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ABSTRACT 

Biological heterogeneities are ubiquitous and play critical roles in the emergence of 

physiology at multiple scales. Although neurons in layer II (LII) of the medial entorhinal 

cortex (MEC) express heterogeneities in their channel properties, the impact of such 

heterogeneities on the robustness of cellular-scale physiology has not been assessed. 

Here, we performed a 55-parameter stochastic search spanning 9 voltage- or calcium-

activated channels to assess the impact of channel heterogeneities on the concomitant 

emergence of 10 electrophysiological characteristics of LII stellate cells (SCs). We 

generated 50,000 models and found a heterogeneous subpopulation of 155 valid models 

to robustly match all electrophysiological signatures. We employed this heterogeneous 

population to demonstrate the emergence of cellular-scale degeneracy in LII SCs, 

whereby disparate parametric combinations expressing weak pairwise correlations 

resulted in similar models. We then assessed the impact of virtually knocking out each 

channel from all valid models and demonstrate that the mapping between channels and 

measurements was many-to-many, a critical requirement for the expression of 

degeneracy. Finally, we quantitatively predict that the spike-triggered average of LII SCs 

should be endowed with theta-frequency spectral selectivity and coincidence detection 

capabilities in the fast gamma-band. We postulate this fast gamma-band coincidence 

detection as an instance of cellular-scale efficient coding, whereby SC response 

characteristics match the dominant oscillatory signals in LII MEC. The heterogeneous 

population of valid SC models built here unveils the robust emergence of cellular-scale 

physiology despite significant channel heterogeneities, and forms an efficacious substrate 

for evaluating the impact of biological heterogeneities on entorhinal network function.  
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KEY POINTS 

• Stellate cells (SC) in layer II (LII) of the medial entorhinal cortex express cellular-

scale degeneracy in the concomitant manifestation of several of their unique 

physiological signatures.  

• Several disparate parametric combinations expressing weak pairwise correlations 

resulted in models with very similar physiological characteristics, including robust 

theta-frequency membrane potential oscillations spanning several levels of 

subthreshold depolarization. 

• Electrophysiological measurements of LII SCs exhibited differential and variable 

dependencies on underlying channels, and the mapping between channels and 

measurements was many-to-many. 

• Quantitative predictions point to theta-frequency spectral selectivity and fast gamma-

range coincidence detection capabilities in class II/III spike-triggered average of LII 

SCs, with the postulate for this to be an instance of cellular-scale efficient coding.  

• A heterogeneous cell population that accounts for both channel and intrinsic 

heterogeneities in LII SCs, which could be employed by network models of 

entorhinal function to probe the impact of several biological heterogeneities on spatial 

navigation circuits. 
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INTRODUCTION 

Networks in the nervous system are endowed with several forms of heterogeneities, 

which are known to play vital roles in the emergence of physiology and behavior. These 

ubiquitous forms of heterogeneities have been shown to either aid or hamper physiology 

in a manner that is reliant on several variables including the system under consideration, 

its specific function and the state of the system. Such disparate state-dependent impact of 

biological heterogeneities have necessitated system- and state-dependent quantitative 

analyses in assessing the precise role of these heterogeneities in specific neuronal 

structures and associated emergent functions (Wang & Buzsaki, 1996; Prinz et al., 2004; 

Marder & Goaillard, 2006; Shamir & Sompolinsky, 2006; Chelaru & Dragoi, 2008; 

Goaillard et al., 2009; Nusser, 2009; Grashow et al., 2010; Padmanabhan & Urban, 2010; 

Ecker et al., 2011; Marder, 2011; Marder & Taylor, 2011; Angelo et al., 2012; Rathour & 

Narayanan, 2012; Tripathy et al., 2013; Zhou et al., 2013; Marder et al., 2014; Rathour & 

Narayanan, 2014; Voliotis et al., 2014; Anirudhan & Narayanan, 2015; Srikanth & 

Narayanan, 2015; Tikidji-Hamburyan et al., 2015; Cadwell et al., 2016; Fuzik et al., 

2016; Gjorgjieva et al., 2016; Kohn et al., 2016; Das et al., 2017; Mukunda & 

Narayanan, 2017). 

Neurons in layer II (LII) of the rodent medial entorhinal cortex (MEC) have been 

implicated in spatial navigation, especially since the cells in LII MEC are known to act as 

grid cells that elicit action potentials in a grid-like pattern as the animal traverses an arena 

(Hafting et al., 2005; Moser et al., 2008; Buzsaki & Moser, 2013; Moser et al., 2014; 

Ray et al., 2014; Tang et al., 2014; Moser et al., 2015). Ever since the discovery of grid 

cells, several theoretical and computational models have been proposed for their 

emergence, and have been tested from several different perspectives with varying degrees 

of success (O'Keefe & Burgess, 2005; Burak & Fiete, 2006; Burgess et al., 2007; 
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Jeewajee et al., 2008; Welinder et al., 2008; Burak & Fiete, 2009; Giocomo et al., 2011b; 

Sreenivasan & Fiete, 2011; Navratilova et al., 2012; Couey et al., 2013; Domnisoru et 

al., 2013; Schmidt-Hieber & Hausser, 2013; Yoon et al., 2013; Bush & Burgess, 2014; 

Rowland et al., 2016; Schmidt-Hieber et al., 2017). Although these models and 

associated experiments have provided significant insights into entorhinal function, a 

lacuna common to these models relates to the systematic assessment of the impact of the 

different biological heterogeneities in the medial entorhinal cortex. Specifically, a 

systematic evaluation of the role of different forms of network heterogeneities, including 

those in channels, structural, intrinsic and synaptic properties and in afferent connectivity, 

with reference to entorhinal physiology has been lacking.  

A first and essential step in addressing these and other related questions on the 

impact of biological heterogeneities on entorhinal network function is to assess the 

robustness of cellular physiology in the presence of well-established heterogeneities in 

channel properties. Specifically, measurements of channel properties, including kinetics, 

voltage-dependent gating and conductance values, from entorhinal neurons are known to 

exhibit significant variability across neurons (Bruehl & Wadman, 1999; Magistretti & 

Alonso, 1999; Dickson et al., 2000; Fransen et al., 2004; Castelli & Magistretti, 2006; 

Dudman & Nolan, 2009; Pastoll et al., 2012; Schmidt-Hieber & Hausser, 2013). Despite 

this, entorhinal neurons exhibit signature electrophysiological characteristics that robustly 

fall into specific ranges for each physiologically relevant measurement. How do these 

neurons achieve such cellular-scale robustness in their physiology despite widely variable 

conductances and channel properties? Is there a requirement for individual channels or 

pairs of channels to be maintained at specific levels with specific properties for signature 

electrophysiological properties to emerge? Is there a one-to-one mapping between 

individual channels and the physiological properties that they regulate? 
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In this study, we build a conductance-based intrinsically heterogeneous 

population of LII stellate cell (SC) models of the medial entorhinal cortex that satisfied 

several of their unique electrophysiological signatures. We employed this heterogeneous 

population of LII SC models to demonstrate the expression of cellular-scale degeneracy 

(Edelman & Gally, 2001) in the concomitant emergence of these measurements. 

Specifically, we showed that LII SC with very similar electrophysiological characteristics 

emerged from disparate channel and parametric combinations expressing weak pairwise 

correlations. We employed these models to demonstrate the differential and variable 

dependencies of measurements on underlying channels, and showed that the mapping 

between channels and measurements was many-to-many. Finally, we employed this 

electrophysiologically validated model population to make quantitative testable 

predictions that the spike triggered average (STA) of LII SCs should be endowed with 

theta-frequency spectral selectivity and coincidence detection capabilities in the fast 

gamma-band. We postulate this fast gamma-band coincidence detection to be an instance 

of cellular-scale efficient coding (Narayanan & Johnston, 2012) that matches neuronal 

response properties to the dominant oscillatory band in the superficial layers of MEC 

(Colgin et al., 2009; Colgin & Moser, 2010; Colgin, 2016; Trimper et al., 2017).  The 

heterogeneous population of models built here also forms an efficacious substrate for 

constructing network models of the entorhinal cortex, towards assessing the impact of 

cellular and channel properties and associated heterogeneities on emergent behavior such 

as grid cell formation.  
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METHODS 

We employed a single compartmental cylinder model of 70-µm diameter and 75-µm 

length (Fig. 1A). The choice of a single compartmental model was largely driven by the 

absence of direct and detailed electrophysiological characterization of dendritic intrinsic 

properties or of ion channels that express in LII SCs. As a consequence, morphologically 

precise models with specific channel expression profiles and matched intrinsic properties 

were infeasible. On the other hand, as the somatic channel properties and intrinsic 

physiological measurements of LII SCs are well characterized, we employed a single-

compartmental model that wouldn’t have to make explicit or implicit assumptions about 

dendritic physiology. Additionally, as a goal of this study was to develop an intrinsic 

heterogeneous model population of LII SCs towards their incorporation into network 

models, it was essential to ensure that the computational complexity of single neurons 

was minimal. A single compartmental conductance-based model population that was 

endowed with the different ion channels and systematically reflects intrinsic 

heterogeneities in LII SCs served as an efficacious means to achieve this goal as well. 

 

Passive and active neuronal properties 

Passive properties were incorporated into the model as RC circuit that was defined 

through a specific membrane resistance, Rm and a specific membrane capacitance, Cm. 

We introduced 9 different active channel conductances into the model (Fig. 1A): fast 

sodium (NaF), delayed rectifier potassium (KDR), hyperpolarization-activated cyclic-

nucleotide gated (HCN) nonspecific cationic, persistent sodium (NaP), A-type potassium 

(KA), low-voltage activated calcium (LVA), high-voltage activated calcium (HVA), M-

type potassium (KM) and small conductance calcium gated potassium (SK) channels. 
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The channel kinetics and voltage dependencies for NaF, KDR and KA were from 

(Dudman & Nolan, 2009), for HCN from (Dickson et al., 2000; Fransen et al., 2004; 

Schmidt-Hieber & Hausser, 2013), for NaP from (Magistretti & Alonso, 1999; Dickson 

et al., 2000; Fransen et al., 2004), for HVA from (Bruehl & Wadman, 1999; Castelli & 

Magistretti, 2006), for LVA from (Bruehl & Wadman, 1999; Pastoll et al., 2012), for SK 

from (Sah & Isaacson, 1995; Sah & Clements, 1999) and for KM from (Shah et al., 

2008).  

