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Abstract

Despite experimental evidence, the literature so far contains no systematic attempt to
address the impact of cortical oscillations on the ability of the basal ganglia (BG) to
select. In this study, we employed a state-of-the-art spiking neural model of the BG
circuitry and investigated the effectiveness of this circuitry as an action selection device.
We found that cortical frequency, phase, dopamine and the examined time scale, all
have a very important impact on this process. Our simulations resulted in a canonical
profile of selectivity, termed selectivity portraits, which suggests that the cortex is the
structure that determines whether selection will be performed in the BG and what
strategy will be utilized. Some frequency ranges promote the exploitation of highly
salient actions, others promote the exploration of alternative options, while the
remaining frequencies halt the selection process. Based on this behaviour, we propose
that the BG circuitry can be viewed as the “gearbox” of action selection. Coalitions of
rhythmic cortical areas are able to switch between a repertoire of available BG modes
which, in turn, change the course of information flow within the
cortico-BG-thalamo-cortical loop. Dopamine, akin to “control pedals”, either stops or
initiates a decision, while cortical frequencies, as a “gear lever”, determine whether a
decision can be triggered and what type of decision this will be. Finally, we identified a
selection cycle with a period of around 200ms, which was used to assess the biological
plausibility of the popular cognitive architectures.

Author summary

Our brains are continuously called to select the most appropriate action between
alternative competing choices. A plethora of evidence and theoretical work indicates
that a fundamental brain region called the basal ganglia might be the locus where this
competition occurs. But how is the winning choice determined each time? Using a
detailed computational model, based on neurophysiological properties of this region, we
suggest that, whereas the basal ganglia might indeed contain the circuitry of action
selection, the cerebral cortex is, in fact, the brain region that dictates this process.
Similarly to a gearbox in a car, the basal ganglia provide modes for the exploitation of
the safest option (forward gears), exploration of alternative options (reverse gear) and a
neutral state, in case that the selection process needs to be halted. Our results further
indicate that the instructions for mode-switching are relayed to the basal ganglia
through specific low frequencies of oscillations within cortical areas. Finally, we provide
estimations for the frequency ranges that can be used to activate each selectivity mode,
as well as the duration of the selection process under various conditions.
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Introduction 1

The physical location of the basal ganglia (BG), as well as their broad bidirectional 2

connectivity with major cortical areas, the limbic system and the thalamus, place the 3

this brain structure in a key position to modulate the flow of information between the 4

cortex and the body. Despite the great diversity of inputs and outputs, the human BG 5

consist of the same repeating internal circuitry [1] which is also largely retained in most 6

vertebrate species [2, 3]. This strictly topographic organization on different scales 7

suggests that through this structure, some common modulatory operations are applied 8

to functionally different channels of information flow. 9

In the microscopic scale, the BG circuitry can be broken down into a massive 10

number o parallel loops (or channels) which, as suggested, represent different competing 11

information signals or “action requests” [4, 5]. According to this popular theory, the BG 12

circuit is able to process those requests and finally select the most salient (or urgent) 13

potential action, via the direct BG pathway, while providing inhibition to the rest 14

competing channels via the indirect pathway [6, 7]. 15

An increasing amount of neurophysiological evidence implicates the BG to selection 16

of voluntary motor actions and provides indirect verification of this hypothesis [8]. [9] 17

showed that the excess activation of the direct BG pathway in freely behaving mice, via 18

stimulation of MSND1 neurons in the striatum, increases movement, while the 19

stimulation of the indirect pathway made the same animals to freeze. In addition, 20

although both pathways are required for healthy action selection and were found to 21

contribute equally to the initiation of actions in [10], the indirect pathway is suppressed 22

during the execution of actions or action sequences [11], presumably because any 23

behavioural conflicts have already been resolved during movement [8]. 24

From another standpoint, low-frequency brain oscillations have been widely 25

implicated in both the function of the BG [12] and the process of decision 26

making [13–17]. Oscillations in the cortex mediate the processing of new 27

information [18], the dynamic formation of neural ensembles representing different 28

actions and the suppression of other task-irrelevant regions [19,20]. The are also found 29

to encode uncertainty and influence the exploration-exploitation trade-off [21]. In 30

addition, there is a substantial number of studies focusing on low-frequency oscillations 31

in the BG, as changes of this activity are connected with a number of disorders such as 32

Parkinson’s or Huntington’s disease. 33

But are these phenomena related? Evidence suggests that oscillations in some 34

certain bands in the striatum and the subthalamic nucleus (STN), the input structures 35

of the BG, are driven by cortical regions [22–25]. Taking this into account, in previous 36

work [26] we explored the impact of cortical rhythmic activity on the BG function and 37

we found that the former can completely shape which areas of the BG circuit are active. 38

Yet, the connection between the BG, cortical oscillations and decision making still 39

remains relatively unexplored. 40

In this work we attempt to narrow this gap by investigating whether cortical 41

oscillations could influence the ability of the BG to act as a selection device. To achieve 42

this, we initially defined a number of metrics that enable the assessment of the 43

effectiveness of possible selection mechanisms. Using the biologically plausible neural 44

model of the BG circuitry defined in [26], we then carried out an analysis of the 45

relationship between cortical frequencies, dopamine concentration and BG selectivity. 46

We found that the frequency and phase difference between oscillatory cortical areas, 47

the level of dopamine in the system and the examined time scale, all have a very 48

important impact to the ability of our model to select. Our simulations resulted in a 49

canonical profile of selectivity in the BG, which we termed selectivity portraits, that can 50

be largely maintained in simplified versions of the model. 51

Using these portraits, we show that although the BG circuit can robustly and 52
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sequentially perform selection tasks, the strongly-active cortical areas instruct the mode 53

of this selection via their oscillatory activity. Some frequency ranges promote the 54

exploitation of actions of which the outcome is known, others promote the exploration 55

of new actions with high uncertainty, while others simply deactivate the selection 56

mechanism. Finally, we identified a selection cycle with a period of around 200 ms, 57

which was used to assess the biological plausibility of the most popular architectures in 58

cognitive science. 59

Our results can be replicated with simpler versions of the neural model used, agree 60

well with experimental observations, provide new justifications and insights into 61

oscillatory phenomena related to decision making and reaffirm the role of the BG as the 62

selection centre of the brain. 63

Materials and Methods 64

The basal ganglia model 65

The full model 66

The predominant tool used in this study is a state-of-the-art, large-scale spiking neuron 67

model of the complete motor BG circuitry, presented in detail in [26]. This model 68

integrates fine-tuned models of phenomenological (Izhikevich) spiking neurons that 69

correspond to different sub-types of cells within the BG nuclei, electrical and 70

conductance-based chemical synapses that include short-term plasticity and 71

neuromodulation, as well as anatomically-derived striatal connectivity. 72

In particular, this model comprises 10 neural populations that correspond to the four 73

major nuclei of the biological BG and form the canonical circuit described in the 74

Introduction. These include the striatum and the STN, the two inputs of the BG, the 75

external part of the globus pallidus (GPe), as well as the substantia nigra pars reticulata 76

(SNr), one of the two output structures of the BG. Furthermore, the effect of the pars 77

compacta part of the substantia nigra (SNc) is realized through the concentration of the 78

neurotransmitter dopamine (DA) in the different parts of the network (green colour in 79

Fig. 1). The network is devided in three microscopic channels, which are mutually 80

inhibited and used to represent different action requests throughout this study. 81
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Fig 1. The network architecture of the current BG model.

