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 2 

Abstract    37 

 38 

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder, characterized 39 

by impairments in social communication and restricted, repetitive behaviours. Neuroimaging 40 

studies have shown complex patterns of functional connectivity (FC) in ASD, with no clear 41 

consensus on brain-behaviour relationships or shared patterns of FC with typically developing 42 

controls. Here, we used k-means clustering and multivariate statistical analyses to characterize 43 

distinct FC patterns and FC-behaviour relationships in participants with and without ASD. Two 44 

FC subtypes were identified by the clustering analysis. One subtype was defined by increased FC 45 

within resting-state networks and decreased FC across networks compared to the other subtype. 46 

A separate FC pattern distinguished ASD from controls, particularly within default mode, 47 

cingulo-opercular, sensorimotor, and occipital networks. There was no significant interaction 48 

between subtypes and diagnostic groups. Finally, analysis of FC patterns with behavioural 49 

measures of IQ, social responsiveness and ASD severity showed unique brain-behaviour 50 

relations in each subtype, and a continuum of brain-behavior relations from ASD to controls 51 

within one subtype. These results demonstrate that distinct clusters of FC patterns exist in both 52 

ASD and controls, and that FC subtypes can reveal unique information about brain-behaviour 53 

relationships.  54 

 55 

Author Summary 56 

 57 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, with high variation in the 58 

types of severity of impairments in social communication and restricted, repetitive behaviours. 59 

Neuroimaging studies have shown complex patterns of communication between brain regions, or 60 

functional connectivity (FC), in ASD. Here, we defined two distinct FC patterns and 61 

relationships between FC and behaviour in participants with and without ASD. One subtype was 62 

defined by increased FC within distinct networks of brain regions, and decreased FC between 63 

networks compared to the other subtype. A separate FC pattern distinguished ASD from 64 

controls. The interaction between subtypes and diagnostic groups was not significant. Analysis 65 

of FC patterns with behavioural measures revealed unique information about brain-behaviour 66 

relations in each subtype.  67 
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 70 

Abbreviations: 71 

ABIDE, Autism Brain Image Data Exchange; ADI-R, Autism Diagnostic Interview Revised; 72 

ADOS, Autism Diagnostic Observation Scale; ASD, autism spectrum disorder; BSR, bootstrap 73 

ratio; CN, cerebellar network; COMM, communication; CON, cingulo-opercular network; Cov. 74 

= covariance; DMN, default mode network; FC, functional connectivity; FD, framewise 75 

displacement; FPN, frontoparietal network; ON, occipital network; PCP, Preprocessed 76 

Connectomes Project; PLS, partial least squares; ROI, region of interest; RRBs, restricted and 77 

repetitive behaviours; RSN, resting-state network; SA, social affect; SMN, sensorimotor 78 

network; SRS, Social Responsiveness Scale; SVD, singular value decomposition; TD, typically 79 

developing 80 
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 4 

INTRODUCTION  99 

 100 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized 101 

by impairments in social cognition as well as restricted and repetitive behaviours (RRBs; 102 

American Psychiatric Association, 2013). ASD is a highly heterogeneous disorder, with a broad 103 

range of the types and severities of behaviours that can be displayed. For instance, verbal and 104 

nonverbal IQ are highly variable in ASD (e.g. Munson et al., 2008), and RRBs can range from 105 

low-level motor stereotypies to higher-order behaviours such as insistence on sameness 106 

(American Psychiatric Association, 2013). It has been proposed that these complex behavioural 107 

features are associated with atypical patterns of functional connectivity (FC). Such theories 108 

include reduced communication between frontal and posterior brain regions (Just et al., 2012), 109 

increased local FC along with reduced long-range FC (Belmonte et al., 2004; Courchesne & 110 

Pierce, 2005), and an abnormal developmental trajectory of FC compared to typically developing 111 

(TD) individuals (Nomi & Uddin, 2015; Uddin et al., 2013b). However, complex patterns of 112 

both increased and decreased FC have been found in neuroimaging studies of ASD, and results 113 

are inconsistent across studies (see Hull et al., 2016; Picci et al., 2016; and Uddin et al., 2013b 114 

for reviews).  115 

It is crucial to consider the heterogeneous nature of ASD, both in terms of behavioural 116 

severity and FC profiles. The importance of this consideration is highlighted by the inconsistent 117 

results regarding relationships between FC and behavioural profiles in individuals with ASD in 118 

previous studies (e.g. Keown et al., 2013; Lee et al., 2016; Monk et al., 2009; Uddin et al., 119 

2013b). Several recent studies that considered the heterogeneity of neurobiological and 120 

behavioural features of ASD have reported novel finding regarding brain-behaviour 121 

relationships. For instance, Hahamy, Behrmann & Malach (2015) found that idiosyncratic 122 

distortions in FC from a “typical” template were related to ASD symptom severity. Nunes et al. 123 