All channel models were based on Hodgkin-Huxley formulation (Hodgkin & 

Huxley, 1952) except for the SK channel, which was modeled using a six-state 

Markovian kinetics model. Sodium, potassium and HCN channel currents were modeled 

using the Ohmic formulation and calcium channels followed the Goldman-Hodgkin-Katz 

(GHK) formulation (Goldman, 1943; Hodgkin & Katz, 1949) for current computation. 

The reversal potentials for Na+, K+ and HCN channel were 50, –90 and –20 mV, 

respectively. Calcium current through voltage gated calcium channels contributed to 

cytosolic calcium concentration ([Ca]c), and its decay was defined through simple first 

order kinetics (Destexhe et al., 1993; Poirazi et al., 2003; Carnevale & Hines, 2006; 

Narayanan & Johnston, 2010; Honnuraiah & Narayanan, 2013): 

d[Ca]c
dt

= −
10000 ICa
36 ⋅dpt ⋅F

+
[Ca]∞ −[Ca]c

τCa
    (1) 

where F represented Faraday’s constant, τca defined the calcium decay time constant, 

dpt	= 0.1 µm was the depth of the shell for cytosolic calcium dynamics and [Ca]∞ = 

100 nM, was the steady state value of the [Ca]c.  

Channel models were directly adopted in cases where they were explicitly based 

on direct measurements from LII SC channels. In cases where such explicit models were 
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not available, model formulations were taken from other cell types and were explicitly 

adapted to match direct electrophysiological measurements. As channel models were 

either adopted from different studies or were adapted to match experimental observation, 

in what follows, we provide details of the models that we employed for gating and 

kinetics of each channel. The parameters that define these channel models are described 

in Table 1, along with the base values of the 55 passive and active parameters that govern 

these models. In channels that employed the Hodgkin-Huxley formulation, the model 

evolved by modifications to one or two gating particles, with each gating particle 

following first-order kinetics as follows: 

dm
dt

=
m∞ −m
τm

 

where m∞

 
and τm

 
respectively defined the steady-state value and the time constant of the 

state variable that governed the gating particle. Channel gating and kinetics were 

appropriately adjusted for temperature dependence from corresponding experimental 

measurements. 

 

The fast sodium channel  

The NaF model was adopted from (Dudman & Nolan, 2009), and the current through this 

sodium channel was: 

INaF = g
NaF m3 h(V −ENa )  

The activation gating particle was defined by: 

m∞
NaF = 1+ exp Vm

NaF −V
km
NaF

#

$
%

&

'
(

#

$
%%

&

'
((

−1

   τm
NaF = Fm

NaF 1
αm

NaF +βm
NaF

!

"
#

$

%
&  
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αm
NaF =

4 V +33( ) 9( )
1− exp − V +33( ) 9( )( )

  βm
NaF =

27.6 V + 58( ) −12( )
1− exp V + 58( ) 12( )( )

 

The inactivation gating particle was defined by: 

h∞
NaF =1− 1+ exp Vh

NaF −V
kh
NaF

#

$
%

&

'
(

#

$
%%

&

'
((

−1

  τ h
NaF = Fh

NaF 1
αh

NaF +βh
NaF

!

"
#

$

%
&  

αh
NaF =

0.36 V + 48( ) −12( )
1− exp V + 48( ) 12( )( )

   βh
NaF =

0.4 V +11( ) 6( )
1− exp − V +11( ) 6( )( )

 

 

The delayed rectifier potassium channel  

The KDR model was adopted from (Dudman & Nolan, 2009), and the current through 

this potassium channel was: 

IKDR = g
KDR n4 (V −EK )

 
The activation gating particle was governed by the following equations: 

n∞
KDR = 1+ exp Vn

KDR −V
kn
KDR

#

$
%

&

'
(

#

$
%%

&

'
((

−1

   τ n
KDR = Fn

KDR 1
αn

KDR +βn
KDR

!

"
#

$

%
&  

αn
KDR =

0.2 V +38( ) 10( )
1− exp − V +38( ) 10( )( )   

βn
KDR =

0.6294 V + 47( ) −35( )
1− exp V + 47( ) 35( )( )  

 

The hyperpolarization-activated cyclic-nucleotide-gated channel  

The HCN channel model was adopted from (Dickson et al., 2000; Fransen et al., 2004; 

Schmidt-Hieber & Hausser, 2013) and the current through this nonspecific cationic 

channel was: 

Ih = g
HCN msHCN +HCNms

mf mf HCN( )(V −Eh )  
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where msHCN and mfHCN respectively defined the gating variables for the slow and fast 

components of the current through HCN channels, and HCNms
mf

 
defined the ratio of the 

fast to slow HCN conductance values. The activation gating particles for the slow and 

fast HCN components were governed by the following equations: 

mf∞
HCN = 1+ exp

V +Vmf
HCN

kmf
HCN

"

#
$$

%

&
''

"

#
$$

%

&
''

−1.36

  
ms∞

HCN = 1+ exp V +VmS
HCN

kmS
HCN

"

#
$

%

&
'

"

#
$$

%

&
''

−58.5

 

τmf
HCN = Fmf

HCN 0.51
exp V −1.7( ) 10( )+ exp − V +340( ) 52( )
"

#
$$

%

&
''  

τms
HCN = Fms

HCN 5.6
exp V −17( ) 14( )+ exp − V + 260( ) 43( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

 

The persistent sodium channel  

The NaP model was adopted from (Magistretti & Alonso, 1999; Dickson et al., 2000; 

Fransen et al., 2004), and the current through this sodium channel was: 

INaP = g
NaP mh(V −ENa )  

The activation gating particle was defined by: 

m∞
NaP = 1+ exp

− V +Vm
NaP( )

km
NaP

#

$
%
%

&

'
(
(

#

$

%
%

&

'

(
(

−1

 

τm
NaP = Fm

NaP 91 V +38( )
1− exp − V +38( ) 5( )
"

#
$$

%

&
''+

−62 V +38( )
1− exp V +38( ) 5( )
"

#
$$

%

&
''

"

#
$
$

%

&
'
'

−1

 

The inactivation gating particle was defined by: 
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h∞
NaP = 1+ exp

V +Vh
NaP( )

kh
NaP

"

#
$
$

%

&
'
'

"

#

$
$

%

&

'
'

−1

 

τ h
NaP = Fh

NaP −0.00288 V +17.049( )
1− exp V − 49.1( ) 4.63( )
"

#
$$

%

&
''+

0.00694 V + 64.409( )
1− exp − V + 447( ) 2.63( )
"

#
$$

%

&
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"

#
$
$

%

&
'
'
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The transient A-type potassium channel 

The KA model was adopted from (Dudman & Nolan, 2009), and the current through this 

potassium channel was: 

IKA = g
KA mh(V −EK )

 
The activation gating particle was governed by the following equations: 

m∞
KA = 1+ exp Vm

KA −V
km
KA

#

$
%

&

'
(

#

$
%%

&

'
((

−1

   
τm
KA = Fm

KA 1
αm

KA +βm
KA

!

"
#

$

%
&  

αm
KA =

0.15 V +18.3( ) 15( )
1− exp − V +18.3( ) 15( )( )   

βm
KA =

0.15 V +18.3( ) −15( )
1− exp V +18.3( ) 15( )( )

 

The inactivation gating particle was governed by the following equations: 

h∞
KA =1− 1+ exp Vh

KA −V
kh
KA

#

$
%

&

'
(

#

$
%%

&

'
((

−1

   
τ h
KA = Fh

KA 1
αh

KA +βh
KA

!

"
#

$

%
&  

αh
KA =

0.082 V + 58( ) −8.2( )
1− exp V + 58( ) 8.2( )( )    

βh
KA =

0.082 V + 58( ) 8.2( )
1− exp − V +8.2( ) 8.2( )( )

 

 

The high voltage-activated calcium channel 

The HVA calcium channel model was fitted with corresponding electrophysiological data 

(Bruehl & Wadman, 1999; Castelli & Magistretti, 2006). The current through this 
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channel followed GHK conventions, with the default extracellular and cytosolic calcium 

concentrations set at 2 mM and 100 nM, respectively. The conductance evolution of this 

channel was modeled as follows: 

g(t) = gHVA m3 h
 

The activation and inactivation gating particles were governed by the following 

equations:
 

m∞
HVA = 1+ exp

− Vm
HVA +V( )
km
HVA

#

$
%
%

&

'
(
(

#

$

%
%

&

'

(
(

−1

  

τm
HVA = 0.92Fm

HVA  

h∞
HVA = 1+ exp

Vh
HVA +V( )
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HVA
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'
'

"
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'
'

−1

  

τ h
HVA = 250Fh

HVA  

 

The low voltage-activated calcium channel 

The LVA calcium channel model was fitted with corresponding electrophysiological data 

from (Bruehl & Wadman, 1999; Pastoll et al., 2012). The current through this channel 

followed GHK conventions, with the default extracellular and cytosolic calcium 

concentrations set at 2 mM and 100 nM, respectively. The conductance evolution of this 

channel was modeled as follows: 

g(t) = gLVA m2 hs [Ca]c( )
 

where m and h respectively represented the voltage-dependent activation and inactivation 

gating particles, and s [Ca]c( )  governed calcium-dependent inactivation with [Ca]c

specified in mM. Their evolution was dictated by the following equations:
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m∞
LVA = 1+ exp Vm

LVA −V
km
LVA
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s [Ca]c( )= 0.001
0.001+[Ca]c

  

 

The M-type potassium channel  

The KM model was adopted from (Shah et al., 2008), and the current through this 

potassium channel was: 

IKM = g
KM m(V −EK )

 
The activation gating particle was governed by the following equations: 

m∞
KM = 1+ exp V −Vm

KM

km
KM

#

$
%

&

'
(

#

$
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'
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τm
KM = Fm

KM 60+
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Intrinsic measurements 

We measured the resting membrane potential of the model neuron by allowing the model 

to settle at a steady-state potential when no current was injected for a period of 5 s. This 
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was essential because there were several slow subthreshold conductances (especially the 

calcium-activated potassium channel) that contributed to resting membrane potential in 

our model. We set the passive membrane potential, in the absence of any subthreshold 

conductance, to be at –77 mV (Boehlen et al., 2013) and allowed the interactions among 

the several subthreshold conductances to set the steady-state resting membrane potential 

(VRMP). After this initial 5 s period of the simulation, VRMP was computed as the mean of 

the membrane potential over a one-second interval (5th to 6th second; Fig. 1B). We also 

calculated the standard deviation (SD) of membrane potential over the same 1 s period to 

ensure that the RMP was measured after attainment of steady state. All intrinsic 

measurements reported below were always performed after this 6 s period (5 s for the 

transients to settle to steady-state and 1 s for RMP measurement). 