The internal structure of the striatum has been modelled using three different groups 82

that correspond to its three major neural populations. The first two groups, which 83
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comprise the 99% of the striatum, correspond to the two categories of medium 84

spiny-projection neurons (MSNs), divided based on the dominant type of their 85

dopamine receptors. Dopamine is known to enhance activity in the first group (MSND1 86

neurons) and depress the second (MSND2 neurons). The remaining 1% of the striatum 87

is occupied by fast-spiking gabaergic interneurons (FSIs) that are affected by both types 88

of dopamine receptors and are highly interconnected with both electrical and 89

GABAergic synapses. Finally, the STN and GPe comprise three sub-populations each, 90

that correspond to the three predominant types found in the literature to have 91

distinctive dynamical and electrophysiological patterns. 92

The number and ratio of neurons in each group, is taken from anatomical studies 93

and result in a total of 9586 neurons that form the BG network. The probability for a 94

connection between any two neurons of this network depends on the source and target 95

nuclei and it was either infered from anatomical studies or taken from previous 96

computational studies. Finallly, an optimization method was used to approximate 97

neural and network parameters based on empirical findings [27]. 98

A reduced version of the model 99

As a consequence of its detailed architecture, the neural model in [26] contains a rather 100

high number of parameters that might influence its behaviour and the resulting 101

measurements of selectivity. In order to narrow down this space and establish the most 102

important BG features for selectivity we defined a second, simplified version of this 103

neural model with significantly less differences between nuclei. The behaviour of this 104

simplified model is compared against the full version in [26] in the Results section of 105

this study, where the homogeneity and robustness of our results is determined. The 106

architecture of the simplified model is shown in Fig. 2. 107

Striatum

SNrGPe
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Thalamus

Inhibitory 

Excitatory 

Exc. di�use 

D1 D2

Parameter MSN* STN*** GPe**** SNr****

a 0.01 0.005 0.05 0.05
b -20 88.33 2.5 3
c(mV ) -55 -65.0 -60 -65
d 91 500.0 70 200
vr (mV ) -80 -61.0 -55.1 -55.8
vt(mV ) -29.7 -64.035 -54.7 -55.2
vpeak(mV ) 40 20.0** 15 20.0
Cm(pF ) 15.2 333.33 40 80
k 1 13.33 0.706 1.731
d1 0.3** - - -
d2 0.3** 0.3** 0.3** -

A B

Fig 2. Simplified version of the BG model. * Parameters taken from [28] **
Parameters taken from [4] *** Parameters derived from [29] **** Parameters derived
from [30]

Here, the striatum is modelled using only 600 D1-like and 600 D2-like MSNs with 108

the FSIs and gap junctions being neglected due to their small number. The rest neuron 109

groups consist of the STN, GPe and SNr, which were modeled using a single parameter, 110

set as well as a fixed number of 150 neurons for each group. The values for all neuron 111

parameters can be found in the table of Fig. 2B. The synapses between neurons in this 112

model do not exhibit short-term plasticity. They include AMPA, NMDA and GABA 113

types and they are governed by conductance-based equations. They have fixed reversal 114

potentials E equal to 0, 0 and −80 for each neurotransmitter respectively, τAMPA = 2, 115

τNMDA = 100 and τgaba = 3, as well as a maximum conductance g = 1nS for all 116
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connections in the system. In addition, no optimization was conducted to fit the firing 117

rates of the model to the corresponding biological nuclei, as it was the case with the 118

original model in [26]. Instead, the probability for each neuron of a source nucleus to be 119

connected to a neuron in the target nucleus was always set to 0.25. Finally, the cortical 120

input towards the three microscopic channels of this model remained the same as in the 121

case of the full version of thr BG model, in order to enable a more direct comparison. 122

Metrics 123

Selectivity 124

The view of the BG as the action selection device implies that their performance on this 125

aspect could be evaluated based on measurable criteria, such as signal distinction. The 126

further suggestion that the salience of an action is encoded in the local level of activity 127

in the striatum and STN, which is directly affected by cortical input, can serve as the 128

basis of this evaluation. [31] defined selectivity in the BG as the ability of a neural 129

mechanism to robustly distinguish competing signals. Although this definition is 130

sufficient, the main focus of this study was confined to the difference between transient 131

and steady-state effects, and it produced metrics that can not be applied in a more 132

general case, such as the BG model of the current study. 133

Our aim here is to create a metric that is aligned with the features of our model but
it also remains general enough to be used in other studies. The first step of this attempt
is to find a method to measure the distinctiveness of a single selected channel. This can
be defined as the ability of a channel to receive distinctively less inhibition than any
other channel or, more specifically, the degree to which the following conditions are
fulfilled: (a) The firing rate of the selected channel in the level of the SNr is close to
zero, which is required in order to revoke inhibition in the thalamus, and (b) no other
channel is far below tonic levels. These two conditions can be written as

aj = 1− Fj
max{Ftonic, Fj}

, bj =
minFi 6=j

max{Ftonic,minFi 6=j}
(1)

where j is the examined channel, Fi is the SNr firing rate of a channel i and Ftonic is 134

the tonic firing rate of the SNr (∼ 25 spikes/sec). Since both denominators in (1) are 135

upper-bounded by the value of the corresponding numerator, the product D̄j = ajbj 136

will always take values between [0, 1] and reflects the requested measure. The special 137

case of Fj = minFi 6=j = Ftonic/2 results in D̄j = 1
4 and represents the baseline below 138

which the channel j is indistinguishable. To normalize D̄j , so the baseline lies in 0, the 139

final distinctiveness Dj of a channel j is given as 140

Dj =


1
3 (4D̄j − 1) if D̄j >

1
4

4D̄j − 1 otherwise
, −1 ≤ Dj ≤ 1 (2)

A graphical illustration of the above can be found in Fig. 3A. Using this metric we 141

can now measure a number of properties of the BG selection mechanism. First, the 142

effectiveness of the BG in selecting the most salient cortical input can be defined as 143

E = Dk, −1 <= E <= 1 (3)

where k is the index of the most salient channel, i.e. the channel with the highest firing 144

rate at the level of the cortex. 145

Furthermore, the degree of selectivity of the BG reflects to their ability to select any
channel regardless of its salience and can be defined as

S = max
j
Dj , −1 <= S <= 1 (4)
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selection

Fig 3. Metrics for distinctiveness and dependence. Ai: A multi-channel
example of SNr firing rates used to illustrate the concept of distinctiveness of the
channel j. Aii: Space of possible values for Dj for any difference δ between j and the
least-inhibited alternative channel. Note that the line Dj = δ is an upper bound to the
possible values of Dj in this space. B: Example calculation of dependence.

Finally, one more useful property that can be measured using Dj is to what extent the 146

BG is selecting, or exploring, alternative actions. This is given as 147

exploration = max
j 6=k
Dj , −1 <= exploration <= 1 (5)

and is defined as the level of exploratory behaviour of the BG mechanism, or simply 148

exploration. To compare this metric with terminology commonly found in the literature, 149

the value of effectiveness in the BG can be considered here as the level of 150

exploitativeness, since the high salience of the leading microscopic channel arises from a 151

previously learnt behaviour. Hence, selectivity can be then thought of as the union of 152

exploration and exploitation. 153

To conclude, Dj can be used to measure various features of a neural-based action 154

selection mechanism with minimal adjustments. The only requirements are first, a local 155

measurement of the instantaneous firing rate in the output area of a neural structure, 156

and second, a prior knowledge of the average tonic firing rate in the same area. In case 157

that the latter cannot be obtained, the difference δ between the selected channel and 158

the least-inhibited neighbouring area (Fig. 3Aii) provides a good approximation of 159

distinctiveness, especially when δ > 1
4 , and thus it can be used instead. 160

Transient versus steady-state An event processed by a selection mechanism can 161

have both a transient and a steady-state effect on a dynamical system such as the brain. 162

Our BG model exhibited rich transient phenomena during the first 500ms after the 163

injection of a stimulus, as well as a different post-transient steady state that was 164

maintained indefinitely. To distinguish between these two modes, the transient 165

distinctiveness of a salient channel is defined as the maximum degree by which this 166

channel received less inhibition than any other neighbouring channel for a fixed short 167

interval, after the generation of the salient signal. That is 168

max
t
D[t−100ms,t]
j (6)
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where T + 100ms < t < T + 500ms and T denotes the point on time that the stimulation 169

was applied. The steady-state distinctiveness, on the other hand, can be measured 170

taking into account the post-transient stable firing rates in the level of the SNr. 171