(2018) also reported that incorporation of vertices along the cortical surface into intrinsic 124 

connectivity networks, particularly into default mode and sensorimotor networks, was more 125 

idiosyncratic in ASD and related to ASD symptom severity.  126 

Defining subtypes of ASD based on FC metrics has the potential to resolve some of the 127 

current discrepancies in the literature regarding the nature of FC abnormalities in individuals 128 

with this disorder, as well as to shed light on the complex relationships between FC and 129 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2018. ; https://doi.org/10.1101/198093doi: bioRxiv preprint 

https://doi.org/10.1101/198093
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

behaviour, which may differ between subtypes. Previously, ASD subtypes have been defined 130 

based on clusters of social communication behaviours and RRBs (Georgiades et al., 2012), 131 

structural MRI (Hrdlicka et al., 2005), and various neuroanatomical features (Hong et al., 2017), 132 

and FC (Chen et al., 2015). Chen et al. (2015) found two subtypes that differed in terms of ASD 133 

symptom severity. Further, Hong et al. (2017) found that prediction of individual scores on the 134 

Autism Diagnostic Observation Scale (ADOS) greatly improved when subtypes were 135 

considered, compared to considering all ASD participants as one group. Thus, brain-based 136 

subtyping has the potential to elucidate brain-behaviour relationships that are unique to each 137 

subtype, as it could be the case that certain behaviours result from complex interplay between 138 

local and distributed processing in the brain. One limitation of these studies is that they did not 139 

include both ASD and TD participants in the subtyping procedures. Given the heterogeneous 140 

nature of ASD, the inconsistent reports of FC differences between those with and without ASD, 141 

and recent evidence showing a continuum of the relationship between neurobiological features 142 

and subclinical ASD symptoms in healthy controls (Rashid et al., 2018), it is crucial to include 143 

controls in subtyping analyses as well.  144 

In the present study, we used a data-driven approach to characterize subtypes based on 145 

distinct clusters of FC in all participants, and to relate FC patterns to specific behavioural profiles 146 

in these subtypes. We first used k-means clustering, an unsupervised machine learning 147 

technique, to define subtypes using functional connections as features, and implemented a 148 

multivariate statistical analysis that, when applied to neuroimaging data, reveals the optimal 149 

relationship between measures of brain activity and experimental design or group membership. 150 

This approach allowed us to determine which connections were reliably different between 151 

subtypes, and between ASD and TD participants. We also used this multivariate approach to 152 

characterize relationships between particular patterns of FC and a set of behaviours. It was 153 

hypothesized that defining FC-based subtypes of ASD and TD participants using data-driven 154 

metrics would reveal unique information about brain-behaviour interactions. 155 

 156 

 157 

 158 

 159 

 160 

 161 
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RESULTS 162 

  163 

 FC-based subtypes of ASD and TD participants  164 

FC-based subtypes were defined using k-means clustering. The effects of scan site were 165 

regressed out of the FC data; when these effects were not removed, there was a significant 166 

difference in the distribution of scan sites between the two subtypes, X2(4, N=266) = 78.60, p < 167 

0.001. At this point, subtypes were significantly different in age, t(264) = 2.50, p = 0.01; thus, 168 

effects of both site and age were regressed from the data. As it has been recently shown that 169 

despite implementing preprocessing steps that aim to correct for head motion in resting-state 170 

fMRI, residual motion effects can contaminate FC estimates (Ciric et al., 2017), a multivariate 171 

brain-behaviour analysis was performed to determine if there were relationships between FC and 172 

head motion metrics (mean FD and percentage of frames exceeding 0.2mm). There was not a 173 

significant relationship between FC and motion (p = 0.57).  174 

The optimal number of clusters, as determined by the elbow point criterion, was 2 (Fig. 175 

1A). Using a bootstrapping procedure to evaluate the reliability of the optimal number of 176 

clusters, it was found that the optimal number of clusters was 2 in 500/500 bootstrap samples. 177 

Subtype 1 consisted of 85 ASD participants and 54 TD participants. Subtype 2 consisted of 60 178 

ASD participants and 67 TD participants. Qualitatively, Subtype 1 was defined by stronger FC 179 

between networks, particularly between the DMN and other networks, and weaker FC within 180 

networks relative to Subtype 2 (Fig. 1B). 181 

 182 
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 183 

Fig. 1: A) Elbow point plots, indicating that the optimal number of clusters is 2. B) Subtype 184 

centroids. DMN = default mode network; FPN = frontoparietal network; CON = cingulo-185 

opercular network; ON = occipital network; SMN = sensorimotor network; CN = cerebellar 186 

network. 187 

 188 

Importantly, subtypes did not differ in demographics or behaviour, including IQ, eye 189 

status, medication use, presence of comorbidities, head motion, or the parameters (scan site and 190 

age) that were regressed out of the FC matrices (Supplementary Table 3). While subtypes 191 

differed in ADOS scores, and differences SRS scores approached significance, these differences 192 

were driven by the fact that there were more TD participants with these scores in Subtype 2 193 

compared to Subtype 1. SRS scores did not differ between ASD participants in Subtypes 1 and 2, 194 

and also did not differ between TD participants in Subtypes 1 and 2. ADOS scores did not differ 195 

between ASD participants in Subtypes 1 and 2, but could not be compared for TD participants in 196 