To estimate sag ratio in the model, we injected a hyperpolarizing step current of 

200 pA amplitude for 1s and recorded the voltage response. Sag ratio (Sag) was 

computed as the membrane potential deflection achieved at steady state (VSS) during the 

current injection period divided by the peak deflection of the membrane potential (Vpeak) 

within the period of current injection (Fig. 1C). In assessing supra-threshold excitability 

of the model neuron, we measured the number of action potentials (AP) elicited by the 

neuron in response to different depolarizing step current injections spanning 500 ms. We 

defined the number of APs fired for 100 and 400 pA current injections as N100 (Fig. 1D) 

and N400 (Fig. 1E), respectively.  

Input resistance (Rin) was calculated from the steady-state voltage response (after 

1 s of current injection) of the model neuron to subthreshold current pulses of amplitudes 

spanning –100 pA to 100 pA in steps of 20 pA. The steady state voltage response was 
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plotted against the corresponding amplitude of injected current, and the slope of a linear 

fit to this plot was assigned as the input resistance of the model (Fig. 1F). Spike 

amplitude (VAP) was computed from the first AP elicited during a 400-pA step current 

injection, and was defined as the difference between VRMP and the peak membrane 

potential achieved during the AP (Fig. 1G). 

As entorhinal stellates reside within an oscillatory network, it was essential that 

excitability measures be computed in a frequency-dependent manner. To do this, we 

computed well-established impedance-based measurements from its amplitude and phase 

profiles (Hutcheon et al., 1996a, b; Hutcheon & Yarom, 2000; Haas & White, 2002; 

Erchova et al., 2004; Giocomo et al., 2007; Narayanan & Johnston, 2007, 2008). These 

profiles were computed by measuring the voltage response of the model to a chirp 

stimulus, a sinusoidal current stimulus with constant amplitude (40 pA peak to peak 

amplitude) with frequency linearly spanning from 0–15 Hz in 15 s (Fig. 1H). Frequency-

dependent impedance, Z (f), was computed as the ratio between the Fourier transform of 

this voltage response and the Fourier transform of the chirp stimulus. The magnitude of 

the complex quantity defined the impedance amplitude profile (Fig. 1H): 

€ 

Z( f ) = (Re(Z( f )))2 + (Im(Z( f )))2  

where Re(Z(f)) and Im(Z(f)) were the real and imaginary parts of the impedance Z(f), 

respectively. The frequency at which |Z(f)| reached its maximum value was considered as 

the resonance frequency, fR, and resonance strength (QR) was defined as the ratio of 

|Z(fR)| to |Z(0.5)| (Fig. 1H). The impedance phase profile ϕ(f) was computed as: 

€ 

φ ( f ) = tan−1 Im(Z( f ))
Re(Z( f ))
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The total inductive area, ΦL, defined as the area under the inductive part of ϕ(f), was 

calculated based on the impedance phase profile (Narayanan & Johnston, 2008): 

€ 

ΦL = φ( f )df
φ ( f ) >0
∫  

Sub- and peri-threshold membrane potential oscillations (MPO) were assessed in 

voltage responses of the model to depolarizing pulse current injections spanning 100–300 

pA in steps of 10 pA, each lasting for 5 s (Fig. 1I). The last 3 s period of this 5-s period 

was transformed to frequency domain through the Fourier transform, and the frequency at 

which this spectral signal had maximum magnitude was defined as the MPO frequency 

(fMPO). We defined the peri-threshold oscillation frequency (fosc) as the fMPO of the 

subthreshold voltage response proximal to the spiking threshold of the model. 

 

Multi-parametric Multi-objective Stochastic Search Algorithm  

To generate an intrinsically heterogeneous population of LII SCs and to assess if the 

concomitant functional expression of all 10 intrinsic measurements manifested 

degeneracy in terms of the specific ion channel combinations that can elicit them, we 

employed a multi-parametric multi-objective stochastic search (MPMOSS) algorithm 

(Foster et al., 1993; Goldman et al., 2001; Prinz et al., 2003; Marder & Taylor, 2011; 

Rathour & Narayanan, 2012, 2014; Anirudhan & Narayanan, 2015; Srikanth & 

Narayanan, 2015; Mukunda & Narayanan, 2017). This stochastic search was performed 

over 55 parameters (Table 1) and jointly validated against 10 sub- and supra-threshold 

measurements (Fig. 1; VRMP, SD, Sag ratio, Rin, fR, QR, fosc, N100, N400, VAP) towards 

matching electrophysiological recordings from LII SCs (Table 2). In executing the 

MPMOSS algorithm, we constructed a model neuron from specific values for each of the 
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55 parameters, each of which was independently and randomly picked from a uniform 

distribution whose bounds reflected the electrophysiological variability in that parameter 

(Table 1). For each such randomly chosen model, which ensured that we are not biasing 

our parametric ranges with any constraints, all 10 intrinsic measurements were computed 

and were compared against their respective electrophysiological bounds (Table 2). A 

model that satisfied all the 10 criteria for validation was declared valid. We repeated this 

procedure for 50,000 randomized picks of the 55 parameters, and validated these models 

against the 10 measurements. Intrinsic heterogeneity and degeneracy were then assessed 

in the resulting population of valid LII SC models and their parametric combinations. 

This assessment was performed through the analysis of parametric distributions and pair-

wise correlations among valid model parameters. 

To assess the impact of individual channels on each of the 10 intrinsic 

measurements within the valid model population, we employed the virtual knockout 

model (VKM) approach (Rathour & Narayanan, 2014; Anirudhan & Narayanan, 2015; 

Mukunda & Narayanan, 2017). In doing this, we first set the conductance value of each 

of the 9 active ion channels independently to zero for each of the valid models. We then 

computed all the 10 intrinsic measurements for each model, and assessed the sensitivity 

of each measurement to the different channels from the statistics of post-knockout change 

in the measurements across all valid models. When some of the channels were knocked 

out, certain valid models elicited spontaneous spiking or showed depolarization-induced 

block (when depolarizing current were injected). These VKMs were not included into the 

analysis for assessing the sensitivities, because this precluded computation of all 10 

measurements from such models.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/197392doi: bioRxiv preprint 

https://doi.org/10.1101/197392


Spike triggered average and associated measurements 

For estimation of STA, a zero-mean Gaussian white noise (GWN) with a standard 

deviation σnoise was injected into the neuron for 1000 s. σnoise was adjusted such that 

overall action potential firing rate was ~1 Hz in the model under consideration. This 

ensured that the spikes were isolated and aperiodic, thereby establishing statistical 

independence of the current samples used in arriving at the STA (Aguera y Arcas & 

Fairhall, 2003; Das & Narayanan, 2014, 2015, 2017). The STA was computed from the 

injected current for a period of 300 ms preceding the spike and averaged over all spikes 

across the time period of simulation, translating to around 1000 spikes for each STA 

computation. STA kernels were smoothed using a median filter spanning a 1 ms window 

for representation purposes and for computing quantitative measurements that were 

derived from the STA.  

Quantitative metrics for spectral selectivity in the STA, for coincidence detection 

windows and intrinsic excitability were derived from the STA and its Fourier transform 

(Das & Narayanan, 2014, 2015, 2017). Specifically, the frequency at which the 

magnitude of the Fourier transform of the STA peaked was defined as the STA 

characteristic frequency (fSTA). STA selectivity strength (QSTA) was defined as the ratio of 

|STA(fSTA)| to |STA(0.5)|. The peak positive current in the STA kernel was defined as 

ISTA
peak , which constitutes a measure of excitability. To quantify the window for 

integration/coincidence detection, we defined the spike-proximal positive lobe (SPPL) as 

the temporal domain that was adjacent to the spike where the STA was positive (Das & 

Narayanan, 2015, 2017). The total coincidence detection window, CDW (TTCDW) was 

computed as the temporal distance from the spike location (t=0 ms) to the first zero 
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crossing in the STA. TTCDW constitutes the entire temporal expanse over which the inputs 

were positively weighted and hence covered the entire temporal spread of SPPL.  To 

account for the specific shape of the STA in defining the coincidence detection window, 

we defined an effective CDW (TECDW), which was a STA-weighted measure of SPPL 

(Das & Narayanan, 2015, 2017):  

TECDW =

t2STA t( )dt
−TTCDW

0

∫

STA2 t( )dt
−TTCDW

0

∫
 

 

Computational details 

All simulations were performed using the NEURON programming environment 

(Carnevale & Hines, 2006) at 34° C, with a simulation step size of 25 µs. All data 

analyses and plotting were executed using custom-written software within the IGOR pro 

environment (Wavemetrics Inc.). All statistical analyses were performed using the R 

statistical package (R Core Team, 2013). 
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RESULTS 

The principal goal of this study was to assess the impact of molecular-scale 

heterogeneities in channel properties on cellular-scale physiological signatures of LII 

stellate cells of the medial entorhinal cortex. We approached this by building an unbiased 

stochastic search-based conductance-based population of LII SCs that satisfied several of 

their unique electrophysiological signatures. Apart from providing an efficacious 

substrate for understanding the roles of channel parameters, intrinsic measurements and 

associated heterogeneities in entorhinal function, our goal in building these models was 

three fold. First, a heterogeneous population of LII SC models that satisfied several 

electrophysiological constraints would provide us the means to assess if there was 

significant degeneracy in the emergence of these measurements, or if there was a 

requirement on unique mappings between channel properties and physiological 

measurements. Second, such a heterogeneous population would allow us to establish the 

specific roles of different channels in mediating or regulating different physiological 

properties, and assess variability in such regulatory roles. Third, and importantly, as these 

models match with LII SC models in several ways, they provide an ideal foundation for 

making quantitative predictions about stellate cell physiology, which can be 

electrophysiologically tested.  