Dependence 172

Selectivity can be affected by various parameters of the model or the current stimulus. 173

Some of these parameters can play a decisive role in determining the model’s 174

performance. The degree by which the BG selectivity depends on the value of a single 175

parameter of the model can be measured by comparing the local versus the global 176

variation of the resulting Dj for a number of simulation runs with random initial 177

conditions. 178

For instance, in case that selectivity is highly dependent on the value of a parameter, 179

a significantly large sample of randomized simulation runs will result in diverse local 180

mean values and small local standard deviations, compared to the standard deviation of 181

the complete sample. An illustration of this concept is shown in Fig. 3Bi-ii. 182

This metric was used here to examine the effect of the phase offset ϕ between two
oscillatory cortical inputs. In this case, local areas can be found by dividing the range of
possible values for this parameter R = [0, 2π) into a number of bins
Ri = {x/x ∈ [a, a+ dx), 2π · a = i · dx}, where dx is the length of each bin.
Additionally, if σi is the standard deviation of selectivity values within the bin Ri and
σglobal the global standard deviation in R, the dependence of the BG selectivity to ϕ
can be defined as

dependence = 1− σ̄i
σglobal

, 0 <= dependence <= 1 (7)

For the analysis of this study we have used 30 local areas (bins) to calculate dependence, 183

a number which was found to provide adequate and robust results. 184

Results 185

Selectivity portraits 186

Initially, we conducted a series of simulations where the BG circuitry was called to 187

resolve a conflict between two salient potential actions. To simulate this scenario, the 188

BG model received strong cortical input in two out of their three microscopic channels, 189

governed by 1000 inhomogeneous Poisson processes each, described in [26], and 190

background noise of 3 spikes/sec in the third channel. These two strong inputs were 191

oscillatory, with a single fixed frequency f = f1 = f2, but different amplitudes A1 < A2. 192

Since the firing rate of the cortical ensembles that generate these inputs represents the 193

salience of each action, the second cortical input was always considered the most salient 194

one or, in other words, “the right choice”. 195

To investigate the relation between dopamine, cortical oscillations and the efficiency 196

of the BG as a selection mechanism, we varied the frequency f of the two cortical 197

ensembles, the phase offset ϕ between them, and the level of dopamine d = d1 = d2 in 198

the system. An overview of the resulting BG behaviour can be seen in Fig. 4. 199

The coloured scatter plots of this figure illustrate the tendency of the model to select 200

the most salient signal (effectiveness), or the alternative, less-salient signal (exploration) 201

for any possible combination of dopamine and cortical frequency. Finally, the plots right 202

below indicate the ability of the system to select any signal, as well as the degree by 203

which ϕ affects these measurements, across the same frequency spectrum. Since these 204

figures can expose the critical conditions that affect the selection mechanism under 205

examination, we termed them “selectivity portraits” of the model. 206
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Fig 4. Selectivity portraits of the BG model. Effectiveness (scatter plot up),
exploration (scatter plot down), selectivity (black curve) and dependence on the phase
offset ϕ (red curve) when two inputs oscillate with amplitudes A1 = 7.5, A2 = 10
spikes/sec in (A) and A1 = 5, A2 = 10 spikes/sec in (B), in order to simulate strong
and weak competition respectively. Cortical input to the third channel has a fixed
baseline firing rate of 3 spikes/sec. Effectiveness is calculated for each combination of
dopamine levels d and input frequencies f . The colour bars represent the mean of a
sample of 200 runs (for each point) with random ϕ ∈ [0, 2π). Selectivity curves
represent the mean (black line) and standard deviation gray area for all ϕ and d, across
frequency spectrum. Dependence was calculated for d = 0.3.

In the next paragraphs, we present a number of observations which were largely 207

based on this figure, and we outline the most important testable predictions that 208

emerged, regarding the function of the BG in the brain. 209

The combination of dopamine concentration and cortical frequency defines 210

BG effectiveness and exploration 211

Fig. 4 clearly indicates that both the frequency of the two oscillatory inputs as well as 212

the level of dopamine in the system play a crucial role in the ability of the BG to select. 213
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The responses of the model for various values of these two parameters revealed three 214

main areas of interest in the frequency spectrum with completely different behaviour. 215

The first area includes low-frequency oscillations, with a borderline at f = 15Hz, the 216

second area corresponds to beta oscillations (13 < f < 30Hz) and the third area 217

includes all greater frequencies. 218

In all cases, dopamine exhibited distinct patterns with which it regulated 219

effectiveness and exploration. These patterns were completely different during the 220

initial transient phase as opposed to the final steady-state BG response, while they were 221

further modified depending on whether the competition was strong or week. As a result, 222

the model generated four unique selectivity portraits when it dealt with each of the 223

above cases. 224

More specifically, we found that, in our model, dopamine concentration affects 225

selectivity only in particular frequency ranges, where its role is to either trigger or block 226

the selection process. Notably, decisions triggered by dopamine promoted exploration 227

over exploitation in the majority of the simulated scenarios. An exception is the case of 228

a strong initial lead in the salience of the one of the competing channels before the level 229

of the BG, showed in Fig. 4Bi. As the dominance of this channel is clear, an increased 230

level of dopamine triggers the selection of this instead of the alternative choice. 231

However, even if the most salient channel has already been selected transiently, this 232

selection can be maintained over time only if dopamine decreases (Fig. 4Bii). 233

From the perspective of the cortical behaviour, low-frequency oscillations also 234

promoted the selection of the least salient channel. This was achieved via the level of 235

dopamine, which determined whether a selection will be made or delayed. With this 236

type of input, the BG model became completely unable to maintain the first choice 237

after an initial short transient. 238

On the other hand, beta oscillations minimized the influence of dopamine and 239

brought the system in a neutral state, where both effectiveness and exploration are in 240

the borderline value 0. Once more, this effect was halted in the presence of a strong 241

difference between the two inputs. 242

Finally, gamma oscillations can clearly facilitate BG effectiveness. Transiently, 243

selectivity maximized and the most salient channel was selected for any frequency, 244

phase offset and dopamine level. In steady-state, gamma oscillations continued to 245

support the same decision, but only if the channel remained highly salient and the level 246

of dopamine dropped below tonic levels. 247

In order to ascertain the validity of these results and rule out the possibility that 248

other stochastic parameters of the model had an important impact, we examined the 249

variance of these measures when the examined parameters were fixed. Specifically, we 250

ran 100 experiments where, each time, the level of dopamine, the input frequency and 251

the phase offset ϕ were kept fixed to a random value within the biologically realistic 252

limits but all other statistically defined entities in the model were randomised. These 253

included the synaptic indexes, neural parameter perturbations and neuron types within 254

a nucleus among others. This process was repeated 500 times giving in total 500 255

random points in the selectivity portraits that can be used for this analysis. 256

As a result, the three selectivity metrics presented Fig. 4 were almost identical 257

between runs. A Shapiro-Wilk’s test [32,33] showed that the vast majority of these data 258

points were approximately normally distributed, with an average p value p = 0.56± 0.36 259

that could not reject the null hypothesis of normality. The resulting standard deviations 260

in each point were on average 0.114± 0.035 for effectiveness and 0.053± 0.032 for 261

exploration. 262

The magnitude of this variation was very small compared to the differences in the 263

selectivity process, and it was also comparable to the standard deviation of the 264

normalized firing rates in the 3 channels of the SNr (0.072(±0.057)× 25 spikes/sec). 265
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Since these values are the only parameters of D̄j , our results indicate that there is no 266

hidden correlation in the system, and the fluctuations of the standard deviation in 267

selectivity plots of Fig. 4 were caused by dopamine and ϕ. 268

The BG can almost always select the most salient action transiently 269

During the simulations that produced the selectivity portraits, the BG model exhibited 270

a significantly more aggressive selectivity transiently, at the first 500 ms after the 271

presentation of the stimulus, as opposed to its steady-state behaviour. This is an 272

expected range of reaction times in psychophysical choice tasks. It is consistent with 273

oscillatory changes in the BG [34] and sensorimotor cortex [35] during animal decision 274

making tasks, as well as choice reaction times in mental chronometry studies in 275

humans [36–38]. However, the equation (6) that has been used to produce the 276

selectivity portraits of the current model, does not fully address the dynamic changes of 277

selectivity. A further comparison with experimental studies, such as the above, requires 278

information regarding the onset and duration of the emerging transient peaks, as well as 279

any rebound effects. The average response of our model for the four major examined 280

frequency ranges is presented in Fig. 5. 281

No oscillations alpha beta gamma

0 0.4 0.8 1 0 0.4 0.8 1 0 0.4 0.8 1 0 0.4 0.8 1

Time from stimulus presentation (sec)

Exploration

E�ectiveness

Fig 5. Transient changes in selectivity. Two competing cortical inputs oscillate
with amplitudes 7.5 / 10 spikes/sec respectively. The two coloured curves represent
mean value for any level of dopamine and offset ϕ, and the two coloured areas smoothed
standard deviation.