Subtypes 1 and 2, because ADOS scores were only available for 2 TD participants in Subtype 1 197 

and 12 TD participants in Subtype 2. 198 

Next, we used a multivariate statistical approach to determine differences in FC between 199 

subtypes and between ASD and TD participants. The reliability of these patterns was determined 200 

via bootstrap sampling. A functional connection was considered to be reliable, or stable, if the 201 

absolute value of its bootstrap ratio (BSR) exceeded 2. This analysis revealed two significant 202 

patterns. The first pattern showed stable differences in FC between subtypes (p < 0.001, 61.07% 203 

of variance explained, Fig. 2A), whereby Subtype 2 was characterized by stronger FC within 204 

resting-state networks, and weaker FC between networks, compared to Subtype 1. The contrast 205 

expression for this FC pattern (Supplementary Fig. 2) revealed that functional connections with 206 
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significant positive BSRs, on average, were positive in Subtype 1 and negative in Subtype 2, and 207 

vice versa for negative BSRs. The second pattern revealed a contrast between diagnostic groups 208 

(p = 0.02, 21.74% of variance explained, Fig. 2B), with a diffuse spatial pattern. The contrast 209 

expression for the second pattern (Supplementary Fig. 3) revealed that functional connections 210 

with significant positive BSRs, on average, were negative in the ASD group and positive in the 211 

TD group, and vice versa for negative BSRs. The third pattern, which revealed a subtype by 212 

diagnosis interaction, was not significant, p = 0.92. The significance of these spatial patterns 213 

within and between resting-state networks (RSNs) was evaluated using permutation tests (see 214 

Materials and Methods), and is shown in Fig. 3.  215 

 216 

 217 

Fig. 2. Results from the multivariate group analysis. A) First pattern, and B) second pattern, and 218 

the associated BSRs for each connection, at a threshold of +2. Error bars show 95% confidence 219 

intervals determined through bootstrap resampling.  220 

 221 
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 222 

Fig. 3. Significant contributions of RSN pairs to each pattern for positive and negative BSRs, for 223 

the A) first pattern and B) second pattern from the multivariate group analysis. Orange = positive 224 

BSRs, green = negative BSRs. 225 

 226 

Multivariate analyses of FC-behaviour relationships 227 

 228 

A multivariate brain-behaviour analysis was used to assess relationships between FC and 229 

a set of behavioural measures in the two ASD-TD subtypes, including IQ, ADOS scores 230 

(communication (COMM), social affect (SA), and restricted and repetitive behaviours (RRB)), 231 

and scores on the Social Responsiveness scale (SRS). The full set of behavioural measures was 232 

available for 51 participants (49 ASD, 2 TD) in Subtype 1 and 50 (38 ASD, 12 TD) participants 233 

in Subtype 2. ADI-R scores were not included, as only 28 participants in Subtype 1 and 26 234 

participants in Subtype 2 had the full set of behavioural measures including ADI-R scores. 235 

Further, none of the participants with the full set of scores including ADI-R scores were TD 236 

participants.  237 

The analysis revealed 3 significant patterns. The first pattern (p = 0.03, 32.09% 238 

covariance explained) revealed stable relationships between FC and IQ and ADOS RRB scores 239 

in Subtype 1, and stable relationships between FC and all behavioural measures in Subtype 2. 240 

The first brain-behaviour pattern was a contrast between Subtypes 1 and 2 in terms of 241 

relationships with FC and ADOS RRB scores, such that connections that were reliably positively 242 

correlated with ADOS RRB scores in Subtype 1 were negatively correlated in Subtype 2, and 243 

vice versa. The third pattern (p = 0.008, 10.82% covariance explained) revealed a different 244 

spatial pattern that exhibited stable correlations with IQ and SRS in Subtype 1, and with all 245 

ADOS scores and SRS in Subtype 2. Additionally, there was a contrast between Subtypes 1 and 246 
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2 in terms of correlations between FC and SRS scores. The seventh pattern (p = 0.003, 4.45% 247 

covariance explained) revealed a contrast between Subtypes 1 and 2 in terms of correlations 248 

between FC and ADOS communication scores, as well as stable correlations between FC and 249 

ADOS social affect scores in Subtype 1. Overall, it can be seen that connections that show stable 250 

correlations with behaviour are diffuse. Patterns that accounted for more than 10% of the 251 

covariance between FC and behaviour (that is, patterns 1 and 3) are shown in Fig. 4, and the 252 

corresponding contrast expressions are shown in Supplementary Fig. 4 and 5. The stability of 253 

these FC-behaviour relationships within and between RSNs are shown in Fig. 5.  254 

 255 

 256 

Fig. 4. Results from the multivariate brain-behaviour analysis. A) First pattern, and B) third 257 

pattern, and the associated BSRs for each connection, at a threshold of +2. Error bars show 95% 258 

confidence intervals determined through bootstrap resampling. 259 

 260 
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 261 

Fig. 5. Significant contributions of RSN pairs to each pattern for positive and negative BSRs, for 262 

A) first pattern and B) third pattern. Orange = positive BSRs, green = negative BSRs. 263 

  264 

 The relationship between brain and behaviour scores for ASD and TD participants in 265 

