

choose or not choose gambles. Specifically, Pavlovian parameter  ()  were added to the probability of 408 

choosing to gamble (Equation 2) as follows: 409 

 410 

                             𝐹(𝑝, 𝑂1, 𝑂2, 𝑂𝑐) = (1 + 𝑒𝑥𝑝 [−𝜇(𝑈(𝑝, 𝑂1, 𝑂2) − 𝑈(𝑂𝑐))])−1 +                   411 

                            𝐹(𝑝, 𝑂1, 𝑂2, 𝑂𝑐) = 𝑚𝑎𝑥(0, 𝑚𝑖𝑛(𝐹(𝑝, 𝑂1, 𝑂2, 𝑂𝑐),1)                                Equation 3 412 

 413 

Positive or negative values of the parameter ()  correspond respectively to an increased or decreased 414 

probability of gambling without regard to the value of gamble. Other parts of the models were identical to 415 

the prospect theory models. In summary, the approach-avoidance model included the following free 416 

parameters: risk preference parameter () , stochasticity of decision-making according to the inverse 417 

temperature parameter (𝜇) and Pavlovian parameter (). 418 

 419 

Parameter optimisation and model selection procedures  420 

The models were fit to individual choice data. The method of maximum likelihood was used to estimate 421 

(fminsearch in Matlab) the parameter vector  given the participant choice (y) on each trial (𝑝, 𝑂1, 𝑂2, 𝑂𝑐): 422 

 423 

                                                               L(|y,𝑝, 𝑂1, 𝑂2, 𝑂𝑐)                                                 Equation 4 424 

=∑ 𝑦𝑖 𝑙𝑜𝑔(𝐹(𝑝(𝑖), 𝑂1(𝑖), 𝑂2(𝑖), 𝑂𝑐(𝑖),)) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝐹(𝑝(𝑖), 𝑂1(𝑖), 𝑂2(𝑖), 𝑂𝑐(𝑖),))𝑁
𝑖=1       425 
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 426 

Where, i indexes the trial number; N is the number of trials; 𝑦𝑖  indicates participant choice on trial i; 427 

 indicates the parameter vector to be estimated; (𝑝, 𝑂1, 𝑂2, 𝑂𝑐) represent the gamble options on each trial. 428 

Parameters were constrained to the following ranges: : 0 → 1; 𝜇: 0 → 10;  : − 1 → 1. The model was fit 429 

to each participant’s data, and the fitting was repeated at 200 random seed locations to avoid local minima.  430 

 431 

For each key parameter of prospect theory and approach-avoidance models, we explored the possibility of 432 

using separate and single parameters for reward and punishment domains as well as a weighted or linear 433 

probability function. Therefore, we fitted each participant’s choice data with 24 models (Table S1). We used 434 

Akaike’s information criterion (AIC)
41

 and Bayesian information criterion (BIC)
42

 to compare model fits. 435 

Both of these represent a trade-off between the goodness of fit and complexity of the model and thus can 436 

guide optimal model selection. 𝑃𝑠𝑒𝑢𝑑𝑜 𝑟2  was calculated with the null model in which , μ and  were 437 

restricted to 0 (𝑝𝑠𝑒𝑢𝑑𝑜 𝑟2 = 1 −
𝑙𝑛 (𝐿̂(𝑚𝑜𝑑𝑒𝑙))

𝑙𝑛(𝐿̂(𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙))
, where 𝐿̂=Estimated likelihood).  438 
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Parametric decision-making model based on prospect theory 29 
As mentioned in the Methods, the subjective desirability of outcomes was modelled as transformations of 30 
objective task quantities. The subjective desirability of the outcomes O (the points in this case) was modelled 31 
by a value function (2-part power function) of the form as in Equation 1. The risk preference parameter () 32 
represents the diminishing sensitivity to changes in values as the absolute value increases (if  < 1). The 33 
risk preference parameter ( < 1) is equivalent to risk aversion in the reward domain and risk seeking in the 34 
punishment domain, as demonstrated by the following examples. Imagine a gamble between a probabilistic 35 
reward: 50% of £20; 50% of £0 and a sure reward of £10. The objective expected value of the gamble is £10, 36 
similar to the certain option. Hence a risk neutral person would be indifferent between these two options. If 37 
 = 0.8, the gamble would have a subjective value of 5.49, and the certain option would have a subjective 38 
value of 6.31, which results in participants being more likely to choose the certain option (i.e., risk aversion). 39 
Now imagine a gamble between a probabilistic punishment 50% of -£20; 50% of £0 and a sure punishment 40 
of -£10. The objective expected value of gamble is -£10, similar to the certain punishment option. If  = 0.8, 41 
the gamble would have a subjective value of -5.49, and the certain option would have a subjective value of  42 
-6.31, which results in participants being more likely to choose the gamble option (i.e., risk seeking).  43 
 44 
Parametric approach-avoidance decision model 45 
Approach-avoidance Models were based on the prospect theory models, but with an additional 46 
component that allows for value-independent influences to choose or not choose gambles i.e., Pavlovian 47 
parameters (). Positive or negative values of the parameter () correspond respectively to an increased or 48 
decreased probability of gambling without regard to the value of gamble. Other parts of the models were 49 
identical to the prospect theory models.  50 
 51 

