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ABSTRACT 

Important for understanding the regulatory roles of miRNAs is the ability to predict 

the mRNA targets most responsive to each miRNA. Here, we acquired datasets 

needed for the quantitative study of microRNA targeting in Drosophila. Analyses of 

these data expanded the types of sites known to be effective in flies, expanded the 

mRNA regions with detectable targeting to include 5′ UTRs, and identified features 

of site context that correlate with targeting efficacy. Updated evolutionary analyses 

evaluated the probability of conserved targeting for each predicted site and 

indicated that more than a third of the Drosophila genes are preferentially 

conserved targets of miRNAs. Based on these results, a quantitative model was 

developed to predict targeting efficacy in insects. This model performed better than 

existing models and will drive the next version of TargetScanFly (v7.0; 

targetscan.org), thereby providing a valuable resource for placing miRNAs into 

gene-regulatory networks of this important experimental organism.  
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INTRODUCTION 

MicroRNAs (miRNAs) are ~22-nt regulatory RNAs that originate from hairpin 

precursors (Bartel 2004). In Drosophila, they associate primarily with the 

Argonaute1 (dmAgo1) protein to form a silencing complex (Forstemann et al. 2007; 

Tomari et al. 2007), within which the miRNA functions as a sequence-specific guide 

that recognizes target mRNAs through pairing to complementary sites primarily 

within the 3′ untranslated regions (3′ UTRs) (Lai 2002; Brennecke et al. 2005; Bartel 

2009).  

 

The miRNA pathway found in flies is ancestral to animals (Grimson et al. 2007), with 

dozens of miRNA genes conserved broadly in bilaterian species (Ruby et al. 2007; Lu 

et al. 2008; Mohammed et al. 2013; Fromm et al. 2015). Small-RNA sequencing has 

identified hundreds of miRNAs that are encoded in fly genomes (Lagos-Quintana et 

al. 2001; Aravin et al. 2003; Ruby et al. 2007; Berezikov et al. 2011; Kozomara and 

Griffiths-Jones 2014; Fromm et al. 2015), which in aggregate appear to target 

thousands of mRNAs (Brennecke et al. 2005; Grun et al. 2005; Rehwinkel et al. 2006; 

Kheradpour et al. 2007; Ruby et al. 2007; Schnall-Levin et al. 2010; Berezikov et al. 

2011; Jan et al. 2011). Studies of miRNAs in Drosophila melanogaster have helped 

define components of the miRNA processing pathway, developmental roles of 

miRNAs, and evolutionarily conserved mechanisms of miRNA action (Smibert and 

Lai 2010). 

 

Drosophila miRNAs are expressed in complex spatiotemporal patterns throughout 

development (Sempere et al. 2003; Aboobaker et al. 2005) and play a wide diversity 

of roles. Examples include functions for the bantam miRNA in the regulation of cell 

proliferation (Brennecke et al. 2003), miR-iab4/iab8 in body patterning (Bender 

2008; Stark et al. 2008; Tyler et al. 2008) and behavior (Picao-Osorio et al. 2015), 

miR-14 in insulin production and metabolism (Varghese et al. 2010), miR-34 in 

aging and neurodegeneration (Liu et al. 2012), and miR-277 in branched-chain 

amino acid catabolism (Esslinger et al. 2013). Indeed, a large-scale survey of miRNA 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2017. ; https://doi.org/10.1101/198689doi: bioRxiv preprint 

https://doi.org/10.1101/198689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Agarwal et al., page 4 
 

 4 

knockouts in the flies reports abnormal knockout phenotypes for more than 80% of 

the miRNA genes tested (Chen et al. 2014). 

 

Crucial for understanding the molecular basis of these phenotypes is the search for, 

and characterization of, miRNA targets. Analyses of reporter assays and site 

conservation indicate that the canonical site types identified in mammals, which 

include perfect Watson–Crick pairing to the miRNA seed (miRNA nucleotides 2–7) 

(Lewis et al. 2005), also function in flies (Brennecke et al. 2005; Grun et al. 2005; Lai 

et al. 2005; Kheradpour et al. 2007; Ruby et al. 2007; Stark et al. 2007; Schnall-Levin 

et al. 2010; Jan et al. 2011). However, knowledge of miRNA targeting in flies has 

lagged behind that of mammals, primarily due to the lack of high-throughput 

datasets examining the responses of mRNAs to the perturbation of miRNAs. In 

mammals, such datasets have been very useful for both measuring the relative 

efficacy of different site types and identifying additional features that influence site 

efficacy, such as those related to the context of the site within the mRNA, thereby 

enabling the development of quantitative models of site efficacy (Bartel 2009). 

Although as in mammals, much of miRNA targeting in flies is known to be seed-

based, the relative importance of site types and context features might differ 

between mammals and flies, calling into question the utility for flies of quantitative 

models developed using mammalian data. For instance, fly 3′ UTRs are shorter and 

have a higher AU-content than those of mammals, which would presumably affect 

the utility of context features such as distance from a 3′-UTR end or local AU 

content, which are known to be predictive of site efficacy in mammals (Grimson et 

al. 2007). Although some attempt to model the effect of target-site accessibility on 

miRNA-mediated repression has been applied to Drosophila as well as mammals 

(Kertesz et al. 2007), the relatively poor performance of this model when tested in 

mammalian systems suggests that in fly it would have also benefited from the use of 

large datasets for training and validation (Baek et al. 2008). 

 

Despite the lack of high-throughput repression data, many algorithms have been 

developed to predict and rank miRNA targets in Drosophila. Most, including EMBL 
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predictions (Brennecke et al. 2005; Stark et al. 2005), EIMMo (Gaidatzis et al. 2007), 

MinoTar (also available as TargetScanFly ORF) (Schnall-Levin et al. 2010), miRanda-

MicroCosm (Griffiths-Jones et al. 2008), PicTar (Grun et al. 2005; Anders et al. 

2012), and TargetScanFly (Ruby et al. 2007), use a mix of pairing and evolutionary 

criteria, with pairing sometimes evaluated using predicted thermodynamic stability. 

Others, including PITA (Kertesz et al. 2007), RNA22 (Miranda et al. 2006), and 

RNAhybrid (Rehmsmeier et al. 2004), utilize purely thermodynamic information. 

Others, such as DIANA-microT-CDS (Reczko et al. 2012), mirSVR (Betel et al. 2010), 

and TargetSpy (Sturm et al. 2010), were trained on mammalian data using machine-

learning strategies and then used to generate predictions for flies. 

 

As with most algorithms applied in mammals, some of those applied in flies predict 

many non-canonical target sites that have one or more mismatches or wobbles to 

the miRNA seed. However, others, including DIANA-microT-CDS, EIMMo, MinoTar, 

RNAhybrid, and TargetScanFly, require perfect seed pairing in an effort to enhance 

the specificity of detecting functional targets, although it is unclear to what degree 

this comes at the price of reduced sensitivity. Whereas most algorithms limit 

predictions to sites in 3′ UTR’s, DIANA-microT-CDS and MinoTar also include 

predictions with sites in coding regions, which seem to have an even greater signal 

for preferential conservation in flies than they do in mammals (Lewis et al. 2005; 

Schnall-Levin et al. 2010). 

 

Here, we used RNA-seq to monitor the effects of introducing specific miRNAs into 

Drosophila cells.  Analyses of these data, together with updated analyses of site 

conservation in flies and other insects, provided new and quantitative insights into 

the types of target sites that function in flies, the scope of targeting in flies, and 

features of site context that influence site efficacy. With these insights, we generated 

a quantitative model that improves the rankings of target predictions for the fly 

miRNAs, which will be available at TargetScanFly, v7.0 

(http://www.targetscan.org). We also release an accompanying suite of 

computational tools to help others reproduce our figures and apply our analyses to 
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future datasets (TargetScanTools; 

https://github.com/vagarwal87/TargetScanTools). 

 

RESULTS & DISCUSSION 

Canonical miRNA target sites function primarily in Drosophila 3′ UTRs 

To acquire datasets suitable for quantitative analysis of miRNA targeting in fly cells, 

we monitored the changes in mRNA levels after co-transfecting S2 cells with one of 

six different miRNA duplexes and a GFP-encoding plasmid. The six transfected 

miRNAs (miR-1, miR-4, miR-92a, miR-124, miR-263a, and miR-994) were chosen 

because they (or related miRNAs in the same seed family) were not endogenously 

expressed in S2 cells (Ruby et al. 2007), and they had diverse starting-nucleotide 

identities, a range of GC content within their seeds, and a moderate-to-high range of 

predicted target-site abundances. After enriching for transfected, GFP-positive cells 

by FACS, mRNA-seq was performed, and mRNA fold changes were calculated for 

each miRNA transfection condition relative to a mock transfection, in which the GFP 

plasmid was transfected without any miRNA duplex (Table S1). We then normalized 

the data to reduce batch effects (Figure S1) and began investigating the features of 

miRNA target sites that correlate with mRNA repression in Drosophila cells. 

 

In mammals, the presence of an A opposite the first nucleotide of a miRNA is 

preferentially conserved and correlates with enhanced repression, regardless of the 

identity of the first nucleotide of the miRNA—observations explained by a pocket 

within human Argonaute2 (hsAGO2) that preferentially binds this A (Lewis et al. 