Subtype 2 for the first pattern of the multivariate brain-behaviour analysis is shown in Fig. 6. The 266 

continuum of scores for both brain and behaviour variables illustrates that there is a pattern of FC 267 

that co-varies with the severity of behaviours across the autism spectrum and typical 268 

development. This analysis was only performed in Subtype 2, as there were only 2 TD 269 

participants in Subtype 1 who had the full set of behaviour measures. 270 

 271 

 272 

Fig. 6. Brain and behaviour scores for Subtype 2, from the first pattern of the multivariate brain-273 

behaviour analysis. 274 

 275 
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 12 

 We then determined the relationship between the patterns from the multivariate group 276 

analysis and the multivariate brain-behaviour analysis by correlating the brain saliences for each 277 

analysis, and evaluated the significance of these correlations using permutation testing. There 278 

was a significant correlation between the first brain-behaviour pattern and the second group 279 

pattern, r = 0.40, p < 0.001, indicating that the continuum of FC-behaviour relationships was 280 

associated with the diagnostic pattern from the group analysis. The correlations between the 281 

other patterns were not significant: (brain-behaviour pattern 1 and group pattern 1: r = -0.06, p = 282 

0.81; brain-behaviour pattern 3 and group pattern 1: r = 0.005, p = 0.45; brain-behaviour pattern 283 

3 and group pattern 2: r = 0.07, p = 0.13). 284 

 285 

DISCUSSION 286 

 287 

Overview 288 

This study reveals that there are distinct clusters of FC patterns in both ASD and controls. 289 

We characterized network-level differences between subtypes and diagnostic groups, and further 290 

showed that individuals within each subtype exhibit different relationships between FC metrics 291 

and behavioural measures. The continuum of brain and behaviour scores across ASD and TD 292 

participants reveals that FC phenotypes observed in ASD extend to typical development in 293 

relation to behavioural severity. 294 

 295 

Comparison of FC between subtypes and diagnostic groups 296 

Two FC-based subtypes were defined for all participants. When all four groups were 297 

considered in a multivariate analysis (i.e. ASD Subtype 1, ASD Subtype 2, TD Subtype 1, and 298 

TD Subtype 2), the strongest pattern, not surprisingly, was a contrast between subtypes. 299 

Regardless of diagnostic group, Subtype 2 was defined by greater FC within networks and lower 300 

FC between networks, especially between the DMN and other RSNs, compared to Subtype 1. 301 

Connections within networks tended to be positive on average in Subtype 2 and negative in 302 

Subtype 1, indicating reduced interactions among brain regions within these networks in Subtype 303 

1. Further, connections between networks that were lower in Subtype 2 tended to be negative, 304 

but were positive on average in Subtype 1 (Supplementary Fig. 2). As anti-correlations between 305 

resting-state networks are hypothesized to signify the division of labour between brain regions 306 
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that are involved in different functions (Fransson 2006), and the ability for regions that are 307 

relevant for certain cognitive functions to become activated with concurrent deactivation of 308 

irrelevant regions (Fox et al., 2005; Greicius et al., 2003), these abilities may be affected in 309 

Subtype 1.  310 

A second pattern revealed diffuse functional connections that differed between diagnostic 311 

groups in both subtypes. ASD participants exhibited reliable decreases in FC within the SMN, 312 

DMN and CON, but greater FC within the ON. Atypical FC of sensorimotor regions in ASD has 313 

reported in previous studies (Anderson et al., 2011; Mostofsky et al., 2009; Turner et al., 2006). 314 

Thus, despite the broad range of sensorimotor difficulties in ASD (Minshew et al., 1997; Perry et 315 

al., 2007; Whyatt & Craig, 2013), atypical SMN FC may be common across the autism 316 

spectrum. It has been hypothesized that abnormal DMN functioning in ASD relates to decreased 317 

self-referential processing, decreased abilities to redirect attention from external to internal 318 

processing, and difficulties with theory of mind (e.g. Assaf et al., 2010). Various studies have 319 

reported decreased FC between DMN regions in ASD (Assaf et al., 2010; Kennedy & 320 

Courchesne, 2008; Monk et al., 2009; Weng et al., 2010), although hyperconnectivity has also 321 

been reported (Monk et al., 2009; Uddin et al., 2013a). Decreased FC within the CON, which 322 

plays a role in stable set-maintenance (Dosenbach et al., 2007), is line with previous studies that 323 

showed difficulties with set-maintenance in ASD (Kaland, Smith, & Mortensen, 2008; Miller et 324 

al., 2015). Increased FC in the ON is consistent with findings of increased local connectivity in 325 

primary visual regions (Keown et al., 2013) and increased involvement of extrastriate cortex 326 

(Shen et al., 2012) in ASD. Elevated FC in right ventral occipital-temporal cortex in ASD has 327 

been associated with higher social deficits (Chien et al., 2015). Additionally, reliably higher FC 328 

was found between the DMN and FPN, DMN and ON, and CON and CN in ASD participants. 329 

These connections were positive on average in ASD, but negative on average in controls 330 

(Supplementary Fig. 3). Previous studies have also reported reduced negative connectivity in 331 

ASD, which was described as reduced functional segregation of networks (Rudie et al., 2012; 332 