Supplementary Results 52 
 53 
Model parameter optimization and model selection 54 
For each key parameter of prospect theory and approach-avoidance models, we explored the possibility of 55 
using separate and single parameters for gain and loss domains as well as a weighted or fixed probability 56 
function. Therefore, we fitted each participant’s choice data with 24 models (Table S1). We used Akaike’s 57 
information criterion (AIC) and Bayesian information criterion (BIC) to compare model fits (see main paper 58 
for relevant references). Both of these represent a trade-off between the goodness of fit and complexity of the 59 
model and thus can guide optimal model selection. 𝑃𝑠𝑒𝑢𝑑𝑜 𝑟2 was calculated with the null model in which 60 

, 𝜇 and  were restricted to 0 (𝑝𝑠𝑒𝑢𝑑𝑜 𝑟2 = 1 −
𝑙𝑛 (𝐿̂(𝑚𝑜𝑑𝑒𝑙))

𝑙𝑛(𝐿̂(𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙))
, where 𝐿̂=Estimated likelihood). The 61 

preferred model’s behavioural predictions among both the prospect theory models ([+,−,+,−]; ID=4 62 

Table S1) and the approach-avoidance models ([,,  +, −
]; ID=10 Table S1) are plotted in  63 

Figure S2 and Figure S3, respectively. 64 
  65 
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 66 

 67 
Table S1: Comparison of decision-making models. The main parameters were (1) value function 68 
parameter (); (2) the probability weighting parameter (); the Softmax temperature parameter (); the 69 
Pavlovian parameter (). For each key parameter of the prospect theory (PT) and approach-avoidance (AA) 70 
models, we explored the possibility of using separate and single parameters for reward and punishment 71 
domains as well as a weighted or fixed probability function (see Methods). According to AIC and BIC model 72 
comparison an approach-avoidance decision model (red; ID=10) fitted the choice (gamble) data better than 73 
established decision models based on prospect theory. 74 

  ID Parameters 𝐩𝐬𝐞𝐮𝐝𝐨 𝒓𝟐 

(mean± 

sd) 

𝐩𝐬𝐞𝐮𝐝𝐨 𝒓𝟐 

(median) 

BIC  

(lower 

value 

preferred) 

AIC  

(lower 

value 

preferred) 

PT 

model  

 

Linear  

prob 

1 ,  0.20±0.18 0.17 1426604 1334397 

2 ,+,− 0.30±0.15 0.30 1371245 1232934 

3 +,−, 0.29±0.18 0.27 1392398 1254087 

4 +,−,+,− 0.36±0.19 0.35 1382608 1198193 

 

Weighted  

prob 

5 ,,  0.23±0.19 0.19 1494553 1356242 

6 ,+,−,  0.31±0.15 0.30 1462708 1278293 

7 +,−,,  0.30±0.18 0.28 1484189 1299773 

8 +,−,+,−,  0.35±0.19 0.32 1497729 1267210 

 

AA  

model 

 

 

 

Linear  

prob 

9 ,,  0.44±0.24 0.43 1156367 1018056 

10 ,,  +, −
 0.52±0.25 0.53 1134654 950238 

11 ,+,−,  0.41±0.26 0.39 1315334 1130919 

12 ,+,−, +, −
 0.53±0.25 0.54 1223419 992900 

13 +,−,,  0.44±0.24 0.42 1255799 1071384 

14 +,−,,  +, −
 0.54±0.25 0.55 1211776 981257 

15 +,−,+,−,  0.46±0.24 0.43 1332344 1101825 

16 +,−,+,−, +, −
 0.53±0.25 0.54 1321843 1045220 

  

Weighted  

prob 

17 ,, ,  0.44±0.25 0.42 1260226 1075810 

18 ,,  +, −,  0.53±0.26 0.55 1215174 984655 

19 ,+,−, ,  0.42±0.27 0.41 1397167 1166647 

20 ,+,−, +, −,  0.54±0.25 0.55 1306339 1029716 

21 +,−,, ,  0.43±0.25 0.42 1382322 1151803 

22 +,−,,  +, −,  0.54±0.25 0.55 1323605 1046982 

23 +,−,+,−, ,  0.47±0.24 0.44 1469428 1192805 

24 +,−,+,−, +, −,  0.53±0.25 0.54 1433450 1110723 
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 75 
 76 
Figure S2: Average model fit across participants for the winning prospect theory model (ID=4 Table 77 
S1 [+,−,+,−]). The model cannot account for the observed differences in choice behaviour during the 78 
motor decision-making task across the lifespan, including (1) the value-independent differences across age 79 
groups in the reward domain (Figure 3); (2) the changes in gamble propensity observed in the punishment 80 
domain across age groups (the model fit shows almost no difference across the age groups in the punishment 81 
domain); (3) the higher gamble rate in the reward domain relative to the punishment domain when the 82 
difference between expected values [EVgamble-EVcertain] is close to 0 (the model fit shows the opposite). 83 
 84 