2005; Grimson et al. 2007; Baek et al. 2008; Schirle et al. 2015). In flies, an A at this 

position of the target site is also associated with enhanced conservation compared 

to otherwise identical sites missing this A (Jan et al. 2011), whereas in nematodes 

conservation and efficacy of a sites with perfect pairing to miRNA nucleotides 2–8 

followed by a U (8mer-U1 sites) resembles that of 8mer-A1 sites (Clark et al. 2010; 

Zisoulis et al. 2010; Jan et al. 2011).  We therefore examined the influence of the 

nucleotide at target position 1 in flies, considering the data from all miRNA 

transfections pooled together. Of the mRNAs possessing a single match to miRNA 
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nucleotides 2–8 in their 3′ UTR, those with an A opposite miRNA position 1 (i.e., 

those with the 8mer-A1 site) tended to be more repressed than those with each of 

the other three possibilities opposite miRNA position 1 (8mer-C1, 8mer-G1, and 

8mer-U1, respectively), with the identity of the other three possibilities having little 

influence on repression (Figure 1A). As expected based on the observation that the 

first position of the guide RNA is buried within Argonaute and unavailable for 

pairing (Ma et al. 2005; Parker et al. 2005; Schirle et al. 2015), this observation 

generally held when considering each miRNA transfection independently, 

regardless of whether the identity of the first nucleotide of the miRNA was a U 

(Figure S2). Thus Drosophila exhibits a preference for A at target position 1 

resembling that of mammals, implying that this target nucleotide is recognized by a 

pocket within dmAgo1 resembling that of hsAGO2. With respect to nomenclature, 

these results further supported consideration of the 8mer-A1 site as the canonical 

8mer site of Drosophila, as was done originally in mammals (Lewis et al. 2005). 

 

Analogous analyses of mRNA fold-change values in mammalian systems have 

demonstrated the function and relative efficacy of 8mer, 7mer-m8, 7mer-A1, 6mer, 

and offset 6mer sites (Grimson et al. 2007; Friedman et al. 2009). Accordingly, we 

examined the function of these site types in Drosophila, again pooling the data and 

focusing on mRNAs with a single site to the cognate miRNA. We also considered a 

sixth site type, the 6mer-A1 site, which has implied function in nematodes (Jan et al. 

2011) and completes the set of all possible 8-, 7- and 6-nt perfect matches to the 8-

nt seed region, which we refer to as the canonical site types (Figure 1B). When 

located in the context of 3′ UTRs, each canonical site type tended to mediate 

repression, with the magnitude of repression following the hierarchy of 8mer > 

7mer-m8 > 7mer-A1 > 6mer ~ offset 6mer ~ 6mer-A1 (Figure 1C). This hierarchy 

resembled that of mammals, except in mammals the efficacy of the different 6-nt 

sites is much more distinct, with 6mer > offset 6mer > 6mer-A1, and with the 6mer-

A1 difficult to distinguish from background (Grimson et al. 2007; Friedman et al. 

2009).  
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We also examined the efficacy of canonical sites in mRNA regions outside of the 3′ 

UTR. Some repression was observed for mRNAs with a site in their ORF (and no 

canonical site elsewhere in the mRNA), most convincingly for 8mer sites, although 

the efficacy of these sites was much less than that observed in 3′ UTRs (Figure 1D). 

These observations are consistent with those in mammals (Grimson et al. 2007; Gu 

et al. 2009; Schnall-Levin et al. 2011). In contrast to observations in mammals, 

however, repression was also observed for mRNAs with an 8mer site in their 5′ UTR 

(Figure 1E). Taking these findings together, we conclude that miRNA targeting in 

flies resembles that of mammals, except the efficacy of the three 6-nt canonical sites 

is more uniform in flies and repression of endogenous mRNAs is more readily 

detected in fly 5′ UTRs. 

 

Widespread conservation of canonical miRNA target sites in Drosophila UTRs 

A previous evolutionary analysis of mammalian miRNA target sites provided a 

framework for estimating the likelihood that predicted miRNA target sites are 

conserved across species, while controlling for factors such as differential species 

relatedness, differential background conservation in untranslated regions, and 

differential rates of dinucleotide substitutions (Friedman et al. 2009). Although this 

approach has also been applied to Drosophila genomes (Jan et al. 2011), we  

improved and extended it by: i) updating conserved miRNA family classifications 

and 3′-UTR annotations, ii) using an expanded evolutionary tree that incorporated 

additional insect species, iii) extending analyses to Drosophila 5′ UTRs, iv) using a 

modified evolutionary analysis pipeline (Agarwal et al. 2015), and v) comparing our 

evolutionary results to our functional data. Towards this end, we compiled miRNA 

annotations from multiple studies (Ruby et al. 2007; Mohammed et al. 2013; 

Kozomara and Griffiths-Jones 2014; Fromm et al. 2015) and classified 91 miRNA 

families as broadly conserved among Drosophila species, 29 of which have been 

conserved since the last bilaterian ancestor (Table S2). We also extracted multiple 

sequence alignments corresponding to annotated D. melanogaster 5′ UTRs and 3′ 
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UTRs, assigning each UTR to one of five bins based on its background UTR 

conservation rates (Jan et al. 2011). For each bin, we computed phylogenetic trees 

with a fixed species tree topology that encompassed 27 insect species, allowing for 

variable branch lengths to capture slower or faster substitution rates among the 

UTRs of the bin (Figure 2A). These trees were then used to assign a branch-length 

score (Kheradpour et al. 2007) to each motif occurrence in D. melanogaster UTRs, 

which quantified the extent of conservation of that occurrence while controlling for 

the background conservation rate of its overall UTR context (Friedman et al. 2009). 

For example, a motif occurrence detected among all Sophophora species in the 3′ 

UTR alignment would be assigned a branch-length score of 4.50, 2.53, or 1.69, 

depending upon whether the corresponding 3′ UTR in which it resided was in the 

first, third, or fifth conservation bin, respectively (Figure 2A). 

 

For each site type of each of the 91 broadly conserved miRNA families, we computed 

the “signal” as the number of times that site occurred in D. melanogaster UTRs and 

had a branch-length score that equaled or surpassed a particular value (i.e., the 

“branch-length cutoff”). In parallel, we also computed the “background” as the 

number of conserved occurrences expected by chance, based upon the mean 

fraction of conserved motif instances for 50 length-matched k-mer controls, each of 

which was predicted to have background conservation resembling that of the 

miRNA site, as estimated from aggregated dinucleotide conservation rates 

(Friedman et al. 2009). This allowed us to compute a signal-to-background ratio at 

each branch-length cutoff, which represented the estimated enrichment of 

preferentially conserved miRNA sites in fly UTRs (Figure 2B and C). It also allowed 

us to compute the signal-above-background, which represented the estimated the 

number of miRNA sites that have been preferentially conserved in fly UTRs (Figure 

2D and E). 

 

As expected, the signal-to-background ratios increased as the evolutionary 

conservation criteria became more stringent, with 8mers in 3′ UTRs reaching a ratio 

of nearly five conserved sites for every one control site at the greater branch-length 
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cutoffs (Figure 2B). For each site type, the ratios were consistently greater in the 3′ 

UTRs than they were in 5′ UTRs (Figure 2B and C). For example, in 5′ UTRs signal-

to-background ratio for 8mers did not surpass 1.6 (Figure 2C). These results 

showed that sites are more likely to be conserved if they reside in 3′ UTRs, 

presumably because this is where they are also more effective (Figure 1). 

Nonetheless, when comparing the signal-to-background ratios for different miRNA 

families, ratios in 5′ UTRs correlated with those in 3′ UTRs (Figure 2F; Table S2). 

The greatest ratios tended to be for the fly miRNA families that have been conserved 

since the ancestor of bilaterian animals (Figure 2F), as might expected for these 

ancient families that have had more time to acquire broader roles in gene regulatory 

networks. 

 

Although the sequence-conservation signal-to-background hierarchy of 8mer > 

7mer > 6mer observed in both 5′ and 3′ UTRs matched the hierarchy observed for 

efficacy, some differences were observed. Most notably, the conservation signal for 

the 6mer site was robustly above background, whereas those for the offset 6mer 

and 6mer-A1 sites were both indistinguishable from background (Figure 2B), even 

though these three 6-nt sites had similar efficacies in our repression data (Figure 

1C). Conversely, the 5′-UTR 7mer-A1 site exhibited a detectable signal for 

conservation (Figure 2B), even though it had no detectable efficacy in mediating 

repression (Figure 1C). 

 

For sites in both 3′ and 5′ UTRs, the signal-above-background peaked near a branch-

length cutoff of 1.0 (Figure 2D). At this and other branch-length cutoffs, the signal-

above-background was far higher in the 3′ UTR than in the 5′ UTR (Figure 2D and 

E), which can be attributed to both a higher fraction of the sites preferentially 

conserved in 3′ UTRs, as indicated by the higher signal-to-background ratio in 3′ 

UTRs, and more sites residing in 3′ UTRs, mostly a consequence of 3′ UTRs generally 

being longer than 5′ UTRs. Including site types whose lower 5% confidence intervals 

exceeded zero, our results provided an estimate of ~12,285 sites conserved above 

background in 3′ UTRs (2738 ± 31 8mer, 2837 ± 68 7mer-m8, 4062 ± 100 7mer-A1, 
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2128 ± 221 6mer sites, and 520 ± 244 offset 6mer sites, calculated at a branch-

length cutoff of 1.0 and reported ± 90% confidence interval) (Figure 2D). When 

added to our estimate of ~840 sites conserved above background in 5′ UTRs (350 ± 

18 8mer, 165 ± 46 7mer-m8 sites, and 325 ± 44 7mer-A1 sites) (Figure 2E), the 

estimated number of preferentially conserved UTR sites in Drosophila UTRs totaled 

~13,125. Simulations that considered all of the conserved instances of site types and 

then accounted for those that were estimated to be conserved by chance in 5′ UTRs 

and 3′ UTRs, indicated that these 13,125 preferentially conserved sites reside within 

5035 ± 83 (90% confidence interval) of the 13,550 unique mRNAs with annotated 

UTRs of Drosophila, implying that mRNAs from 37.2% ± 0.6% of the Drosophila 

genes are conserved targets of the broadly conserved miRNAs. 

 

Additional comparison of the results from our analyses of site conservation and site 

efficacy revealed that, as observed for mammalian 3′-UTR sites (Friedman et al. 

2009), there was a striking correlation between the fraction of sites conserved 

above background for each site type and the corresponding fraction of sites 

mediating mRNA destabilization (Figure 2G). Slightly deviating from this trend were 

3′-UTR 6mer-A1 sites, which appeared to mediate some repression despite lacking a 

signal for conservation, and 5′-UTR 7mer-A1 sites, which had a modest signal for 

conservation despite undetectable efficacy of repression (Figure 2G).  