2013a). However, other between-network connections (FPN-CON and FPN-SMN) exhibited a 333 

greater degree of anti-correlation in ASD. The functional significance of decreased anti-334 

correlations between some resting-state networks, but increased anti-correlations between others, 335 

remains to be explored. 336 
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 The third pattern, showing a subtype by diagnosis interaction, was not significant, thus 337 

revealing additive effects of subtype and diagnosis on FC patterns. Thus, the expression of the 338 

subtypes does not depend on the diagnosis; the manifestation of the subtypes in ASD is not 339 

different from controls.  340 

 341 

Comparison of FC-behaviour relationships between subtypes  342 

Reliable correlations between FC and behaviour were observed both within and between 343 

RSNs for IQ and ADOS RRB scores for Subtype 1, and all behavioural measures for Subtype 2, 344 

showing that similar behavioural profiles can be associated with different functional correlates in 345 

the brain. Previous studies have reported mixed results regarding associations between FC 346 

measures and ASD behavioural measures. For instance, Keown et al. (2013) found that 347 

overconnectivity in posterior brain regions was associated with greater severity ASD severity, 348 

and that frontal underconnectivity was found only in low-severity participants. However, another 349 

study found that ASD severity was correlated with the extent of hyperconnectivity in the salience 350 

network, which includes regions such as the dorsal anterior cingulate cortex and frontoinsular 351 

cortex (Uddin et al., 2013b). Lee et al. (2016) reported overall reduced FC density in ASD, and 352 

found that average interhemispheric FC density and contralateral FC density in a 353 

lingual/parahippocampal gyrus cluster and default mode network regions was negatively 354 

correlated with RRBs. On the other hand, hyperconnectivity between the posterior cingulate 355 

cortex (PCC), a core region of the DMN, and the right parahippocampal gyrus was associated 356 

with more severe RRBs in another study (Monk et al., 2009). Our results highlight the 357 

importance of considering FC-based subtypes when examining brain-behaviour relationships in 358 

individuals with and without ASD. Importantly, individuals in each subtype did not differ 359 

significantly in IQ or SRS scores, and ASD participants in the two subtypes did not differ 360 

significantly in ADOS scores. Thus, there is unique information about FC-based subtypes that is 361 

not accessible by using behaviour alone.  362 

The multivariate brain-behaviour analysis supports the idea that instead of being a 363 

categorical diagnosis, ASD should indeed be considered as an extreme of a continuum of both 364 

neurobiological and behavioural features that can also be observed in TD individuals 365 

(Constantino & Todd, 2003; Rashid et al., 2018). In other words, there is normal variation in FC 366 

across both ASD and TD participants (see Fig. 6), but too much of this natural variation is 367 
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associated with a diagnosis of ASD. This idea is supported by the continuum of brain and 368 

behaviour scores from pattern 1 of the brain-behaviour analysis for Subtype 2, and the significant 369 

correlation between the spatial pattern for this pattern and the second pattern from the group 370 

analysis, that is, the contrast in FC between diagnostic groups. This dimensional approach has 371 

also been reinforced by recent studies that reported novel findings in individuals with ASD by 372 

accounting for the heterogeneity of the relationships between behavioural severity and various 373 

neurobiological features (Hahamy et al., 2015; Nunes et al., 2018). Recently, it has been pointed 374 

out that different features of brain function are variable even among TD individuals, and a 375 

certain feature cannot be considered to be an impairment unless it is accompanied by behavioural 376 

symptoms (Muller & Amaral, 2017). Our results support this idea by showing that some sets of 377 

functional connections are a) similar among subsets of ASD and TD participants, and b) 378 

correlated with behavioural severity. The similarity of FC patterns in ASD and controls has also 379 

been demonstrated in a recent study by Spronk et al. (2018), which demonstrated that resting-380 

state FC patterns between TD participants and several clinical groups, including ASD, attention 381 

deficit hyperactivity disorder, and schizophrenia, are highly correlated, despite the presence of 382 

clinical symptoms. 383 

 384 

Limitations 385 

One limitation of our study is that we defined subtypes using a single data preprocessing 386 

strategy. It has been proposed that differences in analysis approaches between studies are the 387 

most likely causes of inconsistent results between studies of FC in ASD (Hull et al., 2016). For 388 

instance, it has been shown that global signal regression reduces the relationship between FC and 389 

head motion, but can result in distance-dependent artifacts in FC unless used in combination with 390 

censoring methods (Ciric et al., 2017). Preprocessing strategies such as global signal regression 391 

and low-pass filtering have been shown to affect group differences in FC between participants 392 

with and without ASD (Gotts et al. 2013; Muller et al., 2011). The length of fMRI scans may 393 

also contribute to heterogeneity across studies: it has been suggested that increasing scan lengths, 394 

for instance from 5 to 13 minutes, improves the reliability of FC estimates (Birn et al., 2013). It 395 

is therefore crucial to gain a better understanding of how preprocessing choices and scanning 396 

parameters affect group differences in FC, and to compare FC-based subtypes across different 397 

preprocessing strategies.  398 
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Subtypes in this study were defined based on FC. The incorporation of additional metrics 399 

may help to further characterize differences between the two subtypes defined in this study. For 400 

instance, recent work has focused on altered dynamic FC “states” in ASD (e.g. Chen et al., 2017; 401 

de Lacy et al., 2017; Rashid et al., 2018). However, as participants’ time series consisted of only 402 