As in the previous section, the large variations at some frequency ranges of this 282

figure come from the different values of phase offset ϕ and the level of dopamine. For 283

instance, beta frequencies cause positive effectiveness only when dopamine is greater 284

than 0.8. Since successful selection cannot occur for Dj < 0, we consider the BG as able 285

to select only in scenarios where a significant portion of our experiments had a 286

selectivity peak above this baseline. 287

Right after the presentation of the stimulus the BG model did not produce any 288

selection response for a short period with fixed duration. Instead, the firing rate in all 289

SNr channels was high, indicating an initial STOP phase. This phase had a very similar 290

duration of 85± 67 ms on average, in all frequency ranges. Next, a transient increase in 291

effectiveness that peaked at 133± 155 ms on average, accompanied the initial STOP 292

phase. Although this increase had also a similar onset at all frequencies, its exact 293

duration and the rebound activity varied significantly between the four frequency ranges 294

(Average duration without oscillations: 81± 62 ms, in alpha oscillations: 42.± 59 ms, 295

beta: 28± 46 ms and gamma: 70± 63 ms). Hence, our results indicate that cortical 296

frequency does not influence the reaction time of the BG, although different frequency 297

ranges cause different types of reactions. 298

Furthermore, the model was not able to maintain effectiveness above the baseline 299

after the first 500 ms. An exception to this rule was the case of alpha oscillations, where 300

effectiveness had a second sharp rebound spike, with a surprisingly similar duration and 301
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onset among runs. Indeed, in some trials at these frequencies, selectivity was stronger in 302

this second peak. This bimodal distribution of maximum selectivity between trials could 303

reflect to a similar pattern in behavioural tasks. The latencies of the two peaks in our 304

simulations are consistent with the bimodal distribution of reaction times in distinct cue 305

choice tasks with rats [35]. However, the mechanism that caused this second selectivity 306

peak is not yet fully understood, thus further investigation is required in order to 307

establish its biological importance. 308

Cortical oscillations with low frequencies are required for selection change 309

The steady-state patterns of BG selectivity are also worth closer examination. Their 310

function can be plausibly linked to a number of cognitive operations related to action 311

selection. These include the ability of the BG to maintain a selection, for example 312

during postural activities [34], to easily switch the current selection to an alternative 313

cue, or the level of general alertness. 314

In Fig.4, it is shown that the most critical areas that affect effectiveness and 315

exploration are mainly located in low frequencies while gamma oscillations have no 316

discernible effect. In fact, Fig. 5 shows that gamma frequencies have virtually the same 317

effect on selectivity as no oscillations. 318

To shed more light into the steady-state behaviour of the BG after the presentation 319

of two competing stimuli, Fig.6 illustrates the firing rate of the BG output nucleus, the 320

SNr, during that period and for the complete examined frequency spectrum. 321
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Fig 6. Inhibition of the SNr microscopic channels. Up: Firing rates of the
three simulated microscopic channels in SNr, for various stimulation frequencies when
two channels are stimulated with maximum amplitudes A1 = 7.5 and A2 = 10
spikes/sec respectively. Down: The same figure but for A1 = 5 and A2 = 10 spikes/sec.
Activity in channel 1 is reversely proportional to the level of dopamine in the system.

At low oscillations, and particularly at alpha frequencies, the firing rate of the 322

selected microscopic channel was always close to the firing rate of tonic areas of this 323
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nucleus (25 spikes/sec). When the difference between the competing signals was low, 324

this gave a clear advantage to the less salient channel which, under some conditions, 325

could be directly selected. However, when the competition was less ambiguous, the 326

advantage of the less salient channel diminished. In fact, during cortical oscillations at 327

20 Hz, the two salient channels were treated equally. They were both inhibited to 328

around 50% of their default tonic state and, as a result, both channels remained ready 329

for immediate deployment. 330

This specific beta frequency was of particular importance, since it manifested a 331

critical state in the model. Higher cortical frequencies favoured the most salient channel 332

and, on average, they significantly increased its distinctiveness, while low frequencies 333

below 20 Hz had the exact opposite effect. 334

Finally, gamma oscillations also showed an interesting effect. In experiments with 335

low ambiguity between competing channels and for low levels of dopamine, a selection 336

of the highest salient channel could be maintained. However, under high ambiguity, or 337

when dopamine increased, both channels remained inhibited, i.e. selected. This 338

mechanism, which presumably allows information to flow via the cortico-BG-thalamic 339

loop, might keep both information channels active until more evidence is accumulated. 340

Cortical gamma synchronization has been widely associated with active information 341

processing and feature binding [18,39,40]. Hence, the multi-selection mechanism we 342

observed here might also contribute to these cognitive functions, by promoting 343

integration of multiple information channels and thus allowing coalitions of neural 344

ensembles to be formed. 345

Selectivity portraits are largely maintained in simplified versions of the BG 346

model but not in the minimal model 347

The BG model that was developed in [26] and used in this study has an advanced 348

degree of complexity. Although its behaviour is similar to its biological counterpart, the 349

extent to which our results depend on specific modelling features or how robust they are 350

for small perturbations requires further clarification. In an attempt to address these 351

issues, we classified the individual features of the model according to their impact on 352

selectivity portraits. To do this, we ran the same simulations shown in Fig. 4 but for 353

each set of data points created, a single feature of the model was either disabled, or had 354

its parameters randomized. When necessary, the optimization process for the 355

connectivity of the model was repeated under these conditions, to bring the firing rates 356

of the BG nuclei back to their biologically realistic ranges. The result of this 357

classification is illustrated on Fig. 7. 358

The model variations that were chosen to be shown here are the ones that showed 359

the highest differences in either effectiveness or exploration. To maintain consistency 360

with the previous figures, we ran simulations for both sets of amplitudes 361

A1 = 7.5, A2 = 10 and A1 = 5, A2 = 10 spikes/sec. In all cases, the feature of the model 362

that clearly had the strongest impact on selectivity was the existence of plasticity in the 363

chemical synapses. When plasticity was “off”, the conductance strength of the affected 364

synapses was maintained in a static state, where the connectivity of the model was 365

tuned to represent the baseline activity of the BG nuclei [26]. This synaptic stationarity 366

reduced dramatically the ability of the model to make selections at any frequency, and 367

completely impaired its ability to maintain selection for longer than 500 ms. See the 368

black selectivity curves in Fig. 7A and B. In contrast, the lack of lateral connectivity in 369

the striatum had a significant positive effect in steady-state selectivity, but not 370

transiently. Finally, the selectivity of the model underwent a similar dramatic reduction 371

with plasticity when no NMDA receptors were used in the model (τNMDA = τAMPA), 372

consistent both in transient and steady state. 373

Interestingly, variations in conductance delays in synapses between, or within, the 374
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Fig 7. Comparison of selectivity portraits of reduced versions of the BG model. A: Transient effectiveness and
exploration for various cortical frequencies and zero phase offset between two cortical input signals, for different versions of
the BG model where a single key feature has changed. The difference between the amplitudes of these signals is 2.5 spikes/sec.
B: The same figures but steady-state effectiveness and exploration. C: Box plot of the mean error between the selectivity
behaviour of the default BG model and the examined reduced versions, for various initial conditions in (B). D: The same
effectiveness figure for the minimal BG model.