 

To estimate the extent to which each instance of each of the three most effective 

sites has been preferentially conserved, we computed the probability of conserved 

targeting (PCT) score for each of the 8mer, 7mer-m8, and 7mer-A1 sites residing in 

D. melanogaster 3′-UTRs. PCT scores, which range from 0 to 1, summarize the 

estimated probability that a given site has been evolutionarily conserved because of 

its pairing to the cognate miRNA, while controlling for other factors, such as its 

length, surrounding genomic context, and dinucleotide content (Friedman et al. 

2009). These scores provide a valuable resource for biologists wanting to focus on 

conserved targeting interactions. They also can help predict targeting efficacy 

(Friedman et al. 2009; Agarwal et al. 2015). Indeed, sites with greater PCT scores 
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tended to confer more repression (Figure 2H), implying that as expected, conserved 

sites were more likely reside within contexts that favored their efficacy. 

 

Features useful for predicting site efficacy in flies 

Before beginning to explore the features of site context associated with site efficacy, 

we improved the 3′-UTR annotations in S2 cells, the cell line in which we had 

acquired our functional data, reasoning that more accurate annotation of these 

UTRs would allow us to reduce the impact of false-positive sites while appropriately 

weighting sites by the frequency of their inclusion within 3′-UTR isoforms (Nam et 

al. 2014; Agarwal et al. 2015).  Knowledge of abundant alternative 3′-UTR isoforms 

for the mRNAs of a gene would also provide a more informed assessment of 3′-UTR-

related features, such as 3′-UTR length and distance from the closest 3′-UTR end.  

Accordingly, we identified and quantified the 3′-UTR isoforms of S2 cells using 

poly(A)-position profiling by sequencing (3P-seq) (Jan et al. 2011). Although the 

majority of the 3P-seq–supported poly(A) sites corresponded to either 3′-UTR 

isoforms that had been previously annotated by FlyBase or a large-scale study that 

annotated additional poly(A) sites (Smibert et al. 2012), nearly 47% of the 3P-seq–

supported poly(A) sites did not correspond to existing annotations, and most of 

these novel sites could be linked to a nearby gene with the support of RNA-seq 

evidence (Figure 3A). In cases in which the longest 3′ UTR isoform for a gene 

annotated using 3P-seq differed from that annotated in FlyBase, it was more often 

longer, although for nearly 1000 genes the 3P-seq results implicated the dominant 

use of a shorter 3′-UTR isoform in S2 cells (Figure 3B). Using this information, we 

compiled a set of 3,826 mRNAs that passed our expression threshold in S2 cells and 

for which ≥90% of the 3P-seq tags corresponded to a single dominant 3′-UTR 

isoform in these cells, and used this set to investigate features of site context 

associated with site efficacy. 

 

With this set of mRNAs and repression values in hand, we examined two of the more 

complex features of site context, confirming their effects in Drosophila cells and 

developing scoring schemes that best correlated with their influence in these cells. 
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The first of these two features was 3′-supplementary pairing, i.e., pairing to the 

target by miRNA nucleotides outside of the seed region. The strength of this pairing 

was evaluated as the predicted thermodynamic energy of pairing between the 3′ 

region of the miRNA and a corresponding mRNA region upstream of the seed match. 

This predicted energy of pairing was evaluated for mRNAs that possessed a single 

7–8-nt 3′-UTR site for the transfected miRNA and then compared to the repression 

observed for the mRNAs upon miRNA transfection by computing a partial 

correlation between 3′-supplementary-pairing energies and mRNA changes, 

controlling for site type. 

 

In mammalian cells, 3′-supplementary pairing is most influential when centered on 

nucleotides 13–17 (Grimson et al. 2007), but in flies the pairing possibilities most 

consequential for repression had not been identified. To systematically examine 

these possibilities, we varied three parameters: i) the start position of the miRNA 

region considered, examining all start possibilities from positions 9 to 19, ii) the 

length of the miRNA region considered, examining lengths from 4 to 13 nt, and iii) 

the length of the target region upstream of the seed match, examining lengths from 

4 to 20 nt. A grid search over all parameter combinations revealed that the 

predicted energy of 3′-supplementary pairing energy was optimally predictive of 

repression efficacy when it was calculated for the pairing that can occur between 

miRNA nucleotides 13–17 and a 9-nt region upstream of the seed match (Figure 3C). 

 

The second feature we investigated was the influence of 3′-UTR structure on target-

site accessibility. This feature has been evaluated previously using two approaches, 

either evaluating nucleotide composition near the site, reasoning that sites residing 

in high local AU content would be more accessible (Grimson et al. 2007), or 

attempting to predict site accessibility using various RNA-folding algorithms 

(Robins et al. 2005; Kertesz et al. 2007; Hammell et al. 2008; Tafer et al. 2008; Hong 

et al. 2009; Agarwal et al. 2015). With respect to the second approach, a method 

originally developed to predict siRNA target-site accessibility (Tafer et al. 2008) 

appears to be one of the more effective methods for predicting miRNA target site 
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accessibility in mammals (Agarwal et al. 2015). This method uses RNAplfold 

(Bernhart et al., 2006) to fold the 80-nt region centered on the seed match and then 

reports a structural accessibility (SA) score calculated as the mean unpaired 

probabilities for a smaller window in the vicinity of the seed match (Tafer et al. 

2008; Agarwal et al. 2015). To determine optimal location and width of this window 

for scoring SA in flies, we again computed partial correlations, this time between 

mean pairing probabilities and mRNA changes, varying two parameters: i) the 

position of the center of the window within the target mRNA, examining each 

position within 20 nt of the seed match, and ii) the size of this widow, considering 

sizes of 1 to 25 nt. A grid search over all parameter combinations indicated that a 

25-nt window centered on the nucleotide that pairs to miRNA position 7 was 

optimal for calculating SA in flies (Figure 3D).  Although the optimal window size fell 

at the edge of the range, larger windows were not considered because they were 

more prone to extend beyond 3′-UTR boundaries, which reduced the sample size.  

 

A quantitative model for predicting site efficacy in flies 

To identify and evaluate additional features associated with site efficacy in flies and 

generate a resource for placing fly miRNAs into gene regulatory networks, we 

developed a quantitative model of miRNA targeting efficacy for flies, which 

resembled our models developed for mammals (Grimson et al. 2007; Garcia et al. 

2011; Agarwal et al. 2015). The smaller scope of our fly dataset imposed some 

limitations on the features we could examine in flies as well as the strategy used to 

train the model. In particular, the number of training examples was an order of 

magnitude lower in the fly dataset relative to the human dataset, which was due to 

i) fewer small-RNA transfection datasets in S2 cells compared to those available in 

HeLa cells, ii) a smaller number of genes expressed in S2 cells compared to those 

expressed in HeLa cells, and iii) shorter 3′ UTRs in flies, which further decreased the 

number of 3′ UTRs with a site for a miRNA of interest. Thus, we did not consider 

features related to the identity of the miRNA seed, such as target abundance, 

predicted seed pairing stability, and nucleotide identity at the miRNA or target 

position 8, which are each informative for predicting targeting efficacy in human 
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cells (Garcia et al. 2011; Agarwal et al. 2015). Moreover, rather than considering 

features for each site type independently, we trained a single, unified regression 

model that considered the site type itself as a potential feature of targeting. In 

addition to site type, eight other features of the sites and their surrounding context 

and seven features of the target mRNAs were considered as potentially informative 

of targeting efficacy (Table 1).  

 

Starting with these features, we trained models of targeting efficacy using a variety 

of machine-learning algorithms. To evaluate each algorithm, we partitioned our 

dataset into 1000 bootstrapped samples to estimate the held-out prediction 

performance. Each sample included 70% of the mRNAs with a single 7–8-nt 3′-UTR 

site from each miRNA transfection experiment (randomly selected without 

replacement), reserving the remaining 30% for testing. Among the different 

algorithms, a stepwise-regression strategy that maximized the Akaike Information 

Criterion (AIC) led to the best empirical performance (Figure S3). This stepwise-

regression strategy was the same algorithm that we had recently used to build a 

model of mammalian miRNA targeting efficacy (Agarwal et al. 2015). Relative to a 

model that considered only site type (the “site only” model), the stepwise regression 

model that considered features of site context was 2–3 fold improved in predicting 

the mRNA fold-change measurements (median r2 of 0.08 and 0.19, respectively; 

p<0.001, paired Wilcoxon signed-rank test; Figure S3). Note that because most of 

the variability in miRNA-transfection datasets is attributable to experimental noise 

and other factors that are not direct effects of miRNA targeting, the r2 of 0.19 in this 

analysis was not of concern and resembled the results obtained in mammalian 

analyses (Agarwal et al. 2015). 

 

The features most informative for the stepwise regression model were presumably 

those with the greatest impact on site efficacy in flies. To identify these key features, 

we quantified the percentage of bootstrapped samples in which each feature was 

chosen (Table 1). Seven of the 18 features were selected in ≥90% of the bootstrap 

samples (Table 1), and multiple linear regression models trained with only these 
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seven features performed at least was well as those that considered all 18 features 

(median r2 of 0.20; Figure S3). Aside from site type, which is currently considered in 

TargetScanFly, release 6.2 (Ruby et al. 2007), these robustly selected features 

included three features of the site, i.e, energy of 3′-supplementary pairing 

(3P_energy), structural accessibility (SA), and evolutionary conservation (PCT); and 

three features of the mRNA, i.e., ORF length (len_ORF), 3′-UTR length (len_3UTR), 

and the number of weak sites within the mRNA (other_sites) (Table 1). Notably, all 

of these features were previously selected when modeling site efficacy in mammals 

(Agarwal et al. 2015), with the nuance that in flies 3P_energy outperformed 

3P_score, another method of evaluating 3′-supplementary pairing, which had been 

optimized on mammalian data (Grimson et al. 2007). However, two features 

strongly associated with site efficacy in mammals were not consistently selected in 

the fly analysis. These included AU composition in the vicinity of the target site 

(local_AU) and the minimum distance of a site from 3′-UTR boundaries (min_dist) 

(Grimson et al. 2007). Perhaps these features did not strongly discriminate effective 

targets from ineffective ones in flies because compared to mammalian 3′ UTRs, fly 3′ 

UTRs are constitutively more AU-rich and much shorter (median 3′-UTR length of 

661 nt and 202 nt for human and fly, respectively, considering the longest UTR 

annotation per gene after removing genes with longest UTR annotations ≤ 2 nt). 