145 time points, characterizing FC states in this dataset was not feasible.  403 

Finally, we examined the continuum of brain and behaviour scores across both ASD and 404 

TD participants in Subtype 2; however, ADOS scores were available for only 2 TD participants 405 

in Subtype 1. It will be important for future studies to collect ADOS scores in TD participants to 406 

better characterize the continuum of FC-behaviour relationships across all participants in 407 

multiple subtypes. 408 

 409 

Conclusions 410 

Multivariate analyses of FC-based subtypes highlight the importance of considering the 411 

heterogeneity of FC patterns and measures of behaviour in resting-state studies, and reveal the 412 

continuum of brain-behaviour relationships in individuals with and without ASD. As subtypes 413 

exhibited different relationships between FC and behavioural severity, it will be important to 414 

determine if individuals with ASD in different subtypes exhibit unique responses to treatments 415 

and behavioural therapies.  416 

 417 

MATERIALS AND METHODS 418 

  419 

Participants 420 

Resting-state fMRI data from 145 males with ASD and 121 TD males were acquired 421 

from the Preprocessed Connectomes Project (PCP; Craddock et al., 2015; 422 

http://www.preprocessed-connectomes-project.org/abide). The data had been obtained from the 423 

Autism Brain Imaging Data Exchange (ABIDE; Di Martino et al., 2014; 424 

http://www.fcon_1000.projects.nitrc.org/indi/abide) and preprocessed using the Connectome 425 

Computation System pipeline (Xu et al., 2015). Participants were excluded if their age was 426 

greater than 40, full scale IQ was less than 75, mean framewise displacement (FD) during the 427 

resting-state fMRI scan was greater than 0.20mm, percentage of data points exceeding 0.20mm 428 

was greater than 20%, and/or scans were rated as good by less than 2 (out of 3 raters) as per the 429 
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ABIDE quality assessment protocol (http://preprocessed-connectomes-430 

project.org/abide/quality_assessment.html). Groups were matched for age, IQ, mean framewise 431 

displacement and the percentage of data points exceeding 0.20mm. ASD diagnoses were 432 

confirmed using the Autism Diagnostic Observation Scale (ADOS; Lord et al., 2000) and/or the 433 

Autism Diagnostic Interview-Revised (ADI-R; Lord et al., 1994). Participant characteristics are 434 

shown in Table 1, along with the number of scores that were available for ADOS, ADI-R and 435 

SRS scores for ASD participants if these scores were not available for all 145 participants.  436 

Participant characteristics for each site are described in Supplementary Table 1. 437 

 438 

Table 1: Participant characteristics 439 

 Variable ASD 

Mean + SD 

[range] 

TD 

Mean + SD 

[range] 

Significance 

N 145 121  

Age  16.47 + 6.46 

[7.13 – 39.10] 

16.03 + 5.70 

[6.47 – 31.78] 

t(264) = 0.58, p = 0.56 

IQ 107.57 + 16.32 

[76 – 148] 

110.08 + 11.61 

[80 – 133]  

t(264) = -1.43, p = 0.15 

Mean FD 0.07 + 0.04 

[0.02 – 0.19] 

0.07 + 0.03 

[0.03 – 0.19] 

t(264) = 1.32, p = 0.19 

Percent FD > 0.2mm 4.69 + 5.27 

[0 – 19.33] 

3.92 + 1.29 

[0 – 19.33] 

t(264) = 1.29, p = 0.20 

Handedness 120 RH 

21 LH 

109 RH 

10 LH 

X2(1, N=266) = 0.52, p = 0.13 

Eye status 121 open 

24 closed 

95 open 

26 closed 

X2(1, N=266) = 1.38, p = 0.35 
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Scan site NYU: 59 

SDSU: 11 

TRINITY: 18 

UM: 26 

USM: 31 

NYU: 52 

SDSU: 10 

TRINITY: 16 

UM: 29 

USM: 14 

X2(4, N=266) = 5.07, p = 0.28 

Medication use 27 yes 

86 no 

32 unknown 

0 yes 

106 no 

15 unknown 

N/A 

Comorbidities 28 yes 

117 no/unknown 

0 yes 

121 no/unknown 

N/A 

ADOS Total  11.69 + 3.68  

[5 – 22]  

(N = 118) 

1.14 + 1.17 

[0 – 4] 

(N = 14) 

t(130) = 10.64, p < 0.001 

ADOS Communication  3.89 + 1.55  

[0 – 8] 

(N = 100) 

0.50 + 0.65 

[0 – 2] 

(N = 14) 

t(112) = 8.06, p < 0.001 

ADOS Social  7.89 + 2.81  

[2 – 14] 

(N = 100) 

0.64 + 0.84 

[0 – 3] 

(N = 14) 

t(112) = 9.56, p < 0.001 

ADOS RRB  2.04 + 1.46  

[0 – 7] 

(N = 98) 

0.07 + 0.27 

[0 – 1] 

(N = 14) 

t(110) = 5.00, p < 0.001 

ADI-R Social  19.07 + 5.44  

[7 – 30] 

(N = 108) 

N/A N/A 

ADI-R Verbal  15.38 + 4.36  

[2 – 25]  

N/A N/A 
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(N = 109) 

ADI-R RRB  5.66 + 2.60  

[0 – 12]  