Towards this, we first hand-tuned a conductance-based, biophysically and 

physiologically relevant base model that was characterized as a single compartmental 

cylindrical model with different passive and active properties (see Methods). The model 

was endowed with 9 different active ion channels (besides leak channels), and matched 

with 10 distinct electrophysiological measurements obtained from LII SCs (Fig. 1, Table 
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2). These electrophysiological measurements included the significant sag observed in 

response to pulse current injections (Fig. 1C), theta-frequency membrane potential 

resonance that exhibited strong spectral selectivity (Fig. 1H), and importantly the robust 

subthreshold membrane potential oscillations in the theta-frequency range at different 

depolarized potentials (Fig. 1I). The 55 active and passive parameters that governed LII 

SC models, and their respective values in the base model are listed in Table 1. 

 

Diverse depolarization-dependent evolution of membrane potential oscillations in 

stochastically generated stellate cell models  

We employed the base model parameters (Table 1) as the substrate for a multi-parametric 

stochastic search algorithm for models that would meet multiple objectives in terms of 

matching with the electrophysiological properties of LII SCs. The range of individual 

parameters over which this multi-parametric (55 parameters) multi-objective (10 

measurements) stochastic search (MPMOSS) algorithm was executed is provided in 

Table 1. We generated a test population of 50,000 model cells by sampling these model 

parameters, and subjected these model cells to validation based on the physiologically 

observed range of sub- and supra-threshold measurements (Table 2). First, we found a 

subpopulation of these models where all measurements, except for the ability to express 

theta-frequency membrane potential oscillations, were within the specified bounds. We 

depolarized this subpopulation of models and asked if these models expressed robust 

subthreshold oscillations in their membrane potentials.  

We found that the depolarization-dependent evolution of sub- and supra-threshold 

(regular spiking behavior) oscillations exhibited significant diversity across different 
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models within this subpopulation (Fig. 2). In most models within this subpopulation, 

consistent with corresponding experimental observations (Alonso & Llinas, 1989), we 

observed the emergence of robust theta range subthreshold MPOs with membrane 

potential approaching near spiking threshold, with further depolarization resulting in 

spiking activity (Fig. 2A) or spike doublets (Fig. 2B) or bursts (Fig. 2C) riding over 

subthreshold MPOs. Among these, there were some models that exhibited theta skipping, 

where spikes or bursts were regular, but were not observed on every cycle of the 

subthreshold MPO (Fig. 2C). In other models, incrementally higher depolarization 

resulted in the cell switching from rest to subthreshold MPOs to a state that resembled 

depolarization-induced block (Fig. 2D–E). Whereas in certain models, further 

depolarization would result in regular spiking (Fig. 2D), in other models the 

depolarization-induced block persisted with the model never entering spiking behavior 

despite further depolarization (Fig. 2E). In rare cases where the model displayed spiking 

behavior without transitioning through subthreshold oscillations (Fig. 2F), the model was 

not included as a valid model because such models did not meet the electrophysiological 

constraint on theta-frequency peri-threshold oscillations. Finally, very few models 

manifested robust subthreshold oscillations, but switched back-and-forth between 

subthreshold oscillations and regular spiking with increasing current injections (Fig. 2G). 

 

The stochastic search strategy yielded an intrinsically heterogeneous population of 

models that matched several electrophysiological signatures of stellate cells  

Out of 50,000 models that were generated as part of the stochastic search strategy, only 

155 models (Nvalid = 155) were valid when we constrained them against all the 10 
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electrophysiological measurements (Table 2), including their ability to manifest robust 

peri-threshold theta frequency oscillations. We plotted all the 10 electrophysiological 

measurements in this model population to assess if they were clustered around their 

respective base model values (Fig. 1) or if they were distributed to span the range of valid 

model measurements (Table. 2). Whereas a clustered set of measurements would have 

implied a near-homogeneous population of models, a distributed pattern that spanned the 

range of respective electrophysiological counterparts would provide us with a 

heterogeneous model population that reflects experimental variability in the respective 

measurements. We found all measurements to spread over a large span, with most of 

them covering the entire min-max range of their respective bounds (Fig. 3A; note that 

N100 has not been plotted because it was required to be zero for model validity). We 

observed the emergence of sub- and supra-threshold membrane potential oscillations in 

these models when the average membrane voltage was between –59 mV to –45 mV (Fig. 

3B). To distinguish between sub- and supra-threshold oscillations, we plotted the 

frequency of these membrane potential oscillations against their peak-to-peak amplitude  

(Fig. 3C). Two clearly separable clusters were observed, with all subthreshold 

oscillations clustered at the low-amplitude range (< 25 mV), while the action potentials 

forming a cluster with amplitudes greater than ~60 mV. Importantly, these observations 

also demonstrate that the characteristics of membrane potential oscillations exhibited 

significant heterogeneity, thus matching the electrophysiological variability observed in 

LII SCs. Together, the biophysically and physiologically constrained MPMOSS 

algorithm yielded a population of LII SC models that manifested considerable intrinsic 
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heterogeneities (Fig. 3) matching the ranges observed in corresponding      

electrophysiological measurements (Table 2).  

 

The valid model population manifested cellular-scale degeneracy  

What were the specific constraints on the 55 different parameters in yielding the valid 

model population that concomitantly matched several electrophysiological signatures of 

stellate cells? Were these parameters clustered around specific values thereby placing 

significant constraints on the different channels, their properties and their expression 

profiles? Would individual channels have to be maintained at specific expression levels 

for models to match all 10 electrophysiological signatures? To address these questions, 

we first randomly picked 5 of the 155 valid models that exhibited similar measurements 

(Fig. 4A–H), and asked if the set of parameters governing these models were also similar. 

We normalized each of the 55 parameters from these 5 models with reference to their 

respective min-max values, and found none of these models to follow any specific trend 

in their parametric values with most parameters spreading across the entire range that 

they were allowed to span (Fig. 4I). These observations provided the first line of evidence 

for the expression of degeneracy in stellate cell models, whereby models with very 

similar functional characteristics emerged from disparate parametric combinations. To 

confirm this across all valid models, we plotted the histograms of each parameter for all 

the 155 valid models, and found their spread to span the entire testing range for all 

parameters (Fig. 5A, bottom row). 

Although the distributions of individual parameters span their respective ranges, 

was it essential that there are strong pair-wise constraints on different parameters towards 
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obtaining valid models? To address this question and to test if parametric combinations 

resulting in the heterogeneous valid population were independent of each other, we 

plotted the pair-wise scatter plots across all 55 parameters for all the 155 valid models 

(Fig. 5A). We computed the Pearson’s correlation coefficient for each pair-wise scatter 

plot (Fig. 5B), and found very weak correlations across different parameters (Figure 5B–

C). Together, these results demonstrated that the ability of a heterogeneous model 

population to concomitantly match several electrophysiological signatures of LII SCs was 

attainable even when individual ion channels were expressed with disparate densities and 

properties and when channels did not express strong pairwise correlations. These 

provided strong lines of evidence for the expression of cellular-scale degeneracy in LII 

SCs, whereby disparate combinations of channels with distinct parameters were robustly 

capable of eliciting similar functional characteristics. 

 

Virtual knockout models: A many-to-many mapping between individual channels 

and physiological characteristics enabled the expression of degeneracy 

A crucial requirement for the expression of such cellular-scale degeneracy is the ability 

of several channels to regulate different physiological characteristics (Drion et al., 2015; 

Rathour et al., 2016). In the absence of such capabilities, the system in essence will 

comprise of several one-to-one mappings between channels and physiological 

characteristics, thereby requiring the maintenance of individual channels at specific 

expression levels. In asking if there was a many-to-many mapping between channels and 

physiological properties, we employed virtual knockouts of individual channels on all 

models within the heterogeneous valid model population to assess the impact of their 
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acute removal on physiology. We employed these virtual knockout models (VKMs) to 

assess the impact of individual channels on all the 10 physiological measurements by 

calculating the change observed in each measurement after setting individual 

conductance values to zero (Rathour & Narayanan, 2014; Anirudhan & Narayanan, 2015; 

Mukunda & Narayanan, 2017). 

As expected, VRMP (Fig. 6A) was largely unaffected by the knockout of supra-

threshold conductances (KDR, NaF and HVA) with all subthreshold channels showing 

differential and heterogeneous regulation of VRMP. Specifically, consistent with prior 

electrophysiological recordings (Dickson et al., 2000), HCN VKMs showed large and 

variable hyperpolarizing shifts in VRMP with reference to their respective base valid 

models. In addition, knockout of KM or SK channels resulted in variable depolarizing 

shifts to VRMP, but VKMs of NaP, KA and LVA channels did not significantly alter VRMP. 

Although sag ratio was expectedly (Dickson et al., 2000) reliant on HCN channels (Fig. 

6B), there were other channels, including NaP, LVA, SK and KM channels, which also 

significantly contributed to the specific value of sag ratio. Input resistance (Fig. 6C) was 

critically altered by HCN channel knockouts (Dickson et al., 2000), with other 

subthreshold channels including KM and SK also showing large impacts on Rin.  