 

Using the seven consistently selected features and the entire dataset of 3′ UTRs 

containing single 7mer-A1, 7mer-m8, or 8mer sites, we trained independent 

multiple linear regression models for each of these three canonical sites. These 

three models were then combined to generate a model for fly miRNA targeting, 

which we call the “context model” because it resembled our context models 

developed for mammalian miRNA targeting, in that it modeled site context in 

addition to site type. The sign of each coefficient revealed the relationship of each 

feature to repression (Figure 3E). For example, mRNAs with longer ORFs or longer 

3′ UTRs, and sites with weaker 3′-supplementary pairing energy were more 

refractory to repression (as indicated by a positive coefficient), whereas target sites 

that were more structurally accessible or more conserved, and mRNAs with other 
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weak sites were more prone to repression (as indicated by a negative coefficient). 

Normalizing the scores of each feature to a similar scale enabled assessment of the 

relative contribution of each feature to the context model (Figure 3E). As expected, 

site type was also a major predictor of repression in the model, as indicated by the 

large magnitude of the intercept term (Figure 3E). The signs and relative 

magnitudes of the features largely paralleled those found in the mammals (Agarwal 

et al. 2015), indicating that the influence of these features might reflect 

evolutionarily conserved aspects of miRNA targeting in bilaterian species. One 

difference was that PCT scores contributed relatively more to the fly context model 

than they do to the analogous mammalian model (Agarwal et al. 2015), implying 

that the detection and scoring of the molecular features of target efficacy have more 

room for improvement in flies, presumably because less data were available in flies 

for feature identification and evaluation. 

 

Comparison to the performance of previous methods 

We next compared the performance of the fly context model to that of previously 

reported methods, measuring how successfully each method predicted and ranked 

the mRNAs that respond to the gain or loss of a miRNA in Drosophila. For training, 

our context model had considered only mRNAs that had a single 7–8-nt site to the 

cognate miRNA within their 3′ UTR, but for testing it needed to be extended to 

mRNAs that had multiple sites to the same miRNA within their 3′ UTRs. Accordingly, 

for each predicted target, we generate a total context score, calculated as the sum 

the context scores of the sites to the cognate miRNA (Grimson et al. 2007), and used 

these total context scores to rank all of the predicted targets for each miRNA. The 

response of the top ranked targets was then compared to that of 12 previously 

reported methods, chosen because predictions for Drosophila targets were available 

online, as was information needed to rank these predictions. Having already 

generated the PCT scores of the Drosophila sites, we also combined the scores of 

multiple 7–8-nt canonical sites when present within the same 3′ UTRs to generate 

Aggregate PCT scores, which were then used to rank predictions based solely on the 
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probability that they were preferentially conserved targets of the miRNA (Friedman 

et al. 2009). 

 

We took precautions to perform a fair comparison of the algorithms. First, for each 

algorithm, we considered only predicted targets that corresponded to mRNAs 

expressed above the quantification threshold in the relevant test-set sample lacking 

the miRNA. Second, we avoided testing the context model on the same transfection 

data upon which it was trained. More specifically, we implemented a cross-

validation strategy when testing the results of the context model using the 

transfection datasets, sequentially holding out each dataset and re-training the 

coefficients for the features in our context model using the five remaining 

transfection datasets before generating predictions for the held-out dataset. Further 

reducing the concern of overfitting was the observation that most top-ranked 

targets contained two or more canonical 3′ UTR sites and thus were not used during 

the development and training of our model. Third, for all testing of the context 

model, we used coefficients retrained on publicly available FlyBase 3′-UTR 

annotations, reasoning that training on improved 3′-UTR annotations derived from 

our 3P-seq data would have imparted an advantage to our model. 

 

Testing was initially performed using our six datasets that each examined mRNA 

changes after transfecting a miRNA into S2 cells. For each algorithm and each 

transfected miRNA, we computed the mean mRNA fold change of the top-ranked 

targets of the transfected miRNA and then plotted the mean value for the six 

different miRNAs at various ranking thresholds, thereby summarizing repression 

efficacy of the top-ranked targets at each threshold (Figure 4A). Some methods, such 

as PicTar, which generated relatively few predictions, could be evaluated at only a 

few thresholds, whereas others, such as RNA22 and TargetSpy, could be evaluated 

at many more (Figure 4A). With the exception of RNA22, all algorithms predicted 

repressed targets better than expected by chance. However, some, including PicTar, 

MinoTar, RNAhybrid, TargetSpy, and mirSVR, performed similarly or worse than a 

naïve strategy of selecting all mRNAs that have at least one 7–8-nt canonical site in 
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their 3′ UTR. Of the previously reported algorithms, TargetScanFly, EMBL, and 

PITA.Top performed the best. Nevertheless, our context model performed better 

than all previous methods, providing predictions that were the most responsive to 

transfection of the miRNA at each threshold tested (Figure 4A). 

 

Although our cross-validation strategy avoided testing our model on the same 

measurements as used for its training, some concerns regarding testing on the 

transfection data remained because these data was used to optimize scoring of some 

features of our model. Moreover, transfection introduces high concentrations of 

miRNAs to in cells in which they normally are not acting, raising the concern that a 

model developed and tested solely on transfection datasets might not accurately 

predict the response of miRNAs in their endogenous physiological contexts. 

Therefore we searched for a test set that had not been used to develop any of the 

algorithms and that monitored the transcriptome response to endogenous miRNAs 

expressed at physiological levels. Surveying the Drosophila literature, we identified 

three miRNA-knockout datasets with compelling signals for miRNA-mediated 

repression. Pooling these datasets, which monitored mRNA changes after deleting 

either miR-14 (Varghese et al. 2010), miR-34 (Liu et al. 2012), or miR-277 

(Esslinger et al. 2013), and carrying out the same type of analysis as we had done for 

the transfection datasets (but monitoring de-repression following loss of a miRNA 

instead of repression following introduction of a miRNA) revealed performances 

that generally resembled those observed with the transfection datasets (Figure 4B). 

The relative performances of the previous methods shifted somewhat, with 

improvement observed for Aggregate PCT, miRanda-MicroCosm, and PicTar and 

worsening observed for MinoTar, TargetScanFly, and TargetSpy. Importantly, 

however, when testing on these consequences of endogenous miRNA targeting in 

flies, the context model again performed better than all previous models. Results for 

miR-277 resembled those for the other two miRNA (data not shown), even though 

miR-277 is unusual in that it primarily resides within Ago2 rather than Ago1 

(Forstemann et al. 2007). 
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The mean-of-means metric that we used to evaluate repression of top-ranked 

targets had several potential limitations. For example, it can exaggerate the 

influence of individual outliers, or more heavily weight datasets with a greater 

variance in their fold-change distributions. Nonetheless, examination of plots 

showing the mean of median mRNA changes did not substantially change our 

assessment of the relative performance of each algorithm, which indicated that we 

did not arrive at erroneous conclusions because of outliers (Figure S4). Also 

potentially influencing our comparisons was the fact that for some previous 

algorithms predictions were missing for some miRNAs of our test sets. For example, 

EMBL predictions were not available for miR-263a and miR-994, and because 

targets for these two miRNAs happened to undergo less repression in our 

transfections, the testing of EMBL on only the remainder of the transfection datasets 

presumably inflated its relative performance. 

 

Target-prediction algorithms have been developed with divergent priorities 

regarding prediction accuracy. Out of concern for prediction specificity, some, 

including our context model, consider only predictions with the most effective types 

of sites, i.e., 7–8-nt seed-matched sites within 3′ UTRs. In contrast, other algorithms, 

out of concern for prediction sensitivity, do not limit their predictions to those with 

these most effective site types, and some of these include predictions with a vast 

array of non-canonical sites that show no evidence of efficacy when tested using 

data from mammals and fish (Agarwal et al. 2015). To begin to explore the tradeoffs 

of these divergent priorities when predicting miRNA targets in flies, we removed 

predictions containing 7–8-nt canonical sites to the cognate miRNA in their 3′ UTRs, 

and tested the behavior of the remaining predictions that lack these more effective 

canonical sites.  When testing on the transfection data, most algorithms that do not 

strictly focus on 3′ UTRs with 7–8-nt canonical sites generated predictions that were 

repressed more than expected by chance (Figure 4C). 

 

Encouraged by these results, we used our context features to build a model that 

considered predictions that lacked canonical 7–8-nt 3′-UTR sites but had at least 
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one offset 6mer, 6mer, or 6mer-A1 site in their 3′ UTR. When using either test set 

and testing only predictions that lacked canonical 7–8-nt 3′-UTR sites to the cognate 

miRNA, this model, which we call the “6mer context” model, performed better than 

all existing algorithms (Figure 4C and D). The other algorithm that yielded 

predictions consistently repressed better than background was DIANA-microT-CDS, 

which includes predictions with only canonical ORF sites. Thus, taken together, our 

analysis indicates that two distinct strategies that focus on only marginally effective 

sites can be predictive in flies, as judged by both transfection and knockout results; 

one approach focuses on canonical 6-nt sites in 3′ UTRs, and the other focuses on 

canonical ORF sites. However, at best, the average repression of the 4–8 top 

predictions from these approaches was much less than that of the top targets of the 

standard context model and instead resembled that of the hundreds of mRNAs that 

contained 7–8-nt canonical 3′-UTR sites (Figure 4A–D).  

