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Abstract 	
 
Several publications have reported structural changes in the brain of synesthetes compared to 
controls, either local differences or differences in connectivity. In the present study, we 
pursued this quest for structural brain differences that might support the subjective experience 
of synaesthesia. In particular, for the first time in this field, we investigated brain folding in 
comparing 45 sulcal shapes in each hemisphere of control and grapheme-color synesthete 
populations. To overcome flaws relative to data interpretation based only on p-values, 
common in the synesthesia literature, we report confidence intervals of effect sizes. 
Moreover, our statistical maps are displayed without introducing the classical, but misleading, 
p-value level threshold. We adopt such a methodological procedure to facilitate appropriate 
data interpretation and promote the New Statistics approach. Based on structural or diffusion 
magnetic resonance imaging data, we did not find any strong cerebral anomaly, in sulci, tissue 
volume, tissue density or fiber organization that could support synesthetic color experience. 
Finally, by sharing our complete datasets, we strongly support the multi-center construction 
of a sufficient large dataset repository for detecting, if any, subtle brain differences that may 
help understanding how a subjective experience, such as synesthesia, is mentally constructed. 
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1. Introduction  

 
Various synesthetic experiences are reported by a potentially underestimated fraction, 

possibly up to about 20%, of the healthy population (1). Synesthetes experience additional, 
systematic, arbitrary and involuntary associations. For instance, they may associate a specific 
color to some “graphemes” (the visual form of numbers or letters). To understand this 
subjective experience, we may hypothesize that some structural differences exist in the brain 
of synesthetes compared to controls that trigger and support these associations. In particular, 
the cross-activation theory considers increased connectivity between proximal regions; for 
grapheme-color association between areas involved in color perception and areas involved in 
grapheme recognition (2). Several studies have searched for such extra-numerous connections 
using structural Magnetic Resonance (MR) images or Diffusion Tensor Imaging (DTI) (see 
(3, 4) for reviews). Indeed, structural imaging coupled with Voxel Based Morphometry 
(VBM) method (5, 6) appears as a powerful tool for detecting possible differences in the brain 
of synesthetes compared to controls. VBM assesses local (voxel-by-voxel) differences 
between populations of interest in tissues volume, mainly grey matter (GM) and white matter 
(WM), (7-11). With DTI one can measure fractional anisotropy (FA) and then track again 
voxel-by-voxel possible differences of structural connectivity in synesthetes’ brains (9, 12-
15). However, despites many reports of those, no structural differences might exist in the 
brain of synesthetes. Indeed, the careful examination of the reported differences concerning 
19 studies on morphometry (n=11) and structural connectivity (n=8), indicates that no clear 
view emerges from the literature and suggests that the observed differences are false positives 
due to methodological issues (Hupé and Dojat, 2015). 

 
The present paper pursues this quest for structural differences in the brain of 

synesthetes. Firstly, we replicated our previously published study (8) on a new, larger, 
population of grapheme-color synesthetes. We obtained different results from those 
previously reported 1) in re-analyzing our initial data with an updated version of the initial 
VBM pipeline used, 2) in analyzing the new synesthete and control populations data and 3) in 
pooling the two sets of data. Second, to complement this morphometric analysis, we 4) 
searched for possible structural connectivity differences based on Mean Diffusivity (MD) and 
FA extracted from DTI data. Finally, and for the first time on a population of synesthetes, we 
5) explored the possible anatomical differences at the level of the sulci architecture using a 
sulcal-based morphometry approach. In order to prevent from the severe flaws of null-
hypothesis significance testing (NSHT) (16) and the difficult control of false positives (17), 
we adopted in this paper, the new statistic approach (18) reporting effect sizes (ES) and 
confidence intervals (CI). Moreover, statistical maps were displayed without introducing the 
classical p-value level threshold, limiting data interpretation bias (19). None of our analyses 
allowed us differencing synesthete brains from control brains, based on either standard tissue 
volume, tissue density or fiber organization criteria, or newly introduced brain sulci 
descriptors. Following these analyses investigating different brain features, we conclude that a 
larger sample size for appropriate statistical power is mandatory to reveal if any structural 
differences exist in the brain of synesthetes compared to controls. Multi-center data sharing is 
the realistic means to increase the synesthete population size to study. To launch such a data 
sharing process, we render our data publicly available (see Discussion Section). 
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2. Materials and Methods 
 
2.1 Data 

We conducted two studies involving synesthetes, one during the period from 2010 to 2011, 
Study 1, described in (8) and a more recent study, Study 2. These studies were performed 
following project approval by the Institutional Review Board of Grenoble and written consent 
from the subjects. All subjects had normal color perception on the Lanthony D-15 desaturated 
color test (Richmond products). Synesthetic associations were strictly controlled and 
consistency checked using a modified version of the Synaesthesia Battery test (20). 
 