nuclei did not play an important role in modulating the selectivity portraits. Delays 375

were either completely randomized, maintaining a biologically plausible range, or altered 376

in synapses where our initial choice was based on evidence with conflicts among 377

independent studies. For example, a computational model of the BG microcircuit 378

presented in [30] integrated data previous studies and and concluded that the 379

conductance delay in synapses from the STN to the GPe is on average 5 ms, for 380

GPe-STN also 5 ms, for STN-SNr 4.5 ms, for MSND1-SNr 7ms and for MSND2-GPe 7 381

ms. In the current study, these parameters were taken from [4] where their 382

corresponding values are 2 ms, 4 ms, 1.5 ms 4 ms and 5 ms respectively. In addition, a 383

second example comprised changes only in the delay of the input between the cortex 384

and STN, which represents the extra distance that information signals have to travel to 385

arrive to the hyper-direct BG pathway. This is an important parameter of the model, 386

since it is not yet clear what cortical areas activate the same microscopic channels in the 387

striatum and STN. In both examples, random variations in the synaptic delays did not 388

cause significant variations in the selectivity portraits. 389

Another important observation in the current comparison is the effect of the phase 390

offset ϕ on selectivity during low-oscillations. Fig. 7A and B include curves of average 391

selectivity over various initial conditions, but with ϕ always being fixed at zero. We 392
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chose to show these curves in order to highlight the great impact of the phase offset at 393

low frequencies, which remained consistent among the most versions of the model. As 394

an exemption, when no slowly-decaying synapses are used (τNMDA = τAMPA), this 395

effect disappears. 396

Finally, Fig. 7D illustrates that the minimal version of the BG model produced a 397

completely different behaviour. This can be attributed to a wide range of differences 398

between the two models including the number of neurons and membrane potential 399

dynamics. Yet, even under these simplifications, cortical oscillations at 20 Hz remained 400

the most critical borderline in selectivity portraits that divides the frequency spectrum 401

into two bands with antithetical behaviour (Fig. 4.Aii and Bii). 402

Taking everything into account, our results indicate the important hazards of 403

oversimplification in computational modelling based on spiking neurons, since the latter 404

do not always fall into the same level of biological abstraction. 405

The effect of the phase offset between low-frequency cortical inputs on 406

selectivity portraits 407

So far, we showed that the combination of cortical frequency with the level of dopamine 408

in the system defines how effective the BG circuitry is in discriminating incoming 409

cortical information signals. Oscillators of various frequencies emerge constantly in the 410

cortex, made by task-dependent coalitions of neural areas, or ensembles [20,41]. These 411

flexible neural populations are transiently being engaged (or coupled) and disengaged 412

(or decoupled) in a metastable manner [42], distinguishable by their different relative 413

phases. Evidence indicates that by staying out of phase, these ensembles maintain 414

representations of different entities in working memory [19]. 415

Hence, it is likely that cortical groups that project to different microscopic channels 416

in the level of the BG are phase-locked with a non-zero phase offset, which plays an 417

important role in maintaining the identity of the potential action that is currently 418

represented. Furthermore, since evidence points to the beta frequencies as the main 419

range that mediates the formation of new ensembles [20], it is particularly important to 420

assess the BG behaviour in this range. 421

In our simulations, we found that the phase offset ϕ between coherent cortical 422

signals with different amplitudes can have a strong influence on the effectiveness of the 423

BG, at certain low frequencies, while in gamma band this effect disappears (Fig. 8A). 424

Indeed, the strongest effect was clearly located in the beta range, where the BG 425

effectiveness was significantly enhanced when the phase of the one input signal preceded 426

in time the phase of the second, with a small offset around π
2 . 427

Surprisingly, the sensitivity of the BG to different phase offsets during beta 428

oscillations was largely preserved in all versions of our computational model including 429

the minimal version. Fig. 8A illustrates this similarity which is even more prominent, 430

since the two models produced different selectivity portraits, as a result of their 431

numerous differences. 432

The relationship between phase and the BG function was investigated experimentally 433

by [43], who showed that neural synchrony increased in the Parkinsonian BG for certain 434

phase differences between beta oscillations in STN and GPe. Our computational model 435

has shown that, above the alpha range, most GPe neurons that are part of a phasic 436

microscopic BG channel remain largely silent during this phasic process [26]. Hence, the 437

remaining GPe neurons are vulnerable to entrainment by weaker cortical inputs. As 438

cortical beta oscillations were also shown to maintain coherence throughout the BG 439

circuit, it is likely that the phase difference that Cagnan and her colleagues observed in 440

this study reflected specific phase alignments of two competing cortical populations. 441
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the minimal model presented in Materials and Methods. C: BG effectiveness versus ϕ
at theta frequencies. D: BG effectiveness versus ϕ at gamma frequencies.

Selecting the most salient input does not require coherence between 442

competing populations. 443

Our results highlighted the impact of the frequency and phase of cortical ensembles that 444

project to the BG. In order to draw conclusions regarding the phase difference between 445

competing populations, we confined our simulations to populations of equal frequencies. 446

However, EEG studies show that several different bands can coexist in the same or 447

different regions of the cortex and interact with each other [44]. Hence, to explore the 448

dynamics of BG selectivity that emerge during a combination of two stimuli with 449

non-equal frequencies we ran another set of simulations for frequencies 0 < f1, f2 < 50 450

Hz and random offset ϕ. The resulting portraits are given in Fig. 9. 451

Despite the fact that our BG model contains various synaptic pathways that connect 452

the two neighbouring channels, the SNr activity of each channel was immune to 453

frequency changes in the other (Fig. 9B). Changes in effectiveness and exploration were 454

both largely dominated by the frequency f2 of the strongest input, and across the f2 455

spectrum they followed a pattern similar to the portraits in Fig. 4. The oscillation of 456

the weak channel was able to ‘bend’ this pattern only at beta frequencies, where 457

effectiveness was enhanced. 458

Behavioural predictions 459

Evidence for the existence of a long selection cycle that can be used for 460

evidence accumulation 461

It is assumed by a variety of models that cognitive operations in the brain require a 462

fixed duration [45–47], which is often referred to as a cognitive cycle. Studies have 463

implicated the BG as the central cognitive coordinator which works in a serial manner 464
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steady-state effectiveness and selectivity of the model when f2 = 20 Hz.

with a cycle of 50ms [46,48]. 465

In order to investigate the contribution of our model to this hypothesis, we 466

simulated a two choice task experiment, following the methodology in [31]. The BG 467

model was stimulated with tonic input of 3 spikes/sec for 1 second in order to converge 468

to an “inactive” steady-state where no selection is being made (Fig. 10). Then, a 469

ramping increase, which lasted for 50 ms, changed the cortical firing rate of the one 470

channel to 10 spikes/sec (channel 2 ). A second neighbouring channel received the same 471

increase for the first 25 ms of the ramping time, but it decayed back to its tonic firing 472

rate after another 25 ms (channel 1 ). The cortical activity in these two channels 473

represented the urgency for two competing actions, which in the latter less-salient case 474

was suppressed after some initial evidence accumulation. 475

Although the model of the striatum that has been used in this study is based on the 476

neuron equations presented in [31], we observed a consistent bimodal selectivity pattern 477

that was different from the results in this study. Since our model does not include any 478

feedback connections from other nuclei to the striatum, this difference can be only 479

attributed to the asymmetric inhibition between MSND1 and MSND2 neurons which 480

was examined in [26], but it was not taken into account in [31]. 481

The response of the SNr, the BG output nucleus, to this stimulation comprised a 482

sequence of events. The first event occurred after 50 ms from the presentation of the 483

stimuli in channels 1 and 2. Initially, a rapid increase in SNr firing rate was evoked, 484

which was proportional to the intensity of the stimulus in each channel. This increase 485

maximized after approximately 50 more ms, to be followed by a complete shut down of 486

the selected channel, for the rest of the duration that the stimulus was presented. 487