 

The observation that models could be built that successfully predicted targets with 

only marginal canonical sites was consistent with the demonstrated efficacy of these 

marginal sites in Drosophila cells (Figure 1). A larger challenge has been to predict 

effective non-canonical sites, which lack at least a 6-nt perfect match to the seed 

region. Although two types of non-canonical sites, known as the 3′-supplementary 

sites and centered sites, can mediate repression, these sites are rare—indeed so 

rare that is difficult to observe a signal for their action in mammalian cells without 

aggregating many datasets (Bartel 2009; Shin et al. 2010). Nonetheless, some 

algorithms yield many predictions that have only non-canonical sites. Analyses of 

mammalian datasets indicate that these predictions are no more repressed than 

expected by chance (Agarwal et al. 2015), raising the question as to whether any of 

the algorithms might successfully predict non-canonical sites in Drosophila. To 

answer this question, we used our two test sets to measure the response of 

predictions that lacked any canonical 6–8-nt site to the cognate miRNA in their 3′-

UTR (Figure 5E–F). The only predictions with a convincing signal above background 

in either test set were those of EMBL, DIANA-microT-CDS, and MinoTar. Manually 

examining the top-ranked predictions from EMBL revealed that the signal observed 
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for its predictions was attributable to canonical sites located in ORFs and 3′ UTRs of 

alternative last exons, whereas the signal for the predictions of DIANA-microT-CDS 

and MinoTar was attributable canonical ORF sites. We conclude that in flies, as in 

mammals (Agarwal et al. 2015), non-canonical sites only rarely mediate repression, 

although we cannot exclude the formal possibility that effective non-canonical sites 

are abundant yet for some reason not predicted above background by any of the 

existing algorithms.   

 

Having found that the context model performed better than the models that have 

been providing target predictions to the Drosophila research community (Figure 

4A–B), we have set out to overhaul TargetScanFly (available at targetscan.org) to 

display these predictions. This new version of TargetScanFly (v7.0) will provide any 

biologist with an interest in either a miRNA or a potential miRNA target convenient 

access to the predictions, with an option of downloading code or bulk output 

suitable for more global analyses. Because of the diminishing returns of predicting 

targets with only marginal sites (Figure 4C–F), TargetScanFly will continue to focus 

on predictions with 7–8-nt canonical 3′-UTR sites, with ranks driven by the version 

of the context model that was trained on the entire transfection dataset. We have 

also released the accompanying TargetScanTools 

(https://github.com/vagarwal87/TargetScanTools) to help others reproduce our 

analyses, apply our computational pipeline to future datasets, and produce figures 

analogous to those of this manuscript. With these new resources, we hope to 

enhance the productivity of miRNA research in flies and thereby accelerate the 

understanding of this intriguing class of regulatory RNAs. 

 

METHODS 

Cell culture 

Drosophila Schneider 2 (S2) cells were grown in Express Five serum-free media 

(GIBCO) supplemented with glutamine to 16 mM.  Upon reaching confluency (every 

~3-5 days), cells were passaged following mechanical resuspension with a scraper 

(Corning).  Prior to resuspension, the media and any unattached cells were removed 
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and replaced with an equal volume of fresh media in order to select for attached 

cells. 

 

MicroRNA transfection, FACS, and mRNA isolation 

Prior to transfection, cells were seeded into 6-well plates (Corning) at 2.5 x 106 cells 

and 2 ml media per well.  After 24 hours, each well was co-transfected with 2.5 µg 

plasmid (25% p2032-GFP, 75% pUC19) plus 25 nM miRNA duplex (or for mock 

transfections, with plasmid only) using 5 µl DharmaFECT Duo (Dharmacon).  Equal 

volumes of nucleic acid and DharmaFECT Duo diluted in 1X PBS were combined and 

incubated at room temperature for 20 minutes to form transfection complexes that 

were then added dropwise to the cells (500 µl/well).  Twenty-four hours after 

transfection, cells were harvested, resuspended in 1X PBS, passed through a 70 µm 

filter, and stained with 5 µg/ml propidium iodide (PI).  For each transfection, 3–5 x 

106 GFP-positive and PI-negative cells were isolated by FACS and lysed in 1 ml TRI 

Reagent (Ambion).  Following extraction from the lysate, total RNA was cleaned up 

using the RNeasy Mini kit (Qiagen) and subjected to poly(A) selection using 

oligo(dT) Dynabeads (Invitrogen) to isolate mRNA.  

 

Preparation of sequencing libraries 

Strand-specific mRNA-Seq libraries for Illumina sequencing were prepared as 

described (Guo et al. 2010), with differences noted below.  Briefly, poly(A)-selected 

RNA was hydrolyzed in alkaline buffer, resulting in fragments bearing 5′-hydroxyl 

and 3′-phosphate groups.  Fragments between 36–55 nt were size selected and end-

specific adapters were sequentially ligated onto each terminus; prior to each 

ligation step, the appropriate 3′ or 5′ end chemistry was generated through 

dephosphorylation or phosphorylation, respectively.  Adapter-flanked fragments 

were reverse transcribed and the resulting cDNA PCR-amplified using primers 

complementary to each adapter.  The PCR products were purified on a denaturing 

formamide gel and submitted for deep sequencing.  3P-seq libraries were prepared 

from RNA isolated from S2 cells as described (Jan et al. 2011). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2017. ; https://doi.org/10.1101/198689doi: bioRxiv preprint 

https://doi.org/10.1101/198689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Agarwal et al., page 24 
 

 24 

RNA-seq analysis 

RNA-seq reads were analyzed using the quantification pipeline previously described 

(Denzler et al. 2014; Wong et al. 2015). A genome index was built for the latest build 

of the D. melanogaster genome (dm6) using STAR v. 2.4 (options --runMode 

genomeGenerate --genomeFastaFiles dm6.fa --sjdbGTFfile dmel-all-r6.07.gff --

sjdbOverhang 40 --sjdbGTFtagExonParentTranscript Parent) (Dobin et al. 2013), 

with “dmel-all-r6.07.gff” referring to fly transcript models annotated in FlyBase 

release 6.07 (dos Santos et al. 2015), processed to have a single “Parent ID/exon” 

combination per line. Raw reads were aligned to the index with STAR (options --

outFilterType BySJout --outFilterMultimapScoreRange 0 --readMatesLengthsIn 

Equal --outFilterIntronMotifs RemoveNoncanonicalUnannotated --

clip3pAdapterSeq TCGTATGCCGTCTTCTGCTTG --outSAMstrandField intronMotif --

outStd SAM). Considering all replicates of a particular sample, mRNA fold changes 

were computed between the miRNA transfection library of interest and the three 

mock-transfection biological replicates, using cuffdiff v. 2.2.1 (options --library-type 

fr-secondstrand -b dm6.fa -u --max-bundle-frags 100000000) (Trapnell et al. 2013), 

using protein-coding genes gene models from FlyBase release 6.07 (dos Santos et al. 

2015). 

 

Selection of mRNAs for computational analysis 

To avoid noisy mRNA fold-change measurements of poorly expressed genes, we 

used only genes whose expression values (measured in Fragments Per Kilobase 

Million, FPKM) exceeded 5.0 in the mock condition for all subsequent analyses. This 

threshold was chosen based upon visual inspection of plots evaluating the 

relationship between mean expression level and fold change (commonly known as 

“MA plots” in the context of microarrays), attempting to balance the tradeoff 

between sample size and noise reduction. To select gene annotations for site 

efficacy, data normalization, and evolutionary analyses (i.e., for Figure 1, Figure S1, 

and Figure 2, respectively), we selected one representative transcript isoform per 

gene, choosing the transcript isoform with the longest ORF, and if tied, the one with 

the longest 3′ UTR, and if still tied, the one with the longest 5′ UTR. This 
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representative transcript was supplemented with the longest 3′ UTR among the 

subset of transcripts that shared the same stop codon. 

 

To select gene annotations for feature optimization and regression modeling (i.e., 

for Figure 3 and Figure S3), we analyzed 3P-seq data to quantify the relative 

abundance of 3′-UTR isoforms related to each representative transcript. We then 

selected the subset of mRNAs for which ≥90% of the 3P-seq tags corresponded to a 

single dominant 3′-UTR isoform and used this dominant 3′-UTR isoform as the 

annotation for the corresponding gene. These steps followed the training 

framework previously described (Agarwal et al. 2015). 

 

To select gene annotations for evaluation of model performance (i.e., for Figure 4 

and Figure S4), we identified the longest and shortest 3′-UTR isoforms, as annotated 

by FlyBase, corresponding to each representative transcript. Context scores and 

aggregate PCT scores were then generated for the longest and shortest 3′-UTR 

isoform groups separately, and then, for each gene and miRNA combination, the 

scores were averaged between the longest and shortest isoforms. To filter out 

targets with a predicted target site (i.e., for Figure 4B/D and Figure S4), we removed 

those that contained the relevant site types in the 3′ UTR of their representative 

transcript. 

 

Dataset normalization 

mRNA changes correlated among the six transfection experiments, indicating the 

presence of batch effects and other biases (Figure S1A). To remove biases in the 

mRNA fold-change measurements, we implemented our previously described 

normalization strategy (Agarwal et al. 2015), which uses partial least-squares 

regression (PLSR) to remove sources of variation that are common to multiple 

independent miRNA transfections. This led to a modest improvement in our ability 

to detect signatures of miRNA-mediated target repression (Figure S1B–D). However, 

5′-UTR length, ORF length, 3′-UTR length, 5′-UTR AU content, ORF AU content, 3′-

UTR AU content, and mock-transfection gene expression level still correlated with 
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fold changes for mRNAs with no predicted miRNA target site. The magnitude of 

these correlations varied significantly when comparing results of different miRNA 

transfection experiments. Thus, for each of the six miRNA transfection experiments, 

we fit a multiple linear regression model between the mRNA fold changes (i.e., 

which had already been normalized by the PLSR model) and the seven 

aforementioned features, using log-transformed values for the expression level 

feature. Although only mRNAs with no predicted canonical miRNA target site were 

used for this fit, the resulting linear model was used to predict mRNA fold changes 

for all mRNAs (including those with a predicted site), and for each gene, the residual 

value (the difference between the mRNA fold change and predicted mRNA fold 

change) was designated as its final normalized mRNA fold change (Table 1). 