2.1.1 Study 1  
Ten grapheme-color synesthestes and twenty-five controls participated in this study. For each 
subject, we acquired structural images on a Bruker 3T Medspec S300 whole body scanner 
equipped with a birdcage head coil using a T1-weighted 3D MP-RAGE image consisting in 
176 sagittal partitions in two segments with an image matrix of 256x112 (read x phase). 
Further imaging sequence parameters were: TR/TE/TI: 16/4.96/903 ms, excitation pulse 
angle: 8°, acquisition matrix: 176x224x256 (x,y,z), fast phase encoding in anterio-posterior 
direction (112 steps per RAGE train, 2 segments), slow phase encoding in left-right direction, 
isotropic nominal resolution: 1mm, BW=130Hz/Px, readout in caudo-cranial direction, 
number of averages: 1 and total measurement time: 14min40s. 
 

2.1.2 Study 2 
Twenty-one grapheme-color synesthetes and twenty-six controls participated in this study. 
For each subject we acquired a high-resolution structural MP-RAGE image on a 3T Philips 
Intera Achieva, using a 32 channels coil, 180 sagittal slices of 256x240 (read x phase). 
Further imaging sequence parameters were: TR/TE/TI: 25/3.7/800 ms, excitation pulse angle: 
15°, isotropic nominal resolution: 1mm, BW=191Hz/Px, readout in anterio-posterior 
direction, number of averages: 1, sense factor anterio-posterior: 2.2, right-left: 2 and total 
measurement time: 9min41s. We also acquired diffusion-weighted images (DTI) using a DWI 
sequence (120x120 matrix size with 70 contiguous transverse slices, FOV= 240mm, 2x2x1.75 
mm3 spatial resolution, TR= 6845 ms, TE=667 ms, FA= 90°, Sense Factor=2 to improve the 
signal to noise ratio, total acquisition time: 18 min). The encoding protocol included 60 
different non-collinear directions (gradient factor b=1000 s/mm2), and one image without 
diffusion weighting used as reference volume.  
For both studies, image acquisitions were performed at Grenoble MR imaging facility 
IRMaGe. 

 
2.2 Data processing of structural images 
 

 2.2.1 Voxel Based Morphometry (VBM) 
We analyzed the structural images using the VBM approach (5) where region-wise volumetric 
comparison among groups of subjects is performed. It requires all individual images to be 
registered in the same space and segmented in different tissue classes. Then, registration 
parameters and a mixture of Gaussian distributions for brain tissue modeling have to be 
estimated. A generative approach has been proposed for such a model parameter estimation 
that alternates among classification, bias correction and registration (21). We used the data 
processing pipeline VBM8 (http://www.neuro.uni-jena.de/vbm/) that implements this 
approach as a toolbox extension of SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) 
running with Matlab language. Compared to the previous one, this new version mainly 
improves the segmentation step in removing noise (22), estimating partial volume effects 
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(23), taking into account local intensity variations and ensuring local coherency of tissue 
labels (24). A joint segmentation-registration approach is used to segment and warp the 
individual tissue probability maps into a common study-specific reference space. Then an 
affine registration may be applied for transformation into the Montreal Neurological Institute 
(MNI) referential space. Each structural image is segmented by attributing to each voxel a 
probability of being in white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). 
This procedure uses a maximum a posteriori estimation to take into account local variations 
of intensity and estimates a mixture model composed of several Gaussian distributions 
notably for pure tissue (3 gaussians) and partial volume effects (2 gaussians). To impose local 
coherence, a markovian approach introduces spatial prior into the model estimation. The high-
dimensional DARTEL (21) registration algorithm iteratively computes deformation fields for 
warping each individual image to the common space. To counterbalance local deformations, 
expansion, or contraction, induced by highly non-linear registration and affine transformation, 
the tissues’ probability values computed were scaled by the Jacobian determinants of the 
deformations (‘‘modulation step’’ (25)). Finally, following the recommendations of (26) for 
decreasing the false positive rate, we smoothed these ‘‘modulated’’ tissues probability maps 
using a 12-mm full-width at half-maximum Gaussian kernel (same pattern of results with an 
8-mm kernel). A visual control of the sample homogeneity as implemented in VBM8 was 
realized based on the covariance between the images. No outlier was detected. 
 

2.2.2. Diffusion Tensor Imaging 
DTI images were first denoised (27) and preprocessed using FSL software 
(http://www.fmrib.ox.ac.uk/fsl/). The images were corrected for geometric distortions caused 
by Eddy currents and intensity inhomogeneity. The diffusion tensor was estimated, and the 
local diffusion fractional anisotropy (FA) and mean diffusivity (MD) parameters were 
calculated for the entire brain in each participant. These parameters were computed from the 
three estimated eigenvalues describing the water diffusion in three orthogonal directions. FA 
represents the coefficient of variation of these eigenvalues interpreted as the directionality of 
water diffusivity into fibers (coherence). MD is the mean of the eigenvalues. These 
parameters are myelination markers, serving as measures of tissue density for MD and fiber 
organization for FA. For each participant, the non-diffusion weighted image (T2-weighted) 
was realigned to the corresponding structural image. The computed realignment parameters 
were applied to the corresponding MD volumes to be aligned to the structural image. Then 
they were warped using the deformation field previously computed for this image for warping 
to the common space, scaled by the Jacobian determinants of the deformations and smoothed 
(12 mm FWHM). Subsequently, MD volumes were analyzed on a voxel-by-voxel basis 
similarly to VBM-GM/WM volumes analysis (28). Because such a voxel-based analysis does 
not ensure a proper alignment of individual fiber tracts, a Track-Based Spatial Statistics 
(TBSS) was also processed (29). Individual FA data were nonlinearly realigned and a mean 
FA image was computed and used to define a mean FA skeleton on which all individuals FA 
data were projected.  
 

2.2.3 Sulci extraction and morphometry 
“Sulcus-based morphometry” provides measures of the cortical fissures of the brain, which 
have been found to be associated with brain maturation (30), brain alteration with age or 
pathology (31, 32) and correlated in a population of twins (33). We investigated sulci 
morphometry in controls and synesthetes based on shape descriptors (width, length, mean 
depth, and total surface area) analyzed for each sulcus. We used Freesurfer 
(https://surfer.nmr.mgh.harvard.edu) to classify grey and white matter tissues and 
Morphologist 2013, an image-processing pipeline included in BrainVISA 
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(http://brainvisa.info/web/index.html), to quantify the sulcal descriptors. Briefly, the 
Morphologist 2013 segmentation pipeline computes a brain mask, imports brain tissues (gray, 
white matter and CSF) classified by Freesurfer, performs gray/white surface identification and 
spherical triangulation of the external cortical surface of both hemispheres. Sulci were then 
automatically labeled according to a predefined anatomical nomenclature (34). The number of 
voxels on the junction between the sulcal mesh and the brain hull gives a measure of sulcal 
length. The mean depth is defined as the mean of geodesic distances computed for all voxel 
belonging to the sulcal fundus, from the bottom of the sulcus to the brain hull, along the 
cortical mesh. The surface area is the total area of the sulcal mesh. The sulcal width is 
obtained by dividing the enclosed CSF volume by the sulcal surface area; see (35) for details. 
We considered that a sulcus could not be measured for a given subject if the four measures 
(length, width, surface and depth) were equal to zero (that was the case for most zero values). 
Such cases appeared when individual variability was too high compared to the reference 
population. The pattern recognition algorithm then failed to sulcus identification meaning that 
the corresponding sulcus was absent for this subject or not measurable. When a sulcus was 
not measured for more than 11% of subjects either in the control group or in the synesthete 
group (that was, in either 5 subjects in the control group or 3 subjects in the synesthete 
group), it was removed from the analysis (it does not make sense to compare different sulci if 
tested on too many different subjects). When a sulcus was missing for a subject, we attributed 
the median value of all other subjects (controls and synesthetes, left and right sides, 
independently) for that sulcus. The interpolated value was used only for the sum and the 
subsequent normalization. We normalized each measure by dividing the within subject sum of 
the sulci independently for length, depth, surface and width. We computed Pearson’s 
correlation between left and right sulci values to consider pooling the right and left values or 
not. 
 

2.3 Statistical analysis  
 

2.3.1 Structural images 
We compared the regional tissue probability maps (modulated and smoothed as described 
above) of controls and synesthetes by performing a voxel-wise univariate analysis using the 
general linear model (GLM) as implemented in SPM8. Because the global brain size can vary 
across subjects, we included brain volume as a factor of noninterest in our statistical tests. In 
order to calculate the global brain volume, we used the modulated images by summing 
together the GM and WM probabilities of all voxels. To avoid possible edge effects between 
different tissue types, we applied an absolute intensity threshold mask of 0.1 on each tissue 
probability. For Study 1, average age slightly differed between the 2 groups (29.8 vs. 36.4, 
years p= 0.082), and our synesthete group had more women (7/10 vs. 10/25 in our control 
group). Both factors may generate local differences not related to synesthesia, so we also 
included sex and age as factors of noninterest. In Study 2, the two groups were not different in 
term of age (28 vs 28.4 years) and sex (18/21 vs 19/26 in our control group). However, in 
order to compare the two studies, we adopted the same model including sex and age as 
cofactors at the expense of the number of degrees of freedom.  
 

2.3.2 Diffusion Tensor Imaging 
For MD data, we performed (Study 2) a voxel-wise univariate analysis using a GLM model 
similar to that used for tissue analysis. For FA data, we compared FA projections onto the 
mean population skeleton between synesthetes and controls using voxel-wise permutation 
tests (36). We performed cluster-based statistics with the "threshold-free cluster 
enhancement" (TFCE) approach as implemented in FSL “randomize” function (37), without 
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any spatial smoothing.  
 

2.3.3. Sulci 
We compared the distribution of sulcal length, mean depth, surface and width between the 
two populations across both studies for right and left hemispheres. We computed 99.9% 
confidence intervals for the group difference using a linear model, with age and sex as 
covariates. We chose quite arbitrarily the 99.9% value to partially account for multiple 
comparisons (4 measures in 61 sulci) while avoiding being too conservative, because of 
possible correlations between measures (a 99.9% CI corresponds to a 95% family-wise CI for 
50 independent comparisons). We could not perform multivariate analyses because of the 
large number of missing values (not all sulci could be identified in every subject). 
 

2.3.4 Data exploration 
To compare with our results published in 2012 we considered the family wise error (FWE 
correction for multiple comparison) measured at the cluster level. We considered two regions 
of interest (spheres, radius 6 mm) located at the coordinates of the clusters found in (8) that 
survived a strict FWE correction, in the right retrosplenial cortex (RSC) and the left superior 
temporal sulcus (STS). Two additional regions in the fusiform gyrus and in the parietal cortex 
were considered. For each sphere, we computed in both studies WM local volume estimated 
using our general linear model for the two groups. Recently Eklund et al. (17) showed that 
such a multiple comparison correction procedure did not guarantee at all the control of false 
positive at a cluster level. Besides standard p-values for comparison with published studies, 
we reported effect sizes (ES) and confidence intervals (CI) to facilitate appropriate data 
interpretation in context. Our interpretation was anyway based on non-thresholded maps. For 
sulci analysis, no previous study was reported and then NHST was not considered. Moreover, 
to facilitate data interpretation, our statistical maps are displayed without introducing the 
classical p-value level threshold. We adopt the dual-coding approach proposed in (19) where 
differences in effect size (beta estimates) are color-coded and associated t-statistics mapped to 
color transparency.  
 
3. Results 

 
3.1 Reproducibility tests  
 

3.1.1 Study 1 
We compared the local distributions of WM and GM in the brains of 10 synesthetes with the 
brains of 25 controls. We first used a cluster forming threshold at p<0.0001, similarly to (8) 
but we did not obtain any clusters of at least 70 voxels size. At a more lenient threshold 
(p<0.001) we found local increases of WM in synesthetes compared to controls in the right 
retrosplenial cortex (Figure 1A) and the left anterior middle temporal gyrus (Figure 1B), 
similarly to (8) (see their Figure 6). However, these clusters were found at a statistical 
threshold non-corrected for multiple comparisons (see Table 1). At this threshold new clusters 
appeared (see Table 1) in the right inferior parietal lobe (Figure 1C) and in the vicinity of 
color-sensitive regions of the fusiform gyrus (8, 38-40) (posterior cluster in Figure 1B).  
These two regions were close to some reported results (9-11). In coherence with the 
previously published analysis of these data (8) we did not find, at our statistical threshold 
(p<0.001 voxel-wise, cluster extent k > 70), any increase of WM for control subjects 
compared with synesthetes as well as no difference either way in GM. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 2, 2017. ; https://doi.org/10.1101/196865doi: bioRxiv preprint 

https://doi.org/10.1101/196865


	 8	

 
 
Figure 1. Local increases of WM in synesthetes compared with controls. Detected changes 
are projected onto the study-specific structural image transformed in the MNI space. (A) 
Increase in the right RSC (14, -57, 6). (B) Increase in the left anterior middle temporal gyrus 
(Blue cross: -56 -15 -14). Note the second cluster in the posterior part located in the fusiform 
gyrus (-26 -73 -12). (C) Increase in the right inferior parietal lobe (58 -31 28). All coordinates 
are in MNI space expressed in mm. Cluster-forming threshold p<0.001 uncorrected, t> 3.4, k 
> 70. T scale is between 3 and 5.5. Neurological convention (Right = Right). 
 
Figure 2 shows the set of structural differences without the introduction of a threshold.  
 

 
 
Figure 2. The structural differences between the two groups are projected without the 
introduction of a threshold onto the study-specific structural image transformed in the MNI 
space. Same slices, convention and cursor positions as in Figure 1. Beta difference scale is 
between -0.15 and 0.15 and mapped to color hue. T statistic magnitude is mapped to color 
transparency.  
 
Table 1 
Local increase of WM in synesthetes (n=10) compared with controls (n=25) 

 Cluster 
size 

(mm3) 

x 
(mm) 

y 
(mm) 

z 
(mm) 

Max T 
value 

FWE-
corr 

       
Right 
Inferior 
parietal 
lobe 

911 58 -31 28 5.43 0.141 

Right 
RSC 

489 14 -57 6 4.54 0.334 

Fusiform 
gyrus 

187 -26 -73 -12 3.96 0.365 

Left STS 86 -56 -15 -14 4.10 0.779 
Note: (x, y, z) = MNI coordinates of the center of each cluster. Max T value is the voxel 
maximum in the corresponding cluster. FWE-corr is the P-value corrected for the FWE at the 
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cluster level. We obtained these 4 clusters when thresholding P<0.001 for individual voxels, 
with a minimum cluster size of 70 mm3.  
 
Figure 3 shows the individual data (denoted by circles for this first study) for the four regions 
of interest identified in Figure 2, using 6-mm spheres centered on the peak coordinates of 
Table I, as well as the 99.99% (corresponding to the arbitrary voxel-vise threshold of our 
statistical map used to identify clusters). Confidence Intervals (CI) of the group difference. By 
construction, the extent of each CI was expected to be above zero, since each value is the 
average of voxels with p-values < 0.001 for the group comparison. Note however that for 
small clusters (like in the left STS) this was not necessarily the case since the 6-mm sphere 
may extend beyond the cluster of small p-values voxels. 

 
 
Figure 3: WM in synesthete and control groups, and 99.99% CI for the group difference, for 
four regions of interest centered in the right RSC, left STS, the right inferior parietal lobe and 
the left fusiform gyrus (coordinates in Table 1), for the subjects of study 1, study 2, and all 
subjects together. The WM tissue probability at each voxel was estimated by the linear model 
that included total brain volume, age and sex as covariates. 
 

3.1.2 Study 2 
We compared the local distributions of WM and GM in the brains of 21 synesthetes with the 
brains of 26 controls. Figure 4 shows the structural differences of WM without introducing 
any arbitrary threshold, in the same slices as for Study 1. Figure 4 (crosses) indicates that 
structural differences are unlikely (or too small to be relevant and detectable) in the regions of 
interest defined in the first study (see also the CI of group differences for Study 2 in Figure 3). 
Using conventional 5% family-wise error risk, we did not find any ground (increase or 
decrease) for rejecting the Null hypothesis of no difference between the two groups. We 
obtained the same result for GM analysis. Following the protocol proposed by Kurth et al (41) 
we searched to assess whether the voxel-wise gray matter asymmetry in synesthetes group 
was significantly different from the voxel-wise gray matter asymmetry in control group No 
differences were found using a standard p<0.001 for individual voxels. 
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Figure 4. Study 2. Structural differences between the two groups are projected without the 
introduction of a threshold onto the study-specific structural image transformed in the MNI 
space. Same slices, convention and cursor position as in Figure 1. 

 
3.1.3 Pooling Data from Study 1 and Study 2 

Here we considered pooling data from Study 1 and Study 2 (synesthetes = 31, controls = 51). 
Because data were acquired on two different scanners, 3T Bruker for Study 1 and 3T Philips 
for Study 2, we were particularly meticulous with the quality check after the preprocessing 
including realignment and segmentation steps. We used the module available in VBM8 for 
checking homogeneity of the segmented volumes GM and WM separately using covariance. 
We added in our general linear model a fourth covariable of non-interest corresponding to the 
two different conditions of data acquisition. Figure 5 shows all the WM differences without 
introducing any arbitrary threshold. Figure 3 shows the Confidence Intervals for the regions 
considered in Figures 2 and 4.  Two clusters emerged at our threshold, none of them allowing 
us to reject the Null Hypothesis at the 0.05 FWE level (see Table2). 
In order to provide an idea of the power of these “Null” results, one may consider the upper 
(for increases) and lower (for decrease) limits of the CIs. For the increases in synesthetes 
relative to control reported in Figure 3, the largest differences of WM probability compatible 
with our measures in the 4 regions of interest were about 0.05 (based on a 99.99% CI). In the 
voxels with the maximal statistical differences (maxT = 4.39 and minT=-4.90) the upper and 
lower limits of the WM probability differences were respectively 0.0555	and	-0.0525.	
 

 
Figure 5. All the structural differences between the two groups are projected without the 
introduction of a threshold onto the study-specific structural image transformed in the MNI 
space. Same slices, convention and cursor position as in Figure 1. 
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Table 2 
Local increase of WM in synesthetes (n=32) compared with nonsynesthetes (n=32) 
 

 Cluster 
size 

(mm3) 

x 
(mm) 

y 
(mm) 

z 
(mm) 

Max T 
value 

FWE-
corr 

       
Right Superior 
temporal lobe 

1084 68 -37 18 4.13 0.127 

Parahippocampal 
gyrus 

227 -24 -73 -15 3.81 0.566 

Note: (x, y, z) = MNI coordinates of the center of each cluster. Max T value is the voxel 
maximum in the corresponding cluster. FWE-corr is the P-value corrected for the FWE at the 
cluster level. We obtained these 2 clusters when thresholding P<0.0001 for individual voxels, 
with a minimum cluster size of 70 mm3. 
 

3.2 DTI  
We compared the local distributions of MD in the brains of 21 synesthetes with the brains of 
25 controls. We did not to find any “statistically significant’ difference using the using the p-
value based procedure as done for WM and GM tissue (Cluster-forming threshold p<0.001 
uncorrected, t> 3.4, k > 70). Figure 6 shows all the differences without the introduction of an 
arbitrary threshold at the same spatial coordinates we used for brain tissue comparison.  
 

 
Figure 6. All the mean diffusivity differences between the two groups are projected without 
the introduction of a threshold onto the MD image of one subject transformed in the MNI 
space.  
 
We also did not find any “statistically significant” difference of FA data, computed using 
permutation tests on TFCE cluster-based statistics (see Methods). An exploratory analysis 
(i.e. p<0.05 without correction for multiple comparisons) led to three clusters of at least 10 
voxels of increase in FA, reported in Table 3, and decrease in FA, reported in Table 4, for 
synesthetes compared to controls. In average the detected tracks represented 9% (114599 
voxels) of the brain volume. 
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Table 3 
Local increase of FA in synesthetes (n=21) compared with controls (n=26) 
 
  Cluster 

size 
(mm3) 

x 
(mm) 

y 
(mm) 

z 
(mm) 

Max T 
value 

FWE-
corrected 

       
Right frontal cortex 101 26 27 5 4.74 uncorrected 
Right caudate nucleus 26 8 -2 9 4.41 uncorrected 
Right post central gyrus 10 26 -34 56 4.11 uncorrected 
Note: (x, y, z) = MNI coordinates of the center of each cluster. Max T value is the voxel 
maximum in the corresponding cluster. We obtained these 3 clusters with a non-parametric 
permutation testing analysis when thresholding p<0.05 for individual voxels uncorrected for 
multiple comparison. 
 
 
 
Table 4 
Local decrease of FA in synesthetes (n=21) compared with controls (n=26) 
  Cluster size 

(mm3) 
x 

(mm) 
y 

(mm) 
z 

(mm) 
Max T 
value 

FWE-
corrected 

       
Middle frontal gyrus 16 32 35 1 3.86 uncorrected 
Left superior frontal gyrus 14 -18 50 3 3.48 uncorrected 
Right inferior frontal gyrus 14 34 35 5 3.8 uncorrected 
Note: (x, y, z) = MNI coordinates of the center of each cluster. Max T value is the voxel 
maximum in the corresponding cluster. We obtained these 2 clusters with a non-parametric 
permutation testing analysis when thresholding p<0.05 for individual voxels uncorrected for 
multiple comparison. 
 
 
Figure 7 shows the difference when applying a threshold (p<0.05, panels A to C) and without 
the introduction of an arbitrary threshold (panel D). No clusters survived the application of a 
correction for multiple comparisons (TFCE) for p<0.05 
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Figure 7. FA data. A, B, C: Increase in FA (in yellow-red) for synesthetes vs controls 
(p<0.05) projected onto the mean FA image (white matter skeleton in green). D: All FA 
differences between the two groups without the introduction of a threshold. 
 
Figure 8 shows the distributions of FA mean values in the clusters identified in Tables 3 and 
4, in controls and synesthetes, as well as the 95% Confidence Intervals of the group difference 
(no correction for multiple comparisons, age and sex were included as covariates). 
 

 
 
Figure 8: FA in synesthete and control groups, and 95% CI (no correction for multiple 
comparisons) for the group difference, for the six clusters identified in Tables 3 and 4 (same 
order); the first three graphs correspond to increases represented in red in Figures 7 A-C.  
 

3.3 Sulci morphometry 
Sixty-two sulci for the left hemisphere and sixty-one sulci for the right hemisphere were 
extracted for each individual for Study 1 and Study 2 (for the list of extracted sulci based on 
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the Brainvisa sulci atlas see (34)). Our criterion on missing values (see methods) allowed us 
to have only up to 5/49 controls or up to 3/31 synesthetes with at least a missing sulcus. 
Sixteen sulci were then excluded (see Fig. 9). We normalized each value by dividing the 
within subject sum of the 90 sulci (45 right and 45 left), independently for length, depth, 
surface and width. Correlations (Pearson score) varied widely between corresponding left and 
right sulci, preventing from averaging the left and right values. 

 
Figure 9.  The 45 sulci we considered. F.C.L.a: anterior lateral fissure; F.C.L.p: posterior 
lateral fissure; F.C.L.r.asc: amending remus of the lateral fissure; F.C.M.ant.: calloso-
marginal anterior fissure; F.C.M.post.: calloso-marginal posterior fissure; F.Cal.ant.-Sc.Cal.: 
calcarine fissure; F.Coll.: collateral fissure; F.I.P.: intraparietal sulcus; F.I.P.Po.C.inf.: sup. 
postcentral intraparietal sup. Sulcus; F.P.O.: parieto-occipital fissure; INSULA: Insula; 
Occipital: occipital lobe; S.C.: central sulcus; S.Call.: subcallosal sulcus; S.Cu.: cuneal sulcus; 
S.F.inf.: inferior frontal sulcus; S.F.inf.ant.: anterior inferior frontal sulcus; S.F.int.: internal 
frontal sulcus; S.F.inter.: intermediate frontal sulcus; S.F.marginal.: marginal frontal sulcus; 
S.F.median.: median frontal sulcus; S.F.orbitaire.: orbital frontal sulcus; S.F.polaire.tr.: polar 
frontal sulcus; S.F.sup.: superior frontal sulcus; S.Li.ant.: anterior intralingual sulcus; 
S.Li.post.: posterior intra-lingual sulcus; S.O.T.lat.ant.: anterior occipito-temporal lateral 
sulcus; S.O.T.lat.int.: internal occipito-temporal lateral sulcus; S.O.T.lat.med.: median 
occipito-temporal lateral sulcus; S.O.T.lat.post.: posterior occipito-temporal lateral sulcus; 
S.Olf.: olfactory sulcus; S.Or.:or bital sulcus; S.Pa.int.: internal parietal sulcus; S.Pe.C.inter.: 
intermediate precentral sulcus; S.Pe.C.median.: median precentral sulcus; S.Pe.C.sup.: 
superior precentral sulcus; S.Po.C.sup.: superior postcentral sulcus; S.Rh.:r hinal sulcus; 
S.s.P.: sub-parietal sulcus; S.T.i.ant.: anterior inferior temporal sulcus; S.T.i.post.: posterior 
inferior temporal sulcus; S.T.pol.: polar temporal sulcus; S.T.s.: superior temporal sulcus; 
S.T.s.ter.asc.ant.: anterior terminal ascending branch of the sup. temp. sulcus; 
S.T.s.ter.asc.post.: posterior terminal ascending branch of the sup. temp. sulcus. 
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Figure	 10	 shows	 t-scores	 for	 the	 differences	 between	 the	 two	 groups	 for	 our	 four	
measures.	Similarly	to	Figure	5,	we	adopt	a	color	scale	that	would	highlight	with	salient	
colors	(red	and	blue)	only	regions	with	potentially	interesting	differences,	i.e.	when	the	
whole	 CI	 would	 be	 away	 from	 zero	 by	 at	 least	 one	 standard	 error	 above	 the	 mean	
(equivalent	to	t-values	above	4.7;	t-threshold	when	correcting	for	multiple	comparisons	
is	about	3.7).	With	 this	 representation	most	of	 the	 sulci,	with	greenish	color,	 show	no	
difference	between	the	two	groups.	No	region	shows	large	differences	(there	is	no	dark	
blue	 or	 red	 regions).	 Finally, the occipital lobe, the superior temporal sulcus and the polar 
frontal sulcus show some differences both in the right and left hemisphere. 
 

 
 
Figure 10.  Pseudo T-values (square root of the F-score obtained in a linear model with age 
and sex as covariates) for the differences between the two groups for our four measures. Sulci 
with no values appear in grey. 
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In Figure 11 we report the individual values for the regions identified in Figure 10 as well as 
the 99.9% Confidence Intervals of the group difference (arbitrary correction for multiple 
comparisons; see methods). The results did not suggest any real difference between both 
groups. 

Figure 11.  Sulcal length, mean depth, surface and width normalized for the total value in 
controls (blue) and synesthetes (red), in Study 1 (dark crosses) and 2 (bright dots) for three 
regions that show some differences.  CIs were computed with age and sex as covariates (no 
interaction term). Only values for the most different sulci between the two groups were shown 
(occipital and parietal lobes). 

 
4. Discussion 
Several publications have reported structural brain alterations in synesthetes compared to 
controls. A recent review (3) shows a lack of consistency of the localization of the reported 
alterations and more importantly points out several methodological flaws. Our goal here was 
also to question the results we obtained in a recent study on graphemes-color synesthesia (8) 
and extend our study in introducing new features for anatomical comparison. 
 

4.1 Replication of a VBM study. 
Some image processing steps may influence the quality of voxel based morphometry results, 
especially realignment and segmentation procedures (42-44). Firstly, we reanalyzed our 3T 
Bruker data with an updated implementation of the VBM method (VBM8) and the same 
general linear model. The results show (see Table 1 and Figure 1) that the differences initially 
observed in the RSC and STS were detected but were weak (notably, they did not reach the 
classical “statistical threshold” anymore). Clearly, the improvement of the segmentation 
algorithm has an impact on the robustness of the detected differences. A small difference in 
the fusiform gyrus was revealed (X=-26, Y=-72, Z=-12). Several authors reported this region 
as color-sensitive. For instance, the color-sensitive area was defined in human at -27 -57 -11 
(40); -33, -65, -14 (38);  -29 -68 -14 (39) and -26 -81 -9 (8) (see (8) for a detailed discussion 
about the “color center” localization). Change in this region has been considered as the main 
cause for color synesthesia (45, 46). However, recent attempts to find differences in this 
region were not convincing (see (3)). Our results (see Figure 2) reveal all structural 
differences including those not passing an arbitrary threshold and suggest that the screening 
of a larger synesthetes population could reveal significant differences. 
For replication, we considered a new population of grapheme-color synesthetes (n= 21) and 
controls (n=26), and analyzed the 3T Philips data with VBM8 using the model previously 
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used. The comparison of Figure 2 and Figure 4 indicates that potential structural differences 
were detected at different spatial locations based on either Study 1 or Study 2. When we 
pooled the two populations (32 vs 32) some differences detected in Study 1 (see Figure 5, 
Table 2) in the fusiform gyrus were still visible. Two different MR scanners were used and 
because the ratio of cases to control was different between the studies, a covariate was 
introduced in our model for these two different acquisition conditions (47).  Pooling data from 
different scanners introduced confound in VBM analysis (48). Because the value of the 
magnetic field (3T) and the spatial resolution of the structural images were respectively 
identical, the “scanner effect” or “sequence effect” may be limited (49). Note that if the 
initially detected differences were “real” (i.e. not due to sampling noise), they would be likely 
detected with a new MR scanner generation equipped with a 32 channels head coil (Study 2). 
The extent of the confidence intervals for the group differences displayed in Figure 3 provides 
an idea of the order of magnitude of “true” differences compatible with our sample in Study 
1, Study 2 and their pooling. There could be in fact no difference at all, but differences of up 
to 0.05 of WM probability are also compatible with our data. Such a difference (for example a 
change from 0.3 to 0.35) may be physiologically relevant, but could be assessed with 
confidence only by testing many more subjects. 
 

4.2 Structural connectivity  
In order to search for other possible structural differences in the two populations, we acquired 
Diffusion Tensor Imaging data. Using mean diffusivity (see Figure 6) we failed to detect 
differences. A local increase of Fractional Anisotropy would reveal more white matter and 
potentially more local connections (hyperconnectivity). Table 3 and Table 4 indicate 
respectively local increase and decrease in FA in the brain of synesthetes. Figure 7 shows 
increase in FA for some clusters. The confidence interval values for the group difference 
indicate that the measured differences were weak (Figure 8). Our results did not support 
previous claims using the same TBSS analysis procedure with (13, 14, 50) or without (15, 51) 
a priori hypothesis. Since the first attempt to detect structural differences in the brain of 
synesthetes using DTI (14), several improvements have been performed, from image 
acquisition (e.g. increase in the number of gradient directions), processing (e.g. geometric 
distortion correction) and analysis (e.g. crossing-fiber detection). A larger group study using 
state-of-the-art DTI acquisition and analysis procedures is needed for further structural 
connectivity investigation in synesthetes.  
 

4.3 Sulcal shapes 
Finally, using a recent sulci-based morphometry technique (34) we searched for differences at 
the sulcal level. We considered four features: length, depth, width and surface for 45 sulci 
(see Figure 9). Figure 10 shows all the measured differences for these features for 28 
synesthetes versus 44 controls. It clearly appears that no important difference in cortical 
anatomies was found between controls and synesthetes. Only weak differences appear in the 
superior temporal sulcus and the occipital lobe. The former result may be in line with the 
positive correlation between fractional anisotropy in the right temporal cortex and scores of 
synesthesia strength reported in (14). The latter is in coherence with our VBM results of 
Study 1 (see Figure 2). Figure 11 indicates the corresponding confidence intervals. Our study 
reports the first investigation of sulcal shapes in synesthetes compared to controls, but due to 
large individual variations of sulcal anatomy, processing a large cohort is required to assess 
the possible relationship between brain folding and synesthetic experiences. For instance (33) 
involved 1009 healthy young adults for understanding genetic factors contributing to sulcal 
shape variability. 
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4.4 Shifting from NHST  
To facilitate comparison with the literature we have reported p-value corrected for multiple 
comparison. Eklund et al. (17) demonstrated that multiple comparison correction procedures 
used in neuroimaging for cluster-wise inference artificially inflate false-positive rates. They 
considered that cluster failure for fMRI data inferences was mainly due to the false 
assumption of the gaussian shape of spatial autocorrelation functions. Similarly for VBM 
studies, the difficulty to control false positive is due to the non-normality of the data, even 
after spatial smoothing, and directly dependent on sample size (52, 53). More generally (16) 
underlined that multiple testing corrections do not prevent from false positive findings, 
especially in life science where studies are in general underpowered face to the large set of 
potentially influent variables difficult to master. In the same line, several authors have 
emphasized that null hypothesis significance testing (NHST), leading to the unsolvable 
problem of false positive control, is a theoretical framework maladapted to determine the 
significance of the results in social, psychological and cognitive sciences and should be 
banished (see the virulent attack from the statistician J. Cohen (54) or (55); see also (56) for 
MRI studies). A statistic paradigm shift is then proposed with ‘New Statistics’ (18) reporting 
effect sizes and confidence intervals rather than p-values or, for neuroimaging studies, 
statistical maps at a predefine p-value threshold. Several arguments support moving beyond 
NHST toward a cumulative quantitative approach where data are presented in a way that 
facilitates their interpretation in context. We promote such an approach in our paper with the 
dual-coding data visualization proposed by (19).  
 

4.5 Data sharing  
As reported by several authors (57, 58), low statistical power is endemic in Neurosciences. 
Our study clearly demonstrates that the use of a small-size population leads to unreproducible 
results even when inclusion criteria for group definition are strict and false-positive rate 
“controlled”. Data sharing between laboratories is the only way to improve statistical power 
in our neuroscience studies, increase reliability and confidence regarding effect size. This is 
more pregnant in domains, such as synaesthesia, where the recruitment of subjects is costly, 
long and time-consuming and the effect to measure, if any, is subtle, as evidenced in the 
present study. Knowledge about this subject will progress only if we decide to share our data. 
It is then imperative that all the steps of data processing be accurately reported and precise 
rules for statistical analysis respected (see (59, 60) for interesting recommendations). The 
ideal number of subjects for detecting a reproducible difference is not straightforward. 
Because the effect size may be low, more than one hundred individuals in each group seems a 
minimum (61). For going in this direction, all our structural data (T1-weighted and DTI) are 
freely available on request (https://shanoir.irisa.fr/Shanoir/login.seam, contact M. Dojat). 
Please refer to the present paper in case of the reuse of these datasets. 
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