The timing of this sequence of events was very similar to the experiment in Fig. 5 488

where the salience of the second action remained fixed during stimulation. This effect 489

was shown to be robust and not influenced by the oscillatory patterns of the cortical 490
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input, therefore indicating the existence of a series of cognitive operations that take 491

place during the selection process. 492

As shown in Fig. 10, after approximately 75 ms from the stimulation onset, channel 493

1 ceased to influence the outcome of the selection. But was channel 2 already selected at 494

this particular point of time? Since the SNr does not stop its inhibitory effect to the 495

thalamus before 200ms have passed, it is possible that a large portion of this time is 496

used to accumulate information related to this selection. The fact that extra inhibition 497

is provided to the phasic channels in the thalamus via the SNr, agrees well to this 498

hypothesis. 499

To investigate these questions, as well as the tolerance of the time interval that is 500

required for a successful selection, a new set of experiments was conducted. After the 501

initial 50 ms ramp period, channel 2 received a fixed (non-oscillatory) input that had a 502

random duration between 1 and 750 ms, while channel 1 received the same ramped 503

input as before. In all runs, the distinctiveness Dj of the three simulated channels was 504

recorded across time, in order to see when the maximum point of effective selection can 505

be reached in each case. The results are presented in Fig. 11. 506

Interestingly, we found that the BG model can discriminate between phasically and 507

tonically-active channels only when the stimulus is presented for more than 140 ms 508

(black dashed line in Fig. 11A and B). Longer stimuli are adequate to initiate this 509

selection process, which normally lasts approximately 200 ms (yellow dashed line in 510

Fig. 11A). Therefore, the inhibition of the selected channel in the level of the SNr is 511

always preceded by excess excitation when a successful selection is performed. 512

This long interval, during which some information channels in the thalamus are 513

completely shut by SNr inhibition (Fig.10A), could allow a mental deliberation process 514

to be performed in the cortex, while the latter remains partly isolated from the 515

environment. If during this process a channel looses its salience, as in the case of 516

channel 1 in Fig. 10, its SNr activity will return to a neutral state, thus avoiding any 517

interference with the final selection. Additionally, if no channel is able to maintain 518

strong cortical activity, the process of selection will be cancelled and the excess 519

excitation in the SNr will again prevent the inhibition of the thalamus. These features 520

make the observed behaviour a good candidate mechanism for serial action selection. 521

Furthermore, the model exhibited a strong rebound effect after phasic cortical 522
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stimulation stopped. Within the range of 0 to 110 ms after stimulation, which is 523

represented by a gray zone in Fig. 11A, the SNr inhibition of the most salient channel 524

remained suspended. In fact, after approximately 50 ms the distinctiveness of the 525

stimulated channel peaked again, as the neighbouring microscopic channels regained 526

activity (Fig. 11C). This post-stimulation increase in selectivity was strongly facilitated 527

by the rebound behaviour of the direct pathway, via excitation of MSN neurons in the 528

striatum. As shown in Fig. 10B, the MSNd1 sub-population exhibits a sharp increase in 529

their firing rate, which is inversely proportional to the rate of MSNd2 neurons of the 530

same channel. Since MSNs do not evoke rebound spikes when stimulated in vitro [49], 531

this activity can only be due to the fast decrease of local inhibition and the asymmetric 532

connectivity between the two types of MSN neurons. 533

Although striatal lateral inhibition is crucial for the observed pattern of prolonged 534

selectivity, it is not the only mechanism that causes rebound responses. Fig. 12 535

illustrates the response of the BG model for stimulus of various duration, when the 536

simulated microscopic channels are connected with weak local striatal connections, to 537

cover the possibility that these channels are physically located far from each other in 538

the level of the striatum. 539
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Fig. 11 in a variation of the BG model for weak striatal lateral inhibition that represents longer distance between channels.
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In this case, the model required shorter presentation of the stimulus in order for a 540

selection to be performed (around 100 ms). However, after stimulation stoped, it 541

underwent a refractory period of approximately 200 ms (gray area in Fig. 12A), after 542

which effectiveness peaked again. The fact that the duration of this period matches the 543

initial time that the model needs to execute a selection provides additional indications 544

of a selection cycle, which can be initiated after major changes to the input that the 545

model receives. Although the existence of a cycle is consistent with all data presented in 546

this section, a refractory period was not observable when strong competition took place 547

within the striatum. A possible reason is that as the BG become more effective in 548

distinguishing between channels, they are able to maintain a ready-to-select state, 549

rather than initiating a new cycle, since the winning channel is already inhibiting the 550

surrounding areas. 551

Finally, in order to conclude that the series of events which led to selection in our 552

experiments constitute a cycle, the ability of the model to maintain effectiveness 553

sequentially needs to be established. The steady-state selectivity portraits presented in 554

Fig. 4 demonstrate that a single selection can not be maintained for many cycles of a 555

duration longer than 70 ms (lower than beta frequencies), even if it is significantly more 556

salient than an alternative choice. 557

Hence, to test if such a selection cycle can be repeated indefinitely, we ran an 558

experiment where the three channels of the BG are stimulated sequentially for a fixed 559

period T per single cycle. We found that the BG was able to distinguish the most 560

salient channel via excitation in the SNr when T > 30ms. However, the second phase of 561

the selection process, where a selection is executed via inhibition of the corresponding 562

SNr channel, could not be achieved when T < 140ms. A cycle of 200 ms was able to 563

maintain inhibition to the SNr for approximately 50 ms. These results match with the 564

model’s behaviour in Fig. 12 and verify that the above selection process can be 565

sequenced. 566

Cognitive architectures 567

Although recent cognitive models are consistent with various experimental studies, a 568

strict definition of the timing of a cognitive cycle is a challenging task. For this reason, 569

cognitive architectures do not currently agree on a common timing model that accounts 570

for perception, cognition and action selection [47]. As mentioned before, the BG are 571

considered to be a fundamental element of this triad [48], which makes the model that is 572

described in this study a useful source of information for this quest. Even with an ideal 573

design, however, a BG model is inadequate for capturing the timing of a complete 574

cognitive cycle, since a significantly wider range of brain structures are typically 575

involved in this process. Alternatively, the current model can be used to impose a 576

number of biological restrictions and to establish whether the current cognitive models 577

can be supported by the BG dynamics (Fig. 13A). 578

An important restriction implied by our simulations is that a cognitive cycle should 579

be at least 200 ms, which is the time it takes for the BG to complete a selection cycle 580

spontaneously, measured from the onset of cortical stimulation. Although it is not clear 581

to what extend the perception process can overlap with the activation of the cortical 582

areas that project to the BG directly, it is safe to assume that there is a minimal 583

overlap, given the hierarchical structure of information processing in the cortex [50]. 584

Hence, if no parallelism between different cycles is assumed, our model suggests that a 585

biologically plausible borderline range for the period of a cognitive cycle is from 200 ms 586

to 200 ms plus the time duration required for perception. This restriction contradicts 587

the majority of the currently proposed cognitive architectures, whose timing 588

assumptions can be found in [47] and are summarised below. 589

One of the most popular models examined here is called Adaptive Control of 590
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Fig 13. Timing of action selection in popular cognitive architectures. A: The three fundamental processes in a
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the onset of this process. B: Distribution of durations in each cycle that selectivity is above the threshold 0.22. The black
dots represent expected duration while the box plots show the results of our simulations. C: SNr firing rates when the BG is
stimulated sequentially, with timing that matches three characteristic examples of cognitive architectures. The black lines
represent areas where BG selectivity is above the threshold. The three coloured curves represent different microscopic
channels.