Applying this second normalization to data from each transfection experiment led to 

enhanced detection of target repression, as indicated by a shift towards more 

significant p-values, especially for mRNAs with 3′ UTRs that contained weaker site 

types (Figure S1D). 

 

Each miRNA transfection exhibited a variable level of global target repression 

(Figure S2). Reasons for this variability presumably included variability in 

transfection efficiency and differences in either the target abundance (TA) or the 

predicted seed pairing stability (SPS) of the miRNAs tested (Garcia et al. 2011; 

Agarwal et al. 2015). Because we did not have the power in sample size to 

accurately model the effects of either SPS or TA, as was possible in mammals (Garcia 

et al. 2011; Agarwal et al. 2015), we normalized the transfections to the same scale 

prior to training and testing the model. To do so, for each transfection dataset D, we 

computed the upper and lower quartiles of the mRNA log fold changes (UQD and LQD, 

respectively) as well as the corresponding quartiles for the fold changes among all 

datasets pooled together (UQP and LQP). We then updated each fold change x as 

follows: 𝑥𝑥� = � 𝑥𝑥−𝐿𝐿𝐿𝐿𝐷𝐷
(𝑈𝑈𝐿𝐿𝐷𝐷−𝐿𝐿𝐿𝐿𝐷𝐷) (𝑈𝑈𝑈𝑈𝑃𝑃 − 𝐿𝐿𝑈𝑈𝑃𝑃) + 𝐿𝐿𝑈𝑈𝑃𝑃�. By centering on quartiles, this 

procedure normalized the fold-change distributions in a way that was less 

susceptible to the influence of outliers.  
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Refining 3′-UTR isoform annotations 

3P-seq data were processed as previously described (Ulitsky et al. 2012) but with 

adjustment of some of the parameters to better fit the characteristics of the fly 3′ 

UTRs. Transcript models were identified using Cufflinks and the ModENCODE S2 

RNA-seq data (SRA accession SRR070279) with default parameters and minimum 

intron length set to 10.  3P-seq reads were processed and aligned to the dm3 

genome assembly as described (Jan et al. 2011) and the resulting tag positions were 

lifted over to the dm6 assembly using the UCSC liftOver tool. In the first step of 3′-

UTR annotation, clusters of 3P-seq tags were generated as described (Ulitsky et al. 

2012). Briefly, positions were sorted in descending order based on read count and 

the list was traversed such that for the position with the highest read count (or the 

first encountered read, in the case of a tie), all the tags within 30 nt were grouped 

and removed from the list as a cluster. Each cluster represented by a position with 

at least three total reads and at least two unique reads was considered a poly(A) site 

and was assigned the representative position supported by the most reads. RNA-seq 

data were then used to test if the poly(A) site connected with transcript models, as 

described previously (Ulitsky et al. 2012). Connectivity to gene models was 

established based on the Cufflinks gene models, allowing for gaps up to 200 nt. 3′ 

UTRs ending within 30 nt of each other were grouped together and assigned with 

their combined read count. The longest 3′ UTR of a gene was one with the maximal 

exonic length and which accounted for at least 1% of the 3P-seq reads. Other 

parameters were as described before (Ulitsky et al. 2012). A poly(A) site was 

considered to be “known” if it mapped within 20nt of a FlyBase poly(A) site. 3p-seq 

tags mapped to the dm6 genome, processed into clusters, and annotated can be 

found as BED files associated with Figure 2 at 

https://github.com/vagarwal87/TargetScanTools. 

 

MicroRNA sets 

All mature fly miRNAs were downloaded from miRBase release 21 (Kozomara and 

Griffiths-Jones 2014).  Those that matched a conserved miRNA at nucleotides 2–8 
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were considered part of that miRNA family. When partitioning miRNA families 

according to their conservation level, we compared the previously defined set of 

conserved families available in TargetScanFly (Ruby et al. 2007) with a more recent 

annotation of conserved “Pan-Drosophilid” miRNA families (Mohammed et al. 

2013). For each difference between the two sets, we compared whether nucleotides 

2–8 of each miRNA were conserved among most Drosopholids beyond the 

Sophophoran clade, as determined from the 27-way multiz alignments of each 

mature miRNA from the UCSC Genome Browser (Blanchette et al. 2004; Karolchik et 

al. 2014). This filter led to the removal of several miRNAs from being considered 

broadly conserved (e.g., mir-307b, mir-973, mir-975, mir-1014, mir-4977, and mir-

4987) and the choice of a set of 91 conserved miRNA families (Table S2). From these 

91, the set of 28 families conserved since the ancestor of bilaterian animals was 

identified, starting with a previous annotation of bilaterian miRNA families (Fromm 

et al. 2015), but separating related bilaterian families with different seed sequences 

and requiring that for each family the ancestral seed sequence has been conserved 

to Drosophila without a substitution or a shift in register (Table S2).   

 

All miRNAs annotated in miRBase but not meeting our criteria for conservation 

were also grouped into families based on the identity of nucleotides 2–8 and were 

classified as poorly conserved miRNAs (which included many small RNAs 

misclassified as miRNAs). These miRNA seed families will be available for download 

at TargetScanFly (targetscan.org). 

 

Evolutionary analyses and calculation of PCT scores 

Fly PCT scores were computed using the following datasets: i) 5′ UTRs or 3′ UTRs 

derived from 13,454 fly protein-coding genes annotated in FlyBase 6.07 (dos Santos 

et al. 2015), and ii) regions of multiple sequence alignments corresponding to these 

5′- or 3′-UTRs, derived from the 27-way multiz alignments of the insect clade in the 

UCSC genome browser, which used the D. melanogaster genome release dm6 as its 

reference species (Blanchette et al. 2004; Karolchik et al. 2014). We partitioned 5′ 

UTRs and 3′ UTRs into five conservation bins based upon the median branch-length 
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score (BLS) of the reference-species nucleotides, following the strategy previously 

described (Friedman et al. 2009; Jan et al. 2011). BLSs were computed using the 

BranchLengthScoring.py script from MotifMap (Daily et al. 2011). We used an 

updated computational pipeline for evolutionary analysis described previously 

(Agarwal et al. 2015) to estimate branch lengths of the phylogenetic trees for each 

bin, to compute the rates of k-mer conservation for canonical sites and control k-

mers, and to calculate PCT parameters and scores. All phylogenetic trees and PCT 

parameters will be available for download at the TargetScanFly website 

(targetscan.org). 

 

Estimating the number of genes with preferentially conserved sites 

A simulation was performed to estimate the number of genes containing a 

conserved site after accounting for the background of conserved sites. Towards this 

goal, we first identified for each conserved miRNA all unique target sites with BLS ≥ 

1.0, yielding a total of 8,743 5′-UTR sites (considering 8mer, 7mer-m8, and 7mer-A1 

sites) and 86,872 3′-UTR sites (considering 8mer, 7mer-m8, 7mer-A1, 6mer sites, 

and offset 6mer sites) that surpassed this cutoff. Among these, we estimated that 

840 ± 40 5′-UTR sites and 12,285 ± 214 3′-UTR sites (mean ± standard deviation) 

were conserved above background. To estimate the distribution of genes with 

conserved sites, we performed 1000 samplings with the following procedure: i) An 

integer was randomly selected from each of the two normal distributions of total 

sites above background. ii) Using each of these two integers, a corresponding 

number of conserved sites was randomly sampled (without replacement) from the 

respective 5′ UTRs or 3′ UTRs. iii) The number of unique genes containing the 

selected sites was recorded. After 1000 samplings, the distribution of values 

obtained for our estimate of genes with conserved sites had a mean of 5035 and a 

90% confidence interval of ± 83. 

 

Regression models 

3P_energy was scored as described in the text. Other features were scored was as 

described (Agarwal et al. 2015), except SA was scored used the parameters 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2017. ; https://doi.org/10.1101/198689doi: bioRxiv preprint 

https://doi.org/10.1101/198689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Agarwal et al., page 30 
 

 30 

optimized for Drosophila. For each feature of the final context model, scores were 

scaled (Table S3) before being multiplied by their corresponding coefficients (Table 

S4). 

 

To evaluate performance, we generated 1000 bootstrap samples in which we used, 

for each site type and transfection experiment, 70% of data to train the models and 

the remaining data as a test set. To choose a model, we evaluated the performance 

of a variety of machine-learning strategies, including i) “all subsets regression”, 

maximizing the Bayesian information criterion (BIC) as implemented in the 

regsubsets function of the “leaps” R package (parameters “nvmax=15, nbest=1, 

method=’forward’, really.big=T”), ii) stepwise regression, maximizing the BIC or 

Akaike information criterion (AIC) as implemented in the stepAIC function from the 

“MASS” R package (Venables and Ripley 2002), iii) Lasso regression using the 

cv.glmnet function (parameters “nfolds=10, alpha=1”) in the “glmnet” R package, iv) 

Multivariate Adaptive Regression Splines (MARS) as implemented in the “earth” R 

package (parameters “degree = 1, trace = 0, nk = 500”), v) random forest regression 

using the “randomForest” R package, vi) Principal Components Regression (PCR) or 

Partial Least Squares Regression (PLSR) using the pcr and plsr functions as 

implemented in the “pls” R package (parameter “ncomp = 5” during prediction). As 

for our model of mammalian targeting (Agarwal et al. 2015), we ultimately utilized 

stepwise regression, with AIC to select features.  

For the model driving TargetScanFly, we fit a multiple linear regression model for 

each site type using the selected group of features, training with all of the genes that 

were expressed above the threshold in our transfection datasets and had single 3′-

UTR sites and 90% UTR homogeneity. As for mammalian predictions (Agarwal et al. 