 85 
 86 

Figure S3: Average model fit across participants for the winning approach-avoidance model (ID=10 87 

Table S1, [,,  +, −
]). The model does a far superior job of fitting choice behaviour during the motor 88 

decision-making task across the lifespan (Figure 2).  89 
 90 
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The aging effect for each gender and education level 91 
We found similar aging effects in both males (n=15911, r=-0.140, p<0.001, Figure S) and females (n=10621, 92 
r=-0.143, p<0.001, Figure S), and across all education levels (school: n=9171, r=-0.152, p<0.001; university: 93 
n=11281, r=-0.142, p<0.001; advanced: n=6080, r=-0.136, p<0.001).  94 
 95 

 96 
 97 
Figure S4: The change in approach-avoidance model parameters across the life span for each gender 98 
(top: male; bottom: female). Column 1 from left: α across age groups; Column 2: 

−
and 

+
  across age 99 

groups; Column 3: µ across age groups; Column 4: age-related decline across the punishment and reward 100 

domain. The largest effect size was observed for the Pavlovian approach parameter (
+

); Bars and error bars 101 
represent medians and bootstrapped 95%CIs. 102 
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 103 
Figure S5: The change in approach-avoidance model parameters across the life span for each 104 
education level (top: school leavers; middle: university leavers; bottom: advanced (Masters, PhD). 105 
Column 1 from left: α across age groups; Column 2: 

−
and 

+
  across age groups; Column 3: µ across age 106 

groups; Column 4: age-related decline across the punishment and reward domain. The largest effect size was 107 

observed for the Pavlovian approach parameter (
+

); Bars and error bars represent medians and bootstrapped 108 
95%CIs. 109 
 110 
Correlation across the economic and motor decision-making tasks within each age group 111 
Through the app-based platform a subset of participants (n=17,220) also performed an economic decision-112 
making gambling task in which a similar approach-avoidance model was used to explain choice behaviour 113 
(see main text for relevant reference). Through correlation and median-split analysis we found a small but 114 
significant positive relationship for all main model parameters between the tasks. This relationship was 115 
relatively consistent across the lifespan whereby we found a positive correlation between these parameters 116 
within each age group (Figure S6 & S7). However, although the oldest age group (60+) showed a similar 117 
trend, we did not have enough power (participant numbers) to reliably detect effect sizes of 0.05 within this 118 
group. Specifically, whilst the 60+ age group (n=783) had 0.28 power to detect 0.05 effect sizes, the next 119 
oldest group (50-59, n=1541) had near double the amount of power of 0.5.      120 
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 121 
 122 
Figure S6: Correlation between motor and economic decision-making tasks for the main approach-123 
avoidance model parameters within each age group. This relationship was relatively consistent across the 124 
lifespan whereby we found a positive correlation between these parameters within each age group. Note, the 125 
single α parameter of the motor decision-making model was correlated with both the α- and α+ parameters of 126 
the decision-making model. Error bars reflect bootstrapped 95% CIs. 127 
 128 

 129 
 130 
Figure S7: Motor decision-making approach-avoidance parameter values median split by economic 131 
parameter values within each age group. Filled bars denote participants with below-median values in the 132 
economic gambling task; Hollow bars for above-median. The participants with above-median risk 133 
parameters and Pavlovian parameters in the economic decision task had generally higher risk parameters and 134 
Pavlovian parameters in the motor gambling task. Bars/error bars reflect medians/bootstrapped 95%CIs. 135 
 136 
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Model results when probability of success was based on each individual’s own performance  137 
In the main results, the probability of success for a participant within a certain age group, using a certain 138 
screen size and facing a certain target size on each trial was estimated using the average success rate across 139 
all the participants with the same age, same screen size, and facing the same target size. Given the small 140 
amount of trials we had for each participant at each target size to estimate their probability of success, we 141 
believed this group average approach was the most valid estimate of success probability. However, Figure 142 
S8 shows that similar results are observed when probability of success is estimated based on each 143 
individual’s own data (i.e. the probability of success for a participant facing a certain target size was 144 
estimated using their own success rate over the same target size). 145 
 146 
 147 

 148 
 149 
Figure S8: Model results when probability of success was based on each individual’s own performance 150 
(rather than group average). Similar results are observed when the probability of success was estimated 151 

based on each individual’s own data. (a) α across age groups; (b) 
−

and 
+

  across age groups; (c) µ across 152 
age groups; (d) age-related decline across the loss and gain domain. The largest effect size was observed for 153 

the Pavlovian approach parameter (
+

); (e) positive correlation across motor and economic decision tasks for 154 
the main approach-avoidance model parameters; (f) median split. Filled bars denote participants with below-155 
median values in the economic gambling task; Hollow bars for above-median. The participants with above-156 
median risk parameters and Pavlovian parameters in the economic decision task had higher risk parameters 157 
and Pavlovian parameters in the motor gambling task. Bars/error bars reflect medians/bootstrapped 95%CIs.  158 
 159 
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