Thought-Rational model (ACT-R). Originally introduced by [51], ACT-R is a modular 591

and symbolic system which proposes that human knowledge comprises declarative 592

memory chunks, and procedural rules. The brain is thought to be coordinated based on 593

these rules via a central production unit, which was later associated with the function of 594

the BG [48]. ACT-R assumes that the time of human perception is approximately 85 595

ms, while 100 more milliseconds are required for the rest cognitive operations before 596

selection. These intervals can be further broken down into 50 ms cycles of production 597

rules, which correspond to information travelling through the BG-thalamo-cortical loop. 598

Finally, since action selection is realized as a production rule cycle, it also lasts for 50 599

ms and, as a result, the time that remains for the BG to process input and execute a 600

selection is 150 ms. 601

While this duration is shorter than the current predictions, the 50 ms cycle of 602

ACT-R is, to some extend, consistent with our model’s behaviour. Fig. 10 illustrates 603

that all significant events in SNr activity that led to selection occurred in 50 ms 604

intervals. Although the means of selection in the BG is typically hypothesized to be 605

inhibition, excess SNr excitation discriminated the most salient microscopic channel 606

prior to inhibition. This behaviour contradicts previous BG models and indicates that a 607

selection is initially made in the first 100 ms, while other necessary operations take 608

place until the selection is executed at approximately 200 ms from the stimulus onset. 609

A second model examined here is called Executive Process/Integrative Control 610

(EPIC) [52]. The architecture and core assumptions of this model are very similar to 611

ACT-R. The main difference in timing between these two models can be found in 612

perception, which in EPIC is thought to last for 50 ms. Hence, the same conflict 613

between ACT-R and our results applies also to this model. 614

Another influential approach was proposed by [53] and is called Learning Intelligent 615

Distribution Agent (LIDA). LIDA is based on Bernard Baars’ model of consciousness 616
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named global workspace theory, according to which, conscious cognitive content is 617

broadcasted to all active brain processes via a globally available workspace (see the 618

theatre metaphor in [54]). LIDA assumes that perception takes 80-100 ms, the rest 619

(unconscious) processing before action selection takes approximately 100-200 ms, while 620

the action selection sub-process takes 60-110ms [47]. The predicted timing of a cognitive 621

cycle proposed here falls within the limits of this theory although, on average, the 622

duration of non-perception processes is 35 ms longer than predicted. 623

Finally, the Model Human Processor (MHP), proposed by [55], is based on the same 624

division of the mind as perceptual, cognitive and motor subsystems (or processors), 625

which are partially coupled and have different durations. A number of studies have 626

concluded that the cycle time for the perceptual processor in young adults is on average 627

100 ms with a range between 50 - 200 ms depending on the task, for the cognitive 628

processor 70 ms with a range between 25-170 ms and for the motor processor 70 ms with 629

a range between 30-100 ms. For a review on this topic, as well as the time changes in 630

older adults see [56]. Again, most of the range of estimated time for cognition and action 631

selection is inconsistent with our results, which ideally require at least 140 ms for the 632

stimulus to be projected to the BG and 60 additional milliseconds for action selection. 633

One issue that was not taken into account in this analysis is a potential parallelism 634

of different cognitive cycles. Although this is a common limitation among the majority 635

of the above models, it is known that the brain can process different tasks using some 636

form of parallelism. Experiments with two different choice tasks performed on a single 637

trial, have highlighted that the processing required for these tasks can overlap, but the 638

reaction time of the second task will depend on the duration of the overlap [57]. This 639

phenomenon, known as the psychological refractory period, is often attributed to the 640

existence of a central bottleneck in the flow of information, that allows parallelism in 641

perception and action execution but not during the time when the action is being 642

selected [58]. As shown previously in this section, our BG model could support such 643

parallel operations which can reduce the period of a cycle down to 140 ms, the time 644

required for stimulus presentation. Thus, given the complex dynamics of decision 645

making which are highlighted with this paradigm, further analysis is required to assess 646

the plausibility of the above cognitive models. 647

In an additional experiment, the three channels of the BG were stimulated 648

sequentially as before, for a cycle T equal to the proposed period of each cognitive 649

model. Stimulation was applied only in the time interval between perception and action 650

selection, to keep consistency between the models. The response of the model was 651

timed, in order to investigate whether it will maintain a selection for the duration 652

assumed by each model (Fig. 13A). To measure selectivity, we used the metric S which 653

is defined in (4) and the model was considered to be actively selecting when S > 0.22. 654

A comparison between original estimations of selection and the resulting durations that 655

the SNr selected channel remained inhibited can be found in Fig. 13B. 656

The plausibility of LIDA was enhanced as the BG model was able to achieve the 657

highest levels of selectivity in all trials, under these time restrictions. The timing of 658

LIDA was also a close match, with almost all trials resulting in durations within the 659

estimated range. Fig. 13C illustrates the average firing rate of the BG output during 660

the trials and allows the comparison between models. Furthermore, the time restrictions 661

of ACT-R and EPIC also allowed the BG model to exceed the threshold of selectivity. 662

However, EPIC was a better match temporally, causing inhibition to the selected 663

channel for 41± 28 ms, and also achieved higher selectivity scores. 664

On the other hand, when the BG model was stimulated with the temporal 665

restrictions of MHP, action selection did not occur at all (Fig. 13C). This indicates that 666

despite the fact that this cognitive model is able to fit to experimental data with a high 667

degree of accuracy [56], its underlying theory may require adjustments to be biologically 668
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consistent. 669

Low-frequency oscillations facilitate the resolution of ambiguity 670

Fig. 14 illustrates in more detail the impact of different cortical frequencies for any 671

amplitude difference between stimuli, which represents all possible stages of a single 672

selection. The one extreme case of A1 = A2 = 10 spikes/sec corresponds to two equally 673

silent inputs, while the combination of A1 = 3 and A2 = 10 spikes/sec reflects the case 674

that only one input has remained above the baseline. According to the selectivity 675

portraits and this figure, at the beginning of a selection and when the correct choice is 676

ambiguous, the BG are able to start exploring the most salient input only when the 677

cortex does not oscillate at low frequencies, or during the combination of high beta and 678

dopamine. 679
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and are illustrated in different colours. B: The same as A for steady-state effectiveness.

On the other hand, if a selection task requires a longer interaction with the BG, low 680

oscillations can maintain effectiveness near the baseline (Fig. 14B), possibly securing 681

extra time for evidence accumulation. Also, an increased level of dopamine in this case 682

has the opposite effect. Interestingly, the system is unable to achieve a high effectiveness 683

score after the initial transient period, even in the case of a clear winner. This indicates 684

that either decision making in this case is achieved on another brain region, or that long 685

interactions for single cognitive tasks are simply not possible. If the former hypothesis is 686

true, low-oscillatory input to the BG could facilitate selection by maintaining a neutral 687

state among phasically-active inputs. Finally, it is worth noting that the gamma band 688

had the same impact with no oscillations in all simulated scenarios. 689

All in all, the non-linear behaviour of the BG effectiveness that is illustrated in this 690

figure, during the transition from ambiguity to certainty, shows the complexity of this 691

circuit, when stimulated with low-frequency oscillations. However, the predictive power 692

of our model is limited by the lack of other important brain regions, which makes 693

difficult to draw conclusions that reflect complete behaviours. 694
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Discussion 695

The gear box metaphor 696

This resulting selectivity portraits of our model constitute an interesting finding as they 697

indicate that the cortex is in fact the structure that determines whether decision 698

making will be performed, while the BG just execute the selected decision policy. 699

Taking this into account, we present a novel hypothesis that views the BG as the 700

“gearbox” of action selection in the brain (Fig. 15), a mechanism that provides various 701

modes of signal selection on demand. Following this metaphor, the level of dopamine 702

can be likened to the “control pedals” of action selection that either stop or initiate a 703

decision (see selectivity portraits in Fig. 4). In the same context, the frequency of 704

cortical oscillations acts as a “gear lever”, that instead of controlling the type and 705

direction of thrust that the throttle provides to an automobile, it dictates the degree to 706

which dopamine can trigger a decision, as well as what type of decision this would be 707

(either exploit, stop or explore). 708

Fig 15. The gearbox analogy.