2015), scores for 8mer, 7mer-m8, and 7mer-A1 sites were bounded to be no greater 

than −0.03, −0.02, and −0.01, respectively, thereby creating a piecewise linear 

function for each site type. For each 3′ UTR with at least one 7–8-nt site to the 

miRNA, the context scores of the sites were summed together to acquire a total 

context score, which was used to rank the predicted target gene (Figure 4 and 

Figure S4). 
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Performance comparisons 

To compare predictions from different miRNA target prediction tools, we collected 

the following downloadable predictions: DIANA-microT-CDS (September 2013) 

(Reczko et al. 2012), EIMMo v5 (January 2011) (Gaidatzis et al. 2007), EMBL (2005 

predictions) (Brennecke et al. 2005; Stark et al. 2005), miRanda-MicroCosm v5 

(Griffiths-Jones et al. 2008), mirSVR (August 2010) (Betel et al. 2010), PicTar (from 

the doRina web resource; sets conserved among D. melanogaster, D. yakuba, D. 

annanasae, D. pseudoobscura, D. mojavensis, and D. virilis) (Grun et al. 2005; 

Anders et al. 2012), PITA Catalog v6 (3/15 flank for either “All” or “Top” predictions, 

August 2008) (Kertesz et al. 2007), RNA22 (May 2011) (Miranda et al. 2006), 

RNAhybrid (Rehmsmeier et al. 2004), TargetSpy (all predictions) (Sturm et al. 

2010), MinoTar (downloaded from TargetScanFly ORF v6.2, June 2012) (Schnall-

Levin et al. 2010), and TargetScanFly v6.2 (June 2012) (Ruby et al. 2007). For 

algorithms providing site-level predictions (i.e., ElMMo, mirSVR, PITA, and RNA22), 

scores were summed within genes or transcripts (if available) to calculate an 

aggregate score. For algorithms providing multiple transcript-level predictions (i.e., 

DIANA-microT-CDS, miRanda-MicroCosm, and TargetSpy), the transcript with the 

best score was selected as the representative transcript isoform.  In all cases, 

predictions with gene symbol or RefSeq ID formats were translated into FlyBase 

format. To avoid testing and training our context model on the same data, we 

generated cross-validated predictions for the context model. To do so, we held out 

each transfection dataset, fit a linear regression model using the data from the 

remaining 5 datasets, and generated predictions on the held-out data. 

 

Microarray processing 

We downloaded raw Affymetrix data measuring the effects of a miR-14 knockout 

(GEO accession GSE20202) (Varghese et al. 2010), a miR-34 knockout (day 20, GEO 

accession "GSE25008") (Liu et al. 2012), and a miR-277 knockout (ArrayExpress 

accession “E-MEXP-3785”) (Esslinger et al. 2013) and processed data as previously 

described (Agarwal et al. 2015), with the exception that the drosophila2FLYBASE 
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function in the “drosophila2.db” R Bioconductor package was used to map 

Affymetrix probe IDs to FlyBase IDs. 

 

DATA ACCESS 

Raw RNA-seq and 3P-seq data were deposited in the NCBI Gene Expression 

Omnibus (GEO, accession number GSE74581). All associated scripts necessary to 

reproduce most of the figures of this paper are provided at: 

https://github.com/vagarwal87/TargetScanTools. 
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TABLES 

Table 1. The 18 features considered in the models, highlighting the seven robustly 

selected through stepwise regression (bold). The feature description does not 

include the scaling performed (Table S2) to generate more comparable regression 

coefficients. 

   
Frequency 

chosen 
Feature Abbreviation Description 

Site 
  

  

   Site type site type Type of site (8mer, 7mer-m8, or 7mer-A1) (Grimson et al., 2007) 100% 

   Site position 1 site1 Identity of nucleotide at position 1 of the site 0% 

   Site position 9 site9 Identity of nucleotide at position 9 of the site 2% 

   Site position 10 site10 Identity of nucleotide at position 10 of the site 0% 

   Local AU content local_AU AU content within 30 nucleotides of the site (Grimson et al., 2007) 50% 

   3′-supplementary pairing 3P_score Supplementary pairing at the miRNA 3′ end (Grimson et al., 2007) 4% 

   Energy of 3′-supplementary 
pairing 

3P_energy Thermodynamic energy of supplementary pairing at the miRNA 3′ 
end (dG duplex - dG seed duplex) 

93% 

   Predicted structural accessibility SA log10(Probability that a 25-nt segment centered on the match to 
miRNA position 7 is unpaired) 

91% 

   Probability of conserved 
targeting* 

PCT Probability of site conservation, controlling for dinucleotide 
evolution and site context (Friedman et al., 2009) 

100% 

mRNA       

   5′-UTR length len_5UTR log10(Length of the 5′ UTR) 6% 

   ORF length len_ORF log10(Length of the ORF) (Agarwal et al., 2015) 100% 

   3′-UTR length len_3UTR log10(Length of the 3′ UTR) (Hausser et al., 2009) 100% 

   5′-UTR AU content AU_5UTR Fractional AU content in the 5′ UTR 21% 

   ORF AU content AU_ORF Fractional AU content in the ORF 18% 

   3′-UTR AU content AU_3UTR Fractional AU content in the 3′ UTR 51% 

   Distance from stop codon dist_stop log10(Distance of site from stop codon) 4% 

   Minimum distance min_dist log10(Minimum distance of site from stop codon or poly(A) cleavage 
site) (Galdatzis et al., 2007; Grimson et al., 2007; Majoros and Ohler, 
2007) 

57% 

   Weak canonical sites in mRNA other_sites Number of 8mer sites in the 5' UTR and ORF and offset-6mer, 6mer-
A1, and 6mer sites in the 3′ UTR (Agarwal et al., 2015) 

99% 

* Only relevant for deeply conserved miRNA families 
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FIGURE LEGENDS 

Figure 1. Drosophila miRNAs mediate mRNA repression through the targeting of 

canonical site types, preferentially in 3′ UTRs. (A) The increased efficacy in 

Drosophila of sites with an A across from miRNA position 1. Shown is the response 

of mRNAs to the transfection of a miRNA (either miR-1, miR-4, miR-92a, miR-124, 

miR-263a, or miR-994). Data were pooled across these six independent 

experiments. Plotted are cumulative distributions of mRNA fold changes observed 

upon miRNA transfection for mRNAs that contained a single site of the indicated 

type to the transfected miRNA. The site types compared are 8mers that perfectly 

match miRNA positions 2–7 and have the specified nucleotide (A, C, G, or U) across 

from position 1 of the miRNA. Also plotted for comparison is the cumulative 

distribution of mRNA fold changes for mRNAs that did not contain a canonical 7- or 

8-nt site to the transfected RNA in their 3′ UTR (no site). Similarity of site-containing 

distributions to the no-site distribution was tested with the one-sided Kolmogorov–

Smirnov (K–S) test (P values). Shown in parentheses are the numbers of mRNAs 

analyzed in each category. (B) The six canonical site types for which a signal for 

repression was detected after transfecting a miRNA into Drosophila cells. (C–E) The 

efficacy of the canonical site types observed in Drosophila 3′ UTRs (C), ORFs (D), 

and 5′ UTRs (E). These panels are as in (A), but compare fold-change distributions 

for mRNAs possessing a single canonical site in the indicated region to those with no 

canonical sites in the entirety of the mRNA. See also Figure S1 and Figure S2. 

 

Figure 2. Evolutionary conservation of canonical sites in Drosophila 5′ UTRs and 3′ 

UTRs. (A) Phylogenetic tree of the 27 species used to examine miRNA site 

conservation. Outgroups of the genus Drosophila include M. domestica (the 

housefly), A. gambiae (the mosquito), A. mellifera (the European honey bee), and T. 

castaneum (the red flour beetle). D. melanogaster 3′ UTRs were assigned to one of 

five conservation bins based upon the median conservation of nucleotides across 

the entire 3′ UTR. The tree is drawn using the branch lengths and topology reported 

from genome-wide alignments in the UCSC genome browser. To the left of the tree, 

are colored coded branch-length scores corresponding to a site conserved among an 
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entire subgroup of species indicated by a bar of the same color, showing scores for a 

site within a 3′ UTR in the lowest, middle, and highest conservation bins, labeled in 

parentheses as bins 1, 3, or 5, respectively. (B–C) Signal-to-background ratios for 

indicated site types at increasing branch-length cutoffs, computed for sites located 

in 3′ UTRs (B) or 5′ UTRs (C). Broken lines indicate 5% lower confidence limits (z-

test). These panels were modeled after the one originally shown for the analysis of 

mammalian 3′-UTR sites (Friedman et al. 2009). (D–E) Signal above background for 

indicated site types at increasing branch-length cutoffs, computed for sites located 

in 3′ UTRs (D) or 5′ UTRs (E). Broken lines indicate 5% lower confidence limits (z-

test). These panels were modeled after the one originally shown for the analysis of 

mammalian 3′-UTR sites (Friedman et al. 2009). (F) Signal-to-background ratios for 

the 8mer sites of 91 conserved miRNA seed families, calculated at near optimal 

sensitivity (a branch-length cutoff of 1.0), comparing the ratios observed for sites in 

5′ UTRs to those for sites in 3′ UTRs (rs, Spearman correlation). Seed families 

conserved since the ancestor of bilaterian animals are distinguished from those that 

emerged more recently (orange and blue, respectively). Boxplots on the sides show 

the distributions of ratios for these two sets of families, with statistical significance 

for differences in these distributions evaluated using the one-sided Wilcoxon rank-

sum test (*P < 0.01). See also Table S2. (G) Relationship between site conservation 

rate and repression efficacy. The fraction of sites conserved above background was 

calculated as ([Signal – Background]/Signal) at a branch-length cutoff of 1.0. The 

minimal fraction of sites conferring destabilization was determined from the 

cumulative distributions (Figures 1C and 1E), considering the maximal vertical 

displacement from the no-site distribution. Colors and shapes represent the 

canonical site types and UTR location, respectively. This panel was modeled after 

the one originally shown for the analysis of mammalian 3′-UTR sites (Friedman et 

al. 2009). (H) Relationship between site efficacy and site PCT. mRNAs were selected 

to have either one 7mer-A1, one 7mer-m8, or one 8mer 3′ UTR site to the 

transfected miRNA and no other canonical 3′-UTR site. mRNAs with sites of each 

type were grouped into six equal bins based on the site PCT. For each bin, mean 

mRNA fold change in the transfection data is plotted with respect to the mean PCT, 
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with the dashed lines showing the least-squares fit to the data. The slopes for each 

are negative and significantly different from zero (P value < 10–10, linear regression 

using unbinned data). 