(N = 109) 

N/A N/A 

SRS  92.56 + 31.00 

[26-164] 

(N = 89) 

20.59 + 12.43 

[1 – 56] 

(N = 49) 

t(136) = 15.56, p < 0.001 

  440 

fMRI Preprocessing 441 

Data from five sites (New York University Lagone Medical Center, University of Utah 442 

School of Medicine, San Diego State University, Trinity Centre for Health Sciences, and 443 

University of Michigan) using a TR of 2000ms were included. The proportion of ASD compared 444 

to TD subjects was not significantly different across sites, X2(4, N=266) = 5.07, p = 0.28. Written 445 

informed consent or assent was obtained for all participants in accordance with respective 446 

institutional review boards. Additional information about scanner types and parameters can be 447 

found on the ABIDE website (http://www.fcon_1000.projects.nitrc.org/indi/abide). The CCS 448 

preprocessing steps, which had been carried out as part of the Preprocessed Connectomes 449 

Project, were as follows: dropping the first 4 volumes, removing and interpolating temporal 450 

spikes, slice timing correction, motion correction, brain mask creation, 4D global mean-based 451 

intensity normalization, boundary-based registration of functional to anatomical images, 452 

anatomical segmentation of grey matter, white matter and cerebrospinal fluid, nuisance 453 

parameter regression (including 24 motion parameters, white matter and CSF signals, linear and 454 

quadratic trends, and the global signal), bandpass filtering (0.01 to 0.1Hz), and registering 455 

functional images to the MNI template. The final preprocessed time series for each subject were 456 

obtained from the Preprocessed Connectomes Project. We chose to use data that had the global 457 

signal regressed out, as this step has been shown to help mitigate differences across multiple sites 458 

(Power et al., 2014). Further, it has been shown recently that global signal regression attenuates 459 

artefactual changes in BOLD signal that are introduced by framewise displacement (Byrge & 460 

Kennedy, 2017). It should also be noted that without global signal regression, FC-based subtypes 461 

differed in head motion (both mean framewise displacement (p < 0.001) and percentage of 462 
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frames above 0.2mm (p < 0.001). The time series of 160 4.5mm spherical regions of interest 463 

(ROIs) from the Dosenbach atlas (Dosenbach et al., 2010) were obtained (see Supplementary 464 

Table 2 and Supplementary Fig. 1). Regions in this atlas were selected from meta-analyses of 465 

task-related fMRI studies and categorized into six different resting-state networks (RSNs): the 466 

default mode network (DMN), frontoparietal network (FPN), cingulo-opercular network (CON), 467 

occipital network (ON), sensorimotor network (SMN), and cerebellar network (CN). Additional 468 

details of the fMRI preprocessing steps can be found on the PCP website 469 

(http://www.preprocessed-connectomes-project.org/abide).  470 

  471 

Functional connectivity 472 

Each subject’s fMRI time series was truncated to 145 time points, which was the 473 

minimum number of time points across subjects. FC was defined by Fisher z-transformed 474 

Pearson correlations for each ROI pair across all time points for each participant. The effects of 475 

age and acquisition site (represented as a Helmert basis) were regressed out of the FC matrices.  476 

 477 

K-means Clustering 478 

 K-means clustering was used to define subtypes distinct FC patterns. The lower triangle 479 

of each participant’s FC matrix was used, such that the matrix for k-means was in the form 480 

subjects x FC. The k-means algorithm begins with an initialization of k centroids. Then, in the 481 

assignment step, each participant is assigned to the closest centroid using the cosine distance, 482 

defined as one minus the cosine of the included angle between each subjects’ FC values and each 483 

cluster’s centroids, which are treated as vectors. Next, in the centroid update step, new centroids 484 

are defined as the mean of the data points that are currently assigned to that centroid. These two 485 

steps are repeated iteratively until convergence, when cluster assignments no longer change.  486 

 The “elbow point” criterion was used to determine the optimal number of clusters. To 487 

determine the elbow point, the average cosine distance between a cluster’s centroids and the FC 488 

values of participants assigned to that particular cluster is calculated for each cluster, then 489 

averaged across clusters to obtain a single distance metric for each value of k. These distances 490 

are then plotted as a function of k, and the “elbow” is defined as the value of k where the change 491 

in the rate of decrease in distance is sharpest. Values from k = 2 to k = 8 were tested (but also 492 

included k = 1 in the elbow point plot as a reference point). Further, we evaluated the reliability 493 
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of the number of clusters using bootstrap resampling. Fifty percent of the sample was selected at 494 

random, and were grouped into subtypes using the k-means algorithm for values of k from 2 to 8. 495 

The elbow criterion was then used to select the ideal value of k for the bootstrap sample. This 496 

process was repeated 500 times to determine the reliability of the optimal number of clusters.  497 

 498 

Partial Least Squares 499 

Partial least squares (PLS) is a multivariate statistical technique that is used to optimally 500 

relate brain activity to experimental design or group membership in the form of latent variables 501 