This framework provides justification to a number of experimental findings. Cortical 709

beta is found to increase when a postural challenge is anticipated [59]. Since cortical 710

beta, at around 20 Hz, can bring the BG in an neutral state that cancels out 711

effectiveness and exploration, it can be viewed as a frequency that causes a temporary 712

deactivation of the action selection system when the current action needs to be 713

maintained. In addition, the transient effects of selectivity agree well with the duration 714

of increases in extracellular dopamine after SNc discharges in vivo recordings of the rat 715

striatum in [60,61]. A single discharge increases dopamine for approximately 200 ms 716

while an SNc burst causes an increase that lasts about 500− 600 ms. During this 717

interval, our model can almost always select the most salient action (see results) and it 718

can be significantly benefited by an increase in dopamine. However, the same selection 719

can be maintained after this interval only if the level of dopamine decreases (Fig. 4Bii). 720

One advantage of using this metaphor is that it highlights a number of similarities 721

between these two highly complex and rather unrelated dynamical systems and thus 722

provides an intuitive way of viewing the biological mechanism of action selection. 723

Relation with psychophysical studies 724

Our model’s predictions are also consistent with a wide range of experimental studies on 725

mental chronometry. Although reaction times (RT) of young adults in simple tasks are 726

in the order of 190− 220 ms [62], these reactions can be simply stimulus-driven [63] and 727
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thus, they may bypass the action selection system of the brain. In contrast, when 728

different responses are required depending on the class of the stimulus, choice reaction 729

times (CRT) are found to be significantly longer, on average 500 ms in two-choice 730

tasks [38], between 390− 470 ms when the subjects aim for high speed, between 731

450− 610 ms when the aim is high accuracy [64] and at a minimum of 200 ms [36] below 732

which, responses are random. 733

By subtracting the average RT that is required by an individual to perform a simple 734

task from the CRT of a specific choice task, we can estimate the time that is spent for 735

the cognitive processing of the choices. This is found to vary significantly across 736

different age groups, with an average range between 200− 400 ms and minimum at 737

approximately 150 ms [38]. The latency of our BG model is comparable with the lower 738

values in the range of central processing times found in this study. This is an acceptable 739

result given that the simulated task that was performed here constitutes arguably one of 740

the simplest possible selection scenarios, and that the pathway of voluntary actions that 741

involves the BG may also comprise a number of regions, as reviewed in [63], that are not 742

simulated here. 743

Furthermore, a range of studies links the duration of stimulus presentation with 744

choice task performance in mammals. In [65], monkeys were presented with visual cues 745

of varying duration, and their accuracy on a two choice task was recorded. When the 746

stimulus was clear, their performance increased almost linearly from near-random in 747

viewing time of 100 ms, up to 200 ms and then there was a minimal improvement. In a 748

GO odor task with rats, [66] showed that performance decreases to near random if the 749

odor sample is presented for 100 ms or less, unless the subjects were anticipating the 750

identity of the stimuli or the time of the response. 751

Alpha and theta oscillations act as a BG mechanism to reset 752

selection and explore alternative actions 753

In the literature, there is cumulative evidence that strong alpha power is able to inhibit 754

task-irrelevant regions in the cortex and thus control information flow [15,20,67]. This 755

theory, which is known as gating by inhibition [68], proposes that strong alpha activity 756

is caused by GABAergic interneurons, which silence neuronal firing by providing a 757

pulsed inhibition. Although a recent MEG study provides initial evidence that links 758

gamma peaks to alpha troughs in the temporal cortex [69], a number of important 759

questions still remain unanswered. For example, it is not yet clear to what extend the 760

phase-amplitude coupling that was observed in this study was a result of local 761

GABAergic inhibition, or other brain regions, and whether this mechanism can operate 762

in the same spatial scale that is required to inhibit complete neural ensembles. 763

Based on our simulations, we propose that alpha-induced inhibition of neural 764

populations is mediated by the selection circuit of the BG. In particular, we found that 765

alpha and theta cortical frequencies stop the selection of the strongest input completely 766

and instead promote the selection of less salient areas. This exploratory behaviour was 767

independent of amplitude difference between the two inputs, occurred transiently and 768

remained active, even after a long exposure to the stimuli (see selectivity portrait in 769

Fig. 4). In addition, the robustness of this effect to different background frequencies was 770

established in Fig. 9D. When the most salient input was oscillating at alpha rhythms 771

with frequency around 10 Hz, a second weak oscillatory input was always favoured, 772

especially when its frequency was not in the beta range. 773

This view of cortical alpha is consistent with a number of experimental studies. [70] 774

recently showed that effective connectivity from the cortex to the nucleus accumbens, a 775

part of the striatum, increases during alpha oscillations, and reverses during theta. 776

Also, [20] presented evidence where beta synchronization in the prefrontal cortex 777
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mediated the formation of neural ensembles that represented procedural rules, while 778

alpha synchrony increased in the ensembles that represented alternative rules. This led 779

the authors to suggest that ”beta-frequency synchrony selects the relevant rule 780

ensemble, while alpha-frequency synchrony deselects a stronger, but currently irrelevant, 781

ensemble”. 782

While alpha importance has been already discussed, the role of theta is less clear. 783

Interestingly, the period of a theta cycle (150− 250 ms) fits well to the timing of an 784

action selection cycle found in our results, and it is within the limits of the full cycle of 785

the majority of the proposed cognitive models. However, in our simulations, providing 786

strong stimulation the model for less than 140 ms did not evoke a selection unless 787

multiple inputs were presented sequentially. Could this be an indication that cortical 788

theta brings the BG to its extreme limit of time efficiency, below which no selection can 789

be achieved? In behavioural experiments, theta is found to increase in the rat striatum 790

during a decision-making task [71], while in humans, theta in STN increases during 791

sensorimotor conflicts [72]. 792

Cortical frequency is a better predictor of the 793

exploration-exploitation trade-off than dopamine 794

It has been suggested that tonic dopamine levels in the striatum encode the degree of 795

which the brain selects the action with the most predicted outcome, over the exploration 796

of an alternative less-safe choice, by modulating activation of the direct and indirect BG 797

pathways [73]. Fast manipulation of the trade-off between exploration and exploitation 798

is critical for behavioural flexibility in dynamic environments [74]. This hypothesis is 799

supported by evidence with genetically modified mice, where increased dopamine levels 800

resulted in selections that were less influenced by the potential cost of each choice [75]. 801

Here, the ratio between exploration and exploitation can be estimated via the ratio 802

between distinctiveness of the most salient microscopic BC channel and distinctiveness 803

of the rest active channels, that is, the ratio between effectiveness and exploration as 804

defined in (3) and (5). 805

As shown in Fig. 4, we found that cortical rhythms play a more decisive role in this 806

trade-off than the level of dopamine, although the combination of both cortical 807

frequency and dopamine was crucial for the final selection. Whereas alpha and theta 808

frequencies clearly promoted exploration over exploitation, unless uncertainty is very 809

low, and the lack of them had the opposite effect, the level of dopamine could be largely 810

viewed as an extra boost that triggers the selected action. In particular, during cortical 811

beta oscillations of approximately 20 Hz, the system was in a critical state below which 812

exploration was favoured over exploitation. However, at this very critical point and 813

under high uncertainty, the level of dopamine was the decisive factor of the trade-off. 814

This complex interaction of dopamine with action selection justifies the lack of a 815

widely accepted model, despite the fact that dopamine is evidently implicated in both 816

exploration and exploitation [76]. On the other hand, cortical oscillations have also 817

started to receive some attention on this topic. In [21], Cavanagh et al found a strong 818

correlation between theta oscillations in frontal regions and uncertainty-driven 819

exploration. This led the authors to the hypothesis that frontal areas of the cortex take 820

over action selection from the BG in tasks with high uncertainty. Our results however 821

show that the BG could potentially cope the need for exploratory behaviour, in case 822

that frontal areas ‘request’ it because high uncertainty is detected. 823
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