 

Figure 3. Refinement of 3′-UTR annotations in S2 cells and development of a 

regression model that predicts miRNA targeting efficacy in Drosophila. (A) Poly(A) 

sites detected in S2 cells by 3P-seq, classified with respect to their previous 

annotation status. (B) Extension and contraction of longest 3′-UTR isoforms relative 

to the FlyBase annotations. For each gene with a poly(A) site detected using 3P-seq, 

the difference between the longest 3′-UTR isoform annotated using 3P-seq was 

compared to longest 3′-UTR isoform annotated at FlyBase. These differences were 

then binned as indicated, and the number of sites assigned to each bin is plotted. (C) 

Optimization of scoring of predicted 3′-supplementary pairing in flies. Predicted 

thermodynamic energy scores were computed for the pairing between a 9-nt 

regions upstream of canonical 7–8-nt 3′-UTR sites and a variable-length region of 

the miRNA with the indicted size (window size) that began at the indicated position 

of the miRNA. The heatmap displays the partial correlations between these scores 

and the repression associated with the corresponding sites, determined while 

controlling for site type. (D) Optimization of the scoring of predicted structural 

accessibility in flies. Predicted RNA structural accessibility scores were computed as 

the average pairing probabilities for variable-length (window size) regions that 

centered at the indicated mRNA position, shown with respect to the seed match of 

each canonical 7–8-nt 3′-UTR site. The heatmap displays the partial correlations 

between these values and the repression associated with the corresponding sites, 

determined while controlling for site type. (E) The contributions of site type and 

each of the six features of the context model. For each site type, the coefficients for 

the multiple linear regression are plotted for each feature. Because features were 

each scored on a similar scale, the relative contribution of each feature in 

discriminating between more or less effective sites was roughly proportional to the 

absolute value of its coefficient. Also plotted are the intercepts, which roughly 
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indicate the discriminatory power of site type. Bars indicate the 95% confidence 

intervals of each coefficient. See also Table S3, Table S4, and Figure S3. 

 

Figure 4. Performances of different target-prediction algorithms in flies. (A) The 

differential ability of algorithms to predict the mRNAs most responsive to miRNAs 

transfected into Drosophila cells. Shown for each algorithm in the key are mean 

mRNA fold changes observed for top-ranked predicted targets, evaluated over a 

sliding sensitivity threshold using the six miRNA transfection datasets. For each 

algorithm, predictions for each of the six miRNAs were ranked according to their 

scores, and the mean of the mean fold-change values was plotted at each sensitivity 

threshold. For example, at a threshold of 16, the 16 top predictions for each miRNA 

were identified (not considering predictions for mRNAs expressed too low to be 

accurately quantified). mRNA fold-change values for these predictions were 

collected from the cognate transfections, and the mean fold-change values were 

computed for each transfection for which the threshold did not exceed the number 

of reported predictions. The mean of the available mean values was then plotted. 

Also plotted are the mean of mean mRNA fold changes for all mRNAs with at least 

one cognate canonical 7–8-nt site in their 3′ UTR (dashed line), the mean of mean 

fold change for all mRNAs with at least one conserved cognate canonical 7–8-nt site 

in their 3′ UTR (dotted line), and the 95% confidence interval for the mean of mean 

fold changes of randomly selected mRNAs, determined using 1000 resamplings 

(without replacement) at each cutoff (shading). Sites were considered conserved if 

their branch-length scores exceeded a cutoff with a signal:background ratio of 2:1 

for the corresponding site type (cutoffs of 1.0, 1.6, and 1.6 for 8mer, 7mer-m8, and 

7mer-A1 sites, respectively; Figure 2B). See also Figure S4. (B) The differential 

ability of algorithms to predict the mRNAs most responsive to knocking out out 

miRNAs in flies. Shown for each algorithm in the key are mean mRNA fold changes 

observed for top-ranked predicted targets, evaluated over a sliding sensitivity 

threshold using the three knockout datasets. Otherwise, this panel is as in (A). (C 

and D) The differential ability of algorithms to predict targets that respond to the 

miRNA despite lacking a canonical 7–8-nt 3′-UTR site. These panels are as in (A) and 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2017. ; https://doi.org/10.1101/198689doi: bioRxiv preprint 

https://doi.org/10.1101/198689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Agarwal et al., page 38 
 

 38 

(B), except they plot results for only the predicted targets that lack a canonical 7–8-

nt site in their 3′ UTR. Results for our context model and other algorithms that only 

predict targets with canonical 7–8-nt 3′-UTR sites are not shown. Instead, results 

are shown for a 6mer context model, which considers only the additive effects of 

6mer, offset 6mer, and 6mer-A1 sites and their corresponding context features. (E 

and F) The difficulty of predicting mRNAs that respond to miRNA transfection or 

knock out despite lacking canonical 6–8-nt 3′-UTR sites. These panels are as in (C 

and D), except they plot results for mRNAs with 3′ UTRs that lack a canonical 6–8-nt 

site. 
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SUPPLEMENTAL TABLES 

Table S1. Processed mRNA abundances (measured in Fragments Per Kilobase Per 

Million, FPKM) and mRNA fold changes corresponding to each of the six miRNA 

transfection datasets. 

 

Table S2. The 91 seed families broadly conserved in Drosophila species, listing for 

each family the miRNA names, seed sequences, and signal-to-background ratios for 

5′-UTR and 3′-UTR sites. These ratios are plotted in Figure 2F. Families conserved 

since the ancestor of bilaterian animals are also indicated. 

 

Table S3. Scaling parameters used to normalize data to the [0, 1] interval. Provided 

are the 5th and 95th percentile values for continuous features that were scaled, after 

the values of the feature were determined and transformed as indicated (Table 1). 

 

Feature 
8mer 7mer-m8 7mer-A1 

5th % 95th % 5th % 95th % 5th % 95th % 
3p_energy –4.740 0.000 –3.950 0.000 –3.935 0.000 
Other_sites 0.000 1.400 0.000 2.750 0.000 2.000 
Len_3UTR 1.957 3.190 1.960 3.144 1.962 3.165 
Len_ORF 2.782 3.666 2.740 3.706 2.717 3.742 

SA –4.933 –0.791 –5.767 –0.800 –5.464 –0.939 
PCT 0.000 0.891 0.000 0.825 0.000 0.760 

 
Table S4. Coefficients of the trained context model corresponding to each site type, 

as shown in Figure 3E. Using these coefficients and corresponding scaling factors 

(Table S3), context scores of predicted targets can be computed as described 

(Agarwal et al. 2015). 

 
8mer 7mer-m8 7mer-A1 

(Intercept) –1.570 –1.085 –0.628 
3p_energy 0.212 0.311 0.174 
Other_sites –0.419 –0.529 –0.089 
Len_3UTR 1.006 0.978 0.439 
Len_ORF 0.866 0.292 0.211 

SA –0.448 –0.286 –0.253 
PCT –0.371 –0.302 –0.263 
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SUPPLEMENTAL FIGURE LEGENDS 

Figure S1. Preprocessing of RNA-seq datasets to minimize non-specific effects and 

technical biases. (A) Correlations observed between the responses of mRNAs 

without canonical 7–8-nt 3′-UTR sites to the transfected miRNAs. For each pair of 

experiments, the Spearman correlation (rs) of fold-change values for these mRNAs 

was calculated, and these rs values, colored as indicated in the key, were then used 

for hierarchical clustering. The six transfection experiments were performed in 

three separate batches, which are colored as indicted in the batch list to show the 

correspondence between the clustering and the batches. (B) Reduced correlations 

observed between the responses of mRNAs without canonical 7–8-nt 3′-UTR sites to 

the transfected miRNAs after applying the PLSR technique. This heat map is as in (A) 

but plots the rs values obtained using PLSR-normalized mRNA fold changes. (C) 

Effects of the PLSR-based normalization on the fold-change distributions. Plotted 

are cumulative distributions of fold-changes observed after transfection of each of 

the six miRNAs, showing results for mRNAs containing either no site or at least one 

canonical 7–8-nt 3′-UTR site, either before (raw) or after PLSR-based normalization 

(normalized). (D) Residual mRNA fold changes either before (left) or after (right) a 

second round of normalization that removed biases between the mRNA fold 

changes and the A/U composition and sequence length of 5′ UTRs, ORFs, and 3′ 

UTRs. The panel showing results after the second round of normalization is the 

same as Figure 1C.  

 

Figure S2. The efficacy of the canonical site types observed in Drosophila 3′ UTRs 

for individual experiments transfecting miR-124 (A), miR-1 (B), miR-263a (C), miR-

4 (D), miR-92a (E), or miR-994 (F). Otherwise, these panels are as in Figure 1C. 

 

Figure S3. Performance of the models generated using different stepwise-

regression methods compared to that of the site-only model. Shown are boxplots of 

r2 values for each of the models across all 1000 sampled test sets. Highly significant 

improvement from the site-only model is indicated (*P < 10-15, paired Wilcoxon 
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sign-rank test). Boxes indicate the median and interquartile ranges, and whiskers 

indicate either 1.5 times the interquartile range or the most extreme data point. 

 

Figure S4. An alternative analysis of target-prediction performances in flies. (A and 

B) Evaluation of prediction performance plotting the mean of median values instead 

of the mean of mean values. Otherwise these panels are as in Figure 4A and B, 

respectively. 
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