Resonance strength (Fig. 6D) and resonance frequency (Fig. 6E) were 

dramatically reduced in HCN knockouts (Erchova et al., 2004; Boehlen et al., 2013), 

with NaP, KM and SK channel knockouts also showing significant changes in both 

measurements. Of all the assessed measurements, we found the frequency of peri-

threshold membrane potential oscillations to be the most sensitive measurement to 

channel knockouts, with most channels having a significant, yet variable, effect on fosc 
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(Fig. 6F). We observed the most reliable and least variable effect on fosc with the removal 

of NaP, which consistently resulted in the loss of peri-threshold oscillations across all 

models (Fig. 6F). This is consistent with several studies that have demonstrated the 

importance of persistent sodium channels in the emergence of peri-threshold MPOs in LII 

SCs (Alonso & Llinas, 1989; Klink & Alonso, 1993; Dickson et al., 2000; Boehlen et al., 

2013). Although NaP was the dominant channel that acted as the amplifying conductance 

(Hutcheon & Yarom, 2000) in the emergence of peri-threshold MPOs, we found 

heterogeneity across models in the specific resonating conductance that enabled these 

MPOs. Specifically, whereas in some models, the removal of HCN channels resulted in 

complete loss of MPOs, in other models the same result was achieved by the removal of 

KM channels. These observations suggested that the two conductances, HCN and KM, 

synergistically contributed as resonating conductances towards the emergence of peri-

threshold MPOs in stellate cells (Nolan et al., 2007; Boehlen et al., 2013). Although most 

of the other channels showed regulatory capabilities in terms of regulating peri-threshold 

fosc, unlike NaP, HCN and KM channels, their removal did not result in complete 

elimination of MPOs in most models. The critical dependence of fosc on KDR removal 

was just a reflection of high excitability of KDR VKMs, where the cells either 

spontaneously fired or abruptly switched to regular spiking with small current injections 

resulting in the complete absence of peri-threshold oscillations.  

N100 was significantly higher with the deletion of KM or SK channels, with little 

or no effect with deletion of other channels (Fig. 6G). As spiking activity is critically 

reliant on KDR and NaF channels, their removal significantly reduced N400 (Fig. 6H). In 

addition, whereas the removal of the subthreshold regenerative conductance NaP reduced 
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N400, knocking out the subthreshold restorative conductances, KM, SK and KA resulted 

in enhanced action potential firing that increased N400 to variable degrees (Fig. 6H). 

Although the two calcium channels mediate inward currents, their removal resulted in an 

increase (rather than a decrease) in N400 because of the presence of SK channels. 

Specifically, when either the HVA or the LVA channels was removed, the inward 

calcium current and cytosolic calcium concentration were lower, thereby resulting in 

lesser activation of SK channels and consequently leading to higher excitability (Fig. 6G–

H). Finally, AP amplitude (Fig. 6I) was expectedly reliant on the presence of NaF 

channels, while KDR and HCN also had a regulatory role in setting the value of VAP. It 

should be noted that VAP is significantly dependent on VRMP, as VRMP determines the 

fraction of sodium channels that are inactivated and are thereby unavailable for 

activation. As the fraction of available sodium channels is higher with a hyperpolarized 

VRMP, VAP is higher when VRMP is hyperpolarized. As VRMP was significantly 

hyperpolarized when HCN channels were knocked out (Fig. 6A), this implied that VAP in 

HCN channel knockouts should be expected to be higher (Fig. 6I). 

Together, analyses of all physiological measurements across valid models using 

VKMs of each of the 9 active ion channels demonstrated the clear lack of one-to-one 

mappings between channels and physiological characteristics. Although there was 

dominance of certain channels in their ability to alter specific measurements, there were 

several channels that were capable of regulating each measurement and each channel 

regulated several measurements. Additionally, the effect of virtually knocking out 

individual channels on all measurements was differential for different channels and 

measurements, and was variable for even a given channel-measurement combination. The 
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electrophysiological support from LII SCs for several of our conclusions, including the 

regulatory role of specific channels and the differential and variable dependencies of 

measurements on channels, with reference to blockade of individual channels is strong 

(Alonso & Llinas, 1989; Klink & Alonso, 1993; Dickson et al., 2000; Erchova et al., 

2004; Nolan et al., 2007; Garden et al., 2008; Pastoll et al., 2012; Boehlen et al., 2013). 

These observations together point to a many-to-many configuration of the mapping 

between channel properties and cellular-scale physiological characteristics, a critical 

substrate for neurons to exhibit cellular scale degeneracy (Figs. 3–5). 

 

Quantitative predictions: Spike initiation dynamics of stellate cells manifest theta-

frequency spectral selectivity and gamma-band coincidence detection capabilities  

As we now had a population of models that matched with LII SC physiology, we 

employed these models to make specific quantitative predictions about critical 

physiological characteristics of LII SC. Although it is well established that LII stellate 

cells exhibit spectral selectivity for subthreshold inputs (Haas & White, 2002; Erchova et 

al., 2004; Giocomo et al., 2007; Garden et al., 2008; Giocomo & Hasselmo, 2008, 2009), 

it is not known if such frequency selectivity translates to the spike initiation dynamics as 

well (Das & Narayanan, 2014, 2015, 2017; Das et al., 2017). To assess this, we employed 

zero-mean Gaussian white noise (GWN) with standard deviation adjusted such that the 

over all firing rate is ~1 Hz (Fig. 7A). We computed the spike-triggered average (STA) as 

the mean of all the current stimuli (part of the GWN current, over a 300 ms period 

preceding each spike) that elicited a spike response in the model under consideration. We 

derived five distinct measurements of excitability, spectral selectivity and coincidence 
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detection from the STA (Das & Narayanan, 2014, 2015, 2017; Das et al., 2017), and 

repeated this for all the 155 valid models obtained from MPMOSS (Fig. 3–5). 

The STA computed from the 5 models shown in Fig. 4 showed characteristic class 

II/III excitability (Fig. 7B), marked by the distinct presence of negative lobes in these 

STA (Haas & White, 2002; Ermentrout et al., 2007; Haas et al., 2007; Ratte et al., 2013; 

Das & Narayanan, 2014, 2015, 2017; Das et al., 2017). Employing quantitative metrics 

from the STA (Fig. 7B–C) for all the 155 valid models, we confirmed that these neurons 

were endowed with class II/III characteristics. Specifically, our analyses with the valid 

model population of LII SCs predict that the STA of these cells show theta-frequency 

spectral selectivity (Fig. 7D, fSTA) with strong selectivity strength (Fig. 7D, QSTA). As 

class II/III excitability translates to coincidence detection capabilities in these neurons 

(Ratte et al., 2013; Das & Narayanan, 2014, 2015, 2017; Das et al., 2017), we computed 

two distinct measures of coincidence detection window (CDW) from the STA. Whereas 

the total CDW (TTCDW) considers the temporal span of the spike-proximal positive lobe of 

the STA, the effective CDW (TECDW) also accounts for the specific shape of the STA in 

arriving at the CDW (Das & Narayanan, 2014, 2015, 2017). We computed these CDW 

measures for all the 155 models, and quantitatively predict that the LII SCs are endowed 

with gamma-range (25–150 Hz translating to 6.6–40 ms) coincidence detection 

capabilities (Fig. 7D). Finally, although it is known that the impedance phase of LII SCs 

manifest a low-frequency inductive lead (Erchova et al., 2004), this inductive phase lead 

has not been systematically quantified. To do this, we computed the total inductive phase 

metric (ΦL; Fig. 7E) developed in (Narayanan & Johnston, 2008) for each of the 155 
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valid models, and quantitatively predict a prominent inductive phase lead in LII SCs (Fig. 

8F) with specific values for ΦL. 

 

Pair-wise correlations among measurements 

Finally, as our analyses (Fig. 6) demonstrated a many-to-many mapping between 

biophysical parameters and physiological measurements, we asked if there were 

significant correlations among the distinct measurements. Strong correlations across these 

measurements (which are reflective of distinct physiological characteristics) would imply 

that they could be mapped to a smaller set of “core” measurements with the other 

measurements relegated to redundant and correlated reflections of these core 

measurements. In addition, strong correlations across measurements would also imply 

that there are measurements that are strongly reliant on the expression and properties of 

one specific channel. To assess correlations across measurements, we plotted the pair-

wise scatter plots (Fig. 8A) spanning all 14 measurements (8 measurements from Fig. 1: 

VRMP, Sag, Rin, QR, fR, fosc, N400, VAP and 6 predicted measurements from Fig. 7: ISTA
peak , 

TECDW, TTCDW, fSTA, QSTA, ΦL) computed on the 155 valid models. We computed the 

Pearson’s correlation coefficient for each scatter plot and analyzed the correlation 

coefficients across measurements (Fig. 8A–B).  Although there were strong correlations 

across some measurements, a majority of these pair-wise correlations were weak (Fig. 

8B). Measurements that showed strong pair-wise correlations were those that were known 

to be critically reliant on specific ion channels. For instance, sag ratio showed strong 

negative correlation with ΦL, QSTA and QR, whereas fR manifested strong negative 

correlation with Rin and TTCDW, where all these measurements are known to have a strong 
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dependence on HCN channels (Fig. 6). However, even within this subset of 

measurements that were strongly dependent on one channel, we noted that only a subset 

of the pair-wise correlations were high. For instance, with reference to the specific 

examples discussed above, fR and QR, both critically dependent on HCN channels and 

both derived from the impedance amplitude profile, do not show strong pair-wise 

correlation (Fig. 8A). Thus, although there were a small percentage of measurements that 

showed strong pair-wise correlations, a majority of their pair-wise correlations were 

weak, further emphasizing the absence of one-to-one relationships between channels and 

measurements (Fig. 6). 
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DISCUSSION 

The prime conclusion of this study is that LII stellate cells of the medial entorhinal cortex 

express cellular-scale degeneracy in the concomitant expression of several unique 

physiological characteristics of these neurons. We arrived at this conclusion through an 

unbiased stochastic search algorithm that spanned 55 parameters associated with 

biophysically constrained models of active and passive stellate cell components. We 

validated the outcomes of these stochastically generated models against 10 different 

physiological characteristics of stellate cells. This validation process provided us with a 

heterogeneous population of stellate cells that exhibited cellular-scale degeneracy with 

weak pair-wise correlations across parameters that governed these models. We employed 

these models to demonstrate the differential and variable dependencies of measurements 

on underlying channels, and also showed that the mapping between channels and 

measurements was many-to-many. Finally, we employed this electrophysiologically 

validated model population to make specific quantitative predictions that point to theta-

frequency spectral selectivity and gamma-range coincidence detection capabilities in 

class II/III spike triggered average of LII SCs.  

  
Correlations between electrophysiological signatures of distal dendrites in CA1 

pyramidal neurons and LII MEC stellate cells: Instances of cellular-scale efficient 

encoding? 

A cursory glance at the electrophysiological properties of distal dendrites of CA1 

pyramidal neurons and LII MEC stellate cells presents significant correlations between 

some physiological characteristics of these two structures. Although superficial layers of 

the MEC project to the distal dendrites of CA1 pyramidal neurons, it is LIII, and not LII, 
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principal neurons of the MEC that project to CA1 pyramidal neurons (Andersen et al., 

2006). Despite this, there are several electrophysiological characteristics of LII MEC 

stellates that match with the distal dendrites of CA1 pyramidal neurons. Several of these 

similarities are strongly related to heavy expression profile of HCN channels in both 

these structures. Whereas the gradient in HCN channel density in CA1 pyramidal neurons 

implies a significantly sharp increase in HCN channels in the distal dendrites of CA1 

pyramidal neurons (Magee, 1998; Lorincz et al., 2002), the heavy expression of HCN 

channels in the cell body of LII MEC stellates is also well established (Klink & Alonso, 

1993; Dickson et al., 2000; Erchova et al., 2004; Giocomo et al., 2007; Nolan et al., 

2007; Garden et al., 2008; Giocomo & Hasselmo, 2008, 2009; Giocomo et al., 2011a; 

Boehlen et al., 2013). 

 As a consequence of this, these two structures are endowed with significant sag, 

similar input resistances and comparable theta-band suthreshold resonance frequencies 

(Erchova et al., 2004; Pastoll et al., 2012). In addition to these, our study predicts that the 

STA of LII SCs should be endowed with theta-frequency spectral selectivity and gamma-

band coincidence detection windows. Although it is known that the STA of LII SCs 

manifest class II/III excitability with coincidence detection characteristics (Haas & 

White, 2002; Haas et al., 2007), quantification of spectral selectivity in the STA or a 

systematic assessment of the specific frequency band of coincidence detection 

capabilities has not been assessed. Our study specifically predicts the coincidence 

detection window (Fig. 7D; TECDW) associated with the STA of LII SCs to be in the fast-

gamma frequency (60–120 Hz) range, with a high theta-range spectral selectivity in the 

STA (Fig. 7D; fSTA). Interestingly, quantitative predictions for these measurements for the 
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distal dendritic region of CA1 pyramidal neurons also fall within the same spectral bands 

(Das & Narayanan, 2015). 

This confluence of STA measurements of distal dendrites in CA1 pyramidal 

neurons and of LII SC soma, especially that of the coincidence detection window falling 

within the fast gamma-frequency band, is striking from the perspective of gamma-band 

multiplexing that has been reported in the CA1 subregion (Colgin et al., 2009; Colgin & 

Moser, 2010; Fernandez-Ruiz et al., 2017). Specifically, gamma oscillations in the CA1 

subregion have been shown to manifest stratification into distinct fast and slow frequency 

components, impinging respectively on distal and proximal dendritic regions. This 

spatially stratified frequency-division multiplexing allows for differential coupling of 

CA1 pyramidal neurons to afferent inputs from the MEC and CA3 through different 

gamma bands. Juxtaposed against this, and within the efficient coding framework 

(Barlow, 1961; Bell & Sejnowski, 1997; Simoncelli & Olshausen, 2001; Lewicki, 2002; 

Simoncelli, 2003) where the response filters in a single neuron should	match the natural 

statistics of afferent network activity (Narayanan & Johnston, 2012), it may be argued 

that different dendritic locations should be equipped with filters (STA kernels) that are 

matched to the afferent inputs (different gamma frequencies) that are received by that 

specific location.  As a specific instance of such location-dependent efficient encoding of 

afferent network statistics in hippocampal pyramidal neurons, it has been quantitatively 

postulated that the distal dendrites of CA1 pyramidal neurons are endowed with 

coincidence detection windows specific to fast-gamma frequencies, whereas those of the 

proximal dendrites matched with slow-gamma frequencies (Das & Narayanan, 2015).  
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 In this context and given the several lines of evidence for the dominance of fast 

gamma oscillations in the superficial layers of MEC (Colgin et al., 2009; Colgin, 2016; 

Trimper et al., 2017), our predictions that the CDW for stellate neurons should be in fast 

gamma band point to a similar form of efficient encoding schema in the MEC. 

Specifically, if the fast gamma oscillations are statistically the most prevalent in the 

superficial layers of MEC, it is imperative that neurons there are equipped with the 

machinery that is capable of detecting and processing inputs in this frequency range. 

Additionally, from the efficient coding perspective, as neurons tune their response 

properties to efficiently represent the statistics of afferent inputs (Wiesel & Hubel, 1963b, 

a; Hirsch & Spinelli, 1970; Bell & Sejnowski, 1997; deCharms et al., 1998; Kilgard & 

Merzenich, 1998; Stemmler & Koch, 1999; Sharma et al., 2000; Kilgard et al., 2001; 

Simoncelli & Olshausen, 2001; Lewicki, 2002; Simoncelli, 2003; de Villers-Sidani et al., 

2007), it is essential that the response properties of LII MEC neurons are tuned to the fast 

gamma frequency range. Thus, our prediction on a fast gamma-band CDW in the STA of 

LII EC cells suggests the possibility of efficient encoding spanning the hippocampal 

formation, whereby the neuronal properties in terms of their class of excitability and 

specific band of frequency where their coincidence detection windows lie match with the 

type of gamma-frequency band that is most prevalent in that subregion (or strata in case 

of the CA1). A direct test of this experimental prediction would be to measure the CDW 

of pyramidal neurons in the CA3, of different dendritic subregions of the CA1 and of LII 

MEC stellates and ask if these CDW match with the respective gamma-band inputs that 

are prevalent in these subregions. 
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Finally, encoding schema are state-dependent processes that are critically reliant 

on behavioral state and consequent changes in afferent activity, neuromodulatory tones 

and activity-dependent plasticity (Marder, 2012; Narayanan & Johnston, 2012; Bargmann 

& Marder, 2013; Ratte et al., 2013; Srikanth & Narayanan, 2015; Das et al., 2017; 

Deneve et al., 2017; Gallistel, 2017). Therefore, it is important that postulates on efficient 

codes and relationships between neuronal activity and afferent statistics are assessed in a 

manner that accounts for adaptability of coding within the neuron and across the network. 

Such activity-dependent plasticity and neuromodulation of intrinsic properties, especially 

of signature characteristics such as the membrane potential oscillations, could be 

systematically assessed in entorhinal stellates. Specifically, as activity-dependent 

plasticity of several ion channels is well established across different brain regions (Magee 

& Johnston, 2005; Narayanan & Johnston, 2007; Johnston & Narayanan, 2008; 

Narayanan & Johnston, 2008; Sjostrom et al., 2008; Narayanan et al., 2010; Shah et al., 

2010; Narayanan & Johnston, 2012), it would be important to ask if membrane potential 

oscillations, spectral selectivity characteristics (fR, QR, fSTA, QSTA, ΦL) and coincidence 

detection windows are amenable to such activity-dependent plasticity that target different 

ion channels (Fig. 6). 

 
Implications of cellular-scale degeneracy in LII stellate cell physiology 

Degeneracy, the ability of disparate structural components to elicit similar function, is a 

ubiquitous biological phenomenon with strong links to robust physiology and evolution 

(Edelman & Gally, 2001; Price & Friston, 2002; Leonardo, 2005; Whitacre & Bender, 

2010; Whitacre, 2010). Several studies spanning different systems have now 

demonstrated the expression of degeneracy, at different scales of analysis in neural 
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systems as well (Marder & Prinz, 2002; Prinz et al., 2004; Marder & Goaillard, 2006; 

Marder, 2011; Marder & Taylor, 2011; O'Leary & Marder, 2014; O'Leary et al., 2014; 

Vogelstein et al., 2014; Drion et al., 2015). Within the hippocampal formation, recent 

studies have demonstrated the expression of degeneracy in single-neuron 

electrophysiology (Rathour & Narayanan, 2012; Srikanth & Narayanan, 2015; Mishra & 

Narayanan, 2017), intraneuronal functional maps (Rathour & Narayanan, 2014; Rathour 

et al., 2016), synaptic localization required for sharp-tuning of hippocampal place fields 

(Basak & Narayanan, 2017), short- (Mukunda & Narayanan, 2017) and long-term 

(Anirudhan & Narayanan, 2015) synaptic plasticity profiles and network-scale response 

decorrelation (Mishra & Narayanan, 2017). In this study, we have demonstrated the 

expression of cellular-scale degeneracy in LII SCs, which are endowed with unique 

electrophysiological signatures including the prominent theta-frequency subthreshold 

membrane potential oscillations.  

 The implications for the expression of such cellular-scale degeneracy are several. 

First, the many-to-many mapping between channels and physiological characteristics 

(Fig. 6) and the consequent degeneracy in concomitantly achieving all signature 

electrophysiological characteristics implies that there is no explicit necessity for 

maintaining individual channels at specific levels or for maintaining paired expression 

between channel combinations (Figs. 4–5). This provides several significant degrees of 

freedom to the protein localization and targeting machinery in achieving specific 

functions or in maintaining homeostasis in these functional characteristics. Second, this 

also implies that adaptability to external stimuli, in terms of achieving efficient codes of 

afferent stimuli or in encoding features of a novel stimulus structure, could be achieved 
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through disparate combinations of plasticity in several constituent components. For 

instance, our results predict that the ability to achieve fast gamma-band coincidence 

detection capabilities could be achieved through distinct combinations of channel 

parameters (Figs. 4–5, Fig. 7). Experimental analyses of such degeneracy in achieving 

efficient matching of neuronal response characteristics with the statistics of oscillatory 

patterns, through the use of distinct pharmacological agents that target different channels, 

would demonstrate the ability of different channels to regulate such efficient encoding 

(Das et al., 2017). Finally, degeneracy in the expression of excitability properties also 

implies that similar long-term plasticity profiles in these neurons could be achieved with 

disparate combinations of parameters. Specifically, several forms of neuronal plasticity 

are critically reliant on the amplitude and kinetics of cytosolic calcium entry, which in 

turn are dependent on neuronal excitability properties. As similar excitability profiles 

could be achieved with distinct combinations of constituent components, it stands to 

reason that similar plasticity profiles could be achieved through disparate parameter 

combinations (Narayanan & Johnston, 2010; Ashhad & Narayanan, 2013; Anirudhan & 

Narayanan, 2015). 

   
Future directions: Electrophysiological and computational 

A critical future direction for the study presented here is the incorporation of biological 

heterogeneities into entorhinal network models that assess grid cell formation. Most 

models for grid cell formation are simple rate-based models that are made of 

homogeneous repeating units, and even models that incorporate conductance-based 

neurons for grid cell modeling do not account for the several biological heterogeneities 

that are expressed in the entorhinal network. This lacuna is especially striking because 
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such analysis is critical for the elucidation of the mechanistic bases for grid cell formation 

(in terms of the channels and receptors involved) and for the quantitative understanding 

of the ability of the entorhinal network to elicit robust grid cell behavior in the presence 

of several network heterogeneities. For instance, are the several forms of network 

heterogeneities (i.e., intrinsic, local synaptic and afferent connectivity) aiding or 

hampering the robustness of grid cell emergence? How do different forms of 

heterogeneities interact in the manifestation of the specific neuronal and network 

properties that are essential for grid cell formation? Are the different models for grid cell 

emergence robust to significant variability in channels, synapses and afferent 

connectivity? How do different channels and receptors, within the limits of biological 

variability in their expression and properties, contribute to the emergence of grid cells? 

Are specific forms of neuronal and network heterogeneities essential for grid cell 

formation? How are the different signature electrophysiological characteristics of the 

entorhinal neurons critical in the formation of grid cells? Does class II/III excitability of 

LII stellate cells play a critical role in entorhinal function and in grid cell formation? 

At the cellular scale, future studies could build heterogeneous models to account 

for the signature continuum of intrinsic physiological characteristics along the 

dorsoventral axis of the MEC, also accounting for specific channels that are known to 

change along this axis (Giocomo et al., 2007; Garden et al., 2008; Giocomo & Hasselmo, 

2008, 2009; Yoshida et al., 2011). Such studies will provide quantitative bases for 

exploring the expression of degeneracy in maintaining the dorsoventral gradients, and 

could be incorporated into network models for grid formation in assessing the 

relationship between grid-cell characteristic and neuronal intrinsic properties. 
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Additionally, the heterogeneous model population built in this study comprises a simple 

single-compartmental structure that did not account for dendritic properties or 

morphological heterogeneity of LII SCs. Electrophysiologically, the absence of 

systematic cell-attached recordings of specific channels and their properties in the stellate 

cells has been a significant impediment in building morphologically realistic models. 

While future experimental studies could focus on recording channels and channel 

properties along the non-planar dendritic arbor of stellate cells, future computational 

studies could incorporate these channels into morphologically realistic models to assess 

the specific roles of dendritic channels and morphological heterogeneity in grid cell 

formation (Schmidt-Hieber et al., 2017).  Finally, our study has specific quantitative 

predictions about the STA of these neurons and also presents an array of cross-

dependencies of measurements on different channel types. Future electrophysiological 

studies could systematically test these predictions, and assess efficient encoding in these 

structures apart from adding further evidence for the many-to-many mapping between 

channels and physiological characteristics. For instance, an important prediction from 

VKMs is on the critical role of SK channels in regulating several intrinsic measurements 

including membrane potential oscillations (Fig. 6). Although the expression of calcium-

dependent potassium channels is established in stellate cells (Khawaja et al., 2007; 

Pastoll et al., 2012), the specific role of these channels in regulating resonance, 

impedance phase, intrinsic excitability and membrane potential oscillations could be 

tested electrophysiologically using pharmacological blockers of SK channels. 
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FIGURE LEGENDS 

Figure 1: Base model and measurements. (A) Schematic representation of a single 

compartment model for MEC layer II stellate cell specifying inward and outward 

currents. (B–I) The 10 physiologically relevant measurements (highlighted in cyan) used 

to characterize stellate cells. (B) Resting membrane potential (VRMP) and its standard 

deviation (SD) were computed by taking the mean and standard deviation, respectively, 

of the membrane potential between 5–6 s duration (window specified in the figure) when 

no current was injected. All the other measurements were performed after the model 

settled at its VRMP at 6 s. (C) Sag ratio (Sag) was measured as the ratio of the steady-state 

membrane potential deflection (VSS) to peak membrane potential deflection (Vpeak) in the 

voltage response of the model to a hyperpolarizing step current of 200 pA for a duration 

of 1000 ms. (D–E) Voltage response of the model to a step current of 100 pA (D) or 400 

pA (E) for a stimulus duration of 500 ms was used to measure the number of action 

potentials (N100 or N400) elicited for the respective current injection. (F) Input resistance 

(Rin) computation. Left, 1000 ms long step currents from –100 pA to 100 pA were 

injected into the cell in steps of 20 pA to record the steady state voltage response (black 

circles at the end of each trace). Right, Steady-state voltage response vs. injected current 

(V–I) plot obtained from the traces on the left panel. The slope of a linear fit to the V–I 

plot defined Rin. (G) Amplitude of action potential (VAP) was measured as the difference 

between the peak voltage achieved during an action potential and VRMP. (H) Impedance 

based measurements. Top, Chirp current stimulus injected into the cell. Middle, Voltage 

response of the model to chirp stimulus injection. The arrow depicts the location of the 

maximal response. Bottom, Impedance amplitude profile showing the resonance 
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frequency (fR) at which the model elicited peak response and resonance strength (QR), the 

ratio of impedance amplitude at fR to impedance amplitude at 0.5 Hz. (I) Membrane 

potential oscillations (MPOs). Shown are representative voltage traces (3 s duration) for 

different depolarizing current injections (Iinj). The emergence of subthreshold oscillations 

in the theta range may be observed in traces at intermediate values of Iinj, with the model 

switching to action potential firing at higher Iinj. The frequency of subthreshold 

oscillations measured at a peri-threshold voltage was defined as fosc, while the frequency 

of membrane potential oscillations obtained with other Iinj was represented by fMPO.  

Figure 2:  A multi-parametric stochastic search algorithm yielded stellate cell 

models with distinct types of robust sub- and supra-threshold oscillations spanning 

different voltage levels. (A–G) Top, Voltage traces of model cells showing sub and supra 

threshold MPOs, when injected with different levels of depolarizing currents. Bottom (A–

E) and Right (F–G), frequency of MPOs plotted as a function of average membrane 

potential, Vavg (black) and MPO amplitude, VMPO (red). Plots in (A–G) constitute data 

from different model cells, and depict representative features from distinct 

subpopulations of models. (A) Robust subthreshold MPOs emerge before the neuron 

switches to regular spiking activity that manifests when the subthreshold MPOs cross 

threshold. (B) Robust subthreshold MPOs emerge before the neuron abruptly switches to 

firing spike doublets when the subthreshold MPOs cross threshold. (C) Neuron switches 

to robust MPOs at perithreshold voltages, with intermittent burst spiking activity. The 

frequency of burst occurrence increases with increasing current injections. Such models 

are reminiscent of neurons exhibiting theta skipping, where spikes occur at regular 

intervals but not on every theta cycle. (D) Model exhibits robust theta range subthreshold 
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oscillations, but does not directly switch to spiking behavior from MPOs with increased 

current injection. A range of intermittent current injections results in responses that depict 

depolarization-induced block bereft of any MPOs. These models eventually switch to 

regular firing at higher current injections. (E) Same as (D) but these models do not switch 

to firing action potentials after exhibiting theta range MPOs even at higher depolarization 

or current injections. (F) These models abruptly switch from firing no action potentials to 

regular spiking, without any intermediate phase of exhibiting subthreshold oscillations. 

(G) Model manifests robust subthreshold oscillations, but switches between subthreshold 

oscillations and regular spiking with increasing current injections.  

Figure 3: Distribution for physiologically relevant measurements in valid MEC 

layer II stellate cell models obtained after a multi-parametric multi-objective 

stochastic search. (A) Bee swarm plots depicting the distribution of 9 measurements in 

the 155 valid models. (B) Frequency of MPOs for the 155 valid models plotted as a 

function of average membrane potential of the oscillation, Vavg. (C) Frequency of MPOs 

for the 155 valid models plotted as a function of MPO amplitude, VMPO. The two distinct 

clusters here demarcate sub- and supra-threshold oscillations, with supra-threshold 

oscillations corresponding to regular action potential firing. For B–C, 21 data points 

represent each valid model, with each data point obtained with different depolarizing 

current injections (e.g., Fig. 2). Each model is depicted in a unique color. 

Figure 4: Disparate combinations of model parameters resulted in similar 

physiological measurements in 5 randomly chosen valid stellate cell models. (A–H) 

Voltage traces and 10 physiologically relevant measurements for 5 randomly chosen 

valid models obtained after MPMOSS. (A) Resting membrane potential (VRMP) and its 
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standard deviation (SD), (B) Sag ratio, (C) Input resistance (Rin), (D) Resonance 

frequency (fR) and resonance strength (QR), (E) Number of action potentials for a step 

current injection of 100 pA for 500 ms (N100), (F) Amplitude of action potential (VAP), 

(G) Number of action potentials for a step current injection of 400 pA for 500 ms (N400) 

and (H) Peri-threshold membrane potential oscillation frequency (fosc). (I) Normalized 

values of each of the 55 parameters that were employed in the generation of stellate cell 

models, shown for the 5 randomly chosen models depicted in A–H. Each parameter was 

normalized by the respective minimum and maximum values that bound the stochastic 

search for that parameter (Table 1). Individual models are color coded across all plots and 

traces in A–I. 

Figure 5: Expression of cellular scale degeneracy in the heterogeneous population of 

valid stellate cell models with weak pair-wise correlation among parameters. (A) 

Matrix consisting the pair-wise scatter plots between the 55 parameters (Table 1) for all 

155 valid stellate cell models. Histograms in the bottom row depict the span of the 

corresponding parameter with reference to their respective min-max ranges (Table 1). (B) 

Heat map of the pair-wise correlation coefficient values corresponding to the scatter plots 

depicted in A. (C) Distribution of the 1485 unique correlation coefficient values from B.  

Figure 6: Single channel virtual knockout models (VKMs) unveiled differential and 

variable dependence of measurements on individual channels. (A-I) Change in 

different measurement values after virtual knockout of each channel from valid models 

obtained from the MPMOSS algorithm. Shown are percentage changes in resting 

membrane potential, VRMP (A), sag ratio (B), input resistance Rin (C), resonance strength 

QR (D), resonance frequency fR (E), peri-threshold oscillation frequency fosc (F). Change 
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in number of action potential elicited for 100 pA current injection (N100) is represented as 

a count (G) as N100 for all valid models was constrained to be zero, whereas changes in 

the number of action potentials elicited for 400 pA current injection N400 (H) and in 

action potential amplitude VAP (I) are depicted as percentages. Note that VKMs that 

spontaneously fired or entered depolarization-induced block were removed from analyses 

owing to the inability to obtain subthreshold measurements. Consequently, for KDR 

knockouts NVKM = 37, for KM knockouts NVKM = 116, for SK knockouts NVKM = 145 and 

all the other channel knockouts NVKM=155. For panels A–I, *: p < 0.01, **: p < 0.001, 

Wilcoxon rank sum test. 

Figure 7: Measurements from the valid model population predict theta-frequency 

selectivity and gamma-range coincidence detection window in the spike triggered 

average of LII stellate cells. (A) Voltage response of an example valid model (top) to a 

zero-mean Gaussian white noise (GWN) current (bottom) of 10 s duration. σnoise= 1.83 

nA. (B–C) Spike triggered average (STA) of the 5 valid stellate cell models shown in 5 

randomly chosen valid stellate cell models shown in Fig. 4. Measurements derived from 

the temporal domain representation of STA were the peak STA current ISTA
peak , the total 

coincidence detection window (CDW) TTCDW and the effective CDW TECDW. (C) The 

magnitude of the Fourier transform of STA shown in B. Measurements derived from the 

spectral domain representation of STA were for the STA characteristic frequency fSTA, 

and the strength of selectivity QSTA. (D) Bee swarm plots representing the distribution of 

the 5 quantitative measures of the STA for all 155 valid models. (E) Impedance phase 

profiles, and with values of total inductive phase, ΦL, defined as the area under the curve 

for the leading impedance phase (shaded portion) for 5 selected models. Color codes 
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across this figure are matched with models in Fig. 4. (F) Distribution of ΦL for all 155 

valid stellate cell models. 

Figure 8: Pairwise correlations across physiological measurements from all valid 

stellate cell models were variable. (A) Matrix depicts the pair-wise scatter plots between 

the 14 measurements (8 physiologically relevant measurements, namely VRMP, Sag ratio, 

Rin, QR, fR, fosc, N400, VAP, in Fig. 1 and the 6 predicted measurements, namely ISTA
peak , 

TECDW, TTCDW, fSTA, QSTA, ΦL, in Fig. 7). Histograms in the bottom row depict the span of 

the corresponding measurement with reference to their respective min-max ranges. 

Individual scatter plots are overlaid on a heat map that depicts the pair-wise correlation 

coefficient computed for that scatter plot, with the color code for the correlation 

coefficient values as provided. (B) Distribution of the 91 unique correlation coefficient 

values from scatter plots in A. 
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Table 1: Base value and range of parameters used in generating the model population 
 

No Parameter Description Base Min Max 
 

Fast sodium (NaF) channel 
1 gNaF (mS/cm2) Maximal conductance of NaF 4.2 2.1 8.5 

2 Vm
NaF (mV) Half-maximal voltage of activation of NaF –26.1 –31.1 –21.1 

3 km
NaF (mV) Slope of activation of NaF 9.38 7.51 11.26 

4 Fm
NaF  Scaling factor for activation time constant of NaF 1 0.8 1.2 

5 Vh
NaF (mV) Half-maximal voltage of inactivation of NaF –23.8 –28.8 –18.8 

6 kh
NaF (mV) Slope of inactivation of NaF 6.1 4.9 7.3 

7 Fh
NaF  Scaling factor for inactivation time constant of NaF 1 0.8 1.2 

 

Delayed rectifier potassium (KDR) channel  
8 gKDR (mS/cm2) Maximal conductance of KDR 3.2 1.5 6.4 

9 Vn
KDR (mV) Half-maximal voltage of activation of KDR –17.6 –22.6 –12.6 

10 kn
KDR (mV) Slope of activation of KDR 19.6 15.7 23.6 

11 Fn
KDR  Scaling factor for activation time constant of KDR 1 0.8 1.2 

 

Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channel  
12 gHCN (µS/cm2) Maximal conductance of slow HCN 33.3 16 67 

13 HCNms
mf  Ratio of fast to slow HCN maximal conductance 1.85 1.5 2.2 

14 Vmf
HCN (mV) Half-maximal voltage of activation of fast HCN 74.2 69.2 79.2 

15 Vms
HCN (mV) Half-maximal voltage of activation of slow HCN 2.83 –2.17 7.83 

16 kmf
HCN (mV) Slope of activation of fast HCN 9.78 7.8 11.7 

17 kms
HCN (mV) Slope of activation of slow HCN 15.9 12.7 19.1 

18 Fmf
HCN  Scaling factor for activation time constant of fast HCN 1 0.8 1.2 

19 Fms
HCN  Scaling factor for activation time constant of slow HCN 1 0.8 1.2 

 

Persistent sodium (NaP) channel  
20 gNaP (µS/cm2) Maximal conductance of NaP 34 17 68 

21 Vm
NaP (mV) Half-maximal voltage of activation of NaP 48.7 43.7 53.7 

22 km
NaP (mV) Slope of activation of NaP 4.4 3.52 5.28 

23 Fm
NaP  Scaling factor for activation time constant of NaP 1 0.8 1.2 

24 Vh
NaP (mV) Half-maximal voltage of inactivation of NaP 48.8 43.8 53.8 

25 kh
NaP (mV) Slope of inactivation of NaP 9.9 7.9 11.9 

26 Fh
NaP  Scaling factor for inactivation time constant of NaP 1 0.8 1.2 
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A-type potassium (KA) channel  
27 gKA (µS/cm2) Maximal conductance of KA 25 12.5 50 

28 Vm
KA (mV) Half-maximal voltage of activation of KA –18.3 –23.3 –13.3 

29 km
KA (mV) Slope of activation of KA 15 12 18 

30 Fm
KA  Scaling factor for activation time constant of KA 1 0.8 1.2 

31 Vh
KA (mV) Half-maximal voltage of inactivation of KA –58 –63 –53 

32 kh
KA (mV) Slope of inactivation of KA 8.2 6.6 9.8 

33 Fh
KA  Scaling factor for inactivation time constant of KA 1 0.8 1.2 

 

High voltage activated (HVA) calcium channel  
34 gHVA (mS/cm2) Maximal conductance of HVA 0.18 0.09 0.36 

35 Vm
HVA (mV) Half-maximal voltage of activation of HVA 11.1 6.1 16.1 

36 km
HVA (mV) Slope of activation of HVA 8.4 6.7 10.0 

37 Fm
HVA  Scaling factor for activation time constant of HVA 1 0.8 1.2 

38 Vh
HVA (mV) Half-maximal voltage of inactivation of HVA 37 32 42 

39 kh
HVA (mV) Slope of inactivation of HVA 9 7.2 10.8 

40 Fh
HVA  Scaling factor for inactivation time constant of HVA 1 0.8 1.2 

 

Low voltage activated (LVA) calcium channel  
41 gLVA (µS/cm2) Maximal conductance of LVA 90 41.9 167.6 

42 Vm
LVA (mV) Half-maximal voltage of activation of LVA –52.4 –57.4 –47.4 

43 km
LVA (mV) Slope of activation of LVA 8.2 6.5 9.8 

44 Fm
LVA  Scaling factor for activation time constant LVA 1 0.8 1.2 

45 Vh
LVA (mV) Half-maximal voltage of inactivation of LVA –88.2 –93.2 –83.2 

46 kh
LVA (mV) Slope of inactivation of LVA 6.67 5.34 8.01 

47 Fh
LVA  Scaling factor for inactivation time constant of LVA 1 0.8 1.2 

 

M-type potassium (KM) channel 
48 gKM (mS/cm2) Maximal conductance of KM 0.12 0.06 0.25 

49 Vm
KM (mV) Half-maximal voltage of activation of KM –40 –45 –35 

50 km
KM (mV) Slope of activation of KM –10 –8 –12 

51 Fm
KM  Scaling factor for activation time constant of KM 1 0.8 1.2 

 

Small conductance calcium-activated potassium (SK) channel  
52 gSK (µS/cm2) Maximal conductance of SK 52 26 104 
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Passive properties and cytosolic calcium handling  
53 Rm (kΩ cm2) Specific membrane resistance 40 20 80 

54 τCa (ms) Time constant of cytosolic calcium decay 78 39 156 

55 Cm (µF/cm2) Specific membrane capacitance 1 0.75 1.25 

 
 
 
 
 
 
 
Table 2: Physiologically relevant range of LII stellate cell measurements 
 

No Intrinsic measurement  Valid range 
1 Resting membrane potential, VRMP (mV) –65 to –60 
2 Standard deviation of membrane potential (Resting), SD (mV) <0.01 
3 Sag ratio 0.35 to 0.65 
4 Input resistance, Rin (MΩ) 35 to 65 
5 Resonance strength, QR < 3.5 
6 Resonance frequency, fR (Hz) 3 to 12 
7 Peri-threshold MPO frequency, fosc (Hz) 3 to 12 
8 Number of APs for a 100 pA step current for 500 ms, N100 0 
9 Number of APs for a 400 pA step current for 500 ms, N400 7 to 16 
10 AP amplitude, VAP (mV) >75 
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