(McIntosh et al., 1996; McIntosh & Lobaugh, 2004; Krishnan et al., 2011). PLS software, which 502 

is implemented in Matlab, is available for download from research.baycrest.org/pls-software. In 503 

mean-centering PLS, patterns relating a matrix of brain variables (in the form subjects x brain 504 

variables) and group membership are calculated. For this study, the brain variables were the FC 505 

values in the lower triangle of each subject’s FC matrix (12720 connections). Mean-centering 506 

PLS was used to examine differences in FC between subtypes and between ASD and TD 507 

participants.  508 

Using singular value decomposition (SVD), orthogonal patterns that express the maximal 509 

covariance between the brain variables and group membership are computed. The resulting 510 

patterns are sorted in order of the proportion of covariance between the brain and 511 

design/behaviour variables that the pattern accounts for, with the first pattern accounting for the 512 

most covariance. Each pattern consists of saliences (weights) and a singular value. The brain 513 

saliences indicate which brain variables (in this case, functional connections) best characterize 514 

the relationship between the brain variables and group differences. Design saliences indicate the 515 

group differences profiles that best characterize this relationship. Singular values indicate the 516 

proportion of covariance between the brain and design matrices that each pattern accounts for. 517 

Brain scores, which represent each subject’s contribution to each brain salience, are calculated 518 

by multiplying the original matrix of brain variables by the brain salience.  519 

In behaviour PLS, a matrix of behaviour variables is also included in the analysis to 520 

determine design-dependent (in this case, group-dependent) relationships between the brain 521 

variables and behaviour. For this study, behavioural PLS was used to examine associations 522 

between FC and a set of behavioural variables including IQ, ADOS scores (communication, 523 

social affect, and RRBs), and scores on the Social Responsiveness Scale (SRS) in each subtype. 524 
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The statistical significance of each pattern was determined using permutation testing. For 525 

this procedure, the rows (participants) of the matrix of brain variables are reshuffled, and new 526 

singular values are obtained using SVD. In this study, this procedure was repeated 1000 times to 527 

create a distribution of singular values. The p-value associated with the original singular value is 528 

defined as the proportion of singular values from the sampling distribution that are greater than 529 

the original singular value, thus representing the probability of obtaining a singular value larger 530 

than the original value under the null hypothesis that there is no association between the brain 531 

variables and group membership. 532 

In addition to determining the statistical significance of each pattern, the reliability of the 533 

brain saliences can also be determined by utilizing a bootstrapping procedure. Bootstrap samples 534 

are generated by randomly sampling subjects with replacement, while ensuring that group 535 

membership is maintained. In this study, 500 bootstrap samples were generated. Creating 536 

bootstrap samples allows one to determine which brain variables are stable, regardless of which 537 

participants are included in the analysis. The bootstrap ratio (BSR), defined as the ratio of the 538 

brain salience to the standard error of the salience (as estimated by the bootstrap procedure), is a 539 

measure of this stability. Reliable connections were defined as those that surpassed a BSR 540 

threshold of +2.0, which corresponds roughly to a 95% confidence interval.  541 

As FC values can take on positive or negative values, positive BSRs could correspond to 542 

either stronger positive or weaker negative connectivity in one group compared to the other, and 543 

negative BSRs could indicate weaker positive or stronger negative connectivity. Thus, 544 

expressions of FC PLS contrasts were generated for each group. Positive expressions were 545 

generated by averaging connections (Fisher z-transformed Pearson correlation coefficients) that 546 

had BSRs greater than 2 across all participants in each group. A similar procedure was 547 

performed for negative expressions, that is, for connections showing BSRs less than -2. 548 

In addition to assessing the contribution of each individual connection to the group 549 

differences, we were interested in determining the extent to which network-level FC, both within 550 

and between RSNs, contributed to the group differences. This was of particular interest due to 551 

hypotheses that ASD may be characterized by atypical FC within and between networks (e.g. 552 

Hull et al., 2016; Rudie & Dapretto, 2013b). To assess the relative contributions of each RSN to 553 

the spatial patterns, the BSR-thresholded spatial maps (i.e. adjacency matrices in the form 554 

connections x connections) were separated into positive BSRs and negative BSRs. These maps 555 
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were thresholded such that connections with a BSR less than 2 but greater than -2 were set to 0. 556 

Positive BSRs greater than 2 were set to 1, and negative BSRs less than -2 were set to -1. All 557 

thresholded BSRs within each pair of networks were then averaged to obtain a 6x6 matrix 558 

showing the average contribution of each network pair to the spatial pattern, separately for 559 

positive and negative BSRs. To assess the significance of these contributions, the order of 560 

connections in the BSR thresholded matrices was permuted while keeping the RSN labels the 561 

same, and then the above procedure was repeated to calculate the RSN contributions. This 562 

process was repeated 1000 times to obtain a distribution of average contribution values for each 563 

RSN pair. Then, the significance of the original contribution is defined as the proportion of 564 

contribution values from the sampling distribution that are greater than or equal to the original 565 

value.  566 

 567 

2.6. Data visualization 568 

Connectivity circle plots were created using the plot_connectivity_circle function from 569 

the open-source MNE software package implemented in Python (Gramfort et al., 2013; 2014). 570 

All other figures were created using Matlab (MATLAB 8.6.0 (R2015b), MathWorks, Natick, 571 

MA). Violin plots were created using the distributionPlot.m function (Jonas 2017).  572 

